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Abstract: Coronary heart disease (CHD) is a major cause of death in Middle Eastern (ME) populations,
with current studies of the metabolic fingerprints of CHD lacking in diversity. Identification of
specific biomarkers to uncover potential mechanisms for developing predictive models and targeted
therapies for CHD is urgently needed for the least-studied ME populations. A case-control study
was carried out in a cohort of 1001 CHD patients and 2999 controls. Untargeted metabolomics was
used, generating 1159 metabolites. Univariate and pathway enrichment analyses were performed
to understand functional changes in CHD. A metabolite risk score (MRS) was developed to assess
the predictive performance of CHD using multivariate analysis and machine learning. A total of
511 metabolites were significantly different between the CHD patients and the controls (FDR p < 0.05).
The enriched pathways (FDR p < 10−300) included D-arginine and D-ornithine metabolism, glycolysis,
oxidation and degradation of branched chain fatty acids, and sphingolipid metabolism. MRS showed
good discriminative power between the CHD cases and the controls (AUC = 0.99). In this first study
in the Middle East, known and novel circulating metabolites and metabolic pathways associated
with CHD were identified. A small panel of metabolites can efficiently discriminate CHD cases and
controls and therefore can be used as a diagnostic/predictive tool.

Keywords: metabolomics; coronary heart disease; arginine metabolism; metabolite risk score;
Middle East

1. Introduction

Coronary heart disease (CHD) is a major cause of mortality worldwide [1]. Many
risk factors have been identified that contribute to CHD, including genetic, lifestyle, and
environmental mediators [2]. Greater insight into biological processes of CHD is needed to
better understand and improve its diagnosis and treatment. The advent of omics technology
such as genomics, transcriptomics, and metabolomics has significantly aided the discovery
of novel risk markers, as well as the elucidation of mechanisms related to the etiology and
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pathogenesis of CHD. Metabolomics is a type of omics data that is understudied for CHD
and could provide diagnostic, prognostic, and therapeutic insights [3].

Changes in metabolism could both lead to CHD and be a consequence of the disease
itself [4]. At the level of the heart, alterations in cardiac metabolism may have a direct
impact on the contractile function [5]. These alterations impact the uptake of the substrates
used for biological functions, such as cell growth and regeneration, resulting in different
pathologies [6]. Under normal conditions, 60–90% of the energy used by the heart is
generated by mitochondrial oxidation of fatty acids, and the remaining is supplied by
glucose, lactate, and ketones [6].

CHD patients usually have comorbidities that accelerate the disease progression. Many
of these are diseases of metabolic dysfunction, such as diabetes mellitus, dyslipidemia, and
obesity, which impact many body organs and tissues, including the liver, skeletal muscle,
vasculature, and myocardium [7–9]. These comorbidities influence the trajectory of the
onset of CHD, but CHD can occur in their absence as well [9].

Previous studies have identified novel CHD risk factors using metabolomic data, but
this has mainly been in individuals of European ancestries [10–12], and more recently
in individuals of African ancestries [13]. CHD is rampant in the Middle East (ME) and
Gulf region, especially in young individuals [14]. Metabolomics for CHD has not as
yet been studied in ME populations. In this study, we investigated changes in systemic
metabolites in CHD using untargeted metabolomics in a large ME cohort collected by the
Qatar Cardiovascular Biorepository (QCbio) [14] and the Qatar Biobank (QBB) [15]. We
investigated several research questions including: (1) Are there differences in metabolite
levels between CHD patients and controls; (2) are there changes in metabolite groups
(pathways) that are not by chance and that indicate systematic alterations in the activity
level of the pathways; and (3) can multivariate analysis and machine learning models be
developed as a metabolite risk score (MRS) to assess predictive performance of CHD using
metabolic profiles?

2. Results
2.1. Univariate Analysis

A total of 511 metabolites were significantly different between the CHD patients and
the controls (FDR p < 0.05). Most metabolites (331 out of 511, 65%) were elevated in the
CHD cases, including amino acids, carbohydrates, energy-related metabolites, nucleotides,
peptides, and xenobiotics (Figure 1A). The 20 most significantly altered metabolites had
FDR p < 5.26 × 10−86 and are shown in Figure 1B. Of these, there were five amino acid
metabolites (all elevated in CHD), three carbohydrates metabolites (two elevated in CHD),
one energy metabolite (elevated in CHD), six lipid metabolites (all elevated in CHD), two
nucleotide metabolites (one elevated in CHD), one peptide metabolite (elevated in CHD),
and two xenobiotic metabolites (both decreased in CHD) (Figure 1B).

2.2. Pathway Enrichment Analysis

The results of the metabolic pathway enrichment analysis are shown in Table 1
for the 45 most significant pathways with FDR p < 10−300. The enriched pathways in-
cluded D-arginine and D-ornithine metabolism (enrichment ratio (ER) = 760.0); glycolysis
(ER = 572.2); arginine and proline metabolism (ER = 441.3); oxidation of branched chain
fatty acids (ER = 429.3); sphingolipid metabolism (ER = 341.8); and valine, leucine, and
isoleucine degradation (ER = 328.1). In the following sections, pathways of relevance in
CHD have been highlighted.
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Figure 1. Metabolic differences between CHD patients and controls. (A) Distribution of effect sizes of
metabolites grouped by super pathways. (B) Effect sizes of top 20 significantly different metabolites
in cases and controls. p and effect size of the metabolites were calculated using a logistic regression
adjusting for age, sex, and BMI.

Table 1. The 45 most significant enriched pathways with FDR corrected p < 10−300.

Rank Pathway C H ER Rank Pathway C H ER

1 Malate-Aspartate Shuttle 10 3 937.76 24 Oxidation of Branched Chain Fatty Acids 26 4 429.34
2 D-Arginine and D-Ornithine Metabolism 11 3 760 25 Mitochondrial Electron Transport Chain 19 4 422.54
3 Glucose-Alanine Cycle 13 5 740.04 26 Propanoate Metabolism 42 5 419.62
4 Gluconeogenesis 35 6 730.95 27 Tryptophan Metabolism 60 12 386.48
5 Warburg Effect 58 12 695.11 28 Ammonia Recycling 32 12 386.28
6 Citric Acid Cycle 32 7 683.41 29 Glycine and Serine Metabolism 59 21 379.37
7 Glutathione Metabolism 21 6 659.62 30 Nicotinate and Nicotinamide Metabolism 37 9 363.32
8 Lysine Degradation 30 4 638.04 31 Carnitine Synthesis 22 8 346.34
9 Pyruvate Metabolism 48 5 620.85 32 Betaine Metabolism 21 6 342.96

10 Tyrosine Metabolism 72 9 608.32 33 Sphingolipid Metabolism 40 10 341.81
11 Urea Cycle 29 12 578.21 34 Valine, Leucine and Isoleucine Degradation 60 8 328.06
12 Transfer of Acetyl Groups into Mitochondria 22 5 573.51 35 Histidine Metabolism 43 10 305.92
13 Glycolysis 25 4 572.2 36 Arachidonic Acid Metabolism 69 4 288.72
14 Phytanic Acid Peroxisomal Oxidation 26 2 571.65 37 Starch and Sucrose Metabolism 31 5 265.43
15 Phenylalanine and Tyrosine Metabolism 28 7 544.89 38 Steroidogenesis 43 3 261.33
16 Alanine Metabolism 17 7 531.58 39 Methionine Metabolism 43 15 243.09
17 Cysteine Metabolism 26 6 514.23 40 Glycerolipid Metabolism 25 6 240.15
18 Amino Sugar Metabolism 33 6 459.18 41 Pyrimidine Metabolism 59 9 155.08
19 Glutamate Metabolism 49 12 457.04 42 Fatty Acid Biosynthesis 35 8 133.24
20 Arginine and Proline Metabolism 53 16 441.27 43 Bile Acid Biosynthesis 65 11 107.6
21 Beta-Alanine Metabolism 34 8 441.12 44 Galactose Metabolism 38 7 133.77
22 Aspartate Metabolism 35 12 438.07 45 Phosphatidylcholine Biosynthesis 14 4 359.58
23 Purine Metabolism 74 12 433.8

Rank: Rank of pathways based on descending ER; ER: Enrichment ratio; C: The number of compounds within
each pathway; H: the number of tested metabolites that overlap with the pathway.

2.3. Alternation in Arginine and Ornithine Metabolism and Synthesis

In the D-arginine and D-ornithine metabolism pathway (the second most-enriched path-
way; Table 1), we observed a lower concentration of arginine in CHD (FDR p = 2.88 × 10−82)
and higher concentrations of both ornithine (p = 1.04 × 10−152) and total dimethylarginine
(symmetric and asymmetric, i.e., SDMA, ADMA; p = 9.14 × 10−35) (Figure 2A). L-arginine
is metabolized by two competing pathways (Figure 2D–G). In the first pathway, nitric oxide
synthase (NOS) converts L-arginine to nitric oxide (NO) and citrulline. This is catalyzed by
endothelial nitric oxide synthase (eNOS) (EC 1.14.13.39). In the second pathway, L-arginine
is the substrate of arginase (EC 3.5.3.10) that produces ornithine and urea. Within cases,
the metabolite concentration of ornithine was approximately twice the concentration of
arginine (ornithine-to-arginine ratio (OAR) = mean concentration of ornithine divided by
mean concentration of arginine = 1.94). Within the controls, however, an opposite trend was
observed (OAR = 0.89), indicating a shift in arginine metabolism for higher production of
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ornithine. The reduced production of NO may be attributed in part to the higher inhibitory
effect of ADMA (in CHD patients) on nitric oxide synthase (Figure 2F,G).
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Figure 2. (A) The distribution of ornithine, arginine, and dimethylarginine in CHD patients and
controls. (B) The impact of sex on ornithine, arginine, and dimethylarginine distribution. (C) The
impact of type 2 diabetes on ornithine, arginine, and dimethylarginine distribution. (D) The arginine
biosynthesis pathway (KEGG pathway: hsa00220). (E) The arginine and ornithine metabolism
pathway (KEGG pathway: hsa00472). (F) The role of increased concentrations of ADMA in the
metabolism of L-arginine. (G) The DDAH/ADMA pathway and the role of increased concentrations
of ADMA in vascular function and homeostasis. Colored metabolites were found in our metabolomic
profile. Metabolites in red, yellow, and green have lower, the same, and higher concentration in cases
compared with controls, respectively.

Stratifying the analysis by sex, a gender difference was observed for ornithine con-
centration in both the CHD and the control groups (p = 3.12 × 10−28 and 6.74 × 10−7,
respectively; Figure 2B). Arginine concentration was similar between females and males
in the CHD group (p = 0.72), but female controls had higher concentrations of arginine
than male controls (p = 3.38 × 10−11). Females in both the CHD and the control groups
had higher concentrations of dimethylarginine than males (p = 0.0072 and 1.3 × 10−14,
respectively; Figure 2B). The OAR was 2.01 in CHD males and 1.83 in CHD females. These
ratios indicate a shift in arginine metabolism for higher production of ornithine in male
patients compared with female patients.

Stratifying the analysis by type 2 diabetes (T2D), we observed that concentrations
of arginine and ornithine were significantly lower in subjects with T2D compared with
subjects without T2D (Figure 2C). This indicates less availability of arginine to produce NO,
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which is a key component for vascular function as well as homeostasis. Interestingly, the
concentrations of dimethylarginine were higher in the CHD patients who had T2D than
in the CHD patients without T2D, although the difference was not statistically significant
(p = 0.12), most likely because of the high data variability and small sample size. The
opposite trend was observed in the controls at statistical significance (p = 2.32 × 10−10).
This supports the hypothesis of the lower production of NO in CHD patients with T2D by
inhibiting nitric oxide synthase. The OAR was 0.88 in controls without T2D, 0.98 in controls
with T2D, 1.96 in CHD cases without T2D, and 1.92 in CHD cases with T2D (Figure 2C).
These ratios indicate a higher production of ornithine in controls with T2D compared with
the controls who do not have T2D.

2.4. Changes in Acylcarnitines, Branched Chain Amino Acids, Sphingolipids, and Sugar Metabolisms

Increased acylcarnitines and decreased long-chain fatty acids in CHD: All significant acylcar-
nitines were elevated in the CHD patients: oleoylcarnitine (C18:1) (FDR p = 3.71 × 10−108),
stearoylcarnitine (C18) (FDR p = 3.18 × 10−53), propionylcarnitine (C3) (FDR p = 3.31 × 10−44),
decanoylcarnitine (10) (FDR p = 3.01 × 10−19), and deoxycarnitine (FDR p = 2.58 × 10−10)
(Figure 3). The most significant long-chain fatty acids (23 out of 25) were decreased in CHD
(Figure 4). This may be attributed to their conversion to acylcarnitines, which were increased
in CHD.
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High concentrations of sphingolipids: Sphingolipids were significantly increased in the
CHD patients: sphingosine 1-phosphate (S1P) (FDR p = 4.79 × 10−142) and sphingosine
(FDR p = 8.33 × 10−102) (Figure 6).

Sugar metabolism: All six “glycolysis, gluconeogenesis, and pyruvate metabolism”
metabolites were significantly different, with FDR p ≤ 8.25 × 10−8 (Figure 7). Lactate
(p = 3.43 × 10−135), pyruvate (p = 3.03 × 10−93), and glucose (p = 6.14 × 10−10) were higher
in cases than controls (Figure 7). After adjusting for T2D, age, sex, and BMI in the univariate
model, glucose and 1,5-anhydroglucitol (1,5-AG) were not significant (p = 0.35 and 0.5,
respectively), but the remaining metabolites remained very significant (p ≤ 3.77 × 10−32;
data not shown).
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2.5. Multivariate Analysis and Predictive Model

The random forest (RF) models on the test set yielded area under the receiver operator
curve (AUC) values of 0.97 and 0.98 using the full model, i.e., A (641 metabolites), and the
reduced model, i.e., B (17 metabolites), respectively. The accuracies of models A and B were
98.5% and 98.7%, respectively. The mean decrease in accuracy (variable importance) of the
random forest model trained on all metabolites is shown in Supplementary Figure S2. The
AUCs for males and females were 1.0 and 0.97, respectively, indicating that the performance
of the RF model is consistent for females and males (data not shown). Using the LASSO
approach on the training data, we built a metabolite risk score using the 107 metabolites
with non-zero coefficients (MRS107) (Supplementary Figure S3). MRS107 discriminated
CHD patients and controls in the test data with AUC of 0.998. A reduced MRS, MRS10, was
also built on 10 metabolites with the highest LASSO coefficients selected based on the knee
point (Supplementary Figure S3). MRS10 performance was similar to that of MRS107, and
the AUC did not decrease much (AUC = 0.99, 95% CI [0.99–1], p = 1.53 × 10−24; Figure 8A,
Supplementary Figure S3). We tested the model developed by Wang et al. [13] on our test
data. The performance was worse, and the AUC was much smaller (AUC = 0.68, 95% CI
[0.64–0.72], p = 2.81 × 10−21; Figure 8B). The metabolites in MRS10 and their LASSO effect
sizes are shown in Figure 8C. We investigated the predictive performance of MRS10 for
samples with T2D by removing all the subjects in the test set who did not have T2D. AUC
was 0.99, indicating that the predictive performance of our model on T2D is as good as its
performance on the overall dataset.
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3. Discussion

This is the first study that has investigated the metabolic profile and its impact on CHD
in a large case-control cohort from the Middle East, using an untargeted metabolomics
approach. Our results provide strong evidence that many circulating metabolites and
metabolic pathways are altered in CHD patients. The results also showed that a small
panel of metabolites can efficiently discriminate CHD cases and controls and can therefore
be used as a diagnostic/predictive tool. In this study, we confirm known metabolites that
are associated with CHD, identify novel ones, and provide insights into some underlying
biological mechanisms for CHD.

Ornithine and arginine were significantly associated with CHD. The ornithine concen-
tration in the CHD patients was twice the concentration of arginine, unlike in the controls,
in whom arginine was higher. As arginine is the only physiological substrate for NOS-
mediated generation of NO [16,17], our results indicate a reduced bioavailability of NO in
CHD patients. NOS and arginase compete for a common substrate, L-arginine. As NOS
is the only known producer of NO [17], competition for its substrate through increased
arginase activity is likely to lead NOS being substrate starved. This has been observed in
other non-metabolomics studies [18–21]. A higher concentration of the NOS antagonist
ADMA also contributes to inhibition of NO production. Moreover, increased activity of
arginase is also found in diabetes [22,23], and inhibition of arginase is found to improve
endothelial function [24,25]. Diminished NO bioactivity may cause constriction of coronary
arteries during exercise or during mental stress and could contribute to the provocation
of myocardial ischemia in patients with CHD [26]. Thus, it could be a potential target for
cardiovascular treatment. In addition, our results showed a lower concentration of arginine
in T2D subjects, both in controls and in CHD patients. Male controls showed lower levels
of arginine than female controls, which may be associated with the lower CHD prevalence
in females.

Our analysis has revealed increased concentrations of acylcarnitines, which is as-
sociated with many heart problems such as CHD [11,27,28]. Long-chain fatty acids are
converted to acylcarnitines in mitochondria via beta-oxidation. This conversion allows
long-chain fatty acids to be transported across the mitochondrial membrane [29]. The
increased transport can lead to storage of excess triglycerides in the cell. The generation
of toxic triglyceride intermediates can lead to cellular and organ dysfunction. Moreover,
elevation of long-chain acylcarnitines is associated with incomplete oxidation of fatty acids
and results in insulin resistance [30,31].

BCAAs were higher in CHD patients as well. These are the main source of nitrogen
for production of glutamine and alanine in muscles. In myocardial ischemia, an important
oxidative energy substrate of the heart may be BCAAs, which are produced by muscle
protein mobilization [32]. Accretion of BCAAs and catabolic products is attributed to
heart diseases [33] such as heart failure, supporting our findings. One of the potential
mechanisms of BCAAs and cardiac dysfunction is through myocardial mTOR signaling [34].
Catabolic flux modulation of BCAAs has been proposed as a potential therapy for heart
failure [33,35].

Our CHD patients were found to have higher concentrations of sphingolipids than
the controls. Sphingolipids were recently identified as cholesterol-independent biomarkers
of CHD [36], and changes in sphingolipid metabolism, distribution, signaling, and con-
centration have been observed in cardiovascular diseases [37]. Sphingolipids have been
previously shown to be increased in CHD [38]. Sphingolipids are active components of cell
membranes and perform intracellular signal transduction and regulation of other cellular
processes [38]. They are known to support essential functions in cardiogenesis and cardiac
function and to mediate pathological processes [39].

Sugar metabolism was also increased in the CHD patients. Cardiac contractility re-
quires a constant supply of adenosine triphosphate (ATP). Under normal conditions, the
high demand of ATP is primarily satisfied by fatty acid oxidation (FAO), with a small con-
tribution from glucose metabolism [7]. Under stress conditions as well as in cardiovascular
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diseases, there is a shift in the supply of ATP from FAO to glucose utilization [40]. Con-
ditional analysis on T2D showed that most of the sugar metabolites remained associated
with CHD, independent of T2D.

Efforts have been made to develop clinical data-based predictive models, but the
accuracy of these models in CHD is <75% [41]. We have developed a predictive model
to classify a metabolomic profile for CHD in this cohort. Our results were compared
to those reported by Wang et al. [13], who developed a model based on metabolomics
data. We developed several models to explore different aspects of predictive modeling in
metabolomics. A good model can be built by using all the metabolites, but such a model
is not practically feasible in a clinical setting as it will require too many metabolites for
prediction. We used variable importance to select a small subset of metabolites that can
generate a model with good predictive performance. The model we developed from our
data had better predictive performance for our ME population than did Wang et al.’s [13]
model. Wang et al.’s MRS19 had worse performance than the LASSO MRS10 developed in
our cohort. This may be due to the differences in ancestries between studies, which stresses
the need to study diverse populations.

4. Materials and Methods
4.1. Study Population

The study cohort comprised 1001 CHD patients and 2999 control subjects (Table 2).
The CHD patients were recruited as part of QCbio, a prospective study to establish a
biorepository of plasma and DNA from Qatari patients with CHD [14]. The patients were
recruited between October 2013 and February 2018. The CHD patients were identified
from the Cardiac Catheterization Laboratory, Coronary Care Unit, and Heart Hospital
Clinics at Hamad Medical Corporation, Doha, Qatar. Patients with a history of acute
coronary syndrome or stable angina were included in the study. The control subjects were
recruited by the Qatar Biobank [15]. All participants were enrolled in the study after giving
written informed consent. The informed consent document conformed to the guidelines
regarding bioethics resources and human subject research and International Society of
Biological and Environmental Biorepositories. Females and males were approximately
equally represented in the control cohort, but the CHD cohort included more females (62%).
The CHD patients were older than the controls (mean ± SD years = 52.7 ± 14.5 for cases
and 39.8 ± 12.0 for controls; p < 2.2 × 10−16; Table 2).

Table 2. The cohort characteristics after the quality control steps.

CHD Controls p *
Females Males All Females Males All

Participants, N (%) 600 (61.9) 370 (38.1) 970 (100) 1505 (50.5) 1478 (49.6) 2983 (100) 7.9 × 10−10

Age, Mean (SD) years 53.4 (14.5) 51.6 (14.9) 52.7 (14.6) 39.6 (11.4) 40.1 (12.6) 39.8 (12.0) <2.2 × 10−16

BMI, Mean (SD) kg.m−2 29.8 (5.0) 31.8 (6.2) 30.5 (5.5) 28.6 (5.5) 29.4 (6.3) 29.0 (5.9) 2.7 × 10−13

Type 2 Diabetes #, N (%) 302 (62.8) 179 (37.2) 481 (100) 135 (49.6) 137 (50.4) 272 (100) 5.9 × 10−4

* p: p-values were calculated using a chi-square test to compare the numbers of cases and controls with respect to
sex and Type 2 diabetes. Two-sample t-test was used to compare age and BMI between the cases and controls.
# Type 2 diabetes (T2D) status within CHD was defined as fasting blood glucose ≥ 126 mg/dL, random glu-
cose ≥ 200 mg/dL, hemoglobin A1C ≥ 6.5%, or a prior diagnosis with oral hypoglycemic or insulin therapy.
Within the controls, hemoglobin A1C ≥ 6.5% was used to define T2D patients.

4.2. Metabolomic Profiling and Quality Control

Serum metabolites for both the cases and the controls were jointly quantified by
untargeted, ultrahigh-performance liquid chromatography-tandem mass spectroscopy
(UPLC-MS/MS) and curated by Metabolon Inc. Samples were run in analytical plates
containing 144 experimental samples per plate (batch). The data were normalized across
batches to generate batch-normalized data and to correct for minor instrument technical
variation from batch to batch. Each compound was corrected in instrument batch blocks
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by registering the medians of each batch to equal one and normalizing each data point
proportionally. A total of 1159 metabolites were profiled within nine super pathways: lipid
(30.1%), xenobiotics (21.1%), amino acid (17.3%), nucleotide (3.1%), peptide (2.9%), cofactors
and vitamins (2.6%), carbohydrate (1.9%), partially characterized molecules (1.1%), energy
(0.7%), and unnamed metabolites (19.2%). Unnamed metabolites were removed, leaving
937 metabolites for analysis.

Quality control steps were conducted to ensure data quality. Samples and metabo-
lites with more than 80% missing data were removed based on the criteria suggested by
Wei et al. [42]. This led to the exclusion of 7 samples and 296 metabolites. Missing values
in the remaining data were imputed by replacing the missing values for each metabolite
with the minimum value detected for the metabolite. Sample outliers were identified using
principal component analysis (PCA) if the first five principal component values fell outside
[µ ± 5 SD] (40 outliers removed; Supplementary Figure S1). Metabolites in the remaining
samples were winsorized using 80% winsorization: Values for a metabolite below the 10th
percentile were set to the 10th percentile, and values above the 90th percentile were set to
the 90th percentile. A total of 641 metabolites among 3953 samples remained for subsequent
analysis.

4.3. Univariate Statistical Analysis

Individual metabolite differences between the CHD patients and the controls were
tested using logistic regression in R (R Core Team, version 3.6, Vienna, Austria; https:
//www.R-project.org/) adjusting for age, sex, and BMI to mitigate the correlations between
metabolites and age, sex, and BMI. FDR corrected p-values (p) from the models were used to
identify significantly different metabolites between the CHD cases and the controls, and the
effect size was used to identify the direction of the changes in the metabolite concentrations
with respect to disease status. A metabolite has a positive effect size if its concentration is
higher in CHD patients compared with controls.

4.4. Pathway Enrichment Analysis

Pathway enrichment analysis provides mechanistic insight into gene lists generated
from genome-scale (omics) experiments. This method identifies biological pathways that
are more enriched in a metabolite list than would be expected by chance. Pathway en-
richment analysis was performed using MetaboanalystR 3.0 [43]. Comma-separated value
(CSV) data files containing samples, disease status, compound IDs, and values of metabo-
lites for each sample were generated. For compound matching, the Human Metabolome
Database (HMDB) IDs provided by Metabolon were used. The auto-normalization option
was selected for data normalization, which scales the data to mean = 0 and SD = 1. The
quantitative enrichment analysis (QEA.) option was used, which uses the metabolite con-
centrations for the analysis instead of the list of differentially expressed metabolites. QEA.
uses a generalized linear model to estimate a statistic (called Q-stat) of a metabolite set that
describes the correlation between compound concentration profiles and phenotype [44].
This approach identifies metabolite sets when only concentrations of a few compounds are
significantly different or when many related compounds have correlated small changes.
The enrichment ratio (ER) is defined as the ratio of the Q-stat for the given data to its ex-
pected value by chance. ERs greater than 1 mean that the given metabolite set has different
metabolite concentrations than what is expected by chance. Pathway maps were generated
for visualization using the online tool Pathview (https://pathview.uncc.edu/; accessed on
23 November 2021). Pathview annotated the KEGG pathway maps [45] with normalized
metabolite concentrations using red, yellow, and green to represent lower, same, and higher
concentrations in CHD patients compared with controls, respectively.

4.5. Multivariate Analysis and Predictive Modeling

A random forest model was developed using the randomforest R package [46] to assess
the predictive performance of inferring CHD with metabolomics data. RF models work

https://www.R-project.org/
https://www.R-project.org/
https://pathview.uncc.edu/
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well with relatively few samples, capture nonlinear interactions, and generalize well. The
samples were divided into a training set (randomly selected 75% CHD patients (N = 735)
and 75% controls (N = 2270)) and a testing set (remaining sample; N = 948). The variable
importance, which is the mean decrease in accuracy if the variable is removed from the
model, was calculated using the caret R package [47]. AUCs were calculated using the
ROCR package in R [48]. The knee point of the variable importance curve was determined
by selecting a minimum number of variables having area under the ROC comparable with
the model using all metabolites. Performance of the RF model was tested in females and
males separately by splitting the test set into males (N = 444) and females (N = 504). Two RF
models were built: (A) based on all the metabolites (i.e., 641) and (B) based on a small subset
of metabolites having the highest variable importance in model (A). Multivariate analysis
was performed through least absolute shrinkage and selection operator (LASSO) using the
glmnet R package [49]. We fit a model with 200-fold cross-validation and incorporated all
614 metabolites as well as age, sex, and BMI. The penalty parameter λ was determined
based on the lowest mean error obtained by cross-validation. Two metabolite risk scores
(MRS) were developed, one using all metabolites with a non-zero LASSO coefficient and a
reduced model that used the metabolites with the highest LASSO coefficients.

5. Conclusions

Our study has focused on a cohort from an underrepresented population, with subjects
representing the Middle East and Gulf region. Similar studies should be carried on new
cohorts to replicate our findings and strengthen our conclusions. Overall, our study
underscores the value of metabolomics in exploring biomarkers and biological mechanisms
to identify potential therapeutic targets for treating CHD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060517/s1, Figure S1: Principal component analysis of
samples. First two principal components are shown. Samples outside [µ ± 5SD] are labelled outliers.
The dotted lines represent µ ± 5SD; Figure S2: Mean decrease in accuracy (variable importance) of
the random forest model trained on all metabolites; Figure S3: Non-zero coefficients of metabolites
in the LASSO model. Absolute value of the coefficients is plotted to identify knee point to select a
subset of metabolites to develop metabolic risk score.
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