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Matter-wave interferometers have fundamental applications for gravity experiments such as testing the
equivalence principle and the quantum nature of gravity. In addition, matter-wave interferometers can be
used as quantum sensors to measure the local gravitational acceleration caused by external massive moving
objects, thus lending itself for technological applications. In this paper, we will establish a three-
dimensional model to describe the gravity gradient signal from an external moving object, and theoretically
investigate the achievable sensitivities using the matter-wave interferometer based on the Stern-Gerlach
setup. As an application we will consider the mesoscopic interference for metric and curvature and
gravitational-wave detection scheme [R. J. Marshman et al., Mesoscopic interference for metric and
curvature (MIMAC) & gravitational wave detection, New J. Phys. 22, 083012 (2020)] and quantify its
sensitivity to gravity gradients using frequency-space analysis. We will consider objects near Earth-based
experiments and space debris in proximity of satellites and estimate the minimum detectable mass of the
object as a function of their distance, velocity, and orientation.
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I. INTRODUCTION

Interferometry has many salient applications [1] in gravity
experiments such as testing the equivalence principle [2–4]
and measuring the Earth’s gravitational acceleration [5–14].
The seminal works on neutron interferometry [15–17]
motivated a series of matter-wave interferometers [18–21]
as well as led to more recent developments in photon
interferometry [22–27].
One of the latest quests is to build a matter-wave

interferometer with nanoparticles to test the quantum nature
of gravity in a laboratory [28,29] (for a related work
see [30]). The scheme relies on two masses, each prepared
in a spatial superposition, and placed at distances where they
couple gravitationally, but still sufficiently far apart that all
other interactions remain suppressed. If gravity is a bona fide
quantum entity, and not a classical real-valued field, then the
twomasses will entangle [31–34]. To test the quantum nature
of gravitywewill needparticles ofmass∼10−14–10−15 kg, an
interferometric scheme for preparing large superposition sizes
∼100 μm, and exquisite experimental control to guarantee
coherence times of ∼1 s [28,35–41].
One of the most promising approaches towards inter-

ferometry with nanoparticles is based on the Stern-
Gerlach (SG) apparatus [42]. SG interferometers have
been already experimentally realized using an atom
chip [43], with the half-loop [44] and full-loop [45]
configurations achieving the superposition size of

3.93 μm and 0.38 μm in the experimental time of
21.45 ms and 7 ms, respectively [45]. This basic SG
scheme can be adapted to the mass range of nanoparticles
using nanodiamondlike materials with embedded nitro-
gen vacancy (NV) centers. Such a system has an internal-
spin degree of freedom and can thus be placed in a large
spatial superposition using the SG setup [28,46–49].
One of the main challenges of nanocrystal matter-wave

interferometry is to tame the numerous decoherence and
noise sources. Common sources for the loss of visibility,
such as the ones arising from residual gas collisions and
environmental photons, can be attenuated by vacuum
and low-temperature technologies [35–41]. In addition,
the spin decoherence should also been taken into account,
i.e., the Humpty-Dumpty effect [47,50–53], with methods
to extend the spin-coherence time, as well as tackle the
Majorana spin-flip, under development [46,47,54].
Moreover, there are also a series of gravitational channels
for decoherence; the emission of gravitons is negligible
[55], decoherence induced by the gravitational interaction
with the experimental apparatus can be reduced using a
hierarchy of distances [56], and gravity gradient noise
(GGN) can be mitigated with an exclusion zone [37].
GGN is equally important for the gravitational wave
observatories [57,58] such as LIGO [59–61], Virgo
[62,63], KAGRA [64], LISA [65–68], and Einstein
Telescope [69], in particular at the low frequencies.
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In this work, we will investigate the possibility of using
the nanoparticle matter-wave interferometer as a gravity-
gradient quantum sensor. We will estimate the required
sensitivities to detect the motion of external objects
flying at small and large impact parameters and with
varying velocities. Such a device can be regarded as a
quantum sensor, such as accelerometers, gravimeters, and
gradiometers [70–74].
We will first make a brief review about sensing with

matter-wave interferometers in the language of Feynman’s
path integral approach (Sec. II). As will be shown, the
phase fluctuation density in the frequency space can be
factorized into a noise part (described by the corresponding
power spectrum density) multiplied by the trajectory part
(described by the so-called transfer function). Then, we will
establish a three-dimensional model for the GGN as a
signal caused by moving the external objects, in particular,
obtaining the relation between the local acceleration noise
and phase fluctuation (Sec. IV). We will also show that it
recovers the two-dimensional model of Ref. [75] in a
specific limit (see Appendix A). Wewill apply our model to
evaluate the possibility of tracking slow-moving matter in
Earth-based laboratories and space debris in the proximity
of satellites using the mesoscopic interference for metric
and curvature (MIMAC) and gravitational-wave interfer-
ometer [6] (Sec. V), and give a comparison to the quantum
gravity-induced entanglement of masses (QGEM) which
involves a dual interferometer [28,29,37] (see Appendix B).

II. NOISES IN THE MATTER-WAVE
INTERFEROMETRY

In this section, we will give a brief pedagogical intro-
duction to the matter-wave sensing with a nanoparticles.
According to Feynman’s path integral method, the quantum
phase along each path can be obtained from the action, and
the signal in the experiment is described by the phase
difference [76]

ϕ0 ¼ ϕR − ϕL

¼ 1

ℏ

Z
tf

ti

LR½xR; _xR� − LL½xL; _xL�dt; ð1Þ

where ti and tf are the time of splitting and recombination
of the two beams, LL;R is the Lagrangian of the left and
right arm which is a functional of the coordinate xL;R ≡
xL;RðtÞ and the velocity _xL;R ≡ xL;RðtÞ. Supposing that the
Lagrangian can be expanded as a Taylor series in xL;R, and
that the noises can be described as the fluctuation of the
coefficients, we find

LL;R½xL;R; _xL;R�¼
1

2
m0 _x2L;R−m0a0;L;RxL;R−

1

2
m0ω

2
0;L;Rx

2
L;R

−m0anoisexL;R−
1

2
m0ω

2
noisex

2
L;RþOðx3L;RÞ;

ð2Þ

wherem0 is the mass of the interferometer, a0;L;R and ω2
0;L;R

are controlled by the experiment, and anoise ≡ anoiseðtÞ and
ω2
noise ≡ ω2

noiseðtÞ are time-varying stochastic quantities. In
particular, the GGNwill be described by the quadratic term,
so we will focus on ω2

noise in the rest of this section. In
principle, anoise and noises coupling higher-order terms
Oðx3L;RÞ can be studied in the same way. Since the noise
can be modeled as a fluctuation in the Lagrangian, it will
contribute to a fluctuation in the phase difference
ϕ0 ¼ ϕR − ϕL, given by

δϕ0 ¼
m0

2ℏ

Z
tf

ti

ω2
noiseðx2R − x2LÞdt: ð3Þ

Experimentally measurable statistical quantities are
obtained by taking the average value E½·�.1 The mean value
of the noise E½ω2

noiseðtÞ� can be assumed to be zero by
adding an offset on the baseline of the signal in experi-
ments.2 The autocorrelation function E½ω2

noiseðt1Þω2
noiseðt2Þ�

can be related to the Fourier transformation of the corre-
sponding power spectrum density (PSD) of the noise,
denoted as Snoiseðω; tÞ, using the Wiener-Khinchin theo-
rem. We further suppose the noise is stationary (i.e., its
properties do not change over time), such that the PSD
becomes time independent, Snoiseðω; tÞ ¼ SnoiseðωÞ (see for
example [78]).
Summarizing, the noise ω2

noiseðtÞ is characterized by the
following statistical quantities:

E½ω2
noiseðtÞ� ¼ 0;

E½ω2
noiseðt1Þω2

noiseðt2Þ� ¼
1

2π

Z
∞

ωmin

SnoiseðωÞeiωðt1−t2Þdω: ð4Þ

Here, we have introduced a lower bound on the integral as
ωmin as a cutoff to avoid possible divergence in the integral.
This lower bound can be assumed to be determined by the
total experiment time texp ¼ tf − ti, i.e. ωmin ¼ 2π=texp,

1The symbol E½·� represents the statistical average of a
stochastic quantity, i.e., the average over different realizations
of the noise. However, for a time-varying ergodic noise, the
averaging can be also performed in time using a single realization
of the noise. For example, the average of a time-varying
stochastic quantity δϕðtÞ can be formulated as

E½δϕ� ¼ 1

T

Z
T

0

δϕðtÞdt;

where T should be much longer than any time scale character-
izing the statistical properties of the noise. More pedagogic
materials can be found in [77].

2The baseline (i.e., the zero point) of the phase has to be
calibrated before the experiment starts, so the contribution of the
mean value of every noise will be taken into account in the offset
of the baseline. Therefore, the mean value of a noise E½ω2

noiseðtÞ�
can be always assumed to be zero.
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which physically means that the interferometer is not
sensitive to the frequencies with a period longer than the
total experimental time. This infrared dependency on the
cut-off relies also on a specific PSD. For our purpose, as we
shall see we can take ωmin ≈ 0.
By using Eqs. (3) and (4), we can find the average value

of the phase fluctuation vanishes, while the variance is
given by

Γnoise≡E½ðδϕ0Þ2�¼
1

2π

�
m0

2ℏ

�
2
Z

∞

ωmin

SnoiseðωÞFðωÞdω; ð5Þ

where FðωÞ is defined by

FðωÞ ¼
Z

dt1

Z
dt2ðx2Rðt2Þ − x2Lðt2ÞÞ

× ðx2Rðt1Þ − x2Lðt1ÞÞeiωðt1−t2Þ: ð6Þ
Since FðωÞ only depends on the trajectories of the two
arms, we will call it the transfer function of the interfer-
ometer [79], which means it transfers the PSD of the
noise into the phase fluctuation of the interferometer.
Mathematically, the double integral in t1 and t2 in
Eq. (6) can be transformed to a product of two single
integrals, so the transfer function FðωÞ can be simplified as

FðωÞ ¼
����
Z

eiωtðx2RðtÞ − x2LðtÞÞdt
����2: ð7Þ

According to expression Eq. (7), the transfer function FðωÞ
is the modulus square of a complex number integration, so
it is always a real-valued function.
In the low-frequency regime, ω ≪ 2π=texp (although this

region is negligible according to the lower cutoff of the
Fourier transformation), the factor eiωt in the first expres-
sion approximately equals one, then FðωÞ approximately
equals ðR ðx2RðtÞ − x2LðtÞÞdtÞ2, which is independent of the
frequency ω.
For the high-frequency noise, we can write the integrand

x2RðtÞ − x2LðtÞ into a polynomial series of t, i.e., x2RðtÞ −
x2LðtÞ ¼

P∞
n cntn of which each term will contribute a

factor ω−n after the integration in Eq. (7). So, FðωÞ
decreases in the high-frequency region as ω−k, where k
depends on the leading order n of the polynomial expan-
sion of x2RðtÞ − x2LðtÞ.
Therefore, the total phase fluctuation, Γnoise, is domi-

nated by the lower-frequency region, and sensitive to the
lower bound ωmin ¼ 2π=texp of the integration, see Eq. (5).
In particular, the shorter experimental time texp is, the larger
the integral bound ωmin is, and hence the smaller will be the
total phase fluctuation, Γnoise.
We consider the specific configuration shown in Fig. 1 [6].

The interferometer is set to freely fall, and the creation and
recombination stages control the superposition along the
x-axis. For simplicity, the acceleration during the splitting
and recombining parts is assumed to be constant, which can

be achieved in a Stern-Gerlach apparatus with constant
magnetic field gradient. The absolute value of the accel-
eration is given by (see [28,37])

am ¼ gμB
m0

j∇Bj; ð8Þ

where g ¼ 2 is the Lande g-factor, μB ¼ 9 × 10−24 J=T is
the Bohr magneton,m0 is the mass of the interferometer and
∇B ¼ 104 T=m [46,80,81] is the gradient of the magnetic
field. The direction of the acceleration am depends on the
gradient of the magnetic field, and the value of the spin in
each arm. The magnetic field gradient makes the system on
the right path accelerate during ½0; ta� and ½2ta þ te;
3ta þ te�, decelerate during ½ta; 2ta� and ½3taþ te;4taþ te�,
while in the intermediate interval ½2ta; 2ta þ te� it is vanish-
ingly small, while the part of the system on the left path is in
free-fall. The transfer function for such an interferometer is
given by3

FIG. 1. The figures is the illustration of the paths of the two
arms of the interferometer. The acceleration direction of the right
arm is along “þ” direction of the x-axis during the time range
½0; ta� and ½3ta þ te; 4ta þ te�, while it is along “−” direction
during ½ta;2ta� and ½2taþ te;3taþ te�. In the interval ½2ta;2taþ te�
the right paths follow geodesic motion, while the motion of
the left arm is purely geodesic. A single interferometer must be
asymmetric to be sensitive to the GGN as one can always choose
the origin of the harmonic trap generated by the GGN to be at the
center of the two paths (a single symmetric interferometer would
thus acquire only a global phase from any harmonic perturbation
as the two paths would acquire exactly the same phase). We also
assume that the setup is freely falling under gravity.

3A similar form of the transfer function has been obtained also
in [37] for two symmetric interferometers located at distance
�d=2 from the origin (i.e., a dual two matter-wave interferom-
eters). Each interferometer is located asymmetrically with respect
to the origin (i.e., either left or right of the origin). As the origin
coincides with the center of the harmonic trap, each individual
interferometer acquires different GGN induced phases on the two
arms, leading to a GGN as a sensor in the combined dual two
matter-wave interferometer. For more details, see Appendix B.
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FðωÞ ¼ 16
a4m
ω10

ð−t2aω2 sinðωðta þ te=2ÞÞ
þ ðt2aω2 þ 3Þ sinðteω=2Þ − 3 sinðωð2ta þ te=2ÞÞ
þ 6taω cos ðωðta þ te=2ÞÞÞ2: ð9Þ

The transfer function FðωÞ is plotted in Fig. 2 with different
values for the splitting time ta, the free-falling time te, and
the interferometer mass m0.
As we have shown in Figs. 2(a) and 2(b), the splitting

time, ta, and the free-falling time, te, significantly affect on
the behavior of the transfer function FðωÞ. The splitting
time has a greater impact on the absolute value of FðωÞ,
while the free-falling time has a greater impact on the
oscillatory behavior of FðωÞ.
At low frequency, ω ≪ 2π=ð4ta þ teÞ, one can find that

FðωÞ reaches the constant value,4 Δx4ð23ta þ 15teÞ2=225,
which is much more sensitive to the value of ta than to the
value of te. Setting te ¼ 0, we find a simple formula for the
transfer function in the low-frequency regime,

F̄≡ lim
ω→0

FðωÞ ¼ 529

225
Δx4t2a: ð10Þ

In the high-frequency region, ω ≫ 2π=ð4ta þ teÞ, the
transfer function FðωÞ decreases rapidly as ∝ ω−6.
As we have shown in Fig. 2(c), the influence of the

mass on the transfer function is a simple rescaling as
FðωÞ ∝ m−4

0 according to Eqs. (8) and (9). However, an
interesting result is that for the configuration discussed
in Appendix B, the corresponding transfer function

FðωÞ ∝ m−2
0 , which leads to Γnoise ∝ m2

0FðωÞ, a mass-
independent phase fluctuation.

III. GGN IN MATTER-WAVE
INTERFEROMETERS

In this section, we will analyze the phase fluctuation
density due to the GGN. In the Fermi normal coordinate
system, constructed near theworldline of the laboratory [82],
the Lagrangian in a nonrelativistic limit is given by [37]

Lfree−falling ¼
1

2
m0v2 −m0a0x −

1

2
m0R0101c2|fflfflffl{zfflfflffl}

≡ω2
ggðtÞ

x2; ð11Þ

where the superposition direction is defined along the x-axis
as shown in Fig. 1. The first term on the right-hand side
of Eq. (11) corresponds to a free-falling particle in a flat
spacetime, and the other termsm0a0x and

1
2
m0R0101c2x2 can

be regarded as the acceleration noise and the GGN caused by
the fluctuations in the metric, respectively [37].
For a free-falling experiment, the acceleration term a0

will vanish according to the properties of the Fermi normal
coordinates (in line with Einstein’s equivalence principle),
so this noise will be neglected in this paper. Therefore,
we will solely focus on the noise ω2

ggðtÞ in Eq. (11), which
corresponds to the noise ω2

noise in Sec. II. As discussed, we
characterize such a stochastic quantity by the noise PSD
[see Eq. (4)]. In particular, we introduce the GGN PSD,
SggðωÞ, by the inverse-Fourier transformation, that is

SggðωÞ ¼
Z

E½ω2
ggðtÞω2

ggðtþ τÞ�eiωτdτ

×
Z

E½R0101ðtÞR0101ðtþ τÞ�c4eiωτdτ; ð12Þ

FIG. 2. We have shown the transfer function for the interferometer shown in Fig. 1 for different experimental parameters. The fixed
parameters is ∇B ¼ 104 T=m in all the figures. The other parameters are set to be: m0 ¼ 10−17 kg (corresponds to am ¼
1.8 × 10−2 m=s2) and te ¼ 1 s in (a), m0 ¼ 10−17 kg and ta ¼ 0.5 s in (b), and ta ¼ 0.5 s and te ¼ 1 s in (c). As we have shown
in all the figures, the transfer function FðωÞ approaches a constant value in the low-frequency range, and decreases as a polynomial of ω
in the high-frequency regime. By comparing (a) with (b), we can find that the transfer function FðωÞ is more sensitive to the value of
the splitting time ta, than the free-falling time te, especially in the low-frequency range. As we can see from (c), the transfer function
FðωÞ ∝ m−4

0 .

4Using sin u ≈ u − 1=6u3, and cos u ≈ 1 − 1=2u2, for u ≪ 1 in
Eq. (9), and introducing Δx ¼ amt2a, which is the size of the
superposition during the free-falling period.
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which has units of ½Hz4=Hz�.5 There are many sources of
GGN as noted in [57,59,60,62], but in this paper we will
focus on one particular source of GGN due to the smooth
motion of external objects. In the next section we first adapt
the two-dimensional classical analysis from [75] to matter-
wave interferometry in three-spatial dimensions.

IV. THREE-DIMENSIONAL GGN

To quantify the achievable sensitivity for measuring the
GGN in three spatial dimensions, we first compute the
corresponding PSD SggðωÞ. Consider the model shown in
Fig. 3, and suppose that the external object whose coor-
dinate is denoted by r⃗ ¼ ðx; y; zÞ moves with a uniform
velocity v⃗ ¼ ðvx; vy; vzÞ, and with an impact parameter b.
Then the local acceleration of the interferometer caused by
the external mass at a given time, t, will be given by

a⃗ðtÞ ¼ GM
r2ðtÞ

r⃗ðtÞ
rðtÞ

¼ GM
r3ðtÞ xðtÞe⃗x þ

GM
r3ðtÞ yðtÞe⃗y þ

GM
r3ðtÞ zðtÞe⃗z; ð13Þ

where e⃗j (j ¼ x, y, z) are the unit basis vectors. Since the
external mass is assumed to be moving with a uniform
velocity, one can write down r2ðtÞ ¼ b2 þ v2t2 and xðtÞ ¼
x0 þ vxt if t ¼ 0 is defined as the time when the external
object is at the closest point. Further, if we introduce the
projection angles

cos α ¼ x0=b; cos β ¼ vx=v; ð14Þ

then the x-direction component of the acceleration a⃗ can be
written as

axðtÞ ¼
GM
b2

x0=bþ vxt=b

ð1þ v2t2=b2Þ3=2

¼ GM
b2

cos αþ ðvt=bÞ cos β
ð1þ v2t2=b2Þ3=2 : ð15Þ

Then in the frequency space, the Fourier transform of axðtÞ
is given by6

axðωÞ ¼
GM
b2

�
ωb
v

��
x0
v
K1

�
ωb
v

�
þ i

b
v
vx
v
K0

�
ωb
v

��
¼ aloc

ω
u2ω½cos αK1ðuωÞ þ i cos βK0ðuωÞ�; ð16Þ

whereK0ð·Þ andK1ð·Þ are the modified Bessel functions. In
the second line of Eq. (16) we have introduced the local
acceleration, aloc, and the frequency-dependent dimension-
less ratio, uω, defined as

aloc ≡GM=b2; uω ≡ ωb=v; ð17Þ

which, as we will see, control the behavior of the GGN.
The PSD of the acceleration noise on axðωÞ can be

computed as7

SaaðωÞ ¼
jaxðωÞj2

T
; ð18Þ

FIG. 3. Three-dimensional GGN caused by the smooth motion
of an external object. The external object is located at a point
ðx; y; zÞ at time t, and moves with a constant velocity
v⃗ ¼ ðvx; vy; vzÞ, while the interferometer of mass m0 is located
at the origin, with the superposition along the x-axis. The impact
parameter is denoted here as b, and the projection angles
are defined as cos α ¼ x0=b and cos β ¼ vx=v, where x0 is the
x-coordinate at t ¼ 0 and vx is the x-component of the constant
velocity v⃗.

5SggðωÞ ∼ ω4
gg=ω, where ωgg describes the spacetime curvature

noise and ω is the Fourier transformation frequency, so we write
the unit as ½Hz4=Hz� rather than ½Hz3�.

6Note that the superposition of the interferometer is along the
x-axis and hence we project the acceleration vector along this
direction.

7According to the Wiener-Khinchin theorem, the PSD of
axðωÞ is given by SaaðωÞ ¼

R
E½aðtÞaðtþ τÞ�eiωτdτ. The stat-

istical average E½aðtÞaðtþ τÞ� can be calculated by the time
average E½aðtÞaðtþ τÞ� ¼ 1

T

R
aðtÞaðtþ τÞdt. Then one can ob-

tain the formula of the PSD as

SaaðωÞ ¼
1

T

Z Z
aðtÞaðtþ τÞeiωτdτdt

¼ 1

T

Z Z
aðt1Þaðt2Þeiωðt1−t2Þdt1dt2

¼ 1

T

����
Z

aðtÞeiωtdt
����2 ¼ jaxðωÞj2

T
:
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where T is the scattering time between the external mass
and the interferometer (in this context, playing the role of
the signal and sensor, respectively). A rough estimation of
T ∼ b=v, because the moving object is at a distance,
(rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ b2

p
), that the interaction becomes negli-

gible after T ≥ b=v. An exact estimation of T ∼ b=v was
also made in Ref. [75]. We have particularly chosen the
same estimation to match those results for two and three
dimensions, discussed in the Appendix A. By combining
Eqs. (16) and (18), we can obtain the PSD for the
acceleration noise,

SaaðωÞ ¼
a2loc
ω

u3ω½cos2αK2
1ðuωÞ þ cos2βK2

0ðuωÞ�: ð19Þ

Since the local acceleration aloc is caused by the fluctuation
of the local spacetime curvature, one may have the relation
aloc ∼ R0101c2b,

8 then the PSD for the local acceleration
satisfies SaaðωÞ ∼ SggðωÞb2. Finally, the PSD of the GGN
is given by

SggðωÞ ¼
a2loc
ωb2

u3ω½cos2αK2
1ðuωÞ þ cos2βK2

0ðuωÞ�: ð20Þ

For example, the PSD of several sources such as human
walking, vehicles moving, and space debris moving with
a constant velocity is shown in Fig. 4. In gravitational-
wave interferometers, SggðωÞ is regarded as a source of
noise, and is mitigated from 10−15 Hz4=Hz down to about
10−20 Hz4=Hz for human walking by setting a suitable
exclusion zones [37,60,63,69,75].
We want to devise an interferometer that is capable of

detecting weak GGN as signals in the low-frequency range
by optimising the interferometric parameters. From Eqs. (5)
and (20), we find that the corresponding phase fluctuation
is given by

Γgg ¼
�
2m0aloc
ℏb

�
2
Z

u3ωFðωÞ
ω

× ½cos2αK2
1ðuωÞ þ cos2βK2

0ðuωÞ�dω: ð21Þ

Note that the PSD for the GGN SggðωÞ approximately
converges to zero in the low-frequency limit ω → 0þ, while
the transfer function FðωÞ converges to a nonzero constant,
so the lower bound ωmin ¼ 2π=texp of the integration is not

so relevant for the total phase fluctuation, Γgg. However, it
still matters for some other sources of noise which diverge
in the low-frequency region, see [37].
In experiments, the minimum measurable value of Γgg

will be determined by the overall phase sensitivity. In the
following we will assume Γgg ¼ 0.01 as a threshold value
below which we can no longer reliably measure the phase
fluctuations. Given such a threshold value for Γgg we can
then ask what should be the characteristic of the interfer-
ometer, such that it can discern a particular GGN as a
signal. The interferometer mass, m0, and the superposition
size, Δx, control the overall amplitude of the signal, while
the beam-splitting time, ta, and the free-fall time, te, control
the sensitivity in a particular frequency range.
From Eq. (21) we can find the local gravitational

acceleration

alocðMÞ ¼ ℏb
ffiffiffiffiffiffiffi
Γgg

p
2m0

�Z
u3ωFðωÞ

ω
ðcos2αK2

1ðuωÞ

þ cos2βK2
0ðuωÞÞdω

�
−1=2

; ð22Þ

where the right-hand side fixes all the parameters, except
the mass M of the external object. Equation (22) thus
provides a simple expression to estimate the minimum

FIG. 4. We have shown the PSD of the GGN for several
sources, including human walking, vehicles moving, and space
debris according to Eq. (20). The masses are set as 50 kg, 103 kg
(mass of the vehicle), and 103 kg (mass of the space debris) in
respect, the speeds are 1 m=s, 10 m=s, and 5 × 104 m=s, re-
spectively, and the impact parameter is set as 1, 10, and 105 m in
respect. As shown in the gravitational-wave literature [57,63,69],
the GGN usually has a dominant contribution in the low-
frequency range. The PSD for the GGN is usually smaller than
10−20 Hz4=Hz [63,69], while it can reach 10−15 Hz4=Hz level for
the human walking, and this is the reason why an ultra-sensitive
experiment requires an exclusion zone for human activities
[37,60,75]. In this work, we, however, propose to detect such
a tiny GGN as a signal by designing a suitable interferometer, i.e.,
by optimizing the transfer function in Eq. (9). As we discuss in
the text, by tuning the interferometric times, we can obtain a
transfer function which can induce a detectable phase fluctuation,
Γgg, in the specific frequency range.

8Consider the Newtonian potential, VG ¼ GMextm
bþδr , caused by an

external mass Mext, where δr is the fluctuation of the distance b.

We can expand up to the second order, VG ∼ GMextm
b −

GMextm
b2 δrþ GMextm

b3 ðδrÞ2. By comparing the Lagrangian of a

freely-falling system, (11), we can obtain that GMext
b3 ∼ 1

2
R0101c2.

Since, the local acceleration is caused by Mext, and aloc ¼ GMext
b2 ,

then we have aloc ∼ R0101c2b.
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acceleration that one can sense given the threshold phase
sensitivity Γgg. Since the impact parameter, b is also fixed
on the right-hand side of Eq. (22) we find from Eq. (17)
that the minimum detectable mass M of the external object
with impact factor b (moving with velocity v, and with its
direction parametrized by the angles α and β), is given
by M ¼ alocb2=G.

V. SENSINGGGN SOURCES IN AN EARTH-BASED
LABORATORIES AND SPACE DEBRIS IN THE

VICINITY OF SATELLITES

We now apply the model developed in the previous
sections to sense GGN from two different types of sources.
For simplicity we will set the free-fall time to te ¼ 0 and
vary only the beam-splitting time ta. We will focus on
sensing GGN in the vicinity of Earth-based laboratories and
sensing space debris in the vicinity of satellites (Sec. V).
The goal of this section is to check the feasibility of
tracking the motion of the objects, ideally in real time, and
hence we consider the total experimental time to be the
smallest possible, i.e., texp ¼ 4ta. To make a statistically
significant number of experimental runs we would thus
need to consider an array of interferometers operating
simultaneously.
Now we quantify the sensitivity to GGN signals caused

by the motion of small objects in the proximity of experi-
ments. As we will see, unknown light objects, even if
moving at slow speeds, can be a significant source of GGN
for state-of-the-art experiments, which become sensitive to
tiny local accelerations.
We first focus on GGN sources that could be present

inside Earth-based laboratories. In particular, we will con-
sider external objects in the velocity range ð10−2–102Þ m=s,

and with masses in the range from ð10−5–103Þ kg. We will
further assume that the external object, acting as the GGN
source, has an impact factor b ¼ 10 m.
As discussed in Sec. IV we will set the GGN phase to the

value Γgg ≥ 0.01.9 If one fixes also the beam-splitting time
ta one can then evaluate the local acceleration aloc. Using
Eq. (17) one can then readily determine also the minimum
detectable mass M of the GGN source.
As shown in Fig. 5(a), when v → 0 or v → ∞, the local

acceleration aloc tends to infinity and the minimum detect-
able mass M becomes extremely large. Indeed, when the
external object moves too slowly or too fast, its GGN signal
decreases as the frequency range of the interferometer ∼t−1a
is no longer compatible with the characteristic frequency of
the GGN source given by v=b. The interferometer performs
optimally as a GGN sensor when ta is comparable to b=v.
A similar analysis as discussed above can be also

adapted for sensing space debris in the vicinity of satellites
[83,84]. For illustration, we will consider the debris at
impact factor b ¼ 1000 m and with velocity in the range
ð100–104Þ m=s. We consider the same beam-splitting times
as in the previous section, although the beam-splitting
time could be significantly extended in space [85,86]. In
Fig. 5(b) we show the measurable local acceleration, or
equivalently, the minimum detectable mass of the GGN
source.
In Fig. 5(c) we also show the minimum detectable mass

as a function of the projection, cos α and cos β, defined in

FIG. 5. (a) The leftmost panel shows the plot of the minimum detectable local acceleration, aloc ¼ GM=b2 (left vertical-axis), or
equivalently, the minimum detectable mass of the GGN source (right vertical-axis). The GGN source has an impact parameter b ¼ 10 m
and velocity v (horizontal-axis). The GGN sensitivity increases by increasing the beam-splitting time ta (the free-falling time te ¼ 0 s
for simplicity such that the total interferometric time is 4ta). The beam-splitting acceleration am is set as 1.8 × 10−2 m=s2 (the
corresponding magnetic field gradient we have used here is ∇B ¼ 104 T=m), and the mass of the interferometer is m0 ¼ 10−17 kg.
(b) The middle panel shows similar to (a) but with the impact parameter set to b ¼ 1000 m, requiring longer beam-splitting times ta to
achieve the same sensitivity for the minimum detectable mass (corresponding to a better sensitivity of the minimum detectable local
acceleration). (c) The right most panel shows the color map for the minimum detectable local acceleration as a function of the projection
angles α (horizontal-axis) and β (vertical-axis) quantifying the relative orientation of the interferometer and the motion of the external
object (see Fig. 3). The impact factor has been set to b ¼ 10 m and the velocity to v ¼ 10 m=s. The optimal sensitivity is achieved when
the motion of the external object is aligned with the axis of the interferometer (α ¼ 0 and β ¼ 0).

9In a concrete experimental setup one has to estimate the
achievable phase sensitivity by characterising various back-
ground noises. Here we have used the value Γgg ≥ 0.01 is chosen
as a concrete example [see comment below Eq. (21)].
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Eq. (14) evaluated for a fixed beam-splitting time ta, fixed
velocity v ¼ 10 m=s, and fixed impact factor b ¼ 10 m.
The optimal sensitivity is achieved for cosα ¼ cos β ¼ 1
corresponding the external object moving along the x-axis.

VI. SUMMARY

In this paper, we first made a brief review of frequency-
space analysis for matter-wave interferometry. We pointed
out that the spectral density of the phase fluctuation caused
by a noise can be always factorized into the noise part
(described by the corresponding PSD) and the trajectory
part (described by the so-called transfer function defined
by Eq. (6)]. Although we have primarily focused on a SG
scheme with nanoparticles, a similar analysis could be
readily adapted to other types of matter-wave interferom-
eters, such as those based on ultracold atom Bose-Einstein
condensate (BEC) [2,3,5,87,88].
We have developed a three-dimensional model for the

GGN signal of a moving external object, and obtained
the corresponding PSD in Eq. (20), generalizing the two-
dimensional model in [75]. Based on the PSD of the
gravity-gradient signal, we then derived the expression
Eqs. (22) and (A4), which quantifies the local gravitational
acceleration, or equivalently, the minimum detectable mass
of the GGN source.
Finally, we applied the developed model to investigate

two distinct GGN sources, namely, slow moving objects in
Earth-based laboratories and space debris near satellites,
and studied how the GGN signal varies with the velocity,
distance, and orientation.
Of course, there are numerous challenges to be met

before we can realize experimentally such a quantum
sensor. Creating large spatial superpositions and achieving
the required coherence time with large masses is a
formidable challenge. Nonetheless, we foresee that a
nanoparticle matter-wave interferometer can have many
novel technological applications, complementing the fun-
damental tests of Newton’s law or detecting the quantum
gravity induced entanglement.
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APPENDIX A: THREE-DIMENSIONAL GGN AND
REDUCTION TO TWO DIMENSIONS

The model established in Sec. IV is a generalization of a
well-known model discussed in Ref. [75]. In this appendix,
we will discuss the special cases of the three-dimensional

model, and show how it reduces to the results of one-
dimensional model of Ref. [75].

1. Three-dimensional model

When ωb=v ≫ 1, we can make some approximations
which are useful to investigate the slowly moving external
objects (see Sec. V). In this latter regime, the modified
Bessel functions can be approximated as

K0ðuωÞ ≈ K1ðuωÞ ≈
ffiffiffi
π

2

r
e−uωffiffiffiffiffiffi
uω

p : ðA1Þ

Then the PSD for the GGN in Eq. (20) can be reduced to

SggðωÞ ¼
a2loc
ωb2

u2ωðcos2αþ cos2βÞe−2uω : ðA2Þ

Note that when, α ¼ 0, and, β ¼ π=2, the PSD can be
further reduced to

SggðωÞ ¼
a2loc
ωb2

u2ωe−2uω ; ðA3Þ

which is the same result in Ref. [75]. Based on the reduced
PSD in Eq. (A2), the local acceleration, Eq. (22), can be
simplified to

aloc ¼
ℏv
2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γgg

ðcos2αþ cos2βÞ R ωFðωÞe−2uωdω

s
: ðA4Þ

Physically, the condition, ωb=v ≥ 1, gives, b=v ≥ 1=ωmin∼
texp, which constrains the interaction time, T ∼ b=v, to be
longer than the interferometric times, ta, te. For example, a
walking person who is moving with the speed ∼1 m=s, at a
distance, ∼1 m, so the corresponding ratio b=v ∼ 1 s
satisfies the condition b=v ≥ te; ta ∼ 1 s.
However, the approximation in Eq. (A4) gives reason-

able values as long as we are in the regime ω̃jb=v ≫ 1,
where ω̃j ¼ 2π=tj (j ¼ a, e) denotes the characteristic
frequencies of the interferometer. The latter regime has the
following hierarchy of times

ta; te ≪ b=v ≪ texp; ðA5Þ
where we recall that texp is the total experimental time, b=v
can be interpreted as the interaction time, and ta, te are the
beam-splitting time and free-evolution time of a single
interferometric loop, respectively. In such a regime we can
make the approximation FðωÞ ≈ F̄, where F̄ is defined in
Eq. (10). The integrations in Eq. (22) then reduce toZ

∞

0

u2ωK2
0ðuωÞduω ¼ π2

32
≈ 0.31; ðA6Þ

Z
∞

0

u2ωK2
1ðuωÞduω ¼ 3π2

32
≈ 0.93; ðA7Þ
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where we have changed the integration variable to
uω ¼ bω=v defined in Eq. (17). On the other hand, using
the approximation in Eq. (A1), the relevant integration in
Eq. (22) evaluates toZ

∞

0

uω

� ffiffiffi
π

2

r
e−uωffiffiffiffiffiffi
uω

p
�

2

duω ¼ π

8
≈ 0.40; ðA8Þ

which is of the same order of magnitude as the results
obtained in Eqs. (A6) and (A7). Since in this work we are
primarily interested in the order of magnitude estimates,
we will thus use the approximation in Eq. (A4) also for the
regime given in Eq. (A5).

2. GGN in two dimensions

Now we will show how the three-dimensional model
developed in Sec. IV reduces to a two-dimensional model
when the external object and the quantum sensor are
confined to a plane (see Fig. 6). Comparing to the three-
dimensional model from the main text, we only need one
polar angle θ to describe the motion of the external object
moving at impact factor b. As we will see below, if we
further set the angle to θ0 ¼ 0, then the two-dimensional
model reduces to the original model proposed in [75].
The acceleration caused by the Newtonian force in the
x-direction is given by

axðtÞ ¼
GM
b2

1

ð1þ ðvt=bÞ2Þ3=2 ðcos θ0 þ ðvt=bÞ sin θ0Þ;

ðA9Þ

so in the frequency space, the local acceleration is

axðωÞ ¼
GM
b2ω

u2ωðcos θ0K1ðuωÞ þ i sin θ0K0ðuωÞÞ; ðA10Þ

where Kαð·Þ is the modified Bessel function, and we have
introduced uω ¼ bω=v [see Eq. (17) in the main text].
Comparing to the three-dimensional result in Eq. (16),
the projection angle α and β becomes θ0 and π=2 − θ0,
respectively.
According to SaaðωÞ ¼ jaxðωÞj2=T, T ¼ b=v, and

SggðωÞ ¼ SaaðωÞ=b2, the PSD for the GGN in the two-
dimensional case is given by

SggðωÞ ¼
a2locu

3
ω

ωb2
½cos2θ0K2

1ðuωÞ þ sin2θ0K2
0ðuωÞ�; ðA11Þ

where we have introduced, aloc ¼ GM=b2 [see Eq. (17) in
the main text]. The corresponding phase fluctuation is
given by

Γgg ¼
�
2m0aloc
ℏb

�
2
Z

u3ωFðωÞ
ω

× ½cos2θ0K2
1ðuωÞ þ sin2θ0K2

0ðuωÞ�dω: ðA12Þ

From Eq. (A12) we then readily find the local acceleration,

alocðMÞ ¼ ℏb
ffiffiffiffiffiffiffi
Γgg

p
2m0

�Z
u3ωFðωÞ

ω
ðcos2θ0K2

1ðuωÞ

þ sin2θ0K2
0ðuωÞÞdω

�
−1=2

: ðA13Þ

If we now set θ0 ¼ 0, we recover the result presented
in [75]. In the regime, uω ≫ 1, the modified Bessel’s
function can be approximated as K0ðuωÞ ∼ K1ðuωÞ ∼
e−uω=u1=2ω [see Eq. (A1)]. In this regime, the PSD for
the GGN in Eq. (A11) reduces to

SggðωÞ ¼
a2loc
b2ω

u2ωe−2ωb=v: ðA14Þ

The GGN formula Eq. (A14) remains a decent approxi-
mation even when uω ∼ 1 which is the regime considered
in [75] where they have omitted the dimensionless prefactor
u2ω. Besides, as is seen in (A14), the choice of T should be
b=v to match the result in [75], otherwise there will be an
additional factor. Finally, using Eq. (A14) we find that the
local acceleration simplifies to the simple expression,

aloc ¼
ℏv
2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓggR

ωFðωÞe−2uωdω

s
; ðA15Þ

which matches Eq. (A4) for α ¼ 0 and β ¼ π=2.

FIG. 6. The two-dimensional model for the GGN caused by a
smooth motion. The external object is originally located at point
ðb; θ0Þ, and moves with a constant speed v.
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APPENDIX B: GGN WITH TWO SYMMETRIC
INTERFEROMETERS

For completeness we discuss the dual QGEM interfer-
ometer depicted in Fig. 7. Each individual interferometer
(the left one or the right one) has the paths located
asymmetrically with respect to the origin—as such, the
two paths of an individual interferometer acquire a nonzero
phase difference from the harmonic trap generated by a
GGN signal centered at the origin. In case, one is looking
at joint properties of the two interferometers, such as an
entanglement witness, the dual interferometer becomes
sensitive to GGN [37].
The transfer function for symmetric interferometer is

given by [37]

FðωÞ ¼ 64d2a2m
sin4ðωta

2
Þsin2ð1

2
ωð2ta þ teÞÞ

ω6
; ðB1Þ

where d denotes the distance between the centers of two
interferometers (the rest of the parameters have the same
meaning to the ones defined in the main text).
An interesting observation is that the transfer function

for this configuration is proportional tom−2
0 rather thanm−4

0

in Eq. (9). As a consequence the corresponding phase
fluctuation density Γnoise will be independent of m0,
according to Eq. (5). Thus, the mass of the superposition
can be chosen arbitrarily for this configuration, which is an
advantage. We have discussed the minimum local accel-
eration, or equivalently, the minimum detectable mass,
from sensing GGN in Fig. 8. We note that the dual QGEM
interferometer is less sensitive to sense the GGN in
comparison to the asymmetric MIMAC interferometer.

FIG. 7. Illustration of the paths of the dual interferometer. A
single symmetric interferometer is by itself not susceptible to sense
GGN, because one can always choose the origin of the coordinate
system, corresponding to the origin of the harmonic GGN metric
perturbation, such that the paths are located symmetrically on each
side [for example, the paths of the right interferometer are
symmetric with respect to x ¼ d=2 and the phases on each arm
would become proportional to ∝ ð�Δx=2Þ2—one only generates
an undetectable global phase on an individual interferometer].
However, if one is considering joint observables of multiple
interferometers placed along the x-axis, one can no longer make
the phases on an individual interferometer ∝ x2 equal, leading to a
nonzero GGN signal. Indeed, in the picture the phases on the two
arms of the left (right) interferometer are given by ∝ ð−d=2�
Δx=2Þ2 (∝ ðd=2� Δx=2Þ2). More generally, two or more adjacent
symmetric interferometers can become sensitive to GGN when the
two arms of an individual individual interferometer are placed
asymmetrically with respect to the origin of the local GGN metric
pertubation [37]. d is the distance between the two interferometers,
and Δx is the superposition size, assumed equal for both
interferometers.

FIG. 8. Same as Fig. 5 but for the dual interferometer in Fig. 7 with the transfer function given in Eq. (B1). The mass of an individual
interferometer is m0 ¼ 10−17 kg, and we have set the distance between the two interferometers to d ¼ 100 μm, the splitting time
ta ¼ 1 s, the free-falling time te ¼ 0 s and the beam-splitting acceleration am ¼ 1.8 × 10−2 m=s2 corresponding to the magnetic field
gradient ∇B ¼ 104 T=m. (a) Plot of minimum detectable local acceleration, or equivalently, of the minimum detectable mass of the
GGN source. The impact factor is set to b ¼ 10 m. (b) Same as (a) but with the impact parameter set to b ¼ 1000 m. (c) Color map for
the minimum detectable local acceleration as a function of the projection angles α and β. The impact factor of the external object has
been set to b ¼ 10 m and the velocity to v ¼ 10 m=s.
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