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Abstract

Noise injection and data augmentation strategies
have been effective for enhancing the generali-
sation and robustness of neural networks (NNs).
Certain types of noise such as label smoothing and
MixUp have also been shown to improve calibra-
tion. Since noise can be added in various stages
of the NN’s training, it motivates the question of
when and where the noise is the most effective.
We study a variety of noise types to determine how
much they improve calibration and generalisation,
and under what conditions. More specifically we
evaluate various noise-injection strategies in both
in-distribution (ID) and out-of-distribution (OOD)
scenarios. The findings highlight that activation
noise was the most transferable and effective in
improving generalisation, while input augmenta-
tion noise was prominent in improving calibration
on OOD but not necessarily ID data.

1. Introduction
Noise injection methods have emerged as a promising
approach to enhance the generalisation of neural net-
works (NNs) (Srivastava et al., 2014; Neelakantan et al.,
2017). Given the importance of noise for Bayesian NNs
(BNNs) (Gal & Ghahramani, 2016; Blundell et al., 2015;
Welling & Teh, 2011), we hypothesise that noise injections
during training of standard NNs can also positively impact
their calibration. Calibration refers to the alignment of pre-
diction’s accuracy to their confidence (Guo et al., 2017).

Examples of noise injection approaches include dropout (Sri-
vastava et al., 2014; Gal & Ghahramani, 2016), label smooth-
ing (Szegedy et al., 2016), MixUp (Zhang et al., 2018),
Gaussian noise (Blundell et al., 2015), shrinking and per-
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turbing NN weights (Ash & Adams, 2020), and gradient
noise (Neelakantan et al., 2017). By introducing noise dur-
ing the training, these methods encourage active exploration
of the parameter space (He et al., 2019) and can be applied
to various components of the network, including the input,
targets, activations, gradients and the model itself. In this
paper, we aim to provide a fair comparison of noise injec-
tion methods during training and investigate their impact
on both calibration and generalisation of NNs in a com-
puter vision classification setting. We ensure fairness of the
comparison through dedicated hyperparameter optimization
per noise type and we examine the transferability of found
hyperparameters from one dataset or architecture to another.
To robustly evaluate both generalisation and calibration we
consider testing the methods on both test in-distribution (ID)
and out-of-distribution (OOD) data.

The key takeaways from our work are: 1) Activation noise,
especially dropout (Srivastava et al., 2014), improves gener-
alisation and marginally also calibration across architectures
and datasets. 2) Input augmentation, MixUp (Zhang et al.,
2018), improves calibration and generalisation on OOD data
but not necessarily ID data. 3) Model noise and gradient
noise improve generalisation and calibration, but only to a
smaller extent than input or activation noise.

2. Related Work
Standard NNs were shown to lack calibration (Guo et al.,
2017), motivating the need for approaches focusing on train-
ing NNs such that their confidence matches their accuracy.
Bayesian NNs (BNNs) (Blundell et al., 2015; Gal & Ghahra-
mani, 2016; Welling & Teh, 2011) and NN ensembles (Lak-
shminarayanan et al., 2017) are popular approaches for ob-
taining well-calibrated models, but they are computationally
expensive as they require random sampling and multiple
forward passes during test time. Alternative methods have
been proposed without increasing computational complex-
ity, particularly during training. They include different loss
functions (Kumar et al., 2018; Mukhoti et al., 2020; Bo-
hdal et al., 2021) and temperature scaling (Guo et al., 2017).
However, these approaches have their own limitations and
may not be suitable for all scenarios. On the other hand,
most noise injections are applicable to any NN architecture
and any task.



For input noise injection, commonly used are MixUp
and Output Diversified Sampling (ODS) methods.
MixUp (Zhang et al., 2018) linearly interpolates between
two samples and their labels, while ODS (Tashiro et al.,
2020) augments the input to diversify predictions and
was used in the context of adversarial examples but not
calibration. MixUp has been shown to improve calibration
and generalisation (Zhang et al., 2022), but its transferability
between datasets and architectures has not been explored.
Additionally, we investigate naive Gaussian and uniform
noise injection, which adds Gaussian or uniform noise to
the input during training. In terms of target noise injection,
frequently used is label smoothing (Pereyra et al., 2017)
and MixUp (Zhang et al., 2018) label interpolation. Label
smoothing replaces hard targets with soft targets and has
already been shown to improve calibration, but not on OOD
data (Müller et al., 2019). Activation noise injections
include Dropout, Gaussian and uniform noise injections.
Dropout (Srivastava et al., 2014) randomly sets activations
to zero. Gaussian noise injection (Blundell et al., 2015;
Camuto et al., 2020; He et al., 2019) adds Gaussian noise
to the activations, while uniform noise injection adds
uniform noise. In BNNs, these injections are applied both
during training and evaluation, whereas in this work we
only apply noise during training. Furthermore, gradient
noise has been shown to improve generalisation through
adding annealed Gaussian noise to the gradients during
training (Neelakantan et al., 2017; Welling & Teh, 2011).
However, it was not benchmarked on calibration, especially
without ensembling weights at different training time-steps.
Finally for model noise injection, recently Gaussian noise
injection via shrinking and perturbing weights (Ash &
Adams, 2020) at a given epoch frequency was shown to
improve retraining generalisation, but calibration on ID or
OOD data was not considered.

To the best of our knowledge, the noise injections have
been studied 1) separately (Zhang et al., 2022; Müller et al.,
2019), 2) orthogonally for generalisation and calibration on
ID or OOD data, and 3) without a unified hyperparameter
(HP) optimization protocol. This research aims to start the
conversation into a comprehensive analysis of the noise in-
jection methods and their relationship to generalisation and
calibration, across datasets and NN architectures, providing
valuable insights into their effectiveness and practicality.

3. Methodology
This study focuses on training a NN with noise perturbations
to investigate their impact on NN’s accuracy and calibration,
identifying which perturbations are helpful and when. The
noise types are divided between input, target, gradient
and model, and their deployment during training is outlined
in Algorithm 1 via blue lines. The probability of applying

Algorithm 1 Training of Neural Network with Noise
Require: Training dataset D = {(xb, yb)}Bb=1, B batches,

learning rate η, number of epochs T , weights θ, hid-
den states hD

i , depth D, activations f(·), probability of
applying noise to a batch p

1: Initialize θ randomly
2: for t = 1 to T do
3: for b = 1 to B do
4: Randomly select (xb, yb) from D
5: Sample e ∼ U(0, 1) {If e < p}
6: Input noise: Modify xb

7: Target noise: Modify yb

8: Activation noise: Modify hb
i = f(hb

i−1)
D
i=1

9: Compute hidden states hb
i = f(xb, θ)

10: Compute predicted output ŷi = g(hi)
11: Compute loss L(ŷi, yi) and gradients∇θL
12: Gradient noise: Modify∇θL
13: Update weights: θ ← θ − η∇θL
14: end for
15: if t mod frequency = 0 and t < 0.75T then
16: Model noise: Modify θ
17: end if
18: end for
19: return θ

each noise type to a batch out of B batches is determined by
the HP p ∈ [0, 1], except model noise, which was applied
with a selected frequency during the T training epochs. The
noise types have associated HPs and tuning ranges.

Input noise: The input noise consisted of 2 naive vari-
ants and 2 variants which tapped into predictions or the
targets to compute the noise. The two naive variants con-
sisted of adding Gaussian or uniformly sampled noise n ∼
U(−σ, σ);n ∼ N (0, σ) added to inputs x with standard
deviation σ ∈ [1e−4, 1e−1]. We considered ODS (Tashiro
et al., 2020) with respect to ϵ ∈ [1e−4, 1e−1] and tem-
perature T ∈ [0.5, 5.0], and MixUp (Zhang et al., 2018)
with α ∈ [0, 1] which also modified the targets accord-
ingly. Target noise: In addition to MixUp we consid-
ered a static noise introduced to the labels y in the form
of label smoothing (Müller et al., 2019) with the smooth-
ing factor l ∈ [0, 0.25]. Activation noise: The hidden
states prior to applying the activation function, {hb

i}Di=1,
where D is the depth of the net, could be disturbed by 3
types of activation noise: additive Gaussian or Uniform
n ∼ U(−σ, σ);n ∼ N (0, σ) with σ ∈ [1e−4, 1e−1] as
a tunable HP or multiplicative Dropout (Srivastava et al.,
2014) that incorporates a dropout rate d ∈ [0, 1]. The ac-
tivation noise was used prior to an activation function for
all linear or convolutional layers but not in the output layer.
Gradient noise: The noise applied to the gradients∇θL fol-
lowed (Neelakantan et al., 2017) with the step size η ∈ [0, 1]



and the annealing factor γ ∈ [0, 1]. Model noise: Lastly the
model noise follows the idea of shrinking and perturbing
the weights θ (Ash & Adams, 2020) with a shrink factor
µ ∈ [0.0, 1.0] and standard deviation σ ∈ [0.0, 1e−3] with
frequency of perturbing every frequency ∈ [0, 80] epochs,
except the last 25% of training epochs.

4. Experiments
Settings We first tune the learning rate and L2 regularisa-
tion of a no noise network which are reused when tuning the
HPs of each noise injection method on three different com-
binations: ResNet-18 paired with CIFAR-10 or CIFAR-100
and a fully connected (FC) network paired with SVHN. The
tuning is performed using 1/4 of the training budget over
the course of one day, using model-based Tree-structured
Parzen Estimator method (Bergstra et al., 2011). With these
settings we are able to evaluate about 40 configurations se-
lected using Bayesian Optimisation. Our protocol allows us
to optimise the performance of each noise injection method
and provide fair comparison. Full experimental details are
in Appendix A, including a summary of the identified HPs.

To assess the effectiveness of the noise injection methods,
we measure their performance using three metrics: Error
[↓,%], Expected Calibration Error (ECE) (Guo et al., 2017)
[↓,%], and Negative Log-Likelihood (NLL) [↓] that we re-
port in Appendix B. These metrics provide insights into
the accuracy and its match with the confidence of the NNs’
predictions. We evaluate the performance on both the ID
test set and an augmented OOD set that includes an av-
erage over visual corruptions across 19 categories and 5
severities (Hendrycks & Dietterich, 2019). These corrup-
tions include, for example, adding snow or fog to the image,
changing the brightness or saturation of the image or blur-
ring the image. We conduct experiments on a series of
deployment scenarios where 1) the tuned HPs are directly
used on the tuned dataset and architecture, 2) the architec-
ture is changed but the HPs are kept, 3) the HPs come from a
different source dataset. The results presented are averaged
across 3 seeds and the best results are highlighted in bold.

4.1. Analysis

Tuned Hyperparameters In this scenario, we evaluate
the performance of the noise injection methods when the
HPs are tuned specifically for the dataset and architecture.
The results for these experiments are in Tables 1 and 2, and
they show that activation noises and input augmentation
noises are prominent in improving the accuracy and calibra-
tion of the networks across the datasets. Dropout was the
most effective for improving ID generalisation in CIFAR-10
and CIFAR-100, while MixUp was the most effective for
SVHN. Uniform activation worked the best for improving
ID calibration in CIFAR-10 and CIFAR-100, whereas ODS

was the best in SVHN. Interestingly, some of the improve-
ments carried to OOD data, for example, where the error
on SVHN or CIFAR-100 was the lowest with MixUp or
dropout. However, when considering calibration on OOD
data, MixUp was dominant for CIFAR-10 and CIFAR-100.
On average, dropout improved generalisation and MixUp
improved calibration when considering both ID and OOD
data. The naive Gaussian and uniform input noise perturba-
tions did not bring significant improvements.

Architecture Transfer In this scenario, we assess the
performance of the noise injection methods when the HPs
are transferred to a different architecture while keeping the
dataset constant. We conduct experiments using SVHN with
ResNet-18 with HPs tuned on an FC network. Furthermore,
we use HPs tuned for ResNet-18 for both CIFAR-10 and
CIFAR-100 and we change the architecture to WideResNet-
18. The results are presented in Tables 3 and 4. Considering
the performance on ID data, we see that dropout reduced
error across architectures and also improved calibration.
Contrary to the improvements seen on SVHN when using
FC, MixUp did not reduce the error when using ResNet-
18 and it even recorded worse performance on OOD data
than no noise at all. Switching focus to OOD data, model
perturbation moderately improved calibration for CIFAR-
100, while activations had a negative impact and led to worse
calibration. Even though WideResNet-18 and ResNet-18 are
relatively similar, transferring hyperparameters for example
for MixUp in CIFAR-100, did not prove efficient as seen in
calibration on OOD data which became worse than not using
any noise at all. In summary, activation noises, most notably
dropout, performed well on improving generalisation on
both ID and OOD data and moderately on calibration on ID
data. However, no method was able to consistently improve
calibration on OOD data after the architecture was changed.

Dataset Transfer Under these settings, we investigate the
transferability of hyperparameters by evaluating the noise
injection methods on the same architectures but using differ-
ent datasets. Specifically, we evaluate SVHN with ResNet-
18 and HPs from CIFAR-100/ResNet-18, CIFAR-10 with
ResNet-18 and CIFAR-100/ResNet-18 HPs, and CIFAR-
100 with ResNet-18 but with CIFAR-10/ResNet-18 HPs.
The results are shown in Tables 5 and 6. For all SVHN,
CIFAR-10, CIFAR-100, the most significant error improve-
ments across ID or OOD data were achieved using dropout
and Gaussian noise. Interestingly, the activation Gaussian
noise was able to improve calibration on both ID and OOD
data on CIFAR-100, but not on the other datasets. MixUp
has demonstrated varying results, for example on SVHN
or CIFAR-10 the calibration on ID data was worse than
not using any noise at all, while in CIFAR-100 there was a
marginal improvement. Nevertheless on OOD data MixUp
was able to improve calibration across all datasets.



Table 1. Error [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with tuned hyperparameters.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 17.07 20.77 10.76 33.92 37.86 59.53
INPUT GAUSSIAN 17.37 20.96 11.05 34.09 37.94 59.48
INPUT UNIFORM 17.16 20.92 11.20 33.92 37.92 59.45
INPUT ODS 15.24 18.73 10.87 31.57 37.95 58.20
INPUT-TARGET MIXUP 13.86 17.46 9.82 28.03 38.43 58.34
TARGET LABEL SMOOTHING 16.53 20.10 11.50 33.83 38.59 60.45
ACTIVATION GAUSSIAN 17.15 20.82 8.99 31.44 34.87 58.12
ACTIVATION UNIFORM 16.97 20.70 8.86 31.83 34.62 57.77
ACTIVATION DROPOUT 14.58 17.97 8.72 30.92 31.39 56.58
GRADIENT 17.22 20.95 11.26 33.94 38.15 59.89
MODEL 16.37 20.09 10.77 33.63 38.11 59.80

Table 2. ECE [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with tuned hyperparameters.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 15.47 18.31 5.43 12.72 16.85 15.28
INPUT GAUSSIAN 15.80 18.50 5.34 12.78 16.91 15.22
INPUT UNIFORM 15.62 18.44 5.55 12.85 17.34 15.27
INPUT ODS 4.56 5.65 5.63 11.84 16.64 14.99
INPUT-TARGET MIXUP 9.45 9.93 11.03 11.23 15.96 13.81
TARGET LABEL SMOOTHING 15.01 14.05 10.14 11.57 28.78 20.26
ACTIVATION GAUSSIAN 15.54 18.34 4.20 14.93 11.58 23.32
ACTIVATION UNIFORM 15.43 18.27 3.83 15.84 9.86 20.62
ACTIVATION DROPOUT 6.49 7.77 5.29 13.40 12.17 25.82
GRADIENT 15.61 18.49 5.36 13.07 16.38 14.75
MODEL 13.74 16.29 5.30 12.73 15.40 14.41

Table 3. Error [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with changed architecture.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 5.23 9.41 14.86 38.19 37.38 61.39
INPUT GAUSSIAN 5.22 9.44 14.68 38.01 37.37 61.27
INPUT UNIFORM 5.23 9.49 14.75 38.31 37.35 61.42
INPUT ODS 19.80 25.55 14.48 36.09 36.90 60.24
INPUT-TARGET MIXUP 5.35 13.14 11.80 31.54 36.53 59.53
TARGET LABEL SMOOTHING 5.09 9.32 15.24 37.66 36.79 60.93
ACTIVATION GAUSSIAN 5.26 9.45 11.96 35.70 43.23 65.98
ACTIVATION UNIFORM 5.25 9.47 12.88 37.90 36.94 61.02
ACTIVATION DROPOUT 4.23 8.01 11.12 33.15 32.14 58.30
GRADIENT 5.45 10.02 14.95 37.86 37.30 61.18
MODEL 4.38 8.50 14.72 38.14 36.49 61.09

Table 4. ECE [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with changed architecture.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 4.10 7.18 7.30 11.93 18.24 15.54
INPUT GAUSSIAN 4.14 7.18 7.05 11.77 17.89 15.38
INPUT UNIFORM 4.10 7.19 7.08 12.00 18.27 15.25
INPUT ODS 6.65 9.08 7.11 11.43 17.77 15.39
INPUT-TARGET MIXUP 10.24 9.93 12.62 11.69 18.92 18.07
TARGET LABEL SMOOTHING 21.24 20.20 12.05 11.54 28.97 19.50
ACTIVATION GAUSSIAN 4.20 7.23 5.60 11.68 10.50 22.21
ACTIVATION UNIFORM 4.16 7.22 6.48 12.35 8.58 19.14
ACTIVATION DROPOUT 3.64 6.61 7.03 11.05 9.24 22.26
GRADIENT 4.21 7.48 7.26 11.36 17.65 15.29
MODEL 3.40 6.12 7.14 11.73 15.67 14.55

Table 5. Error [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with changed dataset.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 5.30 9.49 11.56 33.61 38.25 59.85
INPUT GAUSSIAN 5.17 9.45 11.59 33.42 38.21 59.69
INPUT UNIFORM 5.12 9.43 11.18 33.99 38.16 59.85
INPUT ODS 5.24 9.29 11.45 32.42 37.51 56.85
INPUT-TARGET MIXUP 5.14 11.65 10.89 28.16 37.99 58.69
TARGET LABEL SMOOTHING 5.22 9.39 11.35 34.23 37.31 58.67
ACTIVATION GAUSSIAN 5.18 9.32 10.45 31.37 35.47 57.82
ACTIVATION UNIFORM 5.24 9.38 13.60 36.95 35.61 57.79
ACTIVATION DROPOUT 4.11 7.86 9.40 30.00 32.12 56.63
GRADIENT 6.11 10.88 11.82 33.38 38.15 60.95
MODEL 4.42 8.56 12.03 33.77 38.20 59.63

Table 6. ECE [↓,%] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets and with changed dataset.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 4.18 7.19 4.44 14.88 17.09 14.88
INPUT GAUSSIAN 4.10 7.18 4.58 15.11 16.71 15.16
INPUT UNIFORM 4.11 7.16 5.52 12.51 17.19 15.10
INPUT ODS 4.20 7.08 4.73 14.84 16.33 14.82
INPUT-TARGET MIXUP 6.65 6.83 6.48 8.87 16.92 14.33
TARGET LABEL SMOOTHING 15.92 15.22 18.97 14.40 25.71 19.68
ACTIVATION GAUSSIAN 4.19 7.19 5.53 18.53 9.28 12.90
ACTIVATION UNIFORM 4.16 7.15 4.63 12.63 8.63 12.98
ACTIVATION DROPOUT 3.60 6.52 5.64 19.29 9.92 20.81
GRADIENT 4.68 8.21 4.65 14.88 12.83 13.32
MODEL 3.29 5.73 4.81 15.14 16.80 15.01

Summary Different noise injection methods have varying
degrees of effectiveness depending on the dataset and archi-
tecture. Nevertheless, especially in the tuned regime, certain
settings of different noises improved both generalisation
and calibration. Activation noise injections demonstrated
promising results for error reduction across ID data, while
input augmentations seemed to be the most effective for
OOD data. Dropout was the most effective in improving
error on ID or OOD data, and it proved to be transferable
across architectures and datasets. MixUp was the best in
improving the performance on OOD data in terms of cal-
ibration and accuracy, but not necessarily on the ID data.
Interestingly, hidden in its mediocrity, model noise was
able to marginally improve accuracy and calibration across
majority of considered scenarios. Additional evaluation in

terms of NLL, in Appendix B, has shown dropout was the
most effective together with model perturbations.

5. Discussion and Conclusions
We investigated the effectiveness of various noise injection
strategies for improving the calibration and generalisation of
NNs. We found that activation noise was the most transfer-
able and effective in improving generalisation, while input
augmentation noise was prominent in improving calibration
on OOD but not necessarily ID data. We note that our study
was limited in several ways: 1) we did not perform full
training when doing hyperparameter optimization, 2) we
did not explore all possible combinations of noise types and
injection strategies, 3) we focused only on computer vision



classification. Nevertheless, our findings suggest that noise
injection can be a promising approach for improving the
generalisation and calibration of NNs.
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Table 7. NLL [↓] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with tuned hyperparameters.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 2.11 2.42 0.40 1.16 1.88 2.91
INPUT GAUSSIAN 2.14 2.45 0.41 1.17 1.88 2.91
INPUT UNIFORM 2.11 2.43 0.41 1.16 1.89 2.91
INPUT ODS 0.59 0.69 0.40 1.08 1.87 2.83
INPUT-TARGET MIXUP 0.55 0.66 0.41 0.93 1.77 2.67
TARGET LABEL SMOOTHING 0.73 0.83 0.48 1.14 2.14 3.07
ACTIVATION GAUSSIAN 2.11 2.42 0.33 1.13 1.37 2.84
ACTIVATION UNIFORM 2.12 2.43 0.32 1.40 1.40 2.76
ACTIVATION DROPOUT 0.56 0.67 0.32 1.07 1.25 2.86
GRADIENT 2.13 2.45 0.41 1.17 1.88 2.92
MODEL 1.52 1.74 0.40 1.16 1.85 2.90

A. Experimental Settings Details
We used stochastic gradient descent with momentum 0.9 to
train all the networks. The learning rate η = [1e−4, 1e−1]
together with L2 regularisation λ = [1e−7, 1e−1] were ini-
tially tuned and then reused for each noise injection method.
We used cosine annealing learning rate schedule without
restarts (Loshchilov & Hutter, 2017) for all experiments.
For each dataset, we only used normalization without any
further data augmentations. We used gradient norm clipping
of 5.0 to stabilise the training. The batch size was set to
256 for all experiments. 10% of the training data was used
as the validation set to select the best model. The tuning
was performed with 1 seed and the winning hyperparame-
ters were retrained 3 times with different seeds. The final
results are reported as the average of the 3 runs. We used
cross-entropy loss for all the experiments. In all cases we
trained the networks for 200 epochs.

We used a fully connected network with 4 hidden layers
of 150 units followed by ReLU activations and ResNet-18
with [32, 64, 128, 256] channels in 4 stages with [2, 2, 2,
2] blocks with strides [1, 2, 2, 2]. For WideResNet-18 we
used the same channel, stride and block configuration as
for ResNet-18, but with the Bottleneck block, expansion
factor 4, base width 32, base width multiplier 2 and a single
group. Both residual architectures use batch normalisation
and ReLU activations. We used the default PyTorch weight
initialization for all layers. We used 10 bins to measure ECE
and a small eta 1e−8 which was added to the output softmax
probabilities to avoid NaNs. The found hyperparameters for
each dataset architecture pair are in Table 10. The descrip-
tions of the hyperparameters as well as the search ranges
are provided in Section 3.

B. Negative Log-Likelihood
We provide additional Tables 7, 8 and 9 that report the

Negative Log-Likelihood for the different experiments that
we have conducted. Comparing the NLL results to the pre-

Table 8. NLL [↓] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with changed architecture.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 0.31 0.57 0.53 1.25 1.83 2.95
INPUT GAUSSIAN 0.31 0.57 0.53 1.24 1.82 2.94
INPUT UNIFORM 0.31 0.57 0.53 1.25 1.83 2.95
INPUT ODS 0.84 1.10 0.52 1.19 1.80 2.89
INPUT-TARGET MIXUP 0.27 0.50 0.48 1.03 1.72 2.77
TARGET LABEL SMOOTHING 0.40 0.52 0.60 1.24 2.05 3.06
ACTIVATION GAUSSIAN 0.32 0.58 0.41 1.15 1.65 3.25
ACTIVATION UNIFORM 0.32 0.58 0.43 1.20 1.44 2.89
ACTIVATION DROPOUT 0.33 0.60 0.41 1.08 1.23 2.84
GRADIENT 0.33 0.59 0.54 1.23 1.81 2.93
MODEL 0.23 0.42 0.53 1.24 1.72 2.89

Table 9. NLL [↓] comparison on in-distribution (ID) and out-of-
distribution (OOD) test sets with changed dataset.

NOISE TYPE
SVHN CIFAR-10 CIFAR-100

ID OOD ID OOD ID OOD

NO NOISE 0.32 0.57 0.39 1.18 1.91 2.92
INPUT GAUSSIAN 0.32 0.57 0.40 1.18 1.89 2.92
INPUT UNIFORM 0.31 0.57 0.41 1.16 1.90 2.93
INPUT ODS 0.32 0.56 0.39 1.15 1.83 2.75
INPUT-TARGET MIXUP 0.23 0.43 0.39 0.90 1.77 2.70
TARGET LABEL SMOOTHING 0.34 0.46 0.57 1.19 2.02 2.96
ACTIVATION GAUSSIAN 0.33 0.58 0.36 1.24 1.56 2.72
ACTIVATION UNIFORM 0.32 0.57 0.43 1.19 1.54 2.70
ACTIVATION DROPOUT 0.32 0.59 0.35 1.25 1.23 2.67
GRADIENT 0.36 0.67 0.40 1.17 1.79 2.91
MODEL 0.20 0.37 0.41 1.19 1.89 2.91

viously collected results on the error and calibration error,
there are subtle differences. In Table 7 the NLL for SVHN
is the lowest for MixUp and not ODS for ID and OOD data
as suggested by ECE. Furthermore, we can see in Table 8
that when we change the architecture, the model perturba-
tion achieved the lowest NLL on both ID and OOD data for
SVHN, while the dropout activation was the best in terms of
the error. Dropout retained the lowest NLL in CIFAR-100
and CIFAR-10 on ID data. Looking at Table 9 that reports
results with the changed dataset, surprisingly model pertur-
bation was the most dominant in NLL on SVHN, in contrast
again to dropout as suggested by the error. Even though for
CIFAR-10 the calibration on ID data was the lowest without
using any noise, dropout was able to improve the NLL over
no noise settings. In summary and contrast to the previous
results, in NLL improvements dropout was perceived as the
most effective together with model perturbations.



Table 10. Found hyperparameters on SVHN, CIFAR-10 and CIFAR-100 datasets.
NOISE TYPE HYPERPARAMETER SVHN CIFAR-10 CIFAR-100

NO NOISE LEARNING RATE 0.042 0.0082 0.060
L2 1.3E-07 0.029 0.0031

INPUT GAUSSIAN σ 0.0029 0.00011 0.00061
p 0.56 0.83 0.78

INPUT UNIFORM σ 0.00086 0.0038 0.0013
p 0.28 0.63 0.61

INPUT ODS T 1.37 0.85 2.26
η 0.047 0.0056 0.00080
p 0.96 0.066 0.67

INPUT-TARGET MIXUP α 0.99 0.55 0.56
p 0.91 0.72 0.69

TARGET LABEL SMOOTHING l 0.24 0.11 0.18
p 0.99 0.65 0.96

ACTIVATION GAUSSIAN σ 0.0035 0.0064 0.099
p 1.0 0.54 0.47

ACTIVATION UNIFORM σ 0.0014 0.014 0.058
p 0.02 0.70 0.63

ACTIVATION DROPOUT d 0.16 0.31 0.26
p 0.78 0.55 0.75

GRADIENT η 0.020 0.26 0.32
γ 0.63 0.99 0.99
p 0.0083 0.19 0.021

MODEL µ 0.32 0.75 0.57
σ 9.7E-05 0.00087 0.00016
FREQUENCY 52 28 12


