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Abstract 12 

In this paper, under complex and unforeseen circumstances, a novel path planning framework incorporating 13 

the multi-objective optimization and a sensory-vector replanning strategy is created for an unmanned surface 14 

vehicle (USV). First, by encapsulating the intricate nature of ocean environment and ship dynamics, a 15 

nonlinear multi-objective path planning problem is designed, providing a comprehensive and in-depth 16 

portrayal of the underlying mechanism. By integrating the principles of candidate set random testing and 17 

adaptive crowding distance, an adaptive enhanced non-dominated sorting genetic algorithm (AENSGA-II) is 18 

devised to fully exploit the underlying optimization problem in constrained dynamics. To avoid over-19 

subjective choice in the Pareto set, a fuzzy-linguistic satisfactory degree is deliberately designed, where the 20 

linguistic importance preference of the objectives is re-evaluated in the Pareto set, aiming at facilitating the 21 

decision-making. By inserting virtual sensory vector onto the USV, a seamless interface between global path 22 

and COLREG-compliant replanning mechanism is devised, thereby contributing to the entire hierarchical 23 

scheme. Eventually, the framework merits autonomous global-planning and local-reaction in an organically 24 

way. Comprehensive simulations and comparisons in various ocean scenarios demonstrate the effectiveness 25 

and superiority of the proposed path planning framework. 26 

 27 
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1. Introduction 29 

With artificial intelligence at the helm, the advancements of Unmanned Surface Vehicles (USVs) have been 30 

propelled to new heights, charting a course towards a brighter future of autonomous exploration and unlocking 31 

the secrets of our world and beyond (Ö ztürk et al., 2022; N. Wang et al., 2022; Wang and Xu, 2020; Zhao et 32 

al., 2022a, 2022b). Recently, USVs have been resorted to supporting various oceanic and marine applications 33 

such as the detection of radioactive chemicals (Chang et al., 2021), biological studies (Zhang et al., 2016), 34 

bathymetric surveys (Sahalan et al., 2016), measuring marine elements (temperature or salinity) (Cryer et al., 35 

2020; Madeo et al., 2020), and observing water columns or warming trend (Smith et al., 2021). The level of 36 

autonomy pertaining to a USV ranges from manual control to full autonomy, with the path planning technique, 37 

connecting sensory hardware and control functionalities, playing a crucial role (N. Wang et al., 2022). 38 

However, navigating USVs is a complex task due to the uncertainties associated with the intricate ocean 39 

environment. The primary concern in deploying a USV is to attain secure navigation and obstacle avoidance, 40 

ensuring safety in the presence of other marine traffic. Consequently, in order to guarantee the efficiency and 41 

effectiveness of marine operations, it is imperative that the issue of path planning is properly addressed. 42 

(MahmoudZadeh et al., 2022; Zhao et al., 2022d). 43 

 44 

Recently, booming academic advancements related to the path planning of USVs have emerged in the latest 45 

research works. Researchers have attempted to develop a variety of methods to solve the path planning 46 

problem including grid-based algorithms such as A* (Shah and Gupta, 2020; Song et al., 2019; Yu et al., 2021; 47 

Zhao et al., 2022c), D* (Han et al., 2022; Yao et al., 2021; Yu et al., 2022a, 2022b), fast marching square 48 
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(Beser and Yildirim, 2018; Liu et al., 2017; Tan et al., 2020), and meta-heuristic algorithms such as particle 49 

swarm optimization (PSO) (Guo et al., 2020; Krell et al., 2022), ant colony optimization (ACO) (Liang et al., 50 

2020; Vahid and Dideban, 2022), genetic algorithm (GA) (Kim et al., 2017), and artificial fish swarm 51 

algorithm (AFSA) (F. Wang et al., 2022; Zhao et al., 2022d, 2022a). Grid-based methods involve the 52 

discretization of the environment into a set of grids, with each cell representing a potential location for the 53 

vehicle to traverse (Wang and Xu, 2020). The optimal path is then constructed by selecting a sequence of these 54 

cells. While this approach can be efficient for simple problems, it presents limitations in dealing with complex 55 

constraints and can result in a computationally intensive process, particularly in high-dimensional planning 56 

spaces (Lyridis, 2021). This highlights the importance of considering alternative methods that better handle 57 

the complexities of real-world scenarios. Note that meta-heuristic methods can satisfy complex constraints 58 

and multiple objectives, allowing for the formulation of sophisticated path planning problems (Nazarahari et 59 

al., 2019). However, their reliance on the linear-weighted method has been met with criticism. This method, 60 

although simple and widely used, has been proven to be subjective and may not accurately capture the decision 61 

maker's preferences (Lyridis, 2021; Sathiya et al., 2022). Additionally, the linear-weighted method is limited 62 

in its scalability and inflexibility in handling conflicting objectives, making it unsuitable for complex multi-63 

objective problems, such as path planning. These limitations make it imperative to seek methods that better 64 

address the complex nature of multi-objective problems. 65 

 66 

Alternatively, the multi-objective optimization (MOO) algorithms, such as NSGA and SPEA, may offer 67 

improved performance in complex multi-objective problems by presenting Pareto optimal solutions. Presently, 68 

the field of path planning has seen a surge of academic and technological advancements with a growing body 69 

of research dedicated to the application of multi-objective optimization techniques. In early studies, (Ahmed 70 

and Deb, 2013) applied the Non-dominated Sorting Genetic Algorithm (NSGA-II) in a discrete space, 71 

considering both the travel distance and path safety to attain Pareto optimality. (Davoodi et al., 2013) furthered 72 

this research (Ahmed and Deb, 2013) by taking path safety into account. More recently, (Ma et al., 2018) 73 

developed the Dynamic Augmented Particle Swarm Optimization algorithm to enhance path planning for 74 

USVs under current effects. To address non-holonomic constraints, (Sathiya et al., 2022) proposed the Fuzzy 75 

Enhanced Improved Multi-Objective Particle Swarm Optimization (FIMOPSO) algorithm, considering kino-76 

dynamic and non-holonomic constraints. (Ntakolia and Iakovidis, 2021) developed a Swarm Intelligence 77 

Graph-Based Pathfinding algorithm for route planning and navigation for tourists, incorporating a novel 78 

multiple-criteria decision analysis to support decision making. (Lyridis, 2021) and (Ntakolia and Lyridis, 2022) 79 

conducted a series of studies on the fuzzy enhanced ant colony optimization method, achieving improved 80 

convergence speed and solution quality in path planning for USVs. (Ning et al., 2020) proposed a modified 81 

fuzzy dynamic risk of collision model for resolving collision avoidance and path planning challenges among 82 

multiple vessels. This model is based on the combination of time and space collision risk index and aligns 83 

more closely with actual ship applications. In addition, (Hu et al., 2020) introduced a multi-objective 84 

optimization approach for vessel path planning that unifies the COLREGs with the principles of good 85 

seamanship. This approach is particularly noteworthy as it follows a hierarchical, rather than simultaneous, 86 

approach to incorporating objectives. 87 

 88 

Despite remarkable advancements in multi-objective algorithms, existing methods are still confronted with 89 

challenges of limited global searching ability and slow convergence speed, especially for non-convex 90 

problems like path planning. This limitation can be traced to the prevalent usage of conventional crowding 91 

distance (CD) methods and random initialization (Deng et al., 2022). The CD strategy limits the exploration 92 

of the solution space and can result in premature convergence to locally optimal solutions. Moreover, random 93 

initialization generates low-quality initial population in objective space and result in slow convergence and a 94 

high probability of getting stuck in local optimal trap (Wang et al., 2011). These limitations undermine the 95 

ability of multi-objective algorithms to effectively balance multiple objectives and find the globally optimal 96 

solution. Therefore, there is an imperative need for innovative techniques that can enhance the global 97 

searching capability and convergence rate of multi-objective algorithms for path planning.  98 

 99 

Another issue that has rarely been addressed by the existing studies is how to choose a reasonable solution 100 

from the Pareto set. Path planning involves several conflicting objectives that have incompatible goals or 101 



3 

 

contradict each other. Dealing with conflict objectives requires a trade-off between them, which can be 102 

difficult to achieve because they vary in optimization directions, rendering it impossible to achieve 103 

simultaneous optimization of all objectives. The selection of a reasonable solution from the Pareto set, 104 

therefore, presents a formidable challenge that often involves subjective preference for one set of objectives 105 

over another. Previous works have adopted a range of approaches, including the utilization of specific 106 

preferences to choose the lowest objective (e.g., Hu et al., 2020), the implementation of weight bias to model 107 

preferences (e.g., Ma et al., 2018), or failing to address the issue altogether (e.g., Ahmed and Deb, 2013; 108 

Davoodi et al., 2013; Sathiya et al., 2022). However, simply choosing the lowest objective is inherently over-109 

subjective, and as such, lacks a rational basis for decision making. The consequence of this approach may 110 

result in unfavorable scenarios where one objective value becomes extremely high. For instance, the pursuit 111 

of the shortest path may result in a trajectory that is perilously close to obstacles, which is unacceptable in 112 

real-world applications (Ahmed and Deb, 2013). The weighted method, on the other hand, is also susceptible 113 

to high subjectivity in the selection of weight values. This approach has been met with criticism for not 114 

accurately reflecting the preferences (Lyridis, 2021; Nazarahari et al., 2019). Therefore, these limitations 115 

underscore the need for a more nuanced and sophisticated approach to decision-making in Pareto set, one that 116 

is grounded in a feasible understanding of the problem. 117 

 118 

Moreover, achieving coordination between global planning and local avoidance presents a formidable 119 

challenge. On the one hand, the limited computational resources have laid harsh constraint on the replanning 120 

time, whereby the new path should be immediately transferred to the control system or the collision would be 121 

inevitable. It should be noted that this cannot be satisfied by most existing methods. Though previous 122 

researchers have made a great many attempts to reduce the computational burden (Han et al., 2022; Lyridis, 123 

2021; Meng et al., 2022; Yao et al., 2021; Yu et al., 2022b), we are still of the opinion that they are not 124 

supportive for an effective path replanning. However, this paper solves the problem from another aspect, i.e., 125 

introducing a transition path to soften the harsh constraint on the replanning time. On the other hand, another 126 

issue is the sharp turning at the conjunction where the replanned and original paths meet. Such behavior is 127 

actually infeasible for a USV since immediate steering maneuver would lead to significant sideslip which 128 

deviates from the planned path (Wang and Xu, 2020). In this context, the continuous maneuvering should also 129 

be considered in achieving collision avoidance. 130 

 131 

As observed from the foregoing works, although domestic and foreign researchers have conducted a series of 132 

studies in the path planning of USVs, it should be noted that past research has certain shortcomings: 133 

(1) Designing approaches that could achieve global-planning and local-reaction jointly is still a challenging 134 

work within which the coordination between the two modules become a critical problem.  135 

(2) For non-convex problem like path planning that involves multiple objectives, traditional MOO algorithms 136 

feature low convergence and lack sufficient global searching ability to facilitate diverse Pareto fronts. 137 

(3) Since the simultaneously optimized indices are often reciprocally restrained, how to determine the solution 138 

preference in Pareto set for decision-making under the trade-offs remains a challenge. 139 

(4) For an intensive overview in Table 1, none of the previously cited works has modeled the problem 140 

comprehensively, whereby the four general objectives (length/smoothness/energy/safety), vehicle 141 

constraints (nonholonomic/dynamic constraints), and environmental effects (currents) are omitted 142 

occasionally.  143 

 144 

Inspired by the observations, this paper proposes a path planning framework to address the aforementioned 145 

challenging problems. The highlights of our work are illustrated as follows: 146 

(1) A novel path planning framework is proposed to formulate global-planning and local-reaction in an 147 

organically way. We introduce the virtual sensory vector for environment perception and governing 148 

feasible actions of USVs under dynamically unforeseen environments. Seamlessly bridged by the 149 

transition Clothoid-path, not only sufficient time for replanning is provided but also guarantee the 150 

continuity of the course change. Augmented practicability has been achieved by extensive simulation and 151 

experimental evaluations under complex environments.  152 

(2) By incorporating the candidate-based adaptive random testing initialization and adaptive crowding 153 

distance strategy, AENSGA-II merits strong global searching ability and facilitates the diverse Pareto 154 
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frontiers simultaneously. In such a case, optimal Pareto fronts are practically meaningful for decision-155 

makers and can provide more high-quality solutions for the problem.  156 

(3) By devising the fuzzy-linguistic satisfactory degree among the solutions, a novel method for determining 157 

the feasible solution in the Pareto set is developed. The linguistic importance preference between 158 

objectives is modeled as satisfactory degrees based on fuzzy rules, thereby contributing to the reasonable 159 

decision-making.  160 

(4) Unlike the previous works, the problem model formulated in this work addresses more practical issues 161 

such as ocean currents, USV kinematics/non-holonomic constraints, dynamic obstacles, and COLREG 162 

rules. These elements are rarely considered comprehensively in the previous studies. 163 

 164 

The remaining sections of the paper are organized as follows: Section 2 devises the path planning problem 165 

model. Section 3 proposes the AENSGA-II in combination with the COLREG-compliant strategy. In Section 166 

4, simulation experiments for the path planning of USV are conducted in various scenarios. Finally, Section 5 167 

concludes this research.  168 

 169 

Table 1. Summary of recent literature 170 

References Length Smooth Safety Energy 
Current 

effects 

Dynamic 

obstacles 
COLREG 

(Vahid and Dideban, 2022)       

(Kim et al., 2017)       

(Xia et al., 2020)       

(Krell et al., 2022)       

(Xue, 2022)       

(Zhong et al., 2021)       

(Liang et al., 2020)       

(Zhao et al., 2022a)       

(Zhao et al., 2022d)       

(Ma et al., 2018)       

(Yao et al., 2021)       

(Shah and Gupta, 2020)       

(Song et al., 2019)       

(Xie et al., 2019)       

(Yu et al., 2021)       

 171 

2. Problem Formulation 172 

Nomenclature for environment modelling 

ℳ Marine surface domain 

ℳ𝑓 Obstacle-free motion area 

ℳ𝑜 Obstacle area, ℳ𝑜 = {𝑂1, 𝑂2, … , 𝑂𝑘} 

𝑃 Path, 𝑃 =∪𝑖=1
𝑚 𝒑𝑖, 𝑖 = 1,2,3, … ,𝑚 

𝒑𝑖 Path segment, 𝒑𝑖 = (𝑥i, 𝑦i), 𝑖 = 1,2,3, … ,𝑚 

𝒑𝑆 Initial position, 𝒑𝑆 = (𝑥𝑆, 𝑦𝑆) 

𝒑𝐸 Destination position, 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) 

𝑂𝑖  Obstacles 

𝑘 Number of obstacles 

𝒗 Velocity of USV  
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𝜓 Heading angle of USV 

𝒗𝑐 Velocity of currents 

𝒗𝑟 Velocity of the USV considering the current effects 

  

Nomenclature for constraints defined 

𝒅𝑖  Position vector, 𝒅𝑖 = [𝑥𝑖+1 − 𝑥𝑖 ,  𝑦𝑖+1 − 𝑦𝑖 , 0]
𝑇  

𝒷𝑖,𝑖 Angle between 𝒅𝑖  and path segment 𝑠𝑖 

𝑅𝑖 Turning radius of at 𝒑𝑖 

𝛥𝜓𝑖 Change of heading angle at 𝒑𝑖 

𝛥𝜓𝑚𝑎𝑥  Allowable maximum change of heading angle 

𝑅𝑚𝑖𝑛 Minimum turning radius 

 

Nomenclature for objective functions 

Objective 1 𝐿 min 𝐿 = ∑ 𝐿𝑖
𝑚
𝑖=1 , 𝑖 = 1,2,3, … ,𝑚 

𝐿𝑖 Length between 𝑠𝑖 and 𝑠𝑖−1 

Objective 2 θ min θ = ∑ 𝛥𝜓𝑖
𝑖=2
𝑚 , 𝑖 = 2,3, … ,𝑚 

Objective 3 𝐸 min 𝐸 = ∑ 𝐿𝑖/𝒗𝑟
𝑚
𝑖=1 ∙ 𝑓, 𝑖 = 1,2,3, … ,𝑚 

𝑓 Fuel consumption per unit time (kg/min) 

Objective 4 𝐷 min 𝐷 = ∑ 𝐷𝑖 , 𝑖 = 1,2,3, … ,𝑚𝑚
𝑖=1  

𝐷𝑖 Safety value for path segment 𝒑𝑖 

𝑑𝑖 Clearance between path segment 𝒑𝑖 and its nearest obstacle 𝑂𝑖  

𝑑𝑚𝑎𝑥  Maximum clearance from the obstacles 

𝑑𝑚𝑖𝑛  Minimum clearance from the obstacles 

 173 

2.1.Environment modeling 174 

2.1.1. Motion area 175 

First, we define the marine surface domain as ℳ in Euclidean space ℝ2. Suppose the Suppose the USV’s 176 

path 𝑃 consists of a sequence of linked elementary path segments 𝒑𝑖(𝑖 = 1,2,3, … ,𝑚). Following the path 177 

𝑃, the USV navigates from the initial position 𝒑𝑆(𝑥𝑆, 𝑦𝑆) to the destination 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) in the presence of 178 

numerous obstacles ℳ𝑜 = {𝑂1, 𝑂2, … , 𝑂𝑘}  𝑘  is the number of obstacles). Therefore, the obstacle-free 179 

motion area of the USV is calculated as follows: 180 

ℳ𝑓 =ℳ −ℳ𝑜 (1) 

Accordingly, to guarantee the safety, the generated path should be restricted to ℳ𝑓 which is given as: 181 

𝑃 =∪𝑖=1
𝑚 𝒑𝑖 ⊂ℳ𝑓 (2) 

As can be seen from Eq. (1) and (2), the motion of USV is strictly bounded in the obstacle-free area ℳ𝑓. 182 

 183 

2.1.2. Effects of currents 184 

(Krell et al., 2022) and (Ma et al., 2018) have shown that energy consumption of USVs can be significantly 185 

affected by ocean currents. When engaging in the activities, the vessels favor the path which allows them to 186 

take full advantage of the currents to reduce the energy consumption. Suppose 𝒗 is the velocity of the USV 187 

at 𝒑𝑖 and the current velocity is 𝒗𝑐, see Fig. 1. (a). Then the USV velocity considered the effects of the 188 

currents 𝒗𝑟 can be calculated as: 189 

𝒗𝑟 = 𝒗 + 𝝂𝑐 (3) 

 190 

Remark 1. In some severe condition where the USV moves along with the currents, this is due to the extreme 191 
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large value of 𝜈𝑐. In this research, we assume the USV can endure the negative effects of currents and satisfy 192 

the following constraint: 193 

𝒗 + 𝝂𝑐 ≥ 0 (4) 

 194 

 195 
Fig. 1. (a) Coordinate system; (b) Definition of a path curve 196 

 197 

2.2.Dynamic obstacles 198 

In this paper, we assume the location of the obstacle will change with time. The movement of the dynamic 199 

obstacles in this work is considered to be a straight line with specific velocity (𝒗𝐷𝑂) and direction (𝜓𝐷𝑂) 200 

according to the following relationship: 201 

𝑥𝐷𝑂(𝑡 + 1) = 𝑥𝐷𝑂(𝑡) + 𝒗𝐷𝑂 ∙ cos𝜓𝐷𝑂 
(5) 

𝑦𝐷𝑂(𝑡 + 1) = 𝑦𝐷𝑂(𝑡) + 𝒗𝐷𝑂 ∙ sin𝜓𝐷𝑂 

where (𝑥𝐷𝑂 , 𝑦𝐷𝑂) is the coordinate of the dynamic obstacle, 𝑡 denote the time step. 202 

2.3.Motion Constraints 203 

There are two constraints related to the USV’s non-holonomic feature considered in this research: (1) It is 204 

imperative to ensure continuity of the path at turning points in order to mitigate abrupt changes. Failure to do 205 

so will result in the generation of an instantaneous extra control signal, thereby negatively impacting the 206 

tracking performance. (Song et al., 2019). (2) The curvature at any point on the path must be restricted in the 207 

dynamic bounds. For the USVs, the curvature is equivalent to the yaw rate, which should be less than the 208 

maximum acceleration provided by the propellers. 209 

 210 

Definition 1. As denoted in Fig. 1. (b), suppose 𝒅𝑖 = [𝑥𝑖+1 − 𝑥𝑖 ,  𝑦𝑖+1 − 𝑦𝑖, 0]
𝑇  is the position vector 211 

between two consecutive poses and 𝒑𝑖 and 𝒑𝑖+1 denote the path segments, then 𝒷𝑖,𝑖 and 𝒷𝑖,𝑖+1 define the 212 

angle between 𝒅𝑖 and path segment 𝒑𝑖 and 𝒑𝑖+1, respectively. 213 

 214 

To achieve continuous path, the straight line and turning motions require two consecutive positions 𝒑𝑖 and 215 

𝒑𝑖+1 to be located on a common arc of constant curvature, which gives:  216 

 𝒷𝑖,𝑖 = 𝒷𝑖,𝑖+1 (6) 

 217 

Definition 2. Suppose 𝑅𝑖 and 𝛥𝜓𝑖 denote the turning radius and change of the heading angle at 𝑖𝑡ℎ path 218 

segments, respectively. 𝐿𝑖  is the arc length defined by 𝐿𝑖 = 𝑅𝑖𝛥𝜓𝑖 . Then, the maximum steering angle 219 

change 𝛥𝜓𝑚𝑎𝑥 causes a minimum turning radius 𝑅𝑚𝑖𝑛. 220 

 221 

Therefore, the turning radius 𝑅𝑖  is to be larger than its allowable minimum value, see the following 222 

expression: 223 

𝑅𝑖 ≥ 𝑅𝑚𝑖𝑛 (7) 

 224 
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2.4.Objective functions 225 

2.4.1. Path length 226 

The path 𝑃  consists of several sequential path segments 𝒑𝑖(𝑖 = 1,2,3, … ,𝑚)  from the start position 227 

𝒑𝑆(𝑥𝑆, 𝑦𝑆) to the destination 𝒑𝐸(𝑥𝐸 , 𝑦𝐸).  228 

 229 

Definition 3. Let 𝒑𝑖 and 𝒑𝑖−1 be the two consecutive points. The length between 𝒑𝑖 and 𝒑𝑖−1 is 𝐿𝑖 =230 
‖𝒑𝑖 − 𝒑𝑖−1‖. Then the path is denoted as 𝐿 = ∑ 𝐿𝑖

𝑚
𝑖=2 . 231 

 232 

Therefore, the shortest path length objective can be defined as: 233 

min𝐿 (8) 

 234 

2.4.2. Path smoothness 235 

The extra yaw-cost is deeply related to the USV motion control performance. Therefore, the smoothness 236 

objective function is introduced.  237 

 238 

Definition 4. Let 𝜓𝑖 = 𝑎𝑡𝑎𝑛((𝑦𝑖 − 𝑦𝑖−1)/(𝑥𝑖 − 𝑥𝑖−1))  and 𝜓𝑖−1 = 𝑎𝑡𝑎𝑛((𝑦𝑖−1 − 𝑦𝑖−2)/(𝑥𝑖−1 − 𝑥𝑖−2)) . 239 

The turning angle between 𝒑𝑖 and 𝒑𝑖−1 within the path 𝑃 is denoted as 𝛥𝜓𝑖. Then 𝛥𝜓𝑖 = |𝜓𝑖 − 𝜓𝑖−1|.  240 

 241 

The smoothest path requires the θ = ∑ 𝛥𝜓𝑖
𝑖=2
𝑚 , 𝑖 = 2,3, … ,𝑚 should be as small as possible. Consequently, 242 

the smoothest path criterion is defined as 243 

min θ (9) 

 244 

2.4.3. Energy consumption 245 

To reduce the energy consumption, not only does the USV get a path as short as possible, but also move along 246 

with the direction of currents.  247 

 248 

Definition 5. Let 𝒗𝑟 be the velocity of the USV with currents effects, 𝑓 is the fuel consumption per unit 249 

time (kg/min), then the energy cost 𝐸 = ∑ 𝐿𝑖/𝒗𝑟
𝑚
𝑖=1 ∙ 𝑓. 250 

 251 

Therefore, the path with minimum energy consumption or least time goal is defined as: 252 

minE (10) 

2.4.4. The safest path 253 

Achieving the safest path for the USVs to traverse from its starting position to its final destination is imperative 254 

for guaranteeing its safety. We use the clearance from obstacles 𝑑𝑖 to determine whether the solution is safe 255 

or not. 256 

 257 

Definition 6. Suppose there are two invisible circle area with the radius of 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 around each path 258 

segment 𝒑𝑖. The distance between each path segment 𝒑𝑖 to its nearest obstacle 𝑂𝑖 (𝑂𝑖 ⊂ℳ𝑜) is denoted as 259 

𝑑𝑖 = ‖𝒑𝑖, 𝑂𝑖‖, (𝑖 = 1,2,3, … ,𝑚).  260 

 261 

Then the path safety of each segment can be expressed as: 262 

𝐷𝑖 =

{
 

 
0,                          𝑑𝑖 ≥ 𝑑𝑚𝑎𝑥

𝑑𝑚𝑎𝑥 − 𝑑𝑖
𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

,     𝑑𝑚𝑖𝑛 < 𝑑𝑖 < 𝑑𝑚𝑎𝑥

1,                           𝑑𝑖 ≤ 𝑑𝑚𝑖𝑛

, 𝑖 = 1,2,3, … ,𝑚 

𝐷 = argmin {𝒟1, 𝒟2, … , 𝒟𝑖}, 𝑖 = 1,2,3, … ,𝑚 

(11) 

 263 
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Consequently, the path safety is guaranteed when the minimum value of 𝒟𝑖 is as small as possible, which 264 

gives the third objective: 265 

min𝐷 (12) 

2.5.Optimization problem statement 266 

The goal of AENSGA-II is to find a shortest, smoothest, most energy-saving and safest path within the 267 

predefined constraints and ocean environment. Consequently, the optimization model for the problem is stated: 268 

min 𝐿 =∑𝐿𝑖

𝑚

𝑖=1

, 𝑖 = 2,3, … ,𝑚 (13) 

minθ =∑𝛥𝜓𝑖

𝑖=2

𝑚

, 𝑖 = 2,3, … ,𝑚 (14) 

min𝐸 =∑𝐿𝑖/𝒗𝑟

𝑚

𝑖=1

∙ 𝑓. , 𝑖 = 1,2,3, … ,𝑚 (15) 

min𝐷 = argmin {𝐷1, 𝐷2, … , 𝐷𝑚} , 𝑖 = 1,2,3,… ,𝑚 (16) 

s.t. 269 

ℳ𝑓 = ℳ −ℳ𝑜  

𝑃 =∪𝑖=1
𝑚 𝒑𝑖 ⊂ ℳ𝑓 , 𝑖 = 1,2,3, … ,𝑚 

(17) 

𝒑1(𝑥1, 𝑦1) = 𝒑𝑆(𝑥𝑆, 𝑦𝑆) 
𝒑𝑀(𝑥𝑚, 𝑦𝑚)=𝒑𝐸(𝑥𝐸 , 𝑦𝐸) 
𝒗𝑟 = 𝒗 + 𝝂𝑐 
𝒗 + 𝝂𝑐 ≥ 0 

𝐿𝑖 = ‖𝒑𝑖 − 𝒑𝑖−1‖，(𝑖 = 2,3, … ,𝑚) 

𝜓𝑖 = atan (
𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

)，(𝑖 = 2,3, … ,𝑚) 

𝛥𝜓𝑖 = |𝜓𝑖 − 𝜓𝑖−1|，(𝑖 = 2,3, … ,𝑚) 

𝑑𝑖 = ‖𝒑𝑖, 𝑂𝑖‖, (𝑖 = 1,2,3, … ,𝑚) 

𝐷𝑖 =

{
 

 
0,                          𝑑𝑖 ≥ 𝑑𝑚𝑎𝑥

𝑑𝑚𝑎𝑥 − 𝑑𝑖
𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

,     𝑑𝑚𝑖𝑛 < 𝑑𝑖 < 𝑑𝑚𝑎𝑥

1,                           𝑑𝑖 ≤ 𝑑𝑚𝑖𝑛

, 𝑖 = 1,2,3, … ,𝑚 

𝐷 = argmin {𝐷1, 𝐷2, … , 𝐷𝑚}, 𝑖 = 1,2,3, … ,𝑚 

𝒷𝑖,𝑖 = 𝒷𝑖,𝑖+1, 𝑖 = 1,2,3, … ,𝑚 − 1 

𝑅𝑖 ≥ 𝑅𝑚𝑖𝑛, 𝑖 = 2,3, … ,𝑚 

 270 

Remark 2. The constraints consist of the moveable area (the first and second line of Eq. (17)), motion 271 

boundaries (the third and fourth line of Eq. (17)), current effects (the fifth and sixth line of Eq. (17)), and the 272 

expression of variables including the path length 𝐿𝑖 ,the expressions of smoothness (𝜓𝑖 and Δ𝜓𝑖) and path 273 

safety (𝑑𝑖  and 𝐷𝑖 ). The last two lines in Eq. (17) represent the non-holonomic constraint and dynamic 274 

constraint. It is worth noting that the protocol constraints are introduced in Section 3.4. 275 

 276 

Remark 3. Details of the variables in the model are expounded as below. For the first objective, the variables 277 

include 𝒑𝑖, 𝑥𝑖, 𝑦𝑖, and 𝑖, where 𝒑𝑖 is the path segment, 𝑥𝑖 and 𝑦𝑖 are the coordinates of 𝒑𝑖(𝑥𝑖 , 𝑦𝑖), and 278 

𝑖 is the number of path segments. For the second objective, its variables are 𝑥𝑖, 𝑦𝑖, 𝜓𝑖, Δ𝜓𝑖, and 𝑖, where 279 

𝜓𝑖 and Δ𝜓𝑖 can be obtained by the expressions in Eq. (17). The third objective includes 𝒑𝑖, 𝒗, 𝒗𝑐, 𝑓, and 280 

𝑖, where the value of 𝑓 is a constant denoting the fuel consumption per minute, 𝒗 is a constant with the same 281 

direction of the path at 𝒑𝑖, and 𝒗𝑐 is obtained by the predefined water current distribution function. For the 282 

last objective, the variables are 𝒑𝑖 , 𝑂𝑖 , 𝑑𝑖 , 𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥 , 𝐷𝑖  and 𝑖 , where 𝑂𝑖  is the coordinate of the 283 

obstacle nearest 𝒑𝑖 , 𝑑𝑖  and 𝐷𝑖  can be obtained by the expressions in Eq. (17), 𝑑𝑚𝑖𝑛  and 𝑑𝑚𝑎𝑥  is the 284 
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predefined safety distance and the largest distance from the obstacles. The upper and lower limits of the 285 

objectives are 0 ≤ 𝐿 ≤ ∞, 0 ≤ θ ≤ ∞, 0 ≤ 𝐸 ≤ ∞, and 0 ≤ 𝐷 ≤ 1,.   286 

3. Methodology 287 

There are four major conceptual parts in the proposed hierarchical framework, i.e., the multi-objective 288 

optimization problem model (introduced in Section 2), the AENSGA-II (introduced in Section 3.1/3.2), the 289 

fuzzy inference selector (introduced in Section 3.3), and the sensory vector based replanning strategy 290 

(introduced in Section 3.4). The hierarchical flowchart is shown in the end of this section, see Fig.11.  291 

3.1.Framework of NSGA-II 292 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), commonly referred to as the Fast and Elitist 293 

Multi-Objective Sorting Genetic Algorithm, is a refinement of its predecessor, the Non-dominated Sorting 294 

Genetic Algorithm (NSGA). The main steps of NSGA-II are described as follows (Deb et al., 2002). 295 

Step 1: Initialize the population 296 

While Gen < MaxGen do 297 

Step 2: Compute the objective function and sort the non-dominated solutions 298 

Step 3: Compute the crowding degree 299 

Step 4: Optimization based on selection, crossover, and mutation operators 300 

Step 5: Merge the child population and parent population 301 

Step 6: Sort the non-dominated solutions and compute the crowding degree 302 

Step 7: Select the individuals of population size that rank well and return to Step 2 303 

End while 304 

Step 8: Output the Pareto optimal set 305 

3.2.AENSGA-II 306 

The searching performance of conventional CD strategy and operators adopted by NSGA-II is relatively weak, 307 

as the crowding distance may not well reflect the density information around the individual, which decreases 308 

the solution diversity. Referring to AENSGA-II, by employing CSART-based initialization, local optima are 309 

prevented and convergence speed is enhanced. By introducing the ACD strategy and improved binary 310 

tournament selection, population diversity is maintained in the removal process.  311 

3.2.1. Real-coded representation 312 

 313 
Fig. 2. Chromosome representation 314 

 315 

Generally, there are two representations of a chromosome in the evolutionary algorithm, namely binary-coded 316 

and real-coded representations. In this study, we use the real-coded and take a chromosome as a complete 317 

solution, i.e., a path for the PP problem. It is a sequence of points beginning at a given origin position and 318 

ending at a particular destination point. To improve performance, chromosomes are represented as a single 319 

linked list in which each node stores a point. For example, for a path in a two-dimensional plane for a point 320 
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𝒑𝑖 = (𝑥i, 𝑦i), we save 𝑥𝑖, 𝑦𝑖, and a pointer to the next point in the path. The algorithm will find the location 321 

of intermediate points and then a Clothoid curve (Silva and Grassi, 2018) is used to represent the path. Fig. 2 322 

shows the data structure of a chromosome.  323 

3.2.2. Initialization using candidate set adaptive random testing (CSART) 324 

Randomly generating the starting population is easy to apply in NSGA-II. However, this will lead to the loss 325 

of the population diversity and easily falling into the local optimal in the later stage.  326 

 327 

 328 
Fig. 3. CSART initialization (a) step 1; (b) step 2; (c) step 3; (4) step 4 329 

 330 

Inspired by the failure analysis in software system, we adopted the candidate set adaptive random testing to 331 

modified the initialization of AENSGA-II. CSART is first applied to verify the quality of software systems 332 

(Chen et al., 2009). The basic idea is to generate a set of test cases that are widely distributed in the workspace. 333 

Likewise, we want a more dispersed distribution of the initial population to increase the diversity. Therefore, 334 

it is adopted by AENSGA-II. The main steps of the initialization process are illustrated as follows: 335 

Step 1: Generating 𝑚 candidate individuals 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑚 randomly, see Fig. 3. (a).  336 

Step 2: Calculating the distances between each candidate 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑚 with the current individuals in 337 

the population set 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛, see Fig. 3. (b). 338 

Step 3: Find the shortest distance between each candidate individuals 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑚 with the population 339 

set 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛, see Fig. 3. (c). 340 

Step 4: Choose the maximum value of the distances and put corresponding candidate individual into the 341 

population set 𝑃, see Fig. 3. (d). 342 

 343 

The pseudocode of CSART initialization is presented in Algorithm 1. 344 

Algorithm 1. Pseudocode of CSART initialization 345 

Algorithm 1. CSART initialization 

1: Input: 𝑃 = {} and 𝐶 = {} 
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2: Output: initial population 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑃𝑜𝑝𝑆𝑖𝑧𝑒} 

3: Randomly generate 𝑞 individuals using uniform distribution for 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑞} 

4: while 𝑞 + 1 < 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 

5:   Randomly generate 𝑚 individuals using uniform distribution for 𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑚 

6:   for each candidate 𝑐𝑗 ∈ 𝐶, 𝑗 = 1,2,3, … ,𝑚 do 

7:     Calculate the shortest distance 𝑑𝑗 between 𝑠𝑖 ∈ 𝑆 and 𝑐𝑗 

8:   end for 

9:   find 𝑐𝑚𝑎𝑥 ∈ 𝐶 where 𝑑𝑚𝑎𝑥 > 𝑑𝑗 , 𝑗 = 1,2,3,… ,𝑚  

10:   𝑝𝑞+1 = 𝑐𝑚𝑎𝑥 

11:   𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑞+1} 

12:   𝑞 = 𝑞 + 1 

13: end while 

14: return 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑃𝑜𝑝𝑆𝑖𝑧𝑒} 

3.2.3. Adaptive crowding distance (ACD) strategy 346 

The NSGA-II uses crowding distance (CD) to remove the excess individuals found in the non-dominated set 347 

when the number of non-dominated solutions exceeds the population size. It can be calculated as follows: 348 

𝐶𝐷𝑖 =
1

𝑁𝑜𝑏𝑗
∑|𝑓𝑘(𝑥𝑖+1) − 𝑓

𝑘(𝑥𝑖−1)|

𝑁𝑜𝑏𝑗

𝑘=1

 (18) 

where 𝑁𝑜𝑏𝑗  is the number of objectives, 𝑓𝑘(𝑥𝑖+1)  is the 𝑘 th objective of the 𝑖 + 1 th individual. The 349 

individuals with lower CD are preferred over the others in the removal process.  350 

 351 

 352 
Fig. 4. (a) Traditional CD; (b) DCD 353 

The major drawback of CD is the lack of uniform diversity in the solutions, which means some parts of pareto-354 

front are too crowded and some parts are sparse (Dhanalakshmi et al., 2011). In Fig. 4. (a), CD denotes the 355 

half perimeter of the rectangular around the point. If we apply the traditional CD measurement, the individual 356 

B is removed because one side of the rectangle is very short which leads to smaller CD value. However, the 357 

CD of F is higher because the length of both sides is large, and F will be retained in the removal process. 358 

However, in order to reach good horizontal diversity, B should be the one retained and F should be removed.  359 

To address this issue, the adaptive crowding distance strategy is presented here. The CD value is modified into 360 

dynamic crowding distance: 361 

𝐷𝐶𝐷𝑖 =
𝐶𝐷𝑖

ln
1
𝑉𝑎𝑟𝑖

 
(19) 

where CD is calculated by Eq. (18). 𝑉𝑎𝑟𝑖 is based on the following expression: 362 
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𝑉𝑎𝑟𝑖 =
1

𝑁𝑜𝑏𝑗
∑(|𝑓𝑘(𝑥𝑖+1) − 𝑓

𝑘(𝑥𝑖−1)| − 𝐶𝐷𝑖

𝑁𝑜𝑏𝑗

𝑘=1

)2 (20) 

𝑉𝑎𝑟𝑖 is the variance of CD values of neighboring individuals indexed by 𝑖. 𝑉𝑎𝑟𝑖 presents information about 363 

the level of difference of CD value of these objectives. An example is given to illustrate the process, in Fig. 4. 364 

(b) 𝑉𝑎𝑟𝑖 of B is larger than F which leads to a larger value of DCD. Therefore, B has more chance to retain 365 

and the diversity is maintained.  366 

The pseudocode of adaptive crowding distance strategy is presented in Algorithm 2. 367 

 368 

Algorithm 2. Pseudocode of adaptive crowding distance (ACD) strategy 369 

Algorithm 2. ACD strategy 

1: Input: 𝑃𝑜𝑝𝑆𝑖𝑧𝑒   % population size 

2:       𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁}    % non-dominated solutions in the current generation 

3:       𝑁    % Number of populations in non-dominated solutions 

4: Output: 𝑃 = {𝑝1, 𝑝2 , … , 𝑝𝑃𝑜𝑝𝑆𝑖𝑧𝑒} 

5: if 𝑁 <=  𝑃𝑜𝑝𝑆𝑖𝑧𝑒 then 

6:   return    % Population number haven’t exceeded 

7: else 

8:   while 𝑁 >  𝑃𝑜𝑝𝑆𝑖𝑧𝑒 do 

9:     calculate 𝐷𝐶𝐷𝑖  (𝑖 = 1,2,3, … , 𝑁) for all individuals  

10:     sort the individuals based on DCD  

11:     find 𝑝k ∈ 𝑃 where 𝐷𝐶𝐷𝑘 < 𝐷𝐶𝐷𝑖 , 𝑖 = 1,2,3, … , 𝑁 

12:     𝑃. 𝑝𝑜𝑝(𝑝k) 

13:     𝑁 = 𝑁 − 1 

14:   end while 

15 end if 

16: return 

 370 

3.2.4. Improved binary tournament selection 371 

A binary tournament selection is used in this research to improve the individual quality. Different from the 372 

traditional NSGA-II, we use the ranking and DCD to evaluate the individual. The operation is shown in 373 

Algorithm 3.  374 

 375 

Algorithm 3. Pseudocode of improved binary tournament selection 376 

Algorithm 3. Improved binary tournament selection 

1: Input: 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑃𝑜𝑝𝑆𝑖𝑧𝑒}    % non-dominated solutions in the current generation 

2: Output: 𝑝𝑖 ∈ 𝑃    % better individual selected 

3: for 𝑖 in (0, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒) do 

4:   rand choose two individuals: 𝑝𝑚, 𝑝𝑛 

5: end for 

6: if 𝑅𝑎𝑛𝑘(𝑝𝑚) > 𝑅𝑎𝑛𝑘(𝑝𝑛) then 

7:   return 𝑝𝑚 

8: else if 𝑅𝑎𝑛𝑘(𝑝𝑚) < 𝑅𝑎𝑛𝑘(𝑝𝑛) then 

9:   return 𝑝𝑛 

10: else if 𝑅𝑎𝑛𝑘(𝑝𝑚) = 𝑅𝑎𝑛𝑘(𝑝𝑛) then 

11:     if 𝐷𝐶𝐷(𝑝𝑚) > 𝐷𝐶𝐷(𝑝𝑛) then 
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12:       return 𝑝𝑚 

13:     else 

14:       return 𝑝𝑛 

15     end if 

16: end if 

17: return 

 377 

The flow chart of AENSGA-II is presented in Fig. 5.  378 

 379 
Fig. 5. Flowchart of AENSGA-II 380 

 381 

3.3.Fuzzy satisfactory degree 382 

Choosing the feasible solution in the Pareto set under the trade-off between the four considered objectives is 383 

challenging. Existing literature adopted the weight bias or simply choosing the lowest objective with 384 

preference is proved to be over-subjective (Lyridis, 2021; Ma et al., 2018) To select a reasonable solution for 385 

the USV, we design a fuzzy-based selection criterion to quantify the linguistic importance. Consequently, a 386 

fuzzy selector is devised in which the objectives undergo fuzzification, and a linguistic preference model is 387 

established. 388 

 389 
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Fig. 6. Membership function: (a) Path length (normalized); (b) Smoothness (normalized); (c) Safety (non-390 

normalized); (d) Energy (normalized); (e) Path quality 391 

 392 

Three membership functions are deliberately designed, one for each objective function and one for the output 393 

variable that indicates the satisfactory degree of the solution. The inputs of the membership function are the 394 

four objective values and the output is the defuzzification value. The total distance is divided into three subsets 395 

{Short, Medium, Long}, the second objective Smoothness is classified into {Smooth, Moderate, Coarse}, the 396 

third objective Safety is classified into {Unsafe, Safe}, and the last objective Energy Consumption is classified 397 

into {Low, Medium, High}. Moreover, the output solution quality is divided into three subsets {Excellent, 398 

Medium, Bad}. Commonly, linear membership functions are defined for fuzzy relations, which are depicted 399 

in Fig. 6. 400 

 401 

The process of fuzzy inference selection is illustrated as follows: 402 

Step 1: input all the path values in the solution set and rescale using normalized root mean square error 403 

(Ntakolia and Lyridis, 2022). 404 

Step 2: Fuzzified the crisp values and determine the membership degree according to Fig. 6 and Table 2. 405 

Step 3: Evaluate the rules based on Mamdani inference system.  406 

Step 4: Defuzzification based on Fig. 6 and output the path with the highest path quality value. 407 

 408 

Table 2 Fuzzy rules 409 

Quality Length Smoothness Safety Energy 

Excellent Short or medium Smooth Safe Low 

Excellent Medium Smooth or moderate Safe Low 

Excellent Short Smooth Safe Low or medium 

Medium Medium Moderate Safe or Unsafe Low or medium 

Medium Medium Smooth or moderate Unsafe Low or medium 

Medium Medium Smooth or moderate Safe or Unsafe Medium 

Medium Short or medium Moderate Unsafe Low or medium 

Medium Short or medium Moderate Safe or Unsafe Medium 

Medium Short or medium Smooth or moderate Unsafe Medium 

Bad Long Coarse or moderate Safe or Unsafe High or medium 

Bad Long or medium Coarse Safe or Unsafe High or medium 

Bad Long or medium Coarse or moderate Unsafe High or medium 

Bad Long or medium Coarse or moderate Safe or Unsafe High 

 410 

3.4.Replanning strategy based on sensory vector 411 

3.4.1. Sensory vector structure 412 

In this section, the virtual sensor deployment and a sensory-vector-based replanning strategy is proposed for 413 

avoiding obstacles in uncertain environment. The sensing module is performed by incorporating a virtual Lidar 414 

system that encompasses a circular region around the USV. The Lidar sensors are evenly distributed and are 415 

capable of covering a range of 30 degrees each, with a specified Sensing Range (SR) value, as shown in Fig. 416 

7. This distance is provided by the USV’s Lidar and is set to 50 m. Moreover, the dynamic obstacles are 417 

expanded by with a radius of the minimum distance 𝑑𝑚𝑖𝑛 defined in Section 2, so that it can be considered 418 

as a circle area. 419 

 420 
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 421 
Fig. 7. Sensory structure 422 

 423 

The sensory vector 𝑉𝑠 is formed as: 424 

 
𝑉𝑠 = [𝑎(1), 𝑎(2),… , 𝑎(12)] (21) 

where 𝑎(𝑖), 𝑖 = 1, 2, … ,12 are variables with binary values. 𝑉𝑠 reflects the status of an obstacle extant in an 425 

angle range 𝑆𝑖, 𝑖 = 1, 2, … ,12. An example shown in the right figure of Fig. 7, with 𝑎(1) and 𝑎(12) equals 426 

logic “1”, this indicates that the obstacle is located inside SR and in the angle range 𝑆1 and 𝑆12, while the 427 

logic “0” represents a free space in the corresponding 𝑆𝑖.  428 

 429 

3.4.2. Formulation of 𝑉𝑠 430 

To find 𝑉𝑠, for each obstacle located inside SR, we first determine the potential collision risk of the obstacle. 431 

We adopted two indexes to measure the risk, i.e., Distance to Closest Point of Approach (DCPA) and Time to 432 

Closest Point of Approach (TCPA), which is determined by Eq. (22) and Eq. (23), respectively. As the DCPA 433 

becomes lower, the likelihood of a collision increases, and as the TCPA decreases, the necessity for immediate 434 

obstacle avoidance measures becomes urgent. 435 

 436 

Assumption. 1: In this research, we assume the motion of the dynamic obstacle is known once it has been 437 

detected in SR range.  438 

 439 

𝑡𝐶𝑃𝐴 =
(𝑝𝑈𝑆𝑉 − 𝑝⃗𝐷𝑂) ∙ (𝑣⃗𝑈𝑆𝑉 − 𝑣⃗𝐷𝑂)

‖𝑣⃗𝑈𝑆𝑉 − 𝑣⃗𝐷𝑂‖2
 (22) 

𝐷𝐶𝑃𝐴 = ‖(𝑝⃗𝑈𝑆𝑉 + 𝑣⃗𝑈𝑆𝑉𝑡𝐶𝑃𝐴) − (𝑝⃗𝐷𝑂 + 𝑣⃗𝐷𝑂𝑡𝐶𝑃𝐴)‖ (23) 

 440 

Based on the above assumptions, the motion planners examines whether the situation is likely to lead to a 441 

collision in the short-term future, that is, by checking if the following equations are satisfied (Liu et al., 2022): 442 

𝐷𝐶𝑃𝐴 ≤ 𝑆𝐷 
(24) 

0 ≤ 𝑡𝐶𝑃𝐴 ≤ 𝑡𝑡ℎ 

where 𝑆𝐷 is the safe distance to check whether it is a collision, 𝑡𝑡ℎ is threshold value that indicates the 443 

emergency level, smaller 𝑡𝑡ℎ means more urgent.  444 

 445 

Once the collision risk is detected by Eq. (24), then we shift the dynamic obstacle to the position of CPA 446 

(𝑥𝐶𝑃𝐴, 𝑦𝐶𝑃𝐴) with an expanded circle whose radius is 𝑑𝑚𝑖𝑛, see Fig. 8. (b). Then the position angle 𝜃 can 447 

be determined by: 448 

𝜃 = atan2(𝑦𝐶𝑃𝐴 − 𝑦𝑈𝑆𝑉 , 𝑥𝐶𝑃𝐴 − 𝑥𝑈𝑆𝑉) − 𝜓𝑈𝑆𝑉 (25) 

 449 

Since the angle  𝜃1 = 𝜃2 can be easily obtained by geometrical relationships based on Pythagoras theorem, 450 
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and then the angle of two tangency points 𝑇1 and 𝑇2 can be calculated by: 451 

𝜃𝑇1 = 𝜃 + 𝜃1 

𝜃𝑇2 = 𝜃 − 𝜃1 
(26) 

 452 

Once we had 𝜃𝑇1 and 𝜃𝑇2, the sensory vector is found by setting the values of 𝑎(𝑖) in the 𝑉𝑠 to logic “1” 453 

if the corresponding angle 𝑆𝑖 is partly covered by 𝜃𝑇1 or 𝜃𝑇2. An example shown in Fig. 8. (a), in this case:  454 

𝑉𝑠 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] (27) 

The CPA obstacle lies inside SR, and the angle difference 𝜃𝑇2 − 𝜃𝑇1 lies in the ranges 𝑆11 and 𝑆12.  455 

 456 

 457 
Fig. 8. (a) Example of CPA position; (b) Angle definition 458 

3.4.3. Formulation of gap vector 𝑉𝑔 based on COLREGs 459 

The avoidance of obstacles is attained through the utilization of a gap vector 𝑉𝑔, which constitutes a binary 460 

vector where a logic value of "1" signifies the presence of an unavailable gap, and a logic value of "0" signifies 461 

the free gap. 𝑉𝑔 and 𝑉𝑠 share the same length. The USV chooses the gap required by the COLREG rules and 462 

moves towards destination. 463 

 464 

Once condition (24) is satisfied, the rule selector identifies which COLREG rule is activated by examining 465 

the relative course 𝜓𝑟 and position angle 𝛼 between the USV and dynamic obstacles, see: 466 

𝜓𝑟 = 𝜓𝐷𝑂 − 𝜓𝑈𝑆𝑉 (28) 

𝛼 = atan2(𝑦𝐷𝑂 − 𝑦𝑈𝑆𝑉 , 𝑥𝐷𝑂 − 𝑥𝑈𝑆𝑉) − 𝜓𝑈𝑆𝑉 (29) 

We determine the collision situation based on Fig. 9 and Table 3. 467 

 468 

Table 3 Judgement of the encounter scenario 469 

Scenarios Position angle 𝛼 Relative course 𝜓𝑟  

Heading on |𝛼| ≤ 15° |𝜓𝑟| ≥ 90° 

Overtaking |𝛼| ≤ 15° |𝜓𝑟| < 90° 

Overtaken |𝛼| ≥ 112.5° - 

Right-crossing 15° < 𝛼 < 112.5° - 

Left-crossing −112.5° < 𝛼 < −15° - 

 470 
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 471 
Fig. 9. Encounter scenario 472 

 473 

After the identification of the COLREG situation, 𝑉𝑔 first inherits the value of 𝑉𝑠, and then we implement 474 

the occupied gaps according to COLREGs.  475 

 476 

Situation 1 (Heading on, Rule 14): In COLREG rule 14, the USV should bypass the obstacle from the 477 

starboard. In this case, the port side of the USV is set to be occupancy gaps, which yields 478 

𝑉𝑔(𝑖) = 1, 𝑖 = 1, 2, … , 6 (30) 

 479 

Situation 2 (Overtake, Rule 13): In COLREG rule 13, the USV can overtake the DO from either side, which 480 

means no extra occupancy gaps are embedded: 481 

𝑉𝑔 = 𝑉𝑠 (31) 

 482 

Situation 3 (Crossing from the right, Rule 15): According to COLREG rule 15, the USV should bypass DO 483 

from the right. Similar to heading on situation, the port side of the USV is occupied, which yields 484 

𝑉𝑔(𝑖) = 1, 𝑖 = 1, 2, … , 6 (32) 

 485 

Situation 4 (Crossing from the left, Rule 15): In COLREG rule 15, the USV should bypass DO from the 486 

port side. Consequently, the starboard of the USV is set to be occupancy gaps, which yields 487 

𝑉𝑔(𝑖) = 1, 𝑖 = 7, 8, … , 12 (33) 

 488 

3.4.4. Formulation of transition path 489 

Upon the construction of 𝑉𝑔, a number of free gaps, which serve as potential available positions for the USV, 490 

are generated. The angle 𝛽𝑖 is determined by 𝛽𝑖 = 𝑖 ∗ 30, where 𝑖 stands as the index number of ‘‘0’’ in 𝑉𝑔. 491 

Then the next suggested position 𝒑𝑔(𝑥𝑔, 𝑦𝑔) is determined, by which the transition path is generated and 492 

USV will evade the obstacles and start replanning from 𝒑𝑔(𝑥𝑔, 𝑦𝑔)  to the destination 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) . The 493 

procedure is explained in Algorithm 4. 494 

 495 

Algorithm 4 Local obstacle avoidance 496 

Algorithm 4. Local obstacle avoidance 

1: Input: gap vector 𝑉𝑔; CPA position of obstacle 𝒑𝐶𝑃𝐴_𝑂(𝑥𝐶𝑃𝐴 , 𝑦𝐶𝑃𝐴); destination 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) 

       Current position of USV 𝒑𝑈𝑆𝑉(𝑥𝑈𝑆𝑉 , 𝑦𝑈𝑆𝑉) 

2: Output: best permissible USV position 𝒑𝑔(𝑥𝑔, 𝑦𝑔) to avoid obstacle 

 Calculate the moving distance 𝑑𝑚𝑑 = ‖𝒑𝑈𝑆𝑉 − 𝒑𝐶𝑃𝐴_𝑂‖ 

3: 𝑛 = 𝑐𝑜𝑢𝑛𝑡(𝑉𝑔 == 0)   % Calculate the number of permissible positions 
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 𝛽 = {𝛽1, 𝛽2, … , 𝛽𝑛}    % Calculate the angle of each permissible position 

 𝑑𝑚𝑖𝑛 = ∞    % Initialize the minimum distance to 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) 

4: while 𝑖 < 𝑛 do 

5:   𝑥𝑔𝑖 = 𝑥𝑈𝑆𝑉 + 𝑑𝑚𝑑 × cos 𝛽𝑖 

6:   𝑦𝑔𝑖 = 𝑦𝑈𝑆𝑉 + 𝑑𝑚𝑑 × sin 𝛽𝑖 

7:   𝑑𝑖 = ‖𝒑𝑔𝑖 − 𝒑𝐸‖      % Calculate the distance from 𝒑𝑔𝑖 to 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) 

8:   if 𝑑𝑖 < 𝑑𝑚𝑖𝑛  then 

9:     𝒑𝑔 = 𝒑𝑔𝑖 

10:     𝑑𝑚𝑖𝑛 = 𝑑𝑖 

11:   end if  

12:   𝑖 = 𝑖 + 1 

13: end while 

14: return 𝒑𝑔(𝑥𝑔, 𝑦𝑔) 

 497 

Once the next position 𝒑𝑔(𝑥𝑔, 𝑦𝑔) is determined, a Clothoid curve (detail in (Silva and Grassi, 2018)) is 498 

generated between 𝒑𝑈𝑆𝑉(𝑥𝑈𝑆𝑉, 𝑦𝑈𝑆𝑉) and 𝒑𝑔(𝑥𝑔, 𝑦𝑔) immediately, see Fig. 10. (a). It is worth noting that 499 

the Clothoid curve is able to guarantee the continuity of the heading change and conform to the non-holonomic 500 

constraint of USVs. As the USV navigates through the transition route, the replanning between 𝒑𝑔(𝑥𝑔, 𝑦𝑔) 501 

and 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) is performed simultaneously. 502 

 503 

 504 
Fig. 10. (a) Illustration of transition path and replanning path; (b) Example of a crossing scenario 505 

 506 

Fig. 10. (b). offers an illustrative example of the sensory vector method. First, an obstacle 𝒑𝐷𝑂(𝑥𝐷𝑂, 𝑦𝐷𝑂) is 507 

detected in SR range and we evaluate its collision risk based on Eq. (24). If the collision risk is detected, we 508 

shift the obstacle to the CPA position and the sensory vector 𝑉𝑠 and gap vector 𝑉𝑔 are initially constructed 509 

as 𝑉𝑠 = 𝑉𝑔 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. According to Fig. 9 and Table 3, the corresponding COLREG rule 510 

is identified and then we implement the rules to 𝑉𝑔. In this case, there are five available positions in free gaps 511 

in 𝑉𝑔 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1], labelled 𝑝𝑔11, 𝑝𝑔10, 𝑝𝑔9, 𝑝𝑔8, 𝑝𝑔7. Then, we select the position 𝒑𝑔 512 

with the shortest distance to 𝒑𝐸(𝑥𝐸 , 𝑦𝐸) as the next position of USV, which is 𝑝𝑔11. Finally, path replanning 513 

is conducted between 𝒑𝑔 and 𝒑𝐸 while the USV navigates to 𝒑𝑔. 514 

 515 

To sum up the proposed model, we present Fig. 11 to illustrate the hierarchical structure of the methodology.  516 
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 517 
Fig. 11. Hierarchical framework of the proposed method 518 

4. Results and Discussion 519 

4.1.Convergence and diversity analysis 520 

To validate the convergence characteristic and effectiveness of our proposed algorithm, we conduct the 521 

performance evaluation by using classical benchmark MOPs and state-of-the-art MOO algorithms. The 522 

benchmark MOPs include: (1) Five low-dimensional (d=2) MOPs in ZDT family problems (ZDT1, ZDT2, 523 

ZDT3, ZDT4, ZDT6). (2) Seven low-dimensional MOPs in DTLZ family problems (d=3). (3) Fourteen high-524 

dimensional MOPs from DTLZ family problems with d=4, 5. The MOO algorithms we selected include: (1) 525 

Non-dominated sorting genetic algorithm (NSGA-II, (Deb et al., 2002)). (2) Improved strength Pareto 526 

evolutionary algorithm (SPEA2, (Zitzler et al., 2001)). (3) Preference-inspired coevolutionary algorithm 527 

(MMPICEAg, (Wang et al., 2021)). (4) MO_Ring_CSO_SCD (Wang et al., 2019). (5) Niching indicator-based 528 

multi-modal many-objective optimizer (NIMMO, (Tanabe and Ishibuchi, 2019)).  529 

 530 

To evaluate the general performance of a MOO algorithm, a common approach is to assess the solutions in 531 

terms of convergence and diversity of the proximate Pareto frontier. Consequently, we adopt hypervolume 532 

(HV, (Jiang et al., 2015)) in the performance evaluation work. HV denotes the hypervolume contribution 533 

between the non-dominated solution set 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  and reference point 𝑃 . It indicates the 534 
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convergence and diversity of the solutions jointly. The larger HV value means better convergence and diversity 535 

performance.  536 

 537 

The major parameter settings are outlined as follows: The population size 𝑁 is 200 for all problems. The 538 

maximum number of function evaluations (FES) is set as 15000. In NSGA-II, SPEA2 and AENSGA-II, the 539 

crossover probability and mutation probability are 𝑝𝑐 = 0.8 and 𝑝𝑚 = 1/𝑛 (n is the number of decision 540 

variables). The distribution indexes for crossover and mutation are 𝜂𝑐 = 20 and 𝜂𝑚 = 20. Other parameters 541 

are set as the default values reported in the references (Tanabe and Ishibuchi, 2019; Wang et al., 2021, 2019). 542 

The experimental results were acquired through the execution of 20 independent runs of each method. The 543 

Wilcoxon's rank sum test was used to determine if there were any statistically significant differences between 544 

the two algorithms at a 95% confidence level. The operation system is Windows 10 21H1, CPU is Intel(R) 545 

Core (TM) i7-8700 @ 3.20GHz 3.19 GHz, memory is 16GB, and the programs are running in MATLAB 546 

2021a.  547 

 548 

Table 4 presents the general performance scores and quantitative results of the MOO algorithms on the MOPs. 549 

The symbols "+", "_", or "≈" signify that the performance of the competitor algorithm is significantly superior, 550 

inferior, and comparable to that of AENSGA-II, respectively. The bold data represents the best result of the 551 

MOP. Fig. 12 shows the box-whisker plot in terms of effectiveness. Table 5 and Table 6 present the quantitative 552 

results of HV on 12 low-dimensional MOPs and 14 high-dimensional MOPs, respectively. From the 553 

corresponding simulation results, it allows the following conclusions to be drawn: 554 

(1) Indicated by Table 4, AENSGA-II has presented satisfactory results on both low-dimensional and high-555 

dimensional MOPs.  556 

(2) As is shown in Table 5-6, AENSGA-II has shown better performance in terms of solution diversity than 557 

most of the MOO algorithms. This is mainly due to the implementation of ACD strategy and IBTS, which 558 

maintains diversity in the removal process. Referring to other algorithms, MMPICEAg and 559 

MO_Ring_CSO_SCD have slightly advantages in several cases (ZDT4, DTLZ2, DTLZ5, DTLZ6). 560 

(3) In Fig. 12, AENSGA-II outperforms the other MOO algorithms except for NSGA-II in terms of 561 

effectiveness. This indicates that the computational cost of the ACD strategy is higher than conventional 562 

CD. Meanwhile, the algorithm robustness is shown by the IQR in Fig. 12 (size of the box in y-direction). 563 

It is observed that AENSGA-II obtained more stable results with respect to time cost. 564 

 565 

 566 
Fig. 12. Box-whisker plot of time cost on 12 low-dimensional MOPs 567 

 568 

Table 4 HV and time scores on 12 low-dimensional MOPs. The symbols “+”, “_” or ”≈” indicate that the 569 

competitor algorithm performs significantly better, worse, and comparably to AENSGA-II.  570 

 Algorithms HV score (+/-/≈) Time score (+/-/≈) 
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12 low-dimensional 

MOPs 

NSGA-II 0/10/2 11/0/1 

SPEA2 0/10/2 0/11/1 

MMPICEAg 1/6/5 0/10/2 

MO_Ring_CSO_SCD 0/7/5 2/7/3 

NIMMO 2/3/5 0/9/3 

14 high-dimensional 

MOPs 

NSGA-II 1/11/3 11/0/3 

SPEA2 1/13/0 0/11/3 

MMPICEAg 2/7/5 2/11/1 

MO_Ring_CSO_SCD 2/11/1 0/14/0 

NIMMO 2/7/5 3/8/3 

 571 

Table 5 Quantitative results of HV on 12 low-dimensional MOPs over 20 independent runs 572 

MOPs NSGA-II SPEA2 MMPICEAg 
MO_Ring_CSO

_SCD 
NIMMO AENSGA-II 

ZDT1 6.192E-01 (−) 6.188E-01 (−) 6.312E-01 (≈) 6.291E-01 (−) 6.561E-01 (≈) 6.572E-01 

ZDT2 3.092E-01 (−) 3.001E-01 (−) 3.202E-01 (≈) 3.218E-01 (≈) 3.240E-01 (≈) 3.248E-01 

ZDT3 5.112E-01 (≈) 5.122E-01 (≈) 5.092E-01 (−) 5.142E-01 (≈) 5.124E-01 (≈) 5.144E-01 

ZDT4 6.304E-01 (−) 6.407E-01 (−) 6.304E-01 (−) 6.224E-01 (−) 6.529E-01 (≈) 6.512E-01 

ZDT6 3.842E-01 (−) 3.724E-01 (−) 3.949E-01 (≈) 3.916E-01 (≈) 3.873E-01 (−) 3.962E-01 

DTLZ1 6.748E-01 (−) 6.832E-01 (−) 7.638E-01 (≈) 7.204E-01 (−) 6.826E-01 (−) 7.661E-01 

DTLZ2 3.381E-01 (−) 3.813E-01 (−) 4.182E-01 (+) 3.894E-01 (−) 3.942E-01 (≈) 4.078E-01 

DTLZ3 0.000E+00 (≈) 0.000E+00 (≈) 0.000E+00 (≈) 0.000E+00 (≈) 0.000E+00 (≈) 0.000E+00 

DTLZ4 2.016E-01 (−) 2.035E-01 (−) 2.465E-01 (−) 2.328E-01 (−) 2.051E-01 (−) 2.841E-01 

DTLZ5 8.956E-02 (−) 8.620E-02 (−) 9.060E-02 (−) 8.756E-02 (−) 9.202E-02 (+) 9.112E-02 

DTLZ6 3.065E-02 (−) 3.120E-02 (−) 3.085E-02 (−) 3.563E-02 (−) 7.056E-02 (+) 5.692E-02 

DTLZ7 1.862E-01 (−) 9.564E-02 (−) 1.983E-01 (≈) 1.965E-01 (≈) 1.970E-01 (≈) 2.011E-01 

Mean 3.296E-01 3.246E-01 3.528E-01 3.451E-01 3.478E-01 3.626E-01 

 573 

 574 
Fig. 13. PF distribution on ZDT1 for (a) NSGA-II; (b) SPEA2; (c) MMPICEAg; (d) MO_Ring_CSO_SCD; 575 
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(e) NIMMO; (f) AENSGA-II 576 

 577 
Fig. 14. PF distribution on ZDT3 for (a) NSGA-II; (b) SPEA2; (c) MMPICEAg; (d) MO_Ring_CSO_SCD; 578 

(e) NIMMO; (f) AENSGA-II 579 

 580 

Table 6 Quantitative results of HV on 14 high-dimensional MOPs over 20 independent runs 581 

MOPs NSGA-II SPEA2 MMPICEAg 
MO_Ring_CSO_

SCD 
NIMMO 

AENSGA-

II 

DTLZ1D4 4.523E-01 (−) 2.564E-01 (−) 8.623E-01 (≈) 5.265E-01 (−) 8.125E-01 (−) 8.662E-01 

DTLZ2D4 6.265E-01 (−) 5.884E-01 (−) 6.904E-01 (−) 6.854E-01 (−) 7.097E-01 (≈) 7.002E-01 

DTLZ3D4 8.451E-01 (−) 6.207E-01 (−) 9.775E-01 (−) 9.325E-01 (−) 9.145E-01 (−) 9.952E-01 

DTLZ4D4 4.524E-01 (+) 4.775E-01 (+) 4.023E-01 (≈) 4.775E-01 (+) 4.524E-01 (+) 4.021E-01 

DTLZ5D4 7.823E-01 (≈) 7.512E-01 (−) 7.765E-01 (−) 7.652E-01 (−) 7.732E-01 (−) 7.934E-01 

DTLZ6D4 5.242E-01 (−) 8.254E-01 (−) 9.212E-01 (+) 9.314E-01 (+) 8.852E-01 (−) 9.157E-01 

DTLZ7D4 2.485E-01 (−) 2.354E-01 (−) 2.514E-01 (≈) 2.354E-01 (−) 2.492E-01 (≈) 2.584E-01 

DTLZ1D5 0.000E+00 (−) 0.000E+00 (−) 8.770E-01 (−) 8.324E-01 (−) 8.916E-01 (−) 9.264E-01 

DTLZ2D5 6.304E-01 (−) 6.425E-01 (−) 8.893E-01 (≈) 6.926E-01 (−) 8.265E-01 (−) 8.872E-01 

DTLZ3D5 0.000E+00 (−) 0.000E+00 (−) 9.862E-01 (≈) 9.901E-01 (≈) 9.910E-01 (≈) 9.924E-01 

DTLZ4D5 8.956E-01 (−) 8.911E-01 (−) 9.686E-01 (+) 9.328E-01 (−) 9.295E-01 (−) 9.497E-01 

DTLZ5D5 7.821E-01 (−) 7.751E-01 (−) 7.925E-01 (≈) 7.733E-01 (−) 8.042E-01 (≈) 8.051E-01 

DTLZ6D5 5.124E-01 (−) 6.314E-01 (−) 9.247E-01 (−) 9.214E-01 (−) 9.571E-01 (+) 9.321E-01 

DTLZ7D5 3.842E-01 (≈) 3.375E-01 (−) 3.956E-01 (≈) 3.824E-01 (−) 3.914E-01 (≈) 3.921E-01 

Mean 5.097E-01 5.023E-01 7.654E-01 7.199E-01 7.563E-01 7.726E-01 

 582 

4.2.Simulation under static environment 583 

In this section, simulations are provided to validate the performance of AENSGA-II in a static environment. 584 

We selected some state-of-the-art algorithms from existing reliable references in the comparative study, i.e., 585 

NSGA-II and EPSO. It is worth noting that both fixed currents and time-varying currents are considered. The 586 

testing environment is set the same as in Section 4.1. 587 

 588 
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The parameters of the simulations are set as follows: 589 

 Environment set (fixed currents): MapSize = 800*800 (m); Start = (340 m, 750 m); Goal = (360 m, 70 590 

m); 𝑑𝑚𝑖𝑛 = 15 m, 𝑑𝑚𝑎𝑥 = 25 m; Direction of currents = -70°, Velocity of currents = 0.2 m/s. 591 

 Environment set (Time-varying currents): The Time-varying currents distribution is set as Eq. (34). 592 

𝐴 = 𝐵 = 10−3, 𝑐 = 0.003. 593 

 USV model: To calculate the energy consumption, suppose the USV parameters are: 𝐿𝑈𝑆𝑉 = 2 𝑚 , 594 

𝑣𝑈𝑆𝑉 = 2 𝑚/𝑠. 595 

 AENSGA-II: 𝑁 = 100, 𝑇𝑚𝑎𝑥 = 100, 𝑝𝑐 = 0.9, 𝑝𝑚 = 1/n, 𝜂𝑐 = 10, 𝜂𝑚 = 20, 𝑅𝑚𝑖𝑛 = 6 m. 596 

 EPSO (Alam et al., 2015): 𝑁 = 100, 𝑇𝑚𝑎𝑥 = 100, 𝑐1 = 𝑐2 = 1.4995 597 

 NSGA-II (Ahmed and Deb, 2013): 𝑁 = 100, 𝑇𝑚𝑎𝑥 = 100, 𝑝𝑐 = 0.9, 𝑝𝑚 = 1/n, 𝜂𝑐 = 10, 𝜂𝑚 = 20. 598 

 599 

𝑢(𝑥, 𝑦, 𝑡) = 𝐴 ∗ 𝑦 ∗ cos (𝑥 − 𝑐𝑡) 
(34) 

𝑣(𝑥, 𝑦, 𝑡) = 𝐵 ∗ 𝑦 ∗ sin (𝑥 − 𝑐𝑡) 

4.2.1. Fixed currents 600 

 601 

Table 7 Calculation results 602 

Algorithm Convergence time (s) Number of solutions 

AENSGA-II 12 11 

EPSO 23 8 

NSGA-II 17 5 

 603 

General calculation results are shown in Table 7. Fig. 15 present the visualized non-dominated solutions for 604 

each algorithm. The statistical measurements of the non-dominated solutions obtained by each algorithm are 605 

presented in Table 8-10. The visualized objective values are shown in Fig. 16. It is worth mentioning that, in 606 

Fig. 16, the length value is reduced by 10 times, and the energy cost is increased by 10 times to balance the 607 

scale. Fig. 15 (d) shows the comparison of the optimal solutions given by each algorithm. 608 

 609 

From the corresponding simulation results, the following conclusions can be drawn: 610 

(1) As is shown in Table 7, three algorithms successfully find a set of diverse Pareto optimal solutions. In 611 

particular, AESNGA-II generated more non-dominated solutions than the others, and the computational 612 

efficiency is satisfactory.  613 

(2) As indicated in Table 8-10, AENSGA-II yielded solutions with better path quality (with mean objective 614 

value of 714.089 m, 19.850 m, 59.618° and 6.416 min). The mean objective value for EPSO and NSGA-615 

II are 722.199 m, 16.538 m, 55.149°, 6.497 min and 737.272 m, 10.669 m, 77.062°, 6.550 min, respectively. 616 

(3) Displayed in Fig. 15 (a), the paths presented by AENSGA-II take full advantage of the currents. Most of 617 

the paths are located at the right side of the central obstacle to flow with the currents, which leads to a 618 

shorter distance and lower energy consumption. As a consequence of the encoding method and curvature 619 

constraints, the paths created by AENSGA-II are composed of continuous points, whereas the paths 620 

generated by other algorithms consist of several line segments. 621 

(4) Inspection of Fig. 15 (d) indicates that the fuzzy inference system is able to select a more reasonable path 622 

in the Pareto optimal set. Simply selecting the path with optimal value cannot guarantee its practicability. 623 

 624 
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 625 
Fig. 15. Solutions (a) AENSGA-II (Solutions number is not given in the figure since they are too close to 626 

each other, they can be found in original data in Acknowledgement); (b) EPSO; (c)NSGA-II (d) Comparison 627 

of the optimal solutions 628 
 629 
Table 8. Statistic measurements of the solutions obtained by AENSGA-II 630 

Solutions Length (m) distToObs (m) Smoothness Energy cost (min) Path quality 

No.1 707.595 6.000 88.377  6.420 0.359  

No.2 712.769 7.000 57.375  6.422 0.511  

No.3 705.385 14.000 46.535  6.337 0.888  

No.4 704.472 15.000 41.312  6.342 0.937  

No.5 708.156 18.111 49.177  6.373 0.847  

No.6 713.717 22.825 54.382  6.415 0.761  

No.7 709.711 24.021 45.431  6.366 0.950  

No.8 738.203 25.495 99.127  6.584 0.275  

No.9 727.810 26.683 70.026  6.524 0.402  

No.10 713.629 28.071 48.386  6.401 0.896  

No.11 713.534 31.145 55.664  6.386 0.918  

Mean 714.089  19.850  59.618  6.416  - 

Note: The fuzzy selected path (with the highest path quality) is presented in bold 631 

 632 

Table 9. Statistic measurements of the solutions obtained by EPSO 633 
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Solutions Length distToObs Smoothness Energy 

No.1 702.892 2.236 47.562 6.377 

No.2 746.720 41.146 57.571 6.718 

No.3 724.014 4.243 72.357 6.540 

No.4 700.327 1.414 44.236 6.314 

No.5 720.441 16.125 68.703 6.362 

No.6 760.407 48.000 59.020 6.767 

No.7 727.743 14.142 56.456 6.591 

No.8 695.047 5.000 35.284 6.304 

Mean 722.199 16.538 55.149 6.497 

Note: The best value of each objective is in bold 634 

 635 

Table 10. Statistic measurements of the solutions obtained by NSGA-II 636 

Solutions Length distToObs Smoothness Energy 

No.1 781.380 5.831 82.165 6.856 

No.2 707.111 4.243 56.356 6.359 

No.3 747.471 2.828 109.677 6.662 

No.4 707.108 3.000 71.980 6.273 

No.5 743.291 37.443 65.132 6.602 

Mean 737.272 10.669 77.0619 6.550 

Note: The best value of each objective is in bold 637 

 638 

 639 
Fig. 16. (a) Scaled measures of 11 solutions obtained by AENSGA-II; (b) Scaled measures of 8 solutions 640 

obtained by EPSO; (c) Scaled measures of 5 solutions obtained by NSGA-II 641 

4.2.2. Time-varying currents 642 

In this section, the simulation is performed in time-varying ocean currents. The parameter settings and the 643 

testing environment are set as the same in Section 4.2.1.  644 

 645 

Table 11. Calculation results 646 
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Algorithm Convergence time (s) Number of solutions 

AENSGA-II 11 10 

EPSO 27 8 

NSGA-II 16 5 

 647 

 648 
Fig. 17. Solution (a) AENSGA-II (Solution number is not given in the figure since they are too close to each 649 

other, they can be found in original data in Acknowledgement); (b) EPSO; (c) NSGA-II; (d) Comparison of 650 

the optimal solutions  651 

 652 

The calculation results are provided in Table 11. The visualized non-dominated solutions are given in Fig. 17. 653 

Fig. 17 (d) presents the optimal path generated by each algorithm. The quantitative measurements for the 654 

objective values are presented in Table 12-14 and Fig. 18. From the simulation results, the findings are 655 

summarized as follows: 656 

(1) In general, the results demonstrated in the time-varying ocean situation are in line with the previous studies. 657 

It appears that AENSGA-II has shown excellent performance in terms of efficiency and the solution count.  658 

(2) In Fig. 17 (a), contrary to the results in fixed currents, most of the paths presented by AENSGA-II are 659 

located on the left side of the central obstacle, which is attributed to the distribution of the ocean currents. 660 

This indicates that our model takes advantage of the currents and prefers the routes with lower energy 661 

consumption. 662 

(3) Comparing the mean objective value in Table 12-14, it is shown that AENSGA-II presents higher solution 663 

quality than the other approaches. This directly ties with the previous finding. 664 

(4) As can be seen from Fig. 17 (d), the path selected by the fuzzy rules is more feasible than the other optimal 665 
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paths. It generates a path with low energy cost while ensures the path is sufficiently far from the obstacles 666 

and smooth enough for path tracking. It is shown that AENSGA-II combining with fuzzy rules have 667 

presented results with satisfactory. 668 

 669 

 670 
Fig. 18. (a) Scaled measures of 10 solutions obtained by AENSGA-II; (b) Scaled measures of 8 solutions 671 

obtained by EPSO; (c) Scaled measures of 5 solutions obtained by NSGA-II 672 

 673 

Furthermore, inspection of the patterns shown in Fig. 16 and Fig. 18 presents some extra findings: 674 

(1) Comparing the red and yellow lines in Fig. 16 and Fig. 18, it is evident that path length and energy cost 675 

are cooperative, which means they are optimized simultaneously. This is directly in line with the research 676 

findings of Davoodi et al., (2013). 677 

(2) Taking a closer look to the red and grey in Fig. 18 (a), there is a tendency for a small increase in path 678 

length as smoothness grows (See No.3 and No.7). Similar patterns are depicted in Fig. 16 (c) (No.1, No.2, 679 

No.3, No.4) and Fig. 16 (a) (No.7, No.8, No.9) where the safety value is almost the same. This indicates 680 

that path smoothness can affect the path length to a certain degree.  681 

(3) As shown by the red and blue lines in Fig. 16 (b), the path length and path safety have shown the same 682 

pattern. Similar patterns are also depicted in Fig. 18 (a) and (b). This implies that the path safety and path 683 

length are conflicting objectives, where there is a trade-off between them in finding the optimal path.  684 

 685 

Table 12. Statistic measurements of the solutions obtained by AENSGA-II 686 

Path number Length distToObs Smoothness Energy Path quality 

No.1 711.841  17.000  55.517  6.427  0.855  

No.2 732.944  23.259  66.713  6.518  0.505  

No.3 732.929  25.612  92.414  6.529  0.410  

No.4 714.186  16.971  48.703  6.457  0.812  

No.5 711.695  17.720  46.969  6.440  0.873  

No.6 710.365  6.083  48.256  6.465  0.774  

No.7 732.889  22.472  115.296  6.563  0.259  

No.8 710.350  14.560  45.926  6.435  0.669 

No.9 707.665  6.708  42.712  6.378  0.691  

No.10 732.246  48.000  63.236  6.559  0.622  
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Mean 719.711  19.839  62.574  6.477  - 

Note: The fuzzy selected path (with the highest path quality) is presented in bold 687 

 688 

Table 13. Statistic measurements of the solutions obtained by EPSO 689 

Path number Length distToObs Smoothness Energy 

No.1 774.179  33.838  103.468  6.695  

No.2 702.979  19.698  36.174  6.420  

No.3 733.995  39.000  65.667  6.637  

No.4 713.556  14.142  47.291  6.435  

No.5 702.611  4.000  50.842  6.378  

No.6 729.790  18.974  66.470  6.587  

No.7 714.409  3.606  91.388  6.461  

No.8 726.225  13.601  48.918  6.608  

Mean 724.718 18.357 63.777 6.528 

Note: The best value of each objective is in bold 690 

 691 

Table 14 Statistic measurements of the solutions obtained by NSGA-II 692 

Path number Length distToObs Smoothness Energy 

Path No.1 752.589  3.606  117.028  6.713  

Path No.2 725.706  10.050  76.149  6.614  

Path No.3 716.896  37.577  52.347  6.477  

Path No.4 743.934  20.591  101.757  6.707  

Path No.5 725.298  24.352  51.214  6.488  

Mean 732.884  19.235  79.699  6.600  

Note: The best value of each objective is in bold 693 

 694 

4.3.Simulation under dynamic environment 695 

In this subsection, on the basis of Section 4.2, the effectiveness of our proposed model is demonstrated by 696 

avoiding unknown dynamic obstacles. The results are provided by conducting experiments on a prototype 697 

USV Otter (see www.maritimerobotics.com, Table 15 shows the particulars of the vessel) in time-varying 698 

environment. The model consists of three basic subsystems: the line of sight (LOS) guidance system, the PID 699 

controller, and extended Kalman filter for observer, please find the details in the author’s previous publication 700 

(Zhao et al., 2022a, 2022c). It is worth noting that the tracking and replanning can be achieved simultaneously 701 

using Parallel Computing Toolbox in MATLAB. 702 

 703 

Table 15. Maneuvering derivatives of the USV model 704 

Inertial related Value  Damping related Value 

𝑚11 85.28  𝑑11 -77.55 

𝑚22 162.50  𝑑22 -0.02 

𝑚33 41.45  𝑑33 -41.45 

𝑚23 4.58  𝑑23 -62.07 

𝑚32 4.58  𝑑32 -263.87 

 705 

The environment and parameters of the simulations are set as follows: 706 

 Environment set (Case1): MapSize = 800*800 (m); Start = (340 m, 750 m); Goal = (360 m, 70 m); 707 

currents are set as the same in Section 4.2.2.  708 

 Environment set (Case 2): MapSize = 800*800 (m); Start = (340 m, 750 m); Goal = (360 m, 70 m); 709 

http://www.maritimerobotics.com/
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currents are set as the same in Section 4.2.2.  710 

 AENSGA-II: 𝑁 = 100 , 𝑇𝑚𝑎𝑥 = 100 , 𝑝𝑐 = 0.9 , 𝑝𝑚 = 1/n , 𝜂𝑐 = 10 , 𝜂𝑚 = 20 , 𝑑𝑚𝑖𝑛 = 15  m, 711 

𝑑𝑚𝑎𝑥 = 25 m, 𝑅𝑚𝑖𝑛 = 6 m, 𝑆𝐷 = 15 m, 𝑡𝑡ℎ = 50 𝑠 712 

 713 

The dynamic obstacles are set as presented in Table 16.  714 

 715 

Table 16. Setting of dynamic obstacles 716 

 Dynamic obstacles Position (m) Speed (m/s) Direction (deg) 

Case 1 
DO1 (85, 550) 1 m/s 0 

DO2 (212, 536) 0.5 m/s -75 

Case 2 
DO1 (432, 590) 1 m/s 180 

DO2 (255, 300) 0.5 m/s 90 

 717 

Table 17. Quantitative results of obstacle avoidance 718 

Case Path Dynamic obstacles TCPA (s) DCPA (m) 

Case 1 

Original 
DO1 183 14.74 

DO2 324 9.66 

Replanned 
DO1 172 41.78 

DO2 353 38.29 

Case 2 

Original 
DO1 157 5.75 

DO2 311 0.63 

Replanned 
DO1 126 37.31 

DO2 337 31.71 

 719 

 720 
Fig. 19. Relative distance of (a) Case 1, (b) Case 2 721 

 722 

Table 18. Time spends on replanning and transition path 723 

Case Dynamic obstacles being avoided Replanning (s) Transition path (s) 

Case 1 
DO1 18.6 38.8 

DO2 17.3 31.2 

Case 2 
DO1 19.1 40.1 

DO2 18.4 29.2 

 724 

 725 
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 726 
Fig. 20. Visualized trajectory of Case 1 727 

 728 
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 729 
Fig. 21. Visualized trajectory of Case 2 730 

 731 



32 

 

The relative movements of the USV and dynamic obstacles are reflected in Table 17 and Fig. 19. The time 732 

cost of the replanning and navigating the transition path is shown in Table 10. Fig. 20-21 show the visualized 733 

experiment results for the two cases. It is worth noting that our experiments have considered all the four 734 

scenarios defined by COLREGs. Fig. 22 presents the profile of the USV during the simulations. From the 735 

corresponding results, the following conclusions are highlighted: 736 

 The proposed path planning framework works well under dynamic environment. As shown in Fig. 20-21, 737 

the USV avoids all the moving obstacles in accordance with COLREG rules and adjusts its course 738 

autonomously to reach the destination safely.  739 

 As denoted in Table 17 and Fig. 19, the planner ensures the relative distance to be sufficiently larger than 740 

the safety distance 𝑆𝐷 (15 m) and does not cause a potential collision risk. In Case 1, the minimum 741 

relative distance are 41.78 m and 38.29 m for DO1 and DO2 respectively, while in Case 2 the minimum 742 

distance is 37.31 m and 35.71 m for DO1 and DO2 respectively.  743 

 As shown in Table 18, the transition path has successfully provided sufficient time for the replanning. In 744 

both cases, the transition routes allow more than 30-40 s for computing new trajectories, which is totally 745 

acceptable in practical situation since it usually takes less than 20 s for our planner to converge. This 746 

indicates that our strategy is able to soften the time restriction on the replanning process, which could also 747 

be used in combination with other algorithms.  748 

 The proposed scheme can well fit the USV’s mechanical system. As is shown in Fig. 22, we can clearly 749 

see that all guidance signals of surge and yaw can sufficiently satisfy compounded constraints which 750 

accommodate the admissibility and performability. The deviation between the course angle signal and 751 

reference is rather small, also, the change of the speed and thruster force are mild and smooth. This 752 

indicates that connection between replanning path and transition path is consistently continuous during 753 

the voyage, thereby contributing the excellent tracking performance.  754 

 755 

 756 
Fig. 22. Profile for (a) Course angle and speed in Case 1; (b) Thrust forces in Case 1; (c) Couse angle and 757 

speed in Case 2; (d) Thrust forces in Case 2 758 

 759 
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Some additional analysis: 760 

 In Case 2 (See Table 9), the minimum distance caused by avoiding DO2 resulted in a relatively lower 761 

value (31.71 m) compared to other cases. By analyzing the behaviors of the vessels, this is typical heading-762 

on situation. According to our previous description on the sensory vector, the free gap is very likely to lay 763 

on the S1 and S12 under such a situation, which results in a relatively lower 𝛽. This explains why the 764 

action range is smaller than other cases.  765 

 As shown in Table 10, the time spends on the transition path of avoiding DO2 in Case 2 have shown the 766 

least value (29.2 s) compared to other cases. The reasons are twofold: first, the predicted collision location 767 

(CPA position) is rather close from the current position. In Algorithm 4, 𝑑𝑚𝑑 depends on the distance 768 

between current position of USV and CPA position of DO. The lower 𝑑𝑚𝑑 is, the shorter transition path 769 

will be. Second, as we mentioned from our previous analysis, such scenario causes a smaller action range, 770 

which also contributes to the shorter transition path.  771 

 772 

5. Conclusion 773 

In this paper, the path planning problem for USVs under dynamically unforeseen situations has been 774 

investigated and resolved. The formulated path planning problem successfully addresses four general 775 

objective functions subject to numerous constraints, the effects of currents, and presence of dynamic obstacles. 776 

The AENSGA-II is devised to address the problem, which can not only converge rapidly but also features 777 

strong global searching ability. Moreover, a linguistic satisfactory degree is designed based on fuzzy logic to 778 

re-evaluate the Pareto solutions, resulting in a more reasonable choice. A local collision avoidance strategy 779 

consisting of COLREG-compliant replanning mechanism and a transition path, which dynamically govern 780 

feasible actions of USVs under protocol constraints, interacts with unforeseen circumstances successfully. 781 

Based on the simulation and experiment results, it allows the conclusion that the proposed method can be 782 

regarded as a practical alternative for USV path planning.  783 

 784 

Some limitations of the current study need to be addressed in the future work. First, this study only considers 785 

some basic rules in COLREGs. More strategies should be designed considering rule 16, rule 17, and velocity 786 

planning in the future study. Furthermore, some other effects of severe ocean environment loads are also 787 

prominent. It may be another potential topic for us to continuously inherit and develop the method with 788 

consideration of winds and waves. Finally, our algorithm appears to be practical theoretically but are not 789 

convincing in handling real-world situations due to the lack of experiments. We are planning to perform 790 

experimental verification on a real USV in the future work. 791 
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