
UNIVERSITY COLLEGE LONDON

DOCTORAL THESIS

Optimisation for Optical Data

Centre Switching and Networking

with Artificial Intelligence

Author:

Zacharaya SHABKA

Supervisor:

Prof. Georgios ZERVAS

Optical Networks Group

Electrical and Electronic Engineering

http://www.ucl.ac.uk
http://www.johnsmith.com
http://www.jamessmith.com
https://www.ucl.ac.uk/electronic-electrical-engineering/research/optical-networks
https://www.ucl.ac.uk/electronic-electrical-engineering/ucl-electronic-and-electrical-engineering

ii

I, Zacharaya SHABKA, confirm that the work presented in my thesis is my

own. Where information has been derived from other sources, I confirm that

this has been indicated in the thesis.

iii

Abstract
Cloud and cluster computing platforms have become standard across al-

most every domain of business, and their scale quickly approaches O(106)

servers in a single warehouse. However, the tier-based opto-electronically

packet switched network infrastructure that is standard across these systems

gives way to several scalability bottlenecks including resource fragmentation

and high energy requirements. Experimental results show that optical circuit

switched networks pose a promising alternative that could avoid these chal-

lenges.

However, when network optimality challenges are encountered at real-

istic commercial scales, exhaustive optimisation techniques are not applica-

ble for problems at the scale of Cloud-scale computer networks, and expert-

designed heuristics are performance-limited and typically biased in their de-

sign. Promisingly, artificial intelligence methodologies can be used to dis-

cover more scalable and better performing optimisation strategies.

This thesis demonstrates these benefits through experimental and theo-

retical work spanning all of component, system and commercial optimisation

problems which stand in the way of practical Cloud-scale computer network

systems. Firstly, optical components are swarm optimised to gate in � 500ps

and are demonstrated in a proof-of-concept switching architecture for optical

data centres with better wavelength and component scalability than previ-

ous demonstrations. Secondly, network-aware resource allocation schemes

for optically composable data centres are learnt end-to-end with deep rein-

forcement learning and graph neural networks, where 3� less networking

resources are required to achieve the same resource efficiency compared to

conventional methods. Finally, a deep reinforcement learning based method

for optimising PID-control parameters is presented which generates tailored

parameters for unseen devices in O(10�3)s. This method is demonstrated on

iv

a market leading optical switching product based on piezoelectric actuation,

where switching speed is improved > 20% with no compromise to optical

loss and the manufacturing yield of actuators is improved. This method was

licensed to and integrated within the manufacturing pipeline of this com-

pany. As such, crucial public and private infrastructure utilising these prod-

ucts will benefit from this work.

v

Impact Statement
In the past 10 to 15 years the role of large scale computer systems has in-

creased substantially. Firstly, as more and more businesses become internet

based, their ability and potential advantage from collecting and processing

huge amounts of data has correspondingly increased. Secondly, the big-data

based tasks which themselves run on these large scale systems have also

grown as the field has matured and yielded powerful tools capable of dis-

rupting many industries. Notably, deep learning has found market viability

as the size of the underlying deep learning models have grown considerably.

At time of writing, most advanced models such as GPT-3 require the order

of O(1011) parameters to achieve the desired performance and are trained

on data sets the order of 10 terrabytes across O(104) of GPUs. In order to

support these trends, the size of the largest data centres has correspondingly

also seen significant growth, and is fast-approaching the order of 106 servers

in a single warehouse. Already, these systems account for several percent

of the worlds CO2 emissions and are responsible for a very large portion of

the operational expense of the numerous Cloud-based companies. Among

numerous other areas, current network architectures give way to numerous

scalability challenges including energy consumption and resource fragmen-

tation. As such, the re-design of these sub-systems is of interest for the sake of

making data centres more scalable under their current growth rate. Optical

network architectures are likely alternatives due to their benefits in the ways

of latency, bandwidth, power consumption and fragmentation reduction. Al-

ready, some of the largest Cloud service and high performance computing

cluster providers have begun to integrate optics into their infrastructure in

limited scope. However, various optimality challenges stand in the way of

deploying optical networks at full Cloud-scale that are capable of handling

typical data centre workloads. The impact of this thesis is to show clearly

vi

that artificial intelligence methodologies, deep learning in particular, should

be seriously considered as a means of overcoming these scalability challenges

in order to successfully deploy optical networks in large scale computer sys-

tems. This is done by exploring various optimisation problems found at all

of the component, product and system level of Cloud-scale optical computer

networks. In each case, data-driven methods are able to learn optimisation

strategies with minimal human guidance that not only yield major optimal-

ity benefits, but are also more scalable and flexible under problem variation

than traditional methods. The work presented is among the first contribu-

tions to meaningfully leveraging artificial intelligence into optical network

systems, particularly in regard to their deployment in large scale data cen-

tres. Most notably, a novel deep reinforcement learning based method pre-

sented in this thesis is currently under commercial license to and in produc-

tion deployment at a world-leading manufacturer of reconfigurable optical

switches, where the method will improve product performance as well as re-

duce manufacturing cost. These products pose the most viable commercial

option for optical data centre switching and are present in crucial infrastruc-

ture in both the public and private sectors. As such the work in this thesis

has already had significant direct impact in the optical networking domain,

both academically and commercially.

vii

Acknowledgements
Firstly I would thank my supervisor Georgios Zervas who has provided

me with the support and intellectual freedom to follow ideas that interested

me and develop them towards impact both in and out of research. Similarly I

would thank my secondary supervisor Polina Bayvel, who has not only pro-

vided further support in my research, but has also grown and underpinned

a wonderful research group who’s community and dynamics have eased the

more challenging times throughout the PhD.

On this I would also extend my thanks to the many colleagues and friends

throughout ONG, old and new. There have been many enjoyable moments,

both productive (collaborations) and otherwise (big TV in 808) and these

times were uplifting and supportive in the tougher moments.

I would also extend many thanks to the numerous people I interacted

with at Polatis and am very proud of the outcomes we achieved together.

Most notably, Micheal Enrico, Paulo Almeida, Nick Parsons, Aman Kaur,

Kevin Salmon and Chris Dorling. The experience of developing ideas through

research to the point of commercial value has been incredibly engaging and

valuable to me.

Lastly I of course thank my family. My parents and whole extended fam-

ily have always encouraged me to continue along the path I have so far fol-

lowed. Above all my partner Johanna has given me immense support and

I would certainly not have done this (or much of anything) without her, for

which I am eternally grateful.

ix

Contents

Abstract iii

Impact Statement v

Acknowledgements vii

1 Introduction 1

1.1 Thesis Outline . 1

1.1.1 Chapter Outline . 3

1.1.2 Thematic Discussion . 4

1.2 The Growth of Data Centre Systems 7

1.2.1 Data Centre Market and Usage 7

1.2.2 Typical Data Centre Network Architectures 10

1.3 Data Centre Networks and Scalability Challenges 11

1.3.1 Network as a Bottleneck 11

1.3.2 Scalability Challenges 12

1.4 Scaling Data Centres with Optical Networks 16

1.5 Research Problem . 18

1.5.1 Optimisation challenges in OCS DC system design . . 18

1.5.2 Data-Driven Optimisation with Arti�cial Intelligence . 18

1.6 Publications, Patents and Media 22

1.6.1 Publications . 22

Discussed in Thesis . 22

Not Discussed in Thesis 23

x

1.6.2 Patents . 23

1.6.3 Media . 24

2 Background & Theory: Data Centers and Networks 25

2.1 Optical Data Centre Networks and Switches 25

2.1.1 Comtemporary Data Centres 25

2.1.2 Optics in Data Centres 27

2.2 Components for Optical Switching Devices 28

2.2.1 Semiconductor Optical Ampli�ers 29

Component Basics . 29

Relevance to Optical Switching 32

2.2.2 Piezoelectric Actuators 33

Component Basics . 33

Relevance to Optical Switching 34

3 Background & Theory: Arti�cial Intelligence 37

3.1 Swarm and Evolutionary Optimisation Metaheuristics 37

3.1.1 Ant Colony Optimisation 37

3.1.2 Particle Swarm Optimisation 40

3.1.3 Genetic Algorithms . 41

3.2 Deep Learning . 43

3.2.1 Deep Neural Networks 43

3.2.2 Loss . 45

3.2.3 Backpropagation . 46

3.2.4 General Use . 47

3.3 Graph Neural Networks . 49

3.3.1 Topologically-Structured Data 49

3.3.2 Graph Neural Networks 51

Message Passing & Aggregation 52

3.4 Deep Reinforcement Learning 53

xi

3.4.1 Model-based RL . 57

3.4.2 Model-free RL . 58

3.4.3 Exploration and Exploitation 58

3.4.4 On-policy RL . 59

3.4.5 Off-policy RL . 60

3.4.6 Function approximation and Deep Reinforcement Learn-

ing . 61

3.4.7 Q-learning . 62

3.4.8 Policy Based Methods 63

Policy Gradient Methods 63

Reducing Variance in Policy Gradient Methods with

Baselines . 64

Actor Critic Methods . 65

3.5 Classical Control Methods and PID Control 67

3.5.1 Proportional-Integral-Derivative Control 68

4 Sub-nanosecond Optical Gating with Swarm Optimisation 71

4.1 Associated Publications and Contributions 71

4.2 Chapter Summary . 73

4.3 Introduction . 74

4.4 Previous Work . 78

4.5 Optimisation Algorithms . 80

4.5.1 SOA Simulation and Hyperparameters 80

4.5.2 Particle Swarm Optimisation 82

Implementation . 82

Hyperparameter Tuning 84

4.5.3 Ant Colony Optimisation 85

Implementation . 85

Hyperparameter Tuning 87

xii

4.5.4 Genetic Algorithm (GA) 89

Implementation . 89

Hyperparameter Tuning 90

4.6 Experimental Setup . 91

4.7 Results . 93

4.7.1 Optimisation of a SOA Driving Signal 93

4.7.2 Optimisation of Different (Simulated) SOAs 100

4.8 Sub-Nanosecond Wavelength Switching with Fast-Gating SOAs 103

Results . 104

4.9 Summary . 109

4.9.1 Demonstrated Outcomes 109

4.9.2 Limitations . 110

5 Production Scalable Control Parameter Optimisation with Deep Re-

inforcement Learning 111

5.1 Associated Publications and Contributions 111

5.2 Chapter Summary . 112

5.3 Introduction . 114

5.4 Related Work . 117

5.5 Optical Switching with Piezoelectronic-Actuators 121

5.5.1 Optical switching using piezoelectronic-actuators . . . 121

5.5.2 Piezo-electronic actuator control requirements 123

5.6 One-step PID Tuning with Deep Reinforcement Learning . . . 124

5.6.1 One-step of�ine PID optimisation as a MDP 124

5.7 Experiment . 129

5.7.1 Test-bed Setup . 131

5.7.2 Baseline . 132

5.7.3 Training . 134

5.7.4 Testing . 135

xiii

5.8 Results . 137

5.8.1 General performance evaluation 137

5.8.2 Temperature sensitivity test 143

5.9 Commercial Integration at Polatis 146

5.9.1 Introduction . 146

5.9.2 Production Tool Structures 147

Training/Testing Component 147

In-Production Component 149

5.10 Summary . 151

5.10.1 Demonstrated Outcomes 151

5.10.2 Limitations . 152

6 Network Aware Resource Allocation in Optically Disaggregated Data

Centre Networks with Deep Reinforcement Learning 153

6.1 Associated Publications and Contributions 153

6.2 Chapter Summary . 155

6.3 Introduction . 157

6.4 Previous Work . 160

RL and GNN for Generic CO Problems 160

RL and GNN for Applied CO Problems 161

6.4.1 (Composable) Data Centre Resource Allocation 163

6.5 Problem . 164

6.5.1 De�ning the Markov Decision Process 165

6.5.2 De�ning the deep reinforcement learning model 169

6.6 Experimental Setup . 171

6.6.1 Training and Testing . 171

6.6.2 Baselines . 174

Complexity comparison of DRL method and baselines 175

6.7 Results . 176

xiv

6.7.1 DRL agent allocates more requests overall 176

6.7.2 DRL agent is more consistent than baselines across dif-

ferent DCNs . 177

6.7.3 DRL agent is more consistent than baselines with re-

spect to request size . 180

6.7.4 The agent requires less networking resources for simi-

lar allocation performance 181

6.7.5 Topology scale-up performance 181

6.7.6 Interpreting the policy's allocation strategy 182

DRL agent uses network when it is available 183

The agent distributes requests differently based on their

resource requirements 185

6.8 Alternative Applications: Job Partitioning in Optical Data Cen-

tres . 189

6.8.1 Large Scale Machine Learning, Parallelisation and Par-

titioning . 189

6.8.2 Background . 190

Computational Job Graphs 190

Job Parallelism and Partitioning 191

Network Overhead due to Model Partitioning 192

Job Completion Time . 193

Optical Networks for Distributed Machine Learning and

the RAMP Architecture 193

6.8.3 Problem . 195

MDP . 196

Deep Learning Model 199

Partitioning and Allocation Heuristic 200

6.8.4 Experiment . 201

DAG Datasets . 201

xv

User-de�ned JCT limits 202

Baselines . 202

Metrics . 203

Tests . 204

6.8.5 Results and Conclusion 204

6.9 Summary . 206

6.9.1 Demonstrated Outcomes 206

6.9.2 Limitations . 207

7 Conclusions and Future Work 211

7.1 Conclusions . 211

7.2 Future Work . 216

7.2.1 Lower Resolution Driving Signal Optimisation and Ap-

plication . 216

7.2.2 Fast Wavelength Switching with Data Transmission . . 216

7.2.3 Network & Request Elaboration 217

7.2.4 Test-Bed Demonstration of Network Aware Resource

Allocation/Job Aware Partitioning 219

A Simulation of Semiconductor Optical Ampli�ers 221

B Full Table of Results for SOA Optimisation Methods 225

C Graph-Neural-Network Based Resource Allocation/Job Partitioning:

Learning Architecture Visualisation 227

D Full Table of Network-Aware Resource Allocation Results 235

E Table of Results for Network-Aware Resource Allocation on Larger

Topologies 239

xvi

F Network Aware Resource Allocation Policy Visualisation of Servers-

Distribution Relationship for RL Agent and all Baselines 241

G Network Aware Resource Allocation Policy Visualisation of Request-

Distribution Relationship for RL Agent and all Baselines 245

H Job Parallelism and Partitioning 249

I First-�t Allocation Heuristic for RAMP Constraints 251

Bibliography 255

xvii

List of Figures

1.1 A visual association of the research-focus of each chapter in the

thesis with it's relevance to optical data centre network systems. 2

2.1 Visualising a simple 3-tier/tree based data centre topology.

Tier-1 switches connect downward to a set of servers. Tier-

2 switches connect downward to two tier-1 switches. Tier-3

switches connect down to all tier-2 switches. As such, by fol-

lowing the path tier-1 ! tier-2 ! tier-3 ! tier-2 ! tier-1, any-

to-any server interconnectivity is established. 29

2.2 Simple visualisation of the structure of a SOA device, along

side how both excitation and stimulated emission works given

a energy structure where E1 and E2 are the energy levels of the

top of the low-energy and and the bottom of the high-energy

band respectively, and the yellow arrows denote incident par-

ticles with energy DE = E2 � E1. 32

2.3 Visualisation of a contracting piezoelectric actuator (which are

intuitively visualised). Mechanical contractions in the piezo-

electric material induce bending in the non-piezoelectric ma-

terial attached to it. This provides a means of continuously

modulated and high precision vertical actuation. 35

xviii

3.1 The �gure on the left is a simple unstructured collection of

data points (each data point is someones personal informa-

tion). The �gure on the left is how this data looks when the

underlying structure is explicitly accounted for. In this case,

the structure refers to personal relationships between people

in the dataset. 50

3.2 The �gure on the right shows a possible embedding of the

structured dataset shown on the left. It is seen that the vec-

tors of each data point maintain some notion of the underlying

topology (e.g. person A is closer to person B than they are to

person C, since they share a direct relationship with person B

but not with person C to whom they are 2 hops away from). . 50

3.3 A simple diagram showing a generic Markov Decision Process

loop. 55

3.4 A generic visualisation of a PID control loop. The difference

between the target (SP) and current (PV) position of the sys-

tem is used to generate the proportional, inegral and deriva-

tive corrective terms. These terms are applied via weighted

sum to determine the instantaneous change that will be ap-

plied to the driving signal. These values must be optimised in

order to accomplish the desired control outcomes. 70

4.1 Visualising the problem described in this chapter. What is the

form of an electric driving signal which can be applied to a

SOA in order to achieve an optical output with minimal off-on

time? . 73

xix

4.2 Simulated SOA optical response to (top left) PSO, (top right)

ACO and (middle left) GA driving signals relative to a stan-

dard step input. For reference, the target SPs used have also

been plotted. Learning curves showing how both the cost spread

and the optimum solution improved as the (middle right) PSO,

(bottom left) ACO, and (bottom right) GA algorithms were

tuned, showing 10 learning curves for each set of hyperparam-

eters. The curves for the optimum hyperparameters have been

plotted in green. For PSO in (middle right), some additional

information has been plotted: i) No dynamic PSO, PISIC shell,

or embedded step (red), ii) no PISIC shell or embedded step

(blue), iii) no embedded step (orange), and iv) the �nal PSO al-

gorithm (green, also plotted on separate graph (inserted)). For

GA, the i) default DEAP (red) and ii) optimised (green) hyper-

parameter learning curves have been plotted. For ACO, the

blue curve is for a run with a larger pheromone exponent (0.5)

value than the optimum, and the red is for a larger dynamic

range on the signal search space (� 50%). 86

4.3 Diagram of the SOA experimental setup used. 92

4.4 Experimental SOA responses to the step, PISIC, MISIC1, raised

cosine and PID driving signals. 93

4.5 Experimental results showing the optimised SOA optical out-

puts for (top) PSO, (middle) ACO, and (bottom) GA. 96

4.6 Experimental results showing the optimised SOA electrical driv-

ing signal inputs for (top) PSO, (middle) ACO, and (bottom) GA. 97

4.7 Scatter plot comparing the experimental RTs, STs and OSs of

all the driving signals tested. The outlined target region high-

lights the performance required for truly sub-nanosecond op-

tical switching. 98

xx

4.8 Simulated SOA optical responses of 10 different SOAs (each

with a different transfer function) to (upper-center) step, (top

right) PSO, (middle right) ACO, and (bottom right) GA, and

the corresponding driving signals for (top left) PSO, (middle

left) ACO, and (middle right) GA. All AI optimisations were

done with the same hyperparameters and a common target SP. 101

4.9 Experimental setup. While one laser is gated shut and tun-

ing to one wavelength, the other is gated open and transmit-

ting on another. When the transmitting laser is �nished and

the other laser is stable after tuning, the two SOAs can invert

their respective states so that now the formally tuning laser is

transmitting and the formally transmitting laser is not. This

achieves sub-nanosecond wavelength switching. 105

4.10 Output intensity of the hybrid WTS. SOA 1 is driven with a

PSO signal. For comparison, SOA 2 is unoptimised. 106

4.11 Instantaneous frequency offset data of the hybrid WTS with-

out (faint) and with SOA gating (bold). All bursts are always

within � 5 GHz of their target. 106

4.12 Detailed view of the intensity transitions of each SOA. 90-90%

switch times are overlaid. 106

4.13 Spectra of all 22 channels under test undergoing ultra-fast switch-

ing. The two TLs are continuously tuneable, supporting 122 � 50 GHz

channels. 107

xxi

4.14 (a) Summary of the state-of-the-art ns and sub-ns WTSs, com-

paring switch time against number of supported 50 GHz spaced

channels. Reported RTs are shown as solid, while estimated

settling times are faded. (b) Operational principle of the hy-

brid WTS. Two tuneable lasers switch out of phase at half the

burst rate, gated by SOAs. The time-interleaved output pro-

vides wideband ultra-fast switching. (c) Comparison of the

integration area required to scale three sub-ns WTS designs,

assuming ideal device packing. 108

5.1 Visualising the problem described in this chapter. Given an

optical switch based on PID-controlled actuation, how can PID

parameters be optimised for an actuator during production

such that actuation is as fast and stable as possible during

product operation? Moreover, how can this be achieved in a

highly scalable way so that signi�cant production overhead is

not induced when a very large number of actuators must be

optimised? . 113

5.2 (Top) Diagram of a single actuator-based sub-system de�ning

a single port in a switch. Data from the position sensor can be

used in a closed loop alongside x- and y- axis driving voltage

to implement PID control on the position of the port. (Bottom)

Diagram of an input and output plane based on actuators as

used in actuator-based optical switch design. Input ports and

output ports can point towards each other to create viable light

paths and do not require light to be passing through the sys-

tem to do so. 121

xxii

5.3 Visualisation MDP/training loop for the one-shot PID optimi-

sation problem formulated in this chapter. PID parameters are

calculated for an actuator based on gain and resonance infor-

mation per axis. PID parameters are evaluated by undergo-

ing a random switching event and measuring various metrics.

Reward is a scalar multi-objective reward based on these mea-

surements. 130

5.4 Visualisation of the inference procedure for the one-shot PID

optimisation problem formulated in this chapter. PID parame-

ters are generated using gain and resonance information about

an actuator, which can in general be done of�ine if this in-

formation has already been emasured (e.g. during manufac-

turing). PID parameters can then be incorporated into switch

control/design. 130

5.5 Flow diagram showing the training and inference loops imple-

mented. The training follows the full cycle of the green path

followed by the red path, whereas the inference process fol-

lows only the non-cyclic green path to produce PID parame-

ters for a single actuator. 132

5.6 (Top) Distribution of ST measurements for each of the test switch-

ing events (per-axis) for DRL and defualt methods. (Bottom)

Scatter plot showing the measured ST for each switching event

(per-axis) plotted against the corresponding transition distance

required by that switching event. Black dotted line denotes the

target ST, below which each settling event would ideally be. . 138

xxiii

5.7 (Top) Distribution of OS measurements for each of the test

switching events (per-axis) for DRL and defualt methods. (Bot-

tom) Scatter plot showing the measured ST for each switching

event (per-axis) plotted against the corresponding transition

distance required by that switching event. Black dotted line

denotes the target OS, below which each settling event would

ideally be. 139

5.8 CDF of % of test switching events that are in-margin for mar-

gins of (top-bottom) � 0.15mm, � 0.1mm, � 0.05mmand � 0.025mm.141

5.9 CDF of % of test switching events that are in-margin for mar-

gins of � 0.15mm, � 0.1mm, � 0.05mm and � 0.025mm for the

DRL method (top) and the default method (bottom). 142

5.10 Scatter plot showing the mean and standard deviation settling-

time for the same set of test events measured at each tempera-

ture. 144

5.11 Jensen-Shannon distance between the distributions of settling-

time results as tested at 25� (room temperature) and each other

tested temperature. Lower value means more similar distribu-

tions (i.e. smaller `distance' between them). 144

5.12 Mean and standard deviation of the per-event settling-time

difference between the 25� test and all other temperatures. Since

we seek to minimise thermal variation, minimal difference (i.e.

mean and standard deviation both equal 0) is desirable. 145

5.13 Visualising the training/testing component of the RL-based

PID optimisation method. This image is in reference to it's

production-integration at Huber+Suhner Polatis and shows how

the 3 main parts of the method's implementation as well as the

control-system in question interact with each other in the con-

text of training and testing RL agents. 148

xxiv

5.14 Visualising the in-production component of the RL-based PID

optimisation method. This image is in reference to it's produc-

tion integration at Huber+Suhner Polatis. 150

6.1 Visualising the problem described in this chapter. What is the

best way to map dynamically arriving resource requests to re-

sources available from servers when not only resource blocks,

but also links interconnecting them have to be found? More-

over, how best to do this when you can only see the most re-

cently arrived request and don't know the form of the requests

arriving later? . 156

6.2 Visualisation of the DRL feedback loop. The environment state

is the DCN. Different coloured servers/links refer to their al-

location to different requests (distinguished by colour). 170

6.3 blue=RL agent, orange=Tetris, green=NALB, red=NULB, pur-

ple=random. Line plots showing the acceptance ratio (left),

CPU utilisation (middle) and memory utilisation (right) for

each method when tested on each topology. Topology labels

(x-axis) are channels per tier-1 link (upper part) and oversub-

cription (lower part). 178

6.4 blue=RL agent, orange=Tetris, green=NALB, red=NULB, pur-

ple=random. Set of bar charts showing (for each tested topol-

ogy) the number of successful allocations (y-axis) for requests

who's total resource requirement requires them to be allocated

across a minimum number of servers (integers 1-8 inclusive). . 179

xxv

6.5 blue=RL agent, orange=Tetris, green=NALB, red=NULB, pur-

ple=random. Line plots showing the utilisation of tier-1 (top),

tier-2 (middle) and tier-3 (bottom) networking resources for

each method when tested on each topology. Topology labels

(x-axis) are de�ned as channels per tier� 1 links
oversubscription 183

6.6 Visualising the relationship between how many servers were

allocated to a request (x-axis), and how distributed those servers

were for that request (y-axis). Size of the blue circles represents

how many requests were served at this x-y value. One �gure

per topology, each labelled by 2 numbers; channels-per-link at

tier-1 (top) and oversubscription (bottom). 186

6.7 blue=RL agent, orange=Tetris, green=NALB, red=NULB, pur-

ple=random. Plots showing the density of different degrees of

distribution for each agent and each oversubscription ratios.

Results for different topologies with the same oversubcription

ratio are combined into a single graph. 187

6.8 Visualising the relationship between requested CPU units (x-

axis), requested memory units (y-axis) and how distributed

the servers allocated to that request were (colour). Lowest dis-

tribution is a single server, and maximum is inter-cluster. One

�gure per topology, each labelled by 2 numbers; channels-per-

link at tier-1 (top) and oversubscription (bottom). 188

6.9 Visualisation of a DAG used to represent multi-operation com-

putation jobs with a dependency structure. Nodes are op-

erations to be run and directed edges represent control/data

�ows between operations. 191

xxvi

6.10 Visualising the partitioning method used in this work. A mir-

ror image of the DAG is attached to the end of the original,

such that the operations appear to be followed once in the nor-

mal direction and then again in the opposite direction. This is

done to explicitly represent a forward pass followed by a back-

ward pass during training. Note that partitioned operations in

the backward pass exchange information in an all-to-all man-

ner; this is for events such as weight synchronisation of an

operation that has been partitioned across multiple workers

which occur during the backward pass. 209

6.11 The four b distributions used in our experiments in order to

measure the capability of each partitioner to cater to different

user-de�ned maximum acceptable completion time require-

ment settings. In each bX experiment setting, each new job

generated was assigned ab value sampled from bX in order to

get the maximum acceptable JCT,b � JCTseq 210

6.12 Validation performances (higher is better) of each partitioning

agent evaluated across three seeds normalised with respect to

the best-performing partitioner in each BX environment. . . . 210

A.1 Semi-logarithmic I-V plot for the SOA used to calculate h and Is.222

A.2 Frequency responses of the theoretical transfer function (TF)

and the experimental SOA (Exp). 224

C.1 Stage 1 of the node-embedding process. Starting state of the

graph where each node and edge has a unique feature vector

associated with it. Node B and C are to send a message to

node A, and the embedding generation process will be shown

for node A. 229

xxvii

C.2 Stage 2 of the node-embedding process. Nodes B and C gen-

erate a message to send to A by concatenating their own local

features and the features of the edge connected them to node

A. Node A creates a pseudo-message to itself in the same way

using a zero-padded edge vector. Each of these vectors are

then passed through a neural network with weights w1
i,j 229

C.3 Stage 3 of the node-embedding process. Nodes B and C send

their messages to A. 230

C.4 Stage 4 of the node-embedding process. The messages received

by A from nodes B and C are aggregated by taking the element-

wise mean of each message. 231

C.5 Stage 5 of the node-embedding process. The mean-aggregated

message vector and the pseudo-message vector are concate-

nated and passed through a neural network with weights w2
ij

to generate the �nal embedding of A. 231

C.6 Phase 1 of the GNN usage. An initial graph exists with node-,

edge- and graph- level feature vectors de�ned. 232

C.7 Phase 2 of the GNN usage. (Top) The GNN operates on the

node- and edge- level features directly (as pictured in Figs ??)

to output a new graph with different vectors associated with

each node referred to as node embeddings. (Bottom) A DNN

operates on the graph-level feature vector to generate a graph-

level embedding vector. 233

xxviii

C.8 Phase 3 of the GNN usage (expressed in a generic way). (Top)

The graph- and node- embeddings are combined (e.g. concate-

nate the graph embedding to each node embedding) and fur-

ther processed to generate unique logits for each node. These

logits can then be used for some downstream task (e.g. node

selection as in chapter 6). (Bottom) The graph- and node- em-

beddings are combined (e.g. concatenate the graph embed-

ding and the element-wise mean of the node-embeddings) and

further processed to generate some graph-level embedding vec-

tor. This can then be used for some downstream task (e.g.

graph classi�cation). 234

F.1 Visualising the relationship between how many servers were

allocated to a request (x-axis), and how distributed those servers

were for that request (y-axis). Size of the blue circles represents

how many requests were served at this x-y value. One �gure

per topology, each labelled by 2 numbers; channels-per-link at

tier-1 (top) and oversubscription (bottom). 242

F.2 Visualising the relationship between how many servers were

allocated to a request (x-axis), and how distributed those servers

were for that request (y-axis). Size of the blue circles represents

how many requests were served at this x-y value. One �gure

per topology, each labelled by 2 numbers; channels-per-link at

tier-1 (top) and oversubscription (bottom). 243

xxix

F.3 Visualising the relationship between how many servers were

allocated to a request (x-axis), and how distributed those servers

were for that request (y-axis). Size of the blue circles represents

how many requests were served at this x-y value. One �gure

per topology, each labelled by 2 numbers; channels-per-link at

tier-1 (top) and oversubscription (bottom). 244

G.1 Visualising the relationship between requested CPU units (x-

axis), requested memory units (y-axis) and how distributed

the servers allocated to that request were (colour). Lowest dis-

tribution is a single server, and maximum is inter-cluster. One

�gure per topology, each labelled by 2 numbers; channels-per-

link at tier-1 (top) and oversubscription (bottom). 246

G.2 Visualising the relationship between requested CPU units (x-

axis), requested memory units (y-axis) and how distributed

the servers allocated to that request were (colour). Lowest dis-

tribution is a single server, and maximum is inter-cluster. One

�gure per topology, each labelled by 2 numbers; channels-per-

link at tier-1 (top) and oversubscription (bottom). 247

G.3 Visualising the relationship between requested CPU units (x-

axis), requested memory units (y-axis) and how distributed

the servers allocated to that request were (colour). Lowest dis-

tribution is a single server, and maximum is inter-cluster. One

�gure per topology, each labelled by 2 numbers; channels-per-

link at tier-1 (top) and oversubscription (bottom). 248

xxxi

List of Tables

4.1 Performance summary for the techniques applied to the 10 dif-

ferent simulated SOAs, given in the format min | max | mean

| standard deviation (best in bold). 102

6.1 Oversubscription and number of channels per link for each

topology. `Bottom-top oversubscription' refers to the oversub-

scription from the servers to the top tier of switches (tier-3).

`Oversub' refers to the oversubscription at the interface be-

tween that tier and the tier below it (hence Tier-1 does not have

an `oversub' value. In this work topologies of this structure

with n 2 f 8, 16, 32g are used. 166

6.2 Percentage improvement of the agent pair over the second best

performing baseline for that topology across all tested topolo-

gies. 179

6.3 Percentage difference in allocation performance between the

agent when deployed on the same topology seen during train-

ing, and a topology with O(102)� more nodes but the same

oversubcription properties. Positive value means large topol-

ogy performance was better by that percentage, and negative

means performance was worse. 182

xxxii

6.4 Blocking rate performance of the partitioning agents on the

four b distributions (best in bold). Results are given as the

mean across 3 seeds, and error bars denote the corresponding

min-max con�dence intervals. 202

A.1 Constants used in EC transfer function. 223

A.2 Factor(s) used on the EC transfer function coef�cients to sim-

ulate different SOAs (factor = 1 unless stated otherwise). . . . 224

B.1 Comparison of SOA Optimisation Techniques. (Best in bold). . 226

xxxiii

List of Abbreviations

AI A rti�cial Intelligence

DRL D eep Reinforcement Learning

DCN D ata Centre Network

DC D ata Centre

DL D eep Learning

GNN G raph Neural Networks

CAPEX Capital Expenditure

OPEX Operational Expenses

IaaS Infrastructure as a Service

ToR Top Of Rack

EPS Electronic Packet Switch(ed)

OEO Optical-Electronic-Optical

CPU Central ProcessingUnit

GPU Graphical ProcessingUnit

TPU Tensor ProcessingUnit

HMC H ybrid M emory Cube

QPSK Quadratic PhaseShift Keying

OCS Optical Circuit S witching

SOA Semi-conductor Optical Ampli�er

PID Proportional- Integral-Derivative

actuator Piezoelectric Actuator

ASE Ampli�ed Spontaneous Emission

WDM W avelength Division M ultiplex

xxxiv

ACO A nt Colony Optimisation

PSO Particle Swarm Optimisation

GA G enetic Algorithm

NN N eural Network

MSE M ean Squared Error

CNN C onvolutional Neural Network

RNN R ecurrant Neural Network

WTS Wavelength Tunable Source

DS-DBR D igital Supermode Distributed Bragg Re�ector

AWG A rbitrary Wavelength Generator

OSC Oscilloscope

PISIC Pre Impulse Step Injected Current

MISIC M ulti Impluse Step Injected Current

BER Bit Error Rate

EC Equivalent Circuit

PV ProcessVariable

SP Set Point

ST Settling Time

RT Rise Time

OS Overshoot

DAG D irected Acyclic G raph

JCT Job Completion Time

ML M achine Learning

1

Chapter 1

Introduction

1.1 Thesis Outline

This thesis argues that arti�cial intelligence (AI) can provide a highly effec-

tive and scalable means of addressing optimality challenges in the domain

of large scale optical data centre networks (DCN). Prior and ongoing work

shows both theoretically and experimentally that the inter-server communi-

cation capabilities provided by optical network backbones can indeed enable

greater resource ef�ciency and resource pooling scalability in large scale data

centres (DC). However, the scale of such systems means that their design and

operation encounters optimality challenges which must be addressed in a

similarly scalable manner. These optimality challenges exist throughout the

design and operation of such systems, spanning from component-scale prob-

lems to system-management strategies. The scale of such problems means

that exhaustive and fully optimal solutions are not feasible and that com-

promised alternatives must be implemented which sacri�ce some optimality

for implementation feasibility and scalability. This is typically handled by

expert-guided hand-designed heuristics which implement solutions which

are good enough for production purposes but not necessarily as optimal as

they could be.

Addressing 3 core problem domains existing at the levels of components,

product, and whole-system, the work in this thesis shows that incorporating

2 Chapter 1. Introduction

FIGURE 1.1: A visual association of the research-focus of each
chapter in the thesis with it's relevance to optical data centre

network systems.

AI - speci�cally deep reinforcement learning (DRL), graph neural networks

(GNN) and swarm optimisation - into the design, manufacturing and oper-

ation of these systems is a highly bene�cial way of increasing solution opti-

mality whilst maintaining solution scalability. Furthermore, these solutions

are shown to be more adaptable to variations in the problem state and very

feasibly incorporated into real production systems.

Below is provided a very high level bullet-point summary of each chapter

and how it contributes to this premise. Figure 1.1 shows visually how the

1.1. Thesis Outline 3

content of each chapter relates to various sub-domains existing within the

area of optical DCN systems. Following this, a brief and high level discussion

of the common theme underlying the various problems addressed in this

thesis is given in a domain-agnostic way.

1.1.1 Chapter Outline

1. Chapter 1: General introductory content. Discusses the context of mod-

ern DC systems and associated scalability challenges associated with

the network architectures used.

2. Chapter 2: Background/theory. Provides a discussion on the relevant

concepts required to understand the work presented in the later content

chapters.

3. Chapter 3: Optimal optical gating with swarm optimisation. Shows

how swarm optimisation algorithms can be used to achieve signi�cant

performance improvements (> 80% improved settling time) and imple-

mentation scalability in gating speed for an optical component which

can be incorporated into a viable design for a sub-nanosecond optical

wavelength switch. A proof of concept experimental design of such a

device is also shown.

4. Chapter 4: Optimal actuation for optical switching with DRL. A com-

mercially viable optical switching mechanism based on PID-controlled

actuation is signi�cantly improved (20% <) using DRL to optimise the

underlying control heuristic (patent pending). A market leading op-

tical switch product based on this mechanism is notably improved by

this method. This IP has been commercially licensed to the manufac-

turers of this product, and a production tool was developed for them in

4 Chapter 1. Introduction

the course of the PhD so that the method can be incorporated into their

manufacturing process.

5. Chapter 5: Network-aware resource allocation in optical DCs. DRL

with GNN based policy architectures are used to learn end-to-end allo-

cation policies to maximise long-term acceptance ratio when requests

arrive dynamically over time, where requests require both server-level

(e.g. CPU , memory) resources as well as network resources to inter-

connected all allocated servers. The method can outperform pervious

heuristic solutions by 20% < as well as achieve the same performance

in DC architectures with 3 � less network resources.

6. Chapter 6: Conclusion. Thesis contributions are discussed in brief sum-

mary and interesting avenues of future work are proposed.

1.1.2 Thematic Discussion

The premise of optimisation problems existing at scale, particularly in var-

ious industrial contexts, is not new and has a strong presence in most in-

dustries. For example, any sort of manufacturing process requires numerous

optimal actions to be taken to ensure high product yield and consistent qual-

ity. However, if too long is spent optimising these decisions then overhead

will increase and lead to slower production rates, therefore nullifying any

yield and quality bene�ts. Similarly, air traf�c controllers must optimise de-

cision making in complex dynamic systems, where sub-optimality may cause

�ight delays or worse. However, too long spent making such decisions will

mean the decision is made too late and possibly dangerous operational con-

sequences are faced.

What should be clear from these generic examples is that when optimisa-

tion problems are encountered in industrial-scale problems, there is generally

1.1. Thesis Outline 5

a required balance to be found between optimality and practicality. Typi-

cally, the most optimal solution requires exhaustive search over all possible

outcomes, and therefore takes a very long time. While some environments

only require optimization to be done once/occasionally, many decision mak-

ing environments require fast response times (e.g. air traf�c control) where

exhaustive solution �nding is infeasible. Alternatively, very sub-optimal so-

lutions can usually be found very quickly by implementing simple strategies

such as greedy algorithms. In reality, a middle ground is typically established

which �ts the purpose of the application. This is often referred to as heuristic

design, where heuristicsimply refers to some non-exhaustive method used to

solve a particular problem. This is historically handled by expert guided de-

sign, where some expert in the relevant problem area will craft a solution that

accounts for the desired outcome, relevant input information, relevant met-

rics and associated constraints or limitations. Note that this �nal outcome

can be either a deployable algorithm such as a routing algorithm for mail

deliveries, or a one-off solution like a new integrated circuit design. While

the outcomes may not be totally optimal, they are good enough for purpose

when economic realities are accounted for within the problem context.

However, beyond just sub-optimality, these kind of solutions have addi-

tional limitations. Firstly, while the designer may indeed be very capable

within the domain, they are fundamentally biased by their speci�c base of

knowledge and past experience. This can mean - deliberately or otherwise -

that possibly important features of the problem input are neglected, or that

metrics used to guide the solution are not necessarily the best ones. Secondly,

when the relationship between the input and output features of a problem

must be explicitly designed by a human, the scale of these feature sets must

be within the scope of a human's conception. Designing an algorithm that

processes 3 input features for a single output is conceivable, while design-

ing one which processes 1000 input features to output 1000 output features

6 Chapter 1. Introduction

is less so. This point is simply to say that humans have a limited compu-

tational scope as individuals, and so any heuristic designed by them will

be correspondingly limited. Finally, hand-guided design suffers from slow

design iteration and therefore can struggle with adaptability. Even simple

changes in the underlying problem state may not be addressable by trivially

tuning the algorithm, but rather may require an entirely new design process

to be undertaken.

As demonstrated by previous work from the AI and deep learning (DL)

communities, data-driven solutions to these types of problems can be highly

effective (often better than state-of-the-art heuristics) without suffering from

the design limitations discussed above. Rather than requiring an explicit de-

cision making strategy to be determined by the designer, these methods in-

stead allow for a relationship to be learnt between an arbitrarily large number

of input and output features, where only very high level goals must be spec-

i�ed. For example, revisiting the air-traf�c controller example, rather than

specifying exactly how routes should be constructed and �ights scheduled,

a data-driven approach can simply be instructed to �nd some wayto min-

imise �ight delay by specifying an appropriate quantitative representation

of this outcome which it can use to evaluate and update it's decision making.

Through suf�cient exposure to the system (real, simulated or otherwise) such

an entity can in principle learn how to handle many competing complexities

without necessarily being biased by assumptions about how this should be

undertaken.

Of course, the associated data driven learning architectures must still be

designed, as do the high level guiding metrics. However, as will be seen

throughout this thesis, straightforward generic learning architectures com-

bined with notably simple and intuitive metrics are suf�cient to guide these

methods towards policies which perform better than expert-designed ones,

1.2. The Growth of Data Centre Systems 7

provide greater scalability and are more �exible and consistent under prob-

lem variation.

Computer-network systems are full of complicated optimisation prob-

lems such as routing, scheduling, resource management, packet queuing and

so on. The optical networks that would �t within these systems as described

in the work motivating this thesis would be similarly and in some cases more

complex. Furthermore, for these types of networks to be commercially vi-

able in the Cloud-scale era of DC, optical networks will need to be designed,

manufactured and operated at scales not previously applied to pure optical

networks. As such, within the domain are a large number of optimality chal-

lenges where scale is of particular concern. Some of these problems are anal-

ogous to those of contemporary electronic packet switched (EPS) DCN (such

as the one addressed in chapter 6), whereas others are unique to this domain

such as optimising components beyond their off-the-shelf performance for

DCN viability (chapter 4) or increasing manufacturing ef�ciency of products

not previously deployed at hyper-scale DC scales (5). As such, given the de-

sign opportunity for such systems for which there are not yet any standards,

this thesis argues by demonstration that data driven methods (DL in partic-

ular) should be incorporated into this aspect of design and operation, where

doing so will signi�cantly reduce the dif�culty in achieving viable hyperscale

optical DCN

1.2 The Growth of Data Centre Systems

1.2.1 Data Centre Market and Usage

As internet based services have grown to become the bedrock of the modern

economy since the 1990's, the role of DCs evolved from a simpler mainframe

room processing a limited set of computing tasks for a single organisation as

8 Chapter 1. Introduction

seen throughout the 60s, 70s and 80s into the operational core of entire busi-

nesses. Both internal activities such as email or internal data base access, as

well as outward facing services such as online banking, social media, search

and so on are all handled in systems leveraging a large number of servers

and networking infrastructure so that the resources of numerous servers can

be leveraged simultaneously.

This premise has further evolved through the 2000's/2010's, whereby DC

infrastructure rental businesses present a more cost effective means of host-

ing large scale infrastructure without having to take on the capital and opera-

tional expenditure (CAPEX and OPEX respectively) of owning and operating

ones own infrastructure. This business model is often referred to as `infras-

tructure as a service' (IaaS) or `Cloud computing'. From just 30% in 2015,

over 60% of corporate data is now stored in the Cloud as of 2023 and 95%

of businesses use the Cloud in some way zippia.com, n.d. This is particu-

larly preferable for startups - who often receive short-term subsidised Cloud

credit as a marketing strategy by Cloud service providers - where capital is

limited, but the ability to quickly scale up services is essential.

As such, the market for Cloud services has grown to � $600B in 2023

www.gartner.com, n.d., having grown by � 20% a year since 2020. Vari-

ous developments have rendered Cloud DCs more ef�cient such as more en-

ergy ef�cient task-speci�c hardware (such as Google's architectures Jouppi

et al., 2017), cheaper renewable energy/cooling methods Lazic et al., 2018;

bbc.com, n.d. or more resource-ef�cient allocation paradigms such as vir-

tual machines (VM) which allow multiple users to access non-overlapping

compute resources on the same server. Centralised Cloud infrastructure al-

lows businesses (and individuals) to move away from the CAPEX based eco-

nomic framework of hosting their own compute infrastructure (which re-

quires many long-term and signi�cant expenses such as design, building,

1.2. The Growth of Data Centre Systems 9

compute, real estate and scaling even before basic operational costs are in-

curred to maintain the infrastructure). Instead, Cloud service providers take

on these expenses and charge a regular fee to business who want to access

the compute infrastructure.

This business model provides bene�ts to the consumers as they can shift

their compute to an OPEX based economic framework whilst also remaining

con�dent about their ability to instantaneously scale up resource access, as

well as data redundancy and security. Consumers also bene�t from not hav-

ing to be involved in maintenance efforts required to keep these large and

complex systems running and will in general pay a rental cost that is propor-

tional to their usage, meaning that costs scale relative to their requirements

rather than a �xed cost. With competition has come an additional service

layer on top of the basic provisioning of easily accessible hardware. Var-

ious analytics tools, machine learning (ML) platforms, internal messaging

and email services and so on have become a central feature to these services

which increasingly provide a one-stop-shop for businesses to handle most

basic organisational requirements for a single monthly fee.

On the other hand, the OPEX associated with maintaining Cloud infras-

tructure is sub-linear with respect to the size of the DC(s). For example, dou-

bling the size of a DC does not incur the same OPEX as the initial building

costs, since basic infrastructure requirements (e.g. energy, HVAC, real estate

acquisition, design and planning etc) do not have to be repeated at full cost.

However, since pro�t favours the Cloud service providers who can scale their

infrastructure the most, extremely large (often termed hyperscale) DCs have

emerged as the focus of this fast growing industry. As will be discussed in

the remainder of this section, while increased scale can theoretically capture

the pro�t advantages described, a new set of challenges are discovered as

size increases. Similarly, certain architectural standards in DCs limit how ef-

fectively resources can be provisioned at these large scales and are likely to

10 Chapter 1. Introduction

incur avoidable costs in the future if certain architectural aspects of DCs are

not revisited.

1.2.2 Typical Data Centre Network Architectures

Numerous different DC architectures exist such as Fat-Tree, Clos, Fabric and

so on Clos, 1953; Al-Fares, Loukissas, and Vahdat, 2008; Facebook, 2014,

where each has found favour at different organisations or periods of time.

However, a central feature of all such DC architectures is their tier-based

structure. In this paradigm, servers - the fundamental `unit' of compute re-

sources of various types in a DC - are stacked into racks, often in groups of

between 16 and 64.

Each of these racks is �tted with a network switch referred to as the `top

of rack' (ToR) switch and also constitutes tier-1 of the topology. The ToR

switch is what allows the servers to communicate outward to other servers

on other racks. Each ToR, by extension connects upwards to tier-2 - another

set of switches which connect to groups of ToR switches, similarly to how ToR

switches are each connected to a group of servers. In this structure, a server

on one rack can communicate with a server on another rack by sending a

message via it's ToR switch to a tier-2 switch which is itself connected to the

ToR switch of the receiving server's rack.

Currently, the network switches used in DCs are electronically packet

switched (EPS) with a limited number of ports (typically � 32 � x � 256

cisco.com, n.d.) and a limited bandwidth per-port (which typically range

between 1-400 Gbps). In this way, the number of upward (tier-1 to tier-2)

connections that can exist at a single rack is limited, and therefore arbitrary

scaling of the DC with respect to the number of servers who can directly

communicate with each other is not possible.

1.3. Data Centre Networks and Scalability Challenges 11

To scale the number of servers managable within a single network, 3-tier

network architectures are common. In this case, each tier-2 switch connects

downwards to a subset of all the tier-1 switches in the DC as before, but also

upwards to one or several tier-3 switches, through which it can send mes-

sages to the servers on racks which do not connect directly up to that switch.

Alternatively, better scaling can also be achieved without adding tiers of the

network if the number of ports per switch is increased. This method of scal-

ing is bene�cial since introducing additional tiers to the network increases

the maximum hop-count that packets will undergo, introducing latency and

additional non-deterministic forwarding overhead due to packet scheduling.

1.3 Data Centre Networks and Scalability Challenges

1.3.1 Network as a Bottleneck

Individual DCs are moving towards housing O(106) servers in a single ware-

house in the largest cases www.datacenterdynamics.com, n.d. As the num-

ber of servers in a single warehouse scales, alongside the number of services

being simultaneously provided amongst them, the total amount of commu-

nication between servers increases. This intra-DC network traf�c (which

never enters or exists the DC network, sometimes termed east-westtraf�c)

accounted for 75% of all DC traf�c in 2016, 5 � the amount of traf�c send

to the DC from the client-side (correspondingly termed north-southtraf�c),

where 20% of this was due to large scale data processing alone Cisco, 2018.

Moreover, as single applications require more and more compute (particu-

larly in the so called `big-data' era whereby large data sets and ML models

are prominent across business work�ows), a larger number of servers are re-

quired per individual compute task. A recent example is the ChatGPT deep

learning (DL) model, which leveraged O(105) GPUs for it's initial training,

12 Chapter 1. Introduction

where the requirement for these GPUs to periodically communicate in line

with their training regiment means that the network is now a crucial part of

DC operations alongside the raw quantity of compute resources available.

The network also imposes increasing energy requirements and costs; net-

work operation accounted for � 50% of total DC energy requirements in 2022

- approximately 1% of global energy consumption Kamiya, 2022. Network

infrastructure must therefore be able to operate without excessive congestion

so that these services can both continue to scale and maintain product service

levels.

As DCs continue to scale the network becomes an increasingly crucial

point of failure which could compromise the historical scalbility of these

large systems. As will be detailed below, there are numerous areas where

DC growth can be bottlenecked by aspects of the network. These challenges

span many areas such as energy ef�ciency, resource utilisation, application

scalability and infrastructure cost/�exibility, and a few key ones will be de-

tailed below.

For example, if network capacity could not be increased to account for

more servers then, in order to host more business's products on the Cloud,

entirely new DCs would have to be constructed to account for this additional

traf�c rather than more scalably extending pre-existing infrastructure. This

would incur considerable cost for the infrastructure host, which would then

be passed onto the Cloud tenants who would naturally pass on the cost to

the consumer, realising greater costs for the same product and service level

and generally worse outcomes for consumers.

1.3.2 Scalability Challenges

Energy Consumption of EPS Networks: While optical data transfer be-

tween nodes provides more ef�cient transmission along network edges and

1.3. Data Centre Networks and Scalability Challenges 13

is standard in modern day DCs, packets are still processed and forwarded

electronically at nodes (both servers and switches). As such the networks re-

ferred to typically as opto-electronic networks, since optical electronic data is

converted to optical data for transmission purposes. These optical-electronic-

optical (OEO) conversions are energetically costly compared to if the route

followed by the packets was a passive optical one (where OEO conversion

would only need to take place at source and destination nodes). These OEO

conversions are one of the primary energy requirements in switch operation,

which as a whole (as noted previously) can account for up to 50% of all DC

energy costs Kamiya, 2022.

Port Bandwidth vs Port Density: Generally the required bandwidth per

switch increases with the tier number. Intuitively, this is because higher tier

switches are accessible by a larger number of servers for communication than

lower tier ones. In this regard it would be desirable to have switches with

more ports that support larger bandwidth in the higher tiers. Commercially,

however, there is a general compromise between port density (how many

ports there are on a single switch) and the maximum bandwidth at each port,

where generally the highest bandwidth switches have a lower port density

than lower bandwidth ones cisco.com, n.d.

As bandwidth requirements in the higher tier increase, a scalability lim-

itation emerges from this compromise. As higher bandwidth is required,

the upper tiers must be built with lower port-density switches that sup-

port this required bandwidth. As such, more switches (and possibly tiers)

are required to establish full connectivity throughout the DC. The de�cits

of this are increased cost (since more switches must be bought and main-

tained); higher complexity networks (more �bre must be bought and main-

tained/replaced); greater maximum communication latency due to longer

worst case path lengths and greater energy costs as required to operate a

14 Chapter 1. Introduction

larger number of switches.

Non-Deterministic Latency and Large Scale Applications: In typical packet

forwarding paradigms such as BGP Caesar and Rexford, 2005 present in DCs,

there can be no deterministic guarantee of the time taken for a packet to

reach is destination from its source. For some cases such as video streaming,

where buffering of video content allows for some mitigation of this effect on

the user's experience, this is not signi�cantly important. However, as noted

above, large scale applications which run concurrently on a large number of

separate servers are increasingly common, particularly in the context of large

scale ML models that are deployed on Cloud DC systems. In scenarios such

as these, unpredictable and/or signi�cant latency is undesirable.

Firstly, the runtime of applications will be increased when latency is high.

For example - in line with the problem addressed in section 6.8 - if task B in

some distributed application can not run until it has received the output of

task A, where A is running on a different server to task B, then latency be-

tween A and B will increase the runtime of the application which may not

be able to continue until operation B has completed. Compared to when

run on a single server, where very low latency (� O(� 10)ns) and high

bandwdidth (� O(Tb/ s)) communication exists between different resources

components (e.g. CPU RAM etc), the EPS switches in a DC network have a

comparatively higher latency (O(10)ms �) and lower bandwidth of commu-

nication (O(� 100Gb/ s)). Therefore directly distributing applications across

numerous servers is not feasible, and instead distribution paradigms such as

MapReduce (for distributed data base activities Dean and Ghemawat, 2004)

must be designed which divide applications into smaller server-local ones

where periodical communications patterns between all relevant servers is

used to maintain synchronisation through the application's runtime.

1.3. Data Centre Networks and Scalability Challenges 15

Similarly, both the size and the unpredictability of the latency can in-

crease costs for both DC operators and users. From an operators perspective,

signi�cant application overhead due to network latency means more time

spent whereby server resources are unavailable for allocation since they are

reserved for the remaining tasks in the application, but not actively in use as

the application is bottlenecked by some network latency between non-local

tasks. In the case of IaaS businesses, this cost will be passed to the user who

will now incur greater server-rental costs than is ultimately necessary. Sim-

ilarly, it is more dif�cult to plan (both for operators and users) if it is not

guaranteed how long a particular task will take. This means, for example,

that users of Cloud resources may have to provision more resources than re-

quired to account for the possibility of unpredictable application overhead.

Resource Ef�ciency and Energy Requirements: Given that (as stated above)

it is not possible to run applications directly across numerous servers, a re-

source fragmentation phenomenon is encountered. Consider a hypothetical

example where 100% of the CPU and 0% of the memory is used on server

A, and 0% of the CPU and 100% of the memory is used on server B. Across

these two servers, there is in fact a full server's worth of CPU and memory

resources. However, since direct distribution of applications across servers

is not possible, a new task requiring some amount of CPU and memory can

not exploit this signi�cant resource availability. As such the new task must

be run on an empty server C. When totally unused, servers can be put into a

very low energy sleep state, but this is not possible if the server is in use, even

if at very low utilisation. As such the requirement to operate a new server at

very low utilisation rather than use the already active ones incurs a greater

energy penalty than if inter-server resource distribution was possible and

the resources could be extracted from the already operational servers Yin,

16 Chapter 1. Introduction

Liu, and Jin, 2020. This is similar to the resource fragmentation problem en-

countered when running multiple applications on a single server, which was

solved by the virtual machine (VM) computing paradigm Li, Li, and Jiang,

2010, where in this case the framing of the problem is extended to account

for mutliple servers resources rather than just one.

In�exible End-Node Communication: Different end-node devices (e.g. CPUs,

GPUs,s, HMCs etc) can in be built around different I/O standards such as se-

rial vs parallel, or different data rates. The EPS switches typically used in

DCs have a static bandwidth per port. Similarly, they are also limited to elec-

tronic binary information modulation formats. This network-level restriction

imposes in�exibility on the end-node devices. If new devices with higher

bandwidth requirement than currently supported by the EPS switches are to

be used, the entire network infrastructure must be replaced in order to ac-

count for this requirement. Similarly, more data ef�cient formats available

in the optical domain such as QPSK can not be truly exploited as they will

ultimately have to be converted to binary at each intermediate hop in the net-

work thus undermining the data density advantages during transmission.

Finally, the available communication protocols that devices can use are also

limited by what is supported by the EPS devices used in the network.

1.4 Scaling Data Centres with Optical Networks

All-optical networks, speci�cally optically circuit switched (OCS) networks,

have properties that are desirable in the context of the aforementioned issues

regarding scalability. Firstly, optical circuits are passive with respect to band-

width and communication protocol and modulation format. This means that

not only can switches be more bandwidth scalable (since bandwidth-per-port

can be arbitrarily high, even at high port counts) but also end-node devices

1.4. Scaling Data Centres with Optical Networks 17

are free to maintain whatever communication standards they require. More-

over, latency between end-nodes connected by an optical circuit is minimal

and deterministic. Given that the optical circuit is passive, the latency is sim-

ply the time taken for light to travel between the two points within a �bre,

followed by any I/O overhead associated with the end-node devices. Addi-

tionally, the nature of circuit switching is to temporarily reserve a path for a

particular communication instance. In this way, latency in OCS networks

is deterministic, avoiding the overhead penalties that can be experienced

in EPS networks. Finally, an optically passive circuit constructed within a

recon�gurable optical network does not require intermediate OEO conver-

sions, nor does it require signal boosting at the order of distance relevant to

DCs. This means that the network effectively only consumes extra energy

during recon�guration, but not during an individual transmission event.

In this regard, OCS systems have been considered as a possible alterna-

tive architectural basis for future DC network infrastructure that could very

well overcome the aforementioned scalability challenges increasingly faced

by contemporary DCs. As relevant to this thesis, two particular ways that

optical networks could be used for DC networks relate to 1. packet-timescale

re-con�guring OCS networks supporting standard DC workloads in a more

scalable manner Benjamin et al., 2017; Benjamin et al., 2020; Zervas and Ben-

jamin, 2019 (discussed in chapter 4); 2. long-lived recon�gurable optical

circuits supporting composable resource pools distributed over numerous

servers Bielski et al., 2018; Mishra, Benjamin, and Zervas, 2021; Mishra, Ben-

jamin, and Zervas, 2020; Yuan et al., 2018; Zervas et al., 2017 (discussed in

chapters 5 and 6). Each of these paradigms, however, encounter various op-

timisation problems in the course of system design, and solving these prob-

lems best as possible is essential to be able for the bene�ts of these systems

to manifest at the scale of modern DCs.

18 Chapter 1. Introduction

1.5 Research Problem

1.5.1 Optimisation challenges in OCS DC system design

As will be detailed more speci�cally in chapters 4, 5, 6, various optimisation

challenges are encountered as the aforementioned systems are designed and

operated. The fast-recon�guring OCS networks supporting more bandwidth

scalable DCs as described in Benjamin et al., 2017; Benjamin et al., 2020; Ot-

tino, Benjamin, and Zervas, 2022, for example, require a low cost and ultra-

low latency (� ns) re-con�guring wavelength switch capable of supporting

a large number of any-to-any wavelength channels. As will be seen, this re-

quires component-level optimisation to ensure that switch recon�guration

times can consistently meet this constraint, as well as ef�cient design. On the

other hand, the recon�gurable OCS networks supporting remote and com-

posable resource pools must co-allocate both server and network resources

to requests, encountering an NP-hard combinatorial optimisation problem

that must be solved at the scale of DCs (� 1000 nodes). Additionally, the

optical switches in this context must recon�gure as fast as possible (to min-

imise switching overhead) whilst incurring minimal optical loss (to ensure

maximal bandwidth), as well as be built cheaply to ensure that they can be

economically integrated into large Cloud-scale architectures Poutievski et al.,

2022a.

1.5.2 Data-Driven Optimisation with Arti�cial Intelligence

In the kind of real-world optimisation scenarios referred to above and ad-

dressed throughout this thesis, analytical or exhaustive methods are inap-

propriate. For example, analytical or simulation based solution �nding can

be applicable if a near-perfect model or simulation of some device or sys-

tem is available. However, as relevant to chapters 4 and 5, this is often not

1.5. Research Problem 19

feasible in reality since theory-derived models are often not able to account

for the variability of devices or systems as they actually occur in the real

world. Similarly, while exact methods can in principle be applied to net-

working problems such as multi-routing or resource allocation (as in chapter

6), in real world systems the reality of such problems is typically that they

are de�ned on too large of a network to be tractable in such schemes, and are

also often de�ned in unpredictable environments where exact solutions can

not be clearly de�ned.

Generally, �nding solutions to optimisation problems in reality requires

the design and implementation of some heuristic. A heuristic refers to some

method of solving a problem which, while not generally optimal, is feasibly

implemented and provides a strong likelihood of �nding a solution which is

good enough in the context of the underlying requirements. These heuris-

tics are typically designed by someone with considerable knowledge of the

underlying problem, where it is expected that their knowledge of the sys-

tem will motivate reasonable heuristic design. This design process has many

successful outcomes, such as the the Dominant Resource Fairness algorithm

Ghodsi et al., 2011, who's principles remain prominent in DC cluster man-

agement. However, ultimately these design processes are biased by the un-

derlying beliefs of the designer as well as limited to their comprehension.

For example, designing a route �nding algorithm that chooses the next best

hop on the basis of 5 features is feasible. However, if there are 5000 features

where each or some combination of which may be critical in making such a

decision, human guided design is unlikely to be able to reasonably account

for this much information. Similarly, assumptions are embedded not just in

the desirable outcomes (i.e. what sort of things should be prioritised when

�nding a solution) but also the context in which this solution will operate.

For example, designing an automation heuristic for cars driving in a city also

requires some underlying knowledge of how the dynamics of that city are

20 Chapter 1. Introduction

de�ned. Where a precise model of such a system is not available to use when

testing an algorithm (which in this example it would not be), certain assump-

tions must also be made about the conditions of the problem to which this

heuristic will be deployed. As such, the testing during the design process

may be unknowingly limited and performance may not transfer precisely to

the real system.

Arti�cial intelligence (AI) based solutions, where solutions are learnt di-

rectly from data rather than hand-crafted, pose a means of not only �nding

solutions that are less restricted by any individual's assumptions about the

underlying problem, but are also able to exploit a more arbitrary quantity

problem features when doing so. Numerous methods fall in the category of

AI, however more recently this terminology is often used to refer speci�cally

to or DL technologies. The work in this thesis focuses on how these kinds

of methodologies - spanning deep reinforcement learning (DRL), deep geo-

metric learning and swarm optimisation in particular - can be deployed in

meaningful ways in the context of designing and operating large scale opti-

cal computer networks, which can in turn provide a means of tackling fast-

approaching scalability challenges faced by modern DC systems. Through

various demonstrations spanning all of experimental, theoretical and com-

mercial domains as well as addressing problems in the component, device

and system level, the work presented shows clearly that signi�cant advan-

tages are found from the application of these methods in areas such as de-

vice performance, product operation and manufacturing ef�ciency and sys-

tem scalability. It is concluded through these various outcomes that these

future systems will most feasibly and effectively be designed and built by

leveraging AI where optimisation problems are encountered. Moreover, the

IP associated with the work detailed in chapter 5 is currently under license

to a market-leading optical switch manufacturer where it's use will provide

1.5. Research Problem 21

product performance improvements as well as manufacturing ef�ciency ad-

vantages. As such, the central argument of this thesis is justi�ed not just

experimentally but also in a real commercial environment.

22 Chapter 1. Introduction

1.6 Publications, Patents and Media

1.6.1 Publications

Note: * == equal contributions.

Discussed in Thesis

Parsonson et al., 2020b:”Optimal control of SOAs with AI for sub-nanosecond

optical switching" ; Christopher Parsonson*,Zacharaya Shabka*, Konrad Chlupka,

Dennis Goh, Georgios Zervas; Journal of Light Technology (2020); DOI:10.1109

/ JLT.2020.3004645.

Gerard et al., 2021:”AI-optimised tuneable sources for bandwidth-scalable,

sub-nanosecond wavelength switching " ; Thomas Gerard, Christopher Par-

sonson, Zacharaya Shabka, Benn Thompson, Polina Bayvel, Domanic Lav-

ery, Georgios Zervas; Optics Express (2021); DOI:10.1109/10.1364/OE.417272.

Shabka and Zervas, 2021:”Resource Allocation in Disaggregated Data Cen-

tre Systems with Reinforcement Learning" ; Zacharaya Shabka, Georgios

Zervas; NeurIPS 2021 (ML for Systems Workshop); arXiv:2106.02412.

Shabka and Zervas, 2022:”Network Aware Compute and Memory Allo-

cation in Optically Composable Data Centres with Deep Reinforcement

Learning and Graph Neural Networks" ; Zacharaya Shabka; Journal of Op-

tical Communications and Netowrking (2023); arXiv:2211.02466.

Parsonson et al., 2023”Partitioning Distributed Compute Jobs with Re-

inforcement Learning and Graph Neural Networks" ; Christopher Parson-

son,Zacharaya Shabka, Alessandro Ottino, Georgios Zervas; Under Review;

1.6. Publications, Patents and Media 23

arXiv::2301.13799.

Shabka et al., 2022:”One-shot, Of�ine and Production-Scalable PID Opti-

misation with Deep Reinforcement Learning" ; Zacharaya Shabka, Michael

Enrico, Paulo Almeida, Nick Parsons, Georgios Zervas; Under Review; arXiv:2210.13906.

Not Discussed in Thesis

Alkharsan et al., 2022: ”Optimal and Low Complexity Control of SOA-

Based Optical Switching with Particle Swarm Optimisation" ; Hadi Alkharsan,

Christopher Parsonson, Zacharaya Shabka, Xun Mu, Alessandro Ottino, Geor-

gios Zervas; European Conference on Optical Communications (2022).

Nevin et al., 2022: ”Techniques for applying reinforcement learning to

routing and wavelength assignment problems in optical �ber communi-

cation networks" ; Josh W. Nevin, Sam Nallaperuma, Nikita A. Shevchenko,

Zacharaya Shabka, Georgios Zervas, and Seb J. Savory; Journal of Optical

Communications and Netowrking (2023).

1.6.2 Patents

Shabka, U.K. Patent GB2210433.5, 2022:”Determining PID Parameters Us-

ing a Deep Reinforcement Learning Model" ; Zacharaya Shabka Georgios

Zervas; Patent Number GB2210433.5 (�led 2022).

• In the course of the PhD the above patent was commercially licensed to

Huber+Suhner Polatis.

• As part of the licensing agreement, the author of this thesis developed a

production-tool implementation of the method described in the patent

for the company use in the manufacturing of piezo-actuator based op-

tical switches.

24 Chapter 1. Introduction

1.6.3 Media

Department, 2022: ”Leading UK photonics company licenses PhD student's

deep learning technology" ; UCL EEE Press Release.

Magazine, 2020a:”Why the future needs optical data centres" ; IT Pro Mag-

azine.

Magazine, 2020b: ”Crunch Time: How our insatiable demand for infor-

mation is driving innovation in data centre technology (November cover

feature)" ; The Engineer Magazine (October Cover Feature).

25

Chapter 2

Background & Theory: Data

Centers and Networks

2.1 Optical Data Centre Networks and Switches

2.1.1 Comtemporary Data Centres

Modern DCNs have been historically (and are to this day) designed in some

variation of a tier-based topology. A tier-based topology in general refers to

a network architecture where end-nodes (servers, in the case of DCs) can

be thought of as being interconnected by layers of switches. Switches in

each distinct layer provide interconnectivity between different sub-groups

of servers, where the sub-group size accessible by a switch increases as its

tier number increases. For example, as simply visualised in Fig. 2.1, the

lowest tier switches will be directly connected to some group of servers, as

well as connected upward to one or more switches in the next highest tier.

These switches can then connect to all of the servers connected to all of the

lower tier switches which are directly connected to them, and so on. In this

way, smaller clusters of servers interconnected by a low tier switch can still

in principle communicate with any other server in the entire data centre by

cascading their messages upward and then downward through the tiers of

switches.

26 Chapter 2. Background & Theory: Data Centers and Networks

This tier based (sometimes described as tree based) design premise has

emerged as the standard for computer network topologies due to several ad-

vantages. When a very large number of commercial switches are deployed

and are under constant heavy use, provisioning for the inevitability of node

failure is essential. Moreover, large scale failures (e.g. a vertical slice of the

whole data centre) do not fundamentally disrupt the rest of the system be-

yond the remaining operational devices being required to support additional

loads. Since there is redundancy in the inter-tier connectivity there is no sin-

gle point of failure in the network. Redundancy also means that multiple

paths exist between two nodes, reducing the possibility of blocking due to

congestion. Additionally, the tier-structure connectivity patterns mean that

the amount of connectivity provisioned by a single node is limited, and so

cheaper, lower bandwidth commodity switches can in principle be used and

stacked in the tier structure to establish a large amount of total bandwidth

within the network. Of particular importance in the context of data centres is

scalability. Tier-based architectures can be easily scaled to incorporate more

servers. Since all servers are fundamentally connected via the highest tier,

more servers and switches can be added so long as there exists some avail-

able ports in that tier so that the new servers can be interconnected to all

others. Finally, tier-based architectures provide in principle a low and pre-

dictable latency. This is because the maximum distance between two servers

in an N tier topology is 2 N hops (N hops from server to top tier, and N hops

back down again).

Common contemporary architecture paradigms in data centre networks

include the Clos topology Clos, 1953, spine-leaf “Cisco Data Center Spine-

and-Leaf Architecture: Design Overview” 2016 or fat-tree Al-Fares, Loukissas,

and Vahdat, 2008. Generally speaking, architecture designs have evolved

over time alongside network switch design to enable higher bandwidth and

2.1. Optical Data Centre Networks and Switches 27

greater network scalability. As the prominence of large scale internet plat-

form based business has grown (with particular emphasis on Cloud services

and social media platforms), the economics of scale within this business do-

main has led to so called `hyperscale' DCs. Following this trend, several

companies have more recently sought to design their own DC architectures

and/or switches in order to capture the bene�ts of vertical integration and to

be better able to account for their own unique and very heavy DC demands

Facebook, 2014; Microsoft, 2017; Facebook, 2015; Facebook, 2017.

2.1.2 Optics in Data Centres

As bandwidth and latency limitations at greater scale mount as described in

chapter 1, increasing interest in the value of optical network backbones in

DCs has grown. Some proposals have been hybrid architectures, which use

both electronic packets and optical circuits to improve bandwidth scalability.

Prominent theoretical and proof-of-concept work showed greater scalability

when optical circuits are incorporated into otherwise electronically packet

switched data centres to interconnect server nodes. Following this, Cloud-

scale data centres have been shown to bene�t signi�cantly from incorporat-

ing OCS in the highest tiers of the network in real industrial scale systems

at a prominent search and Cloud service company Poutievski et al., 2022a;

Urata et al., 2022.

Entirely optical DCs have been proposed and would in principle be able

to provide greater bandwidth scalability, lower and deterministic latency

and reduced energy consumption. Some architectures have been proposed

which support packet-scale recon�guration in the optical domain, meaning

that typical workloads and communication patterns in modern DCs could be

handled Benjamin et al., 2017; Benjamin et al., 2020; Ballani et al., 2020. Sim-

ilarly, a fast switching architecture speci�cally designed for ef�cient training

28 Chapter 2. Background & Theory: Data Centers and Networks

of large ML models could provide considerable speedup in training time due

to scalable and fast message passing operations enabled by the all-optical

network backbone Ottino, Benjamin, and Zervas, 2022.

Optical communication has also been shown to open up the possibility of

fully remote resource pooling Mishra, Benjamin, and Zervas, 2021; Mishra,

Benjamin, and Zervas, 2020; Bielski et al., 2018. For applications that are too

large to run on a single server, this would mean that rather than having to

split the application into sub-applications and run each on separate servers,

a single inter-server resource pool could be established and the application

run directly on this. As will be discussed later in chapter 6, this can allow for

much more ef�cient resource utilisation.

Each operational approach requires different switching characteristics.

The fast switching architectures require optical circuit recon�guration at the

order of nanoseconds. While no such devices are commercially available,

there have been numerous proof of concept demonstrations of this feature

and it is in principle possible Parsonson et al., 2020b; Ballani et al., 2020;

Gerard et al., 2021. This is discussed further in chapter 4. Slower switch-

ing devices are commercially available and more suitable for the hybrid and

resource-pooling architectures discussed Urata et al., 2022; polatis.com, n.d.

However, it should also be noted that these devices are somewhat expensive

in the context of mass deployment in large scale computer networks, so while

these architectures are technologically possible there are still some economic

concerns. This is discussed more in chapter 5.

2.2 Components for Optical Switching Devices

Much of the work in this thesis is contextualised by optical switching archi-

tectures, and the associated optimisation required to make certain compo-

nents in these architectures work best as possible for the given application.

2.2. Components for Optical Switching Devices 29

FIGURE 2.1: Visualising a simple 3-tier/tree based data centre
topology. Tier-1 switches connect downward to a set of servers.
Tier-2 switches connect downward to two tier-1 switches. Tier-
3 switches connect down to all tier-2 switches. As such, by fol-
lowing the path tier-1 ! tier-2 ! tier-3 ! tier-2 ! tier-1, any-

to-any server interconnectivity is established.

This section will detail the two primary components of relevance in the

context of the work presented in this thesis; SOAs and piezoelectric actua-

tors. It will also refer to the kind of optical switching architectures that are

designed to use these devices. Note that the purpose of this thesis is not

primarily to introduce new optical switching architectures, so discussions of

these architectures will be limited, but are included to provide greater con-

text for the work presented and components described.

2.2.1 Semiconductor Optical Ampli�ers

Component Basics

Semiconductor optical ampli�ers (SOA) are p-n junction based devices which

are designed to exploit electronic excitation and stimulated emission in order

30 Chapter 2. Background & Theory: Data Centers and Networks

to amplify signals. The general structure of an SOA is to place a so called `ac-

tive gain region' in the middle of a p-n junction. The p-n junction ensures

that current can only �ow in one direction across the junction. The active

gain region can be viewed simply as a material with two electronic energy

bands separated by a band-gap. Consider a scenario where some material

has two energy bands where the highest energy level in the lower band is E1

and the lowest energy level in the higher band is E2 such that DE = E2 � E1

is the energy gap between the two bands. Electronic excitation by photons

refers to the process of an interaction between an electron at energy level E1

and an incident particle (photon or electron) with energy E � DE. In this

process the incident particle collides inelastically with the electron and an

amount of energy DE is `absorbed' by the electron. The electron ends up in

a higher energy state E2 and the incident particle has energy E � DE. Sim-

ilarly, stimulated emission refers to the interaction of an electron at energy

level E2 and an incident photon with energy DE interacts with the electron.

In this scenario the photon stimulates the electron to fall to a lower energy

level E1 and emits a photon with energy DE as it does so. After this interac-

tion there are two photons with energy DE and the electron is in state E1 so

energy is conserved, and the newly emitted photon has the same momentum

and polarisation as the original incident one.

Population inversion refers to the moment when there are more electrons

in the higher and less stable energy band than there are in the lower more

stable one. When there are more high energy electrons in the gain region

to which photons are incident, stimulated emission becomes more proba-

ble than excitation since there are more high energy electrons as well as low

2.2. Components for Optical Switching Devices 31

energy `holes' (regions where electronscouldbe, which can be treated as pos-

itively charged electrons) that can interact with incident particles. Since elec-

trons can excite other electrons, a suf�ciently high current across the gain re-

gion can suf�ciently excite electrons in that region to cause population inver-

sion, since the high energy electrons in the current interact with the electrons

bound in the ampli�er material as the aforementioned incident particle. The

higher the current, the higher the average energy of the incident electrons

and thus the higher the probability of an excitation interaction taking place.

As such, higher current corresponds to a greater degree of population inver-

sion. Note that there is also a saturation point where every free energy level

in the higher energy band is occupied by excited electrons and so no further

excitation will take place.

An SOA is operated by applying a current (often termed `drive signal')

across the gain region, leading to population inversion. While this electri-

cal signal is controlled, photons that are incident on the SOA will be corre-

spondingly ampli�ed (when the current is high) or not (when the current is

low). As such the ampli�cation pro�le over time can be controlled by con-

trolling this driving current. A range of energy transitions between EA and

EB with incident particle of energy DE exist as long as EA � E1, EB � E2

and DE � EB � EA . Ampli�cation is a consequence of cascading spontaneous

emission. After an initial stimulated emission event due to a single incident

photon, there are now two photons (the original incident one and the one

created by simulated emission) which can now themselves each induce a fur-

ther simulated emission event such that each such event doubles the number

of photons. As such up to the saturation point, when there are no further

available energy state transitions available for a further stimulated emission

event, an input source of photons will be ampli�ed given a suf�cient driving

signal and the particular traits of the SOA (bandwidth, gain saturation etc).

The aforementioned processes are visualised in Fig. 2.2.

32 Chapter 2. Background & Theory: Data Centers and Networks

FIGURE 2.2: Simple visualisation of the structure of a SOA de-
vice, along side how both excitation and stimulated emission
works given a energy structure where E1 and E2 are the energy
levels of the top of the low-energy and and the bottom of the
high-energy band respectively, and the yellow arrows denote

incident particles with energy DE = E2 � E1.

Finally, SOAs also output noise due to spontaneous emission . This pro-

cess is simply the random occurrence of an electron dropping down from

energy level E2 to E1 and emitting a photon with energy DE = E2 � E1 in the

process. In an active gain medium, these spontaneous emissions can them-

selves be ampli�ed (by inducing stimulated emission) leading to ampli�ed

spontaneous emission (ASE) noise.

Relevance to Optical Switching

SOAs generally have a �at gain pro�le with respect to the incident photon's

wavelength (so long as it is within its operational bandwidth). This makes

them usable with a wide range of wavelengths which is relevant in the case

of wavelength switching devices since large number of wavelengths can be

used for distinct channels in a wavelength division multiplexed (WDM) net-

work without some channels being ampli�ed signi�cantly more than others.

2.2. Components for Optical Switching Devices 33

SOAs also have high extinction ratio (the difference in optical output

when the driving signal is on vs off) and can have off-on times (the time

taken for the optical ampli�cation to respond to a step driving signal) that

operate at the order of nanoseconds. As such they are also useful for op-

tical gating and so can be incorporated into optical switching architectures,

in particular those with O(ns) (as will be seen in chapter 4). Moreover, in

this context, SOAs can be gated at the nanosecond timescale which further

compels their use in optical switching when switching time requirements are

extremely low (also discussed in chapter 4).

2.2.2 Piezoelectric Actuators

Component Basics

Piezoelectricity refers to a property of certain materials which manifests a

relationship between their electric and mechanical properties. The piezoelec-

tric effect refers to when a material's electric polarisation direction and/or

strength changes in response to an applied mechanical force. Similarly, the

reverse piezoelectric describes the process of some mechanical process in a

material is induced by an applied electric �eld. In effect, piezoelectric ef-

fects refer broadly to a conversion between electrical and mechanical energy

in certain materials. Both the regular and inverse piezoelectric effect are ob-

served in piezoelectric materials. Finally, in this effect the electric �eld and

mechanical stress are related such that greater electric �elds correspond to

greater mechanical stress (and vice versa), where the speci�c relationship is

determined by the nature of the material and how it is used in some device.

A piezoelectric actuator is a generic term for a device which exploits the

inverse piezoelectric effect in some way to actuate something. In general,

there are many architectures such as contracting actuators, shear actuators or

34 Chapter 2. Background & Theory: Data Centers and Networks

tube actuators of piezoelectric actuation that are commonly used across nu-

merous industries. As a general principle, piezoelectric actuation consists of

�xing a piezoelectric object within an otherwise non-piezoelectric structure

in some fashion, such that when an electric �eld is applied to the piezoelec-

tric material it imposes a mechanical effect on the rest of the structure. A

simply visualised example is shown in Fig. 2.3, where a piezoelectric object

is attached to a non-piezoelectric object along their long axes. A horizon-

tal mechanical squeeze is induced in the piezoelectric material by applying

a vertical electric �eld across it. Since this piezoelectric object is attached

along the horizontal axis to a non-piezoelectric object, the resulting effect is

for the mechanical stress to bend the non-piezoelectric effect away from its

natural axis. In this regard, vertical actuation of the non-piezoelectric object

is achieved by applying an electric �eld across the piezoelectric material.

Generally, only very small mechanical movements (O(mm) - O(0.1mm))

are induced in piezoelectric actuators. Given that these movements can be

applied with continuous precision (by continuous modulating the strength

of the electric �eld inducing the effect), they are useful when very precise

actuation is required, such as in magnetic resonance imaging, mobile phone

cameras or (as is the context of the work presented in chapter 5) free-space

optical switching devices.

Relevance to Optical Switching

Piezoelectric actuation underlies the mechanism present in a family of market-

leading optical switching product polatis.com, n.d. Such products de�ne an

input and output optical plane by means of building a grid-array of piezo-

electric actuators separated by free-space, and where each has attached to it

a �bre and a lens at the end, where the lenses of each plane face each other.

When an actuator on each plane point towards each other (which can be done

by applying the appropriate electric �eld in each dimension of movement to

2.2. Components for Optical Switching Devices 35

FIGURE 2.3: Visualisation of a contracting piezoelectric actu-
ator (which are intuitively visualised). Mechanical contrac-
tions in the piezoelectric material induce bending in the non-
piezoelectric material attached to it. This provides a means of
continuously modulated and high precision vertical actuation.

36 Chapter 2. Background & Theory: Data Centers and Networks

the relevant actuators) light that is exiting the �bre on the input plane (via

the lens at its end) will couple into the �bre attached to the relevant output

actuator via its lens. As such these actuator + �bre + lens devices act as in-

put and output ports which can be recon�gured to point towards each other

by means of applying electric �elds to them. This premise is elaborated in

chapter 5.

37

Chapter 3

Background & Theory: Arti�cial

Intelligence

3.1 Swarm and Evolutionary Optimisation Meta-

heuristics

In this section several swarm/evolutionary algorithms are described. Later

in the thesis (namely in chapter 4) these algorithms are applied to an opti-

misation problem where the non-generic project-speci�c implementation de-

tails of these algorithms are described. On the other hand, here a generic

explanation of the working principles and intuition behind these methods is

given.

3.1.1 Ant Colony Optimisation

ACO is a swarm optimisation algorithm that derives its process by analogy

to how colonies of ants collectively �nd and reinforce strong paths to food in

nature. It was originally conceived in the context of routing problems Col-

orni, Dorigo, and Maniezzo, 1991. More generally, ACO can be considered

as a swarm optimisation algorithm which can be applied to discrete objects

or a decision consisting of a series of discrete intermediate decisions. The

algorithm is inspired by the way ants �nd food-stores away from the colony,

38 Chapter 3. Background & Theory: Arti�cial Intelligence

where pheromones are used to track ants previous paths followed by ants

such that when one ant �nds a short path to some food, all other ants can

easily follow that same path and ef�ciently return food to their colony.

More formally, consider a set of distinct states s 2 S, a set of ants which

can visit these statesa 2 A and a function T : S ! S which other states

can be visited given that you are currently in a particular state. Ants move

from state to state until some termination criteria is met (e.g. the ant has suc-

cessfully reached its target destination in a routing problem), and the set of

(possibly ordered) states visited by an ant before termination can be referred

to as that ant's tour (i.e. ta = f s0, s1, ...,sN g is the set of states visited by ant

a that terminated after N steps). A cost function C : t ! R can be de�ned to

determine the value of a particular tour that an ant has taken (e.g. for routing

this will typically be the total distance). This problem can be understood as

a graph, where each state is a vertex in the graph and vertices share an edge

(i.e. statesx, y 2 S share an edge if y 2 T(x)).

ACO de�nes two properties at each edge (x, y) in this graph; attractive-

ness (hxy) and pheromone (t xy). Attractiveness refers to some inherent value

associated with that edge. For example, typically in routing problems with

some distance based optimisation criteria, hxy is simply the length of the edge

(x, y). In some cases (including the work presented in chapter 4) there is no

such notion of inherent value and so simply hxy = 1 for all edges (x, y).

pheromone is the primary mechanism in ACO which is used to both rein-

force good paths as well as attempt to avoid local minima or converging on

paths too quickly in the optimisation process. Finally, for each edge in the

graph (x, y), the probability of an ant transitioning from state x to state y is

px,y =
t a

xyhb
xy

å y02 T(x) (t a
xy0h

b

xy0)
(3.1)

3.1. Swarm and Evolutionary Optimisation Metaheuristics 39

where a � 0 and b � 1 are tunable values used to balance inherent vs.

pheromone-based value.

The algorithm proceeds by iteratively allowing each ant to independently

follow a path, where each state transition is determined by Eq. 3.1. When

each any has �nalised a path, the following process (termed `pheromone up-

date`) is undergone in order to modify the `strength' (in relation to their tran-

sition probability) of each edge in the graph based on how good the �nal

paths were of ants who traversed those edges in their path. The update is

done as

t xy (1 � r)t xy + å
a2 A

Dt a
xy (3.2)

where

Dt a
xy =

8
>><

>>:

Q
C(ta) , if (x, y) 2 ta

0, otherwise
(3.3)

This process (exploration ! pheromone update) is repeated for some tun-

able number of times until either no compelling path can be found, or there is

a convergent best path/set of paths that is eventually followed consistently

by all ants.

The intuition behind this is as follows. Edges followed by ants that found

good total paths should likely be reinforced (higher transition probability)

since they may lead to better rewards. However, it is not desirable for pheromone

to immediately build up on the �rst paths that happen to be the best of the

initially mostly random exploration, since this will lead to local minima very

quickly. As such, each time some new pheromone is deposited as per Eq. 3.2,

the old store of pheromone `evaporates' (decreases) by a factor(1 � r) where

r is also some tunable parameter. These updates are also balanced with the

baseline value of each edge determined by hxy if relevant.

40 Chapter 3. Background & Theory: Arti�cial Intelligence

3.1.2 Particle Swarm Optimisation

PSOis a swarm optimisation algorithm that is inspired by the movement of

birds as they move in �ocks. It models the optimisation process as a set of

vectors which can be mapped to values (typically some value that should be

minimised during optimisation), where each iteration the vectors move posi-

tion in relation to their own and the groups best known position. It draws an

analogy from collective bird �ight where numerous birds �y independently

with respect to some intended destination, but also relative to each other

such that their movement is approximately coordinated and possible more

optimal (e.g. with respect to avoiding predators) than if they were �ying

individually.

More formally, PSO de�nes a set of particles (P = f 1, 2, ...,Ng) where each

have an associated position and velocity in N dimensions, 8p 2 P, 9x̄p, v̄p 2

Rn . We also de�ne a cost function c : Rn ! R which maps positions to scalar

values. Position i is considered better than position j if f (i) < f (j) since PSO

typically frames optimisation problems as cost minimisation (rather than

maximisation). Finally, for each particle p 2 P their best position b̄p refers

to the position that particle has visited which yielded the lowest cost, and

the global best ḡ refers to the best position visited by any particle in the full

set P.

PSO starts by randomly initialising the position of each particle. Follow-

ing this, each particle p 2 P has its position x̄p iteratively moved in the di-

rection of its velocity, who's value is calculated based the current values of

ḡ and b̄p for that particle. This process is applied to each particle simultane-

ously before a new value for ḡ, as well as b̄p for each particle, is calculated

based on these new positions. The velocity for particle p 2 P is calculated as

v̄p wv̄p + f prb(b̄p � x̄p) + f grg(ḡp � x̄p) (3.4)

3.1. Swarm and Evolutionary Optimisation Metaheuristics 41

and each particles position is updated like

xp xp + vp (3.5)

where tunable parameters w is the `inertia weight`, f p and f g are the cog-

nitive and social coef�cients respectively (quantifying to how strongly the

new position is in�uenced by a particles own and global best position in a

given iteration). The variables rb, rg � U(0, 1) are randomly chosen to in-

duce some random exploration into the particles movement procedure.

The particle position update is performed simultaneously for all particles.

Following this a new global best and particle-speci�c best are determined

based on these new positions. This total process is repeated iteratively until

some stopping criteria is met (e.g. the global best position stops improving

signi�cantly after some number of iterations).

3.1.3 Genetic Algorithms

Genetic algorithms (GA) are a family of algorithms referred to as evolution-

ary algorithms. They �nd solutions to problems by initialising a family of

candidate solutions, and then evolving those solutions iteratively based on

the quality of the population until some convergent best solution is found.

These methods are clearly inspired analogously by the way DNA evolves in

populations of living things.

More formally, GAs de�ne an initial population of individuals g 2 G,

where each individual is a candidate solution and are typically randomly

generated. Generally, a solution is represented by a string or some equivalent

(e.g. an array) as in�uenced by the character-strings which constitute genes

in DNA. In many problems (including the one discussed in chapter 4) this can

be represented as an array of either discrete or continuous numerical values,

so this is how individuals will be referred to in this thesis and the rest of this

42 Chapter 3. Background & Theory: Arti�cial Intelligence

description (i.e. g = [g0, ...,gn] if populations have n features/dimensions).

There must also be de�ned a �tness function f : G ! R which maps in-

dividuals to scalar values and where the function is typically de�ned such

that higher �tness values corresponds to better candidate solutions. GAs

evolve populations of solutions by iterating over the processes �tness eval-

uation ! selection ! crossover ! mutation. Fitness evaluation is simply

the process of calculating the �tness value for each member of the current

population. Following this, the selection process generates a new set from

the population in a probabilistic manner. This will typically be done on the

basis of their �tness, where higher �tness corresponds to a higher probability

of being added to the new group and where sampling is typically done from

the original population with replacement so that stronger individuals have a

higher chance of appearing multiple times in the selected subset (e.g. proba-

bility of g 2 G being selected,pg = f (g)
å

g
02 G

f (g0)
). Crossover randomly samples

pairs of individuals from the selected and implements a partial crossover of

their genes. Typically this is done by randomly selecting a pair of individuals

from the selected set, randomly selecting a crossover point (i.e. an element

in f 1, ...,ng for genes with n dimensions as exampled above) and swapping

the gene sub-string of each individual that appears after this point. For ex-

ample, if two individuals who represent solutions as a vector with length 4

are chosen for crossover where the crossover point is chosen as 2, then this

means that the last 2 elements of each individuals vector will be swapped

to create two new individuals which replace the original two. The process

here is designed to mimic mating in populations of DNA-based organisms.

This procedure is typically done by choosing pairs without replacement until

each member of the selected population has undergone a crossover process.

Mutation is then applied to each individual on an element-by-element basis.

This applies some probabilistic modi�cation to the value at each dimension

of each individual. For example, if each individual encodes some binary

3.2. Deep Learning 43

state (i.e. a vector of 1's and 0's), then mutation will with some probability

p << 1 �ip the values of each element. Alternatively - and as done in the

work presented in 4 - if the values are continuous then some statistical noise

can be added to the values (e.g. sample some noise from a Gaussian distri-

bution and add the noise to the original value). GA formalism de�nes the

new population after the mutation stage as a new `generation'. GA evolves

populations over generations iteratively until some stopping criteria (e.g. the

best individuals stop improving their �tness).

3.2 Deep Learning

3.2.1 Deep Neural Networks

Deep Learningrefers generically to a ML method of appxoximating functions

using neural networks (NN) in some capacity that is typically related to clas-

si�cation, regression or decision making. The fundamental building block

of any DL pipeline are NNs - these are tensor-based mathematical structures

that use linear weighted summation combined with non-linear �lters to pro-

cess multi-dimensional input tensors. They are able to approximate arbitrary

functions Hornik, Stinchcombe, and White, 1989 and as such are potentially

useful in an incredible range of tasks spanning image classi�cation, content

recommendation, Chess, computer cluster resource management and many

more.

A NN can be viewed as a parameterised function, f (x, q) ! y, the func-

tion f takes a tensorx as input, is parameterised by parameters q and outputs

tensor y. NNs are trained by means of some objective function which gener-

ates some adjustment to the function parameters on the basis of its real and

desired output.

44 Chapter 3. Background & Theory: Arti�cial Intelligence

NNs are structured in terms of layerswhere each layer consists of a num-

ber of units. Each unit receives as input the weighted sum of the outputs of

the previous layer's units, and outputs the value of this sum after it is passed

through some non-linear function. Deep neural networkssimply refer to those

with multiple layers, as opposed to just one.

More formally, each layer, l , can be understood as a tensor/matrix with

parameters W l = å wl
i j . Given an N-dimensional input vector x, and an in-

put layer W0 with shape (M � N) of some NN, the output of the kth unit of

the �rst layer, h0, is calculated by usual matrix multiplication, W0x, followed

by passing the output through some non-linear activation function, s(x). Ad-

ditionally, a biasterm b is added to this sum, which is used analogously to

the constant term in the standard linear function expression y = ax+ b:

hl
k = s(wl

k0x0 + ...+ wl
kNxN) = s(bl

k +
N

å
j= 0

wl
kjxj) (3.6)

and more generally, for a NN with n � l , the output of the l th layer is:

h l = s(h l � 1>
W l + b l) (3.7)

While equation 3.7 is very similar to a simple linear function, the non-

linear activation function s(x), allows it to approximate non-linear functions

- otherwise a linear expression as this can only be used to approximate lin-

ear functions. Common activation functions include sigmoid(sigmoid(x) =

1
1+ exp� x), which forces any real value to be between 0 and 1, and recti�ed lin-

ear unit aka ReLU (ReLU(x) = x i f x > 0 otherwise0). Activations used in

the output layer will generally be determiend in part by the nature of the

problem. For example, the output of a sigmoid activation (0 � x � 1) can be

interpreted as a probability. When one distinct sigmoid output per possible

class is used, each of these can be interpreted as the probability of the input

3.2. Deep Learning 45

corresponding to that class. Training with loss based on this interpretation

will yield a model which should output higher values for classes which are

more likely and lower values for those which are less. On the other hand,

regression problems (e.g. predicting the value of a house) would use linear

or ReLU outputs since an explicit value must be returned in this case.

Given a data set,x = f x0, ...,xng with corresponding labels, y = f y0, ...,yng,

and assuming some kind of underlying relationship approximately describ-

ing its values, the goal of DL is to �nd a set of parameters W = f W0, ...,W l g,

often termed weightssuch that a NN, f (x,W), can be found to approximate

this relationship (i.e. f (xi ,W) = yi), accurately with respect to some sort of

predictive task such as classi�cation or regression.

3.2.2 Loss

Following from its origins in linear regression, the most common way to �nd

these weights is with a form of gradient descent. Using some sort of ob-

jective function which compares the current NNs output to the real output

observed in the data, a lossvalue can be calculated. This is typically a scalar

value that determines how close the predictions of a NN were compared to

the known values given some predictive task de�ned on a data set. Though

loss functions are �exible and can be designed precisely how the ML practi-

tioner would like, for regression and classi�cation problems there exists two

respective standard forms of loss which will be stated here.

Mean squared error(MSE) loss compares real-valued outputs and is de-

�ned as:

MSE =
1
N

N

å
i= 1

(yi � ŷi)
2 (3.8)

where N is the number of data points being tested over, yi is the real value

of the i th data point in the data set and ŷi is the NNs predicted value of the i th

data point in the data set. This very common function calculates a positive

46 Chapter 3. Background & Theory: Arti�cial Intelligence

squared distance between real and predicted outputs, and takes the average

of these distances when evaluated over the entire data set.

Categorical Cross Entropycompares multi-categorical outputs and evalu-

ates how accurately classes are being predicted. Consider a classi�cation

problem with C different classes, where each data point has a classi�cation

label vector [y0, ...,yC] where yc = 1 if the data point is in class c and yc = 0 if

it is not. Similarly, a NN outputs a prediction vector per data point [ŷ0, ...,ŷC]

where 0 � yc < 0.5 predicts that the data point is most likely to not be in

classi and 0.5 < yc < 1 predicts that it is. The categorical cross entropy loss

is de�ned as:

categorical cross entropy= �
1
N

N

å
i= 1

C

å
c= 1

yc log(ŷc) (3.9)

When the prediction is very close to 1, the log term goes to zero and as the

prediction approaches 0 it diverges towards in�nity. This means that if class i

is correctly predicted (e.g. ŷi � yi = 1 or ŷi � yi = 0 then this term is minimal

and doesn't contribute to the loss. False negatives (i.e. ŷi � 0, yi = 1) are

heavily punished, though false positives (i.e. ŷi � 1, yi = 0) are not Ho

and Wookey, 2020. In any case, this loss function is simple and rewards (i.e.

yields a smaller value) for correct classi�cation of multi-categorical outputs

and is the most commonly used function for these tasks.

3.2.3 Backpropagation

Given some loss function and a quantity of loss due to the predictions of

the current set of weights for some model, it must be determined how to

modify the values of these weights so that this loss quantity is reduced. The

backpropagation algorithmis the most standard means of computing gradients

(by how much each weight's value should be modi�ed) for deep NNs.

3.2. Deep Learning 47

This algorithm calculates gradients using the chain rule, where the deriva-

tive of the output of each unit can be computed with respect to its inputs from

the previous layer and so differentiable loss and activation functions are re-

quired. This process �rst calculates gradients for the �nal layer's weights

updates using the loss, and then in turn uses these values to calculate the

gradients for the layer before it, and so on until gradients have been calcu-

lated for every weight in every layer of the deep NN architecture. As such

the gradients are effectively `propagated' backwards through the NN model

hence the use of the name `backpropagation'. The explicit derivation of this

algorithm is involved and not relevant to the work in this thesis beyond its

standard use in the training of various DL architectures and in standard DL-

backend APIs such as Tensor�ow or Pytorch, and so is not included here.

However, a very clear generic derivation can be found in Backpropagationn.d.

3.2.4 General Use

Multi-layer, or deep NNs can account for a high level of complexity due to

the large number of weights and multi-dimensionality. By choosing a suit-

able loss function and architectural choices, NNs can (and have) been applied

to numerous complex tasks with great breadth (spanning basic cat/not-a-cat

image classi�cation, to beating the best Go player in the world by learning

the game from scratch).

Many generic architectures that go beyond the simple NNs described here

exist with strengths for different types of tasks. For example, convolutional

neural networks (CNNs) are very useful for extracting features from multi-

dimsntional data (e.g. images) and have been used extensively for image

classi�cation and generation. Recurrent neural networks (RNNs) use NNs

in an architecture that involves feedback which is designed to proces time-

series data such as sentences. These architectures have been used extensively

48 Chapter 3. Background & Theory: Arti�cial Intelligence

for translation and text generation tasks. Many more exist and these will not

be detailed here (except graph neural networks- detailed below and which

feature in chapter 6).

Furthermore, the basic training strategy alluded to here (i.e. have some

labelled data and generate gradients on the basis of how accurately a NN pre-

didcts these labels) is directly related to supervised learningtasks. The three

primary paradigms of DL include supervised learning, unsupervised learning

and reinforcement learning. All are similar in their use of DNN-based models

which learn some function on the basis of backpropagation driven weight

updates and some notion of loss. Supervised and unsupervised are simi-

lar in that they both deal with static data sets. Where supervised learning

generates loss using known labels of each data point in the dataset, unsuper-

vised learning will in general calculate loss based on some more high level

outcomes of the model's output since no labels exist. For example, a com-

mon use of unsupervised learning is clustering, where the model must learn

some function which distinctly classi�es unlabelled data as belonging to one

of N distinct clusters. In this case, loss can be calculated on the basis of how

distinct (i.e. non-overlapping) each cluster is. Reinforcement learning, on

the other hand, does not deal with regression or classi�cation problems di-

rectly but rather seeks to learn behavioural policies which can be deployed

in some sort of dynamic environment in order to maximise long-term out-

comes. It does this by choosing actions within some problem-speci�c action

space. These actions are generally selected by regression and/or classi�ca-

tion outputs, prompted by an input describing the state of the underlying

environment and is trained on the basis of the output of a reward function

(replacing a loss function) which describes how well the policy performed.

This method is used numerous times throughout the work presented in this

thesis and is separately described in section 3.4.

3.3. Graph Neural Networks 49

3.3 Graph Neural Networks

3.3.1 Topologically-Structured Data

Some data sets can be described as having astructure. As opposed to a stack

of images, where each image is fundamentally distinct from all others, some

data sets have relationships between data points. For example, a social net-

work has a number data points (people in the network) where there can be

some form of relationship between some people (e.g. parent, child, friend

etc). These kind of data sets are better represented as a graph,G(V, E) where

the vertices or nodes f v 2 Vg are the data points and the edges f e 2 Eg

represent the relationships, as shown in Fig. 3.1.

In data sets such as these, it can be intuited that the structure of the data

set may provide some additional useful information alongside the informa-

tion at each data point, and so this should be accounted for in some way

during analysis. Graph embeddingrefers to a family of methods which seek

to project graphs into high-dimensional vector spaces. More speci�cally, the

objective is to map each vertex in a graph to a vector, where a notion of the

structure of the original graph is maintained through some notion of similar-

ity in the vector space. For example, a common expectation is that 2 vertices

that share an edge in the graph should be closer together in the vector space

than either of those two vertices would be to some other point with which

they do not share a edge. Closeness is straight forward to de�ne in vector

spaces using Euclidean distance. A simple visualisation of this is shown in

Fig. 3.2.

Graph embedding - in other words - seeks to �nd some mapping from

graph to vector space, whereby each vertex in a graph is mapped to some

vector which represents both information about that vertex, as well as some

topologically-related information. Various graph embedding methods exist

50 Chapter 3. Background & Theory: Arti�cial Intelligence

FIGURE 3.1: The �gure on the left is a simple unstructured col-
lection of data points (each data point is someones personal in-
formation). The �gure on the left is how this data looks when
the underlying structure is explicitly accounted for. In this case,
the structure refers to personal relationships between people in

the dataset.

FIGURE 3.2: The �gure on the right shows a possible embed-
ding of the structured dataset shown on the left. It is seen that
the vectors of each data point maintain some notion of the un-
derlying topology (e.g. person A is closer to person B than they
are to person C, since they share a direct relationship with per-
son B but not with person C to whom they are 2 hops away

from).

3.3. Graph Neural Networks 51

that pre-date the recent growth in NNs as the most prominent means of func-

tion approximation, such as PageRank Page et al., 1999 (which underpinned

the �rst Google search backend). However, the most capable and advanced

embedding methods are now those which employ GNNs (GNN) - NN-based

architectures that can learn complex graph embedding relationships.

3.3.2 Graph Neural Networks

The NN architecture described in section 3.2 shows how relationships are

learnt between input and output on arbitrary data sets. However, in this

paradigm each data point is processed independently of the others (i.e. the

output of a given input does not depend on any other inputs). For structured

data, this method may miss out on crucial information stored in the underly-

ing structure of the dataset. For example, when trying to predict which drink

somebody prefers, it might help to have some information about not only

them but also their neighbours (e.g. if lots of their friends like a particular

drink, it might be more likely that they do too).

GNNs are an extension of NNs which are designed to account for struc-

ture when learning on structured data sets. They do this by means of ex-

tending the standard NN input-output pipeline with a message passing and

aggregation mechanism, which exchanges information between neighbour-

ing nodes in order to propagate information throughout the graph and allow

for nodes to be de�ned with respect to other nodes and/or the graph's topol-

ogy. These embeddings can then be used for some downstream task (e.g.

classi�cation) which can exploit this more information rich representation of

the data set and are often found to allow for better prediction tasks on these

types of datasets. These methods underpin, among other things, content rec-

ommendation mechanisms in some of the largest social media platforms Ying

et al., 2018.

52 Chapter 3. Background & Theory: Arti�cial Intelligence

Message Passing & Aggregation

In the context of structured data sets, message passingrefers to the process of

data points exchanging information with their immediate neighbours. Fol-

lowing this, aggregationrefers to the process of aggregating the information

received from one's neighbours after a message passing phase.

Consider a graph G(V, E) with nodes v 2 V and edges e 2 E, where

each node and edge has an associated state, typically a vector describing

its local information (i.e. 8v 2 V, 9sv 2 Rnv and 8e 2 E, 9se 2 Rne

where nv, ne 2 N +). Furthermore, N (v) denotes the set of nodes-edge tuples

(v
0
, ev,v0) which are the neighbours of v and connected by edge ev,v0. Addi-

tionally, f : (Rnv , Rne) ! Rm is some function which takes as an argument

node and edge state vectors and outputs some new vector. Finally, a mes-

sage passing + aggregation phase can be applied to a given nodev 2 V to

generate an embedding h like:

s
0

v = f (fN (v), svg) (3.10)

Here, s
0

v is a new vector which can be understood as a new state of node v

which has accounted for the node and edge information of both itself and its

1-hop neighbours. This procedure could be applied to each node simultane-

ously to generate a full set of embeddings s
0

v8v 2 V. Following this, the same

procedure could be applied again. This time, since each node's state already

contains some information about its 1-hop neighbours, each node is receiv-

ing from the message passing stage information about its 1- and 2-hop neigh-

bours (its own neighbours state which itself contains some information about

that neighbours 1-hop neighbours). This can be repeated N times to cascade

information further through the graph such that each nodes �nal embedding

contains information relating to its N-hop neighbours. Finally, different ag-

gregation functions might be relevant to different depths of message passing,

3.4. Deep Reinforcement Learning 53

so it is common to use a distinct aggregation function per phase. This looks

like:

si+ 1
v = f i (fN (v), si

vg) (3.11)

In the simplest de�nition, if each f i is modelled by some NN, then the set

of these NNs combined with the associated message passing + aggregation

procedure is descibed as a GNN. A GNN with N-layers typically refers to a

GNN with N message-passing stages. In this way, anN-layer GNN can gen-

erate an embedding, sN
v for each node v 2 V. This embedding may be some

abstract high dimensional vector, to be passed to some downstream applica-

tion, or it can itself be a useful output (e.g. a one-hot encoded classi�cation

vector predicting something about that node).

There are numerous architectural choices associated with GNNs in prac-

tise. For example, the nature of the aggregation function can be related to

the topology Kipf and Welling, 2017 or topologically independent Hamilton,

Ying, and Leskovec, 2017. Furthermore, for very large graphs it may desir-

able to use a sample of neighbours in message passing rather than all of them

Ying et al., 2018. Similarly, it is possible to give different attention to differ-

ent neighbours as a measure of importance Veli�cković et al., 2018. However,

all GNN architectures and applications follow this fundamental function of

exchanging information between nodes in a graph based on structure, gener-

ating new representations for those nodes based on some aggregation of this

and doing so iteratively up to some depth.

3.4 Deep Reinforcement Learning

Reinforcement learning (RL) examines scenarios where there is anenviron-

ment, and agentthat can take actions within that environment and typically

some notion of an objective that should be accomplished following the agent's

54 Chapter 3. Background & Theory: Arti�cial Intelligence

behaviour. The environment will have some notion of a (partially) observ-

able state. The agent can then follow actions as dictated by somepolicywhich

determines which is the best action to take given the current state of the en-

vironment. When an agent takes an action, it will transition the environment

into a new state and receive a reward based on this transition. Solving a rein-

forcement problem is equivalent to �nding the policy which maximises the

reward received by an agent over time.

More formally, an environment is represented in RL problems by a Markov

Decision Process (MDP). This is a tuple< S, A, Ra, Ta, g > , where:

• S [state]: the full set of possible observable states that the environment

can be in.

• A [action]: the full set of possible actions that an agent acting in the

environment can take.

• Ra(s, s
0
) [reward]: the function describing the reward obtained by an

agent which is in state s 2 S, takes action a 2 A and then ends up in

state s
0
2 S.

• Ta(s, s
0
) [transition]: the function describing the probability of transi-

tioning to state s
0

2 S when an agent is in state s 2 S and takes action

a 2 A.

• g 2 [0, 1] [discount factor]: a value used to handle rewards accumu-

lated over long periods of time.

MDPs also have a notion of episode, which refers to a state which, once

transitioned into, will never change. This is just to say that some MDPs �nish

(e.g. a game of chess always lasts for a �nite number of moves) whereas

some do not (e.g. �ying a helicopter does not neccessarily have a particular

stopping point).

3.4. Deep Reinforcement Learning 55

FIGURE 3.3: A simple diagram showing a generic Markov De-
cision Process loop.

Finally, in the generic description of a RL problem, a policyis described in

generic terms as:

• p : S ! A [policy function]: a function which maps states to actions.

Figure 3.3 visualises in a simple and generic way how each of these compo-

nents are relevant to the decision making interaction between them and the

policy.

Two further de�nitions central to the speci�c methodologies used to �nd

optimal policies are:

• Vp (s) [value function]: the expected reward when an agent is in state

s 2 S and follows policy p to the end of episode.

• Qp (s, a) [state-action value function]: the expected reward when an

agent is in state s 2 S, takes action a 2 A and then follows policy p

to the end of episode.

Generally, the study of RL is to develop algorithms that can �nd (or get

close to) anoptimal policygiven a particular MDP which will yield the largest

reward over time. More speci�cally, one is typically more interested in the

discounted reward. Given an action taken at time t (and consequential state

56 Chapter 3. Background & Theory: Arti�cial Intelligence

transition + reward), the discounted reward is de�ned as:

Gt = Rt+ 1 + gRt+ 2 + ... =
T

å
k= 0

gkRt+ k (3.12)

where this long-term expression is preferred over a more naive short-term

expression (e.g. simply Rt+ 1) where rewards are given only in relation to

the immediate effect that the action just taken has on the environment. It is

simple to see why this is a naive optimisation criteria with a simple exam-

ple from a game of chess. It may be the case that the only move that will

instantly increase the players advantage in the game (by simply increasing

their points advantage over the other player) is to capture an opposing pawn

with a queen. If instantaneous reward is solely prioritised, then whether this

move in turn exposes the queen for capture or not is irrelevant in decision

making and the long-term outcome of the game is likely to move against the

moving players favour. As such, in high level terms, it is often desirable to

account for long-term decision making outcomes when rewarding any given

decision or series of decisions.

The above expression for discounted reward provides certain advantages.

Firstly, discounting with g < 1 means that the function will always converge

when episodes are in�nite/fall into a loop. Secondly, the increasing power

to which the g terms are raised relating to how distant in the future that

reward value accounts naturally for the increasing degree of uncertainty en-

countered when making predictions further forward in time in stochastic en-

vironments. Consider the case when an action is being evaluated (rewarded)

retrospectively in relation to the immediate and long-term rewards received

after that action was chosen. Its implementation had some effect on the en-

vironment's state, and then a series of actions were chosen in the same way

following it. Immediately after the action was taken, the effect it had on the

environment's state will strongly in�uence what decision is taken next as

3.4. Deep Reinforcement Learning 57

recommended by the policy function. However, in a stochastic environment,

the likelihood of random events increases over time. As such, the state of

the environment very far in the future will have been the result of not just

actions taken by the agent but also numerous random occurances. As such,

the direct in�uence of an action taken now decreases the further forward in

time you go. The discounted reward accounts for this premise by weighting

events very far in the future with very small values, and events close to the

present with values closer to 1. Thirdly, choosing a value for 0 < = g < 1 al-

lows for tuning with respect to how much the future should be accounted for.

Setting g = 0 will account only for the immediate reward, as g approaches 1

it will account for rewards received further and further into the future.

While non-exhaustive, an introduction to some of the key proponents of

RL theory (leading to the main generic aspects of policy gradient and Q-

learning algorithms and DRL) will be detailed here. A very extensive and

more exhaustive derivation of RL theory is best found in (Deepmind), 2015;

Sutton and Barto, 2018a (by which this introduction is strongly in�uenced).

3.4.1 Model-based RL

Model-basedalludes to a scenario when the underlying MDP is fully known.

This entails learning a model of the underlying environmental dynamics, and

using this model to either plan effective strategies in the environment, or

learn a policy on the basis of this model. Recent work has seen very complex

environments like the game of Go, which requires a high level of contextual

awareness and look-ahead to be played effectively, be solved by model-based

DRL architectures Schrittwieser et al., 2019; Silver et al., 2016. However, hav-

ing to learn a model of the environment (rather than simply sample from it

directly) introduces an additional source of error and will compromise the

method if it is for some reason dif�cult to accurately learn this model. Since

58 Chapter 3. Background & Theory: Arti�cial Intelligence

the problems addressed in this thesis are generally those for which modelling

is inconvenient or prohibitively complex, this domain of RL is not discussed

further in this thesis (and is not used for the work presented).

3.4.2 Model-free RL

Model-freerefers to when the MDP is not fully speci�ed, and where a pol-

icy is determined by sampling the environment without learning/otherwise

knowing some model of the environment that could be used for planning.

Given some policy p (s), it is generally necessary to be able to evaluate how

good that policy is if it is to be improved. There are two standard methods

of evaluating policies: Monte-Carloand Temporal Differencemethods. While

these methods will not be explained here, the most important premise about

them is that Monte-Carlomethods require full episodes of data to train, whereas

Temporal Differencemethods don't and can be trained in environments with

continuous or incomplete episodes. Two further distinctions between differ-

ent types of RL algorithms are known as on-policyand off-policy. These refer

to algorithms which iterate policies on the basis of their own experiences,

and some other policies experiences respectively. Examples of these will be

seen later.

3.4.3 Exploration and Exploitation

In the context of RL, explorationrefers to the notion of attempting to acquire

new knowledge about behaviour in an environment (i.e. what actions lead

to good discounted reward and in what circumstances). Exploitation on the

other hand refers to consolidating current knowledge about behaviour in an

environment (i.e. using a policy already known to have decent returns). In

general, a balance between the two is required to learn good RL policies. In

the abstract policy space, given some MDP, one can consider that there are

3.4. Deep Reinforcement Learning 59

various minima which correspond to a variety of good policies where some

are better than others. If a policy is close to one such minima, a reinforcement

learning algorithm will gradually iterate that policy closer to the minimum

since it is in this direction that the resulting reward-based gradient signals

will point. However, it is also desirable to avoid settling in some local min-

ima when there may be far better policies elsewhere in the space. Exploration

will typically be used during training in order to randomly explore the rest

of this space and ensure that (provided there is enough exploration) better

policies aren't missed. This is typically achieved by randomising a certain

proportion of actions taken in the course of training. For example, one might

specify that each action has ae << 1 probability that it will be chosen ran-

domly rather than sampled from whatever policy is in use. Furthermore, it is

common to decrease this probability over time as the agent trains under the

assumption that consolidation is more important than exploration later on in

the process, when a good region in policy space has already been discovered.

3.4.4 On-policy RL

On policy RL is a learning paradigm whereby policies are learnt based on

the rewards obtained by actions that they themselves have taken in the envi-

ronment. In other words, an algorithm makes updates to a policy based on

some processing of< s, a, r > data that was sampled from the environment

by that same policy. On-policy RL learns a function p : S ! S directly.

Since the optimal action has an increasingly higher probability of being

selected as the policy iterates towards the optimal, on-policy algorithms have

good convergence properties as they directly exploit the optimal policy to-

wards which they converge. However, they are also for the same reason

prone to �nding local-optima since they will directly exploit the current pol-

icy.

60 Chapter 3. Background & Theory: Arti�cial Intelligence

3.4.5 Off-policy RL

Off-policy RL is a learning paradigm where an target/optimal policy is learnt

whilst observing and learning from the actions of some other policy (referred

to as the behaviour policy, which may be non-optimal. This is not equivalent

to learning the same policy as the behavioural policy (which is a method of-

ten referred to as imitation learning). Rather, off-policy RL learns from the

good and bad outcomes of the behavioural policy to learn a wholly distinct

policy. With suf�cient exposure to training episodes generated by the be-

havioural policy, off-policy learning algorithms should be able to learn to

evaluate, given a state, which action will lead to the highest discounted re-

ward. These methods can be limited by behavioural policies (e.g. if a be-

havioural policy is highly limited in the actions it takes, there may not be

a diverse enough sampling of episodes for an optimal policy to be learnt).

However, exploration is also used here to mitigate this possibility (e.g. every

action has ae << 1 probability of being selected randomly rather than from

the behavioural policy).

Off-policy methods have poorer convergence than on-policy since the

probability of selecting an optimal action is lower as the behavioural policy

sampling the environment is generally non-optimal, and so reward-directed

policy updates move less directly towards the minima. However, they are

in principle more sample ef�cient than on-policy methods. This is because

they can learn from some other (set of) policies already known/in use, and

can also (re-)use data previously generated by some other policy (such as

the experience replay used in the DQN algorithm Mnih et al., 2013), making

them more sample ef�cient than on-policy (which effectively require total re-

sampling every update). By contrast, except for when exploration is used to

select an action, off-policy methods do not necessarily have to generate all of

their samples online.

3.4. Deep Reinforcement Learning 61

3.4.6 Function approximation and Deep Reinforcement Learn-

ing

Following the above ideas, it is now neccessary to formally de�ne the policy

function and make it learn. In the case that the state-action space is small,

these functions can be fully speci�ed. For example Q-tables have been a

common means of implementing the Q-function, where every possible state-

action pair in the set S � A has a known value. If states are speci�ed along

the rows and actions the columns, then for every state visited in an MDP one

can simply �nd column with the highest value for that row and then take

the corresponding action. Such a table can be iterated using the methods

described above (i.e. MC or TD methods).

However, many MDPs have an extremely high or continuous number

of states and/or actions. Consider the game of Go with the order of 10 120

possible states; exploring and calculating the value of each of these states

(and for each possible action taken in them) is intractable. This motivates the

use of some form of function approximation to model these functions. Ideally

one could learn value/policy functions from a non-exhaustive exposure to an

MDP which can then generalise to previously unseen states/actions which

are similar to those observed in the past.

NNs have swiftly become the means of doing this (to the extent that RL

typically refers implicitly to RL with deep NNs, or deep reinforcement learning).

NNs are able to learn complex functions from suf�ciently large data sets, are

differentiable (so they can be updated using some kind of gradient descent

based on a reward-generated signal) and are able to generalise to new unseen

data that exists in the same underlying distribution as its training set. All

major work and milestones in the �eld of RL are to date using NNs to model

policy and/or value functions.

62 Chapter 3. Background & Theory: Arti�cial Intelligence

3.4.7 Q-learning

Q-learning is a family of off-policy RL algorithms, which learn learn the op-

timal policy indirectly, by approximating the Q-function (state-action value)

that policy. The policy can then be followed by a greedy action rollout using

that Q-function (i.e a = maxa� 2 A (Q(s, a�))).

In general, if J is some differentiable function J(w, parameterised by pa-

rameters w, then its gradient looks like:

r w J(w) = [
¶J(w)
¶w1

, ...,
¶J(w)
¶wn

] (3.13)

If J(w) represents some objective function related to a differentiable Q(s, a),

then its derivative can be used to iterate Q(s, a) towards some optimal via

gradient descent (e.g. Dw = � aDw J(w)). For example, for real and approxi-

mated Q-functions Qp and Q
0
respectively:

J(w) = E [(Qp (s, a) � Q
0
(s, a,w)) 2] (3.14)

Dw = a(Qp (s, a) � Q
0
(s, a,w)Dw Q

0
(s, a,w) (3.15)

where this example relates to a MSE based objective between a real and

approximated value function

One limitation of Q-learning derives from the fact that it evaluates ac-

tions, but does not explicitly determine them. This means that for a extremely

large or continuous action space, evaluating every possible action may be in-

tractable. As such, more approximate methods must be incorporated if these

methods are to be used in such circumstances (e.g. approximate a continuous

search space as discrete).

3.4. Deep Reinforcement Learning 63

3.4.8 Policy Based Methods

Policy Gradient Methods

Policy gradientmethods learn the parameters for some policy function di-

rectly. As in the Q-learning example above, one can de�ne some objective

function J(q) which evaluates in some way how good the current policy p (q)

is, where each are parameterised by parametersq and are differentiable.

Similarly to the above, the same generic statements apply:

r qJ(q) = [
¶J(q)
¶q1

, ...,
¶J(q)
¶qn

] (3.16)

Dq = ar qJ(q) (3.17)

where Dq refers to how much each parameter (q1, ...,qn) in q should be

changed and r qJ(q) is referred to in this context as the policy gradient.

Following this, a generic analytical form for the objective function used to

evaluate a policy relates to the expected return due to that policy. The score

function, r qlog(p q(s, a)) , is de�ned for convenience from:

r qp q(s, a) = p q(s, a)
r qp q(s, a)

p q(s, a)
= p q(s, a)r qlog(p q(s, a)) (3.18)

For a one-step MDP, if the expected discounted return (with respect to

all possible states, the probability of each action being taken by p (s) and the

associated reward), the expected reward is:

J(q) = Ep theta[R] = å
s2S

d(s) å
a2 A

p q(s, a)Rs,a (3.19)

64 Chapter 3. Background & Theory: Arti�cial Intelligence

therefore the policy gradient is:

r qJ(q) = å
s2S

d(s) å
a2 A

p q(s, a)r qlog(p q(s, a))p q(s, a)Rs,a = Ep q[r qlog(p q)R]

(3.20)

where d(s) refers to the distribution of samples taken. This speci�c form

requires full episodes in order to be able to calculate the component related

to the expected reward.

Since the policy function outputs actions explicitly, policy gradient meth-

ods can output either �nite (e.g. categorical) or continuous actions. Further-

more, where it might be bene�cial such as in stochastic environments, policy

gradients can implement stochastic policies (rather than deterministic poli-

cies such as the greedy Q-learning policy described above). For example, a

categorical output can be sampled using softmax �ltering (rather than just

choosing maximum-value index), and continuous actions can (and often are)

be output as a mean-variance pair (m, s) de�ning some Gaussian distribu-

tion, from which the actual values for that action can then be probabilistically

sampled.

Reducing Variance in Policy Gradient Methods with Baselines

A general challenge faced by policy gradient methods is that the reward due

to some action trajectory through the environment (and therefore the policy

gradient term shown in Eq. 3.20) generally has very high variance. Given

a large dataset of sample trajectories generated by the current iteration of a

policy in training, the policy will be updated by batch updates as is standard

in DL. This, as always, ensures that training can be accomplished more ef-

�ciently so that multiple small updates to the policy can be made given a

single set of sampled trajectories. However, in stochastic environments there

will in general be a high level of variance associated with these trajectories.

For example, starting from the same initial state and following an identical

3.4. Deep Reinforcement Learning 65

sequence of actions until episode termination does not necessarily guarantee

the same �nal reward due to the possibility of stochastic changes to the state

throughout the episode. Moreover, very similar trajectories (e.g. differing

only by a single action in the sequence) can yield very different outcomes. As

such, batch learning is undermined as a small batch sampled from the total

set of trajectories will generally not consistently re�ect the global distribu-

tion of trajectories within the whole set. This means that policy convergence

is generally not possible.

A common way to handle this issue is by the use of baselines. A baseline

is a term added to the reward expression in Eq. 3.20 which does not change

the expected value of the term R but does reduce the variance (i.e. R !

Rb = R � b). There are many common forms of baselines which can be used,

where the fundamental requirement is that b is some function which does not

change the expected value of the gradient. This condition is simply stated as:

r qJ(q) = Ep q[r qlog(p q)R] = Ep q[r qlog(p q)Rb] (3.21)

This variance reduction will now allow for more consistent batch updates

to be applied. As such, the more data ef�cient batch learning methodology

can be applied to policy gradient methods and as such these methods can

converge on strong policies more consistently.

Actor Critic Methods

Value functions (Q(s, a), V (s)) are generally evaluated using either Monte

Carlo (MC) or Temporal Difference (TD) learning (not described here, de-

tailed extensively in Sutton and Barto, 2018a; (Deepmind), 2015). In very

brief detail, MC methods approximate value functions by sampling from

complete trajectories, whereas TD methods sample from incomplete trajectories

and approximate the �nal reward by estimating the value function. In the

66 Chapter 3. Background & Theory: Arti�cial Intelligence

case of very long trajectories, where challenges such as value assignment (i.e.

the relative importance of each individual action in contributing to the total

reward) arise, MC methods are disadvantaged as they must wait for episode

termination before updating and also suffer a similar cause of variance as de-

tailed above in the context of baselines. On the other band, while more biased

due to the initial conditions of the value function estimator, TD methods are

able to learn from incomplete episodes and suffer from reduced variance.

The expressions in section 3.4.8 are implicitly to be calculated using MC

methods. This is because the reward term in Eq. 3.20 is not approximate but

rather directly sampled from a full trajectory. Alternatively, one can choose to

estimate the discounted reward in equation 3.22 using value or state-action

value functions (i.e. Rs,a ! Qp (s, a) in Eq. 3.19). This has the advantage of

allowing policy gradient methods to bootstrap(i.e. learn from uncompleted

episodes using TD methods) since the reward can be approximated rather

than having to be explicitly known from full episodes. However, this also

requires learning some other set of parameters relating to the value function

as well at the same time as the parameters relating to the policy function.

Methods such as these are referred to asactor-criticmethods, where the actor

refers to the policy function and the critic to the value function. Not derived

explicitly, the modi�ed form of the policy gradient equation to use an action-

value function rather than measured expected reward is:

Dq = ar qJ(q) = ar qlog(p q)Qp q(s, a) (3.22)

It is possible to estimate both the policy function and the Q-function in

parallel. Methods that employ both approximations are called actor-critic

methods, where the the policy function approximator is referred to as the

actorand the Q-function approximator is referred to as the critic. Following

3.5. Classical Control Methods and PID Control 67

from above, baselines are still advantageous in reducing variance in actor-

critic methods. A common baseline used in this context is:

Ap q(s, a) = Qp q(s, a) � Vp q(s) (3.23)

This particular form of baseline is referred to as the advantage function. The

intuition behind its form (and its name) is that by evaluating the difference

between the action-state value function and the regular value function, it is

effectively calculating the difference (given some policy p is being followed)

between choosing some actiona then following p for the rest of the episode,

vs just following p for the whole episode. In this regard it calculates an ap-

proximation of how much better (or worse) action a is than whatever action

would be recommended by the policy p . While not shown here, this for-

mulation also satis�es Eq. 3.21 as required. The advantage function is used

as the basis for numerous successful actor-critic algorithms such as proximal

policy optimisation (PPO) Schulman et al., 2017.

3.5 Classical Control Methods and PID Control

Control refers to the process of maintaining some dynamic system at a par-

ticular desired state. Typically this is done via the input, where the dynamic

system's behaviour is the result of this input, as well as by accounting for

some kind of useful feedback about the historical/current/predicted future

state of the system.

While control can be implemented with advanced and often data driven

techniques such as swarm/genetic optimisation Parsonson et al., 2020a or

DRL Silver et al., 2017, `classical' control refers to control methods which

are based on more traditional ideas in control theory - namely closed-loop

68 Chapter 3. Background & Theory: Arti�cial Intelligence

feedback mechanisms which calculate input corrections using the target state

(termed `set point') and the current state (termed `process variable').

One of the most common control methods as used across myriad indus-

tries in both system manufacturing and operation is PID control Desborough

and Miller, 2002 - described below and relevant to the work presented in

chapters 4 and 5. While in principle, more complex methods may be capa-

ble of superior performance, classical control methods (and PID control in

particular) have historically been suf�cient for performance, with the added

bene�ts of being intuitive, generally simple to implement compared to more

advanced data-driven methods and also predictable. Their long-standing

prominence positions them as still fundamental to automated processes in

industry. This section will explain the essential ideas behind PID control.

3.5.1 Proportional-Integral-Derivative Control

PID control is a closed-loop feedback method for dynamically controlling the

state of some underlying system, in particular in the scenario when the target

state of the system to be controlled is static over time. As such, it begins with

the standard variables of a set point SP = x(t), process-variable PV = y(t)

describing the intended and current state of the underlying system at time

t respectively, from which the error e(t) = SP � PV can be calculated to

determine how far away from the desired state the system is at time t.

At a given point in time t, PID control outputs what the input to the given

system should be based on its current error. It does this by calculation of 3

values; one is proportional to the error, one is based on an integral of the error

up to that point in time and one is based on the derivative of the error (hence

the terminology of PID control). These three terms are summed to determine

what the input (often termed `drive') to the system should be at that point

3.5. Classical Control Methods and PID Control 69

in time. In the most typical form of PID control, these three terms are each

characterised by a variable (often termed `gain parameter').

The proportional term looks like:

P = Kpe(t) (3.24)

The integral term looks like:

I = Ki

Z t

t0

e(t̂)dt̂ (3.25)

The derivative term looks like:

Kd
de(t)

dt
(3.26)

Where the input to the system at time t is:

u(t) = P + I + D (3.27)

PID control bene�ts from several key features. Firstly, since it is purely

feedback based, it does not require any kind of model of the underlying sys-

tem. For real world systems, precise models are often not easy to develop (as

alluded to in chapter 4), so not having to depend on a precise model of a sys-

tem is advantageous when this is the case. Furthermore, the instantaneous

calculations required for this method are very simple (ultimately amounting

to a multiplication for P, multiplication and addition for I and subtraction

and division for D) and can as such be implemented easily, quickly and on

low cost/power hardware (also relevant to the work presented in chapter 5).

They are also independent of the underlying system or control process, and

only require that the 3 gain parameters are tuned so that performance is as

required.

70 Chapter 3. Background & Theory: Arti�cial Intelligence

FIGURE 3.4: A generic visualisation of a PID control loop.
The difference between the target (SP) and current (PV) posi-
tion of the system is used to generate the proportional, inegral
and derivative corrective terms. These terms are applied via
weighted sum to determine the instantaneous change that will
be applied to the driving signal. These values must be opti-

mised in order to accomplish the desired control outcomes.

On the other hand, the last point alludes to parameter tuning - one of

the generic challenges of PID control. There is not typically an intuitive or

analytical relationship between a system, desired control outcomes (e.g. sta-

bility, transition speed, etc) and the values of these parameters. This means

that tuning must be done by some means of direct parameter search, which

can be time consuming especially when it has to be applied repeatedly to

multiple devices, or more approximate search methods where direct search

is intractable. If tuning is not done properly, PID control can destabilise the

underlying control system. Furthermore, subtle variations in the underlying

control system (e.g. manufacturing inconsistencies across multiple copies of

the same device) can mean that one set of PID parameters cannot guarantee

the same control outcomes for every device. This premise is addressed more

directly with a novel method based on DRL in chapter 5.

71

Chapter 4

Sub-nanosecond Optical Gating

with Swarm Optimisation

4.1 Associated Publications and Contributions

The majority of the material presented in this chapter is taken from the pa-

pers Parsonson et al., 2020a where the author of this thesis was a primary

co-contributor (equal contributions), with the exception of section 4.8, which

is taken primarily from the paper Gerard et al., 2020, where the author of

this thesis was a co-contributor to the work described in the relevant sec-

tion. Speci�c details and contributions (bullet pointed below title) for each of

these relevant papers are detailed below alongside links/DOI/arXiv to view

the manuscript.

Parsonson et al., 2020a: "Optimal control of SOAs with AI for sub-nanosecond

optical switching"; Christopher Parsonson*, Zacharaya Shabka* , Konrad

Chlupka, Dennis Goh, Georgios Zervas; Journal of Light Technology (2020);

DOI:10.1109/JLT.2020.3004645 .

• Primary co-author (equal contributions with Christopher Parsonson).

• Led lab-experiment design/setup/usage and general involvement with

project discussions.

72 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

• Sole developer of the ACO algorithm, PID implementation.

• The simulation presented in Appendix A was developed by Christo-

pher Parsonson (co-author on this paper), not the author of this thesis,

but is included in this chapter for completeness as it was a core part of

the overall experiment.

Gerard et al., 2021: "AI-optimised tuneable sources for bandwidth-scalable,

sub-nanosecond wavelength switching "; Thomas Gerard, Christopher Par-

sonson, Zacharaya Shabka, Benn Thompson, Polina Bayvel, Domanic Lav-

ery, Georgios Zervas; Optics Express (2021); DOI:10.1109/10.1364/OE.417272

.

• Co-author, aided paper writing in relevant parts (sction 2 in the manuscript).

• Primary contributor to the design and implementation of the experi-

ment showing fast wavelength switching with 2 gated SOAs (optimised

using the method described in Parsonson et al., 2020a).

• The author of this thesis was not a contributor to the other content

in this paper (laser design etc) - this was led by it's primary author,

Thomas Gerard.

Alkharsan et al., 2022: "Optimal and Low Complexity Control of SOA-

Based Optical Switching with Particle Swarm Optimisation"; Hadi Alkharsan,

Christopher Parsonson, Zacharaya Shabka , Xun Mu, Alessandro Ottino,

Georgios Zervas; European Conference on Optical Communications (2022).

• Second author, minimal involvement in hands-on experimental work.

• Provided guidance on experiments/adaptation of method (which was

presented in Parsonson et al., 2020a where the author of this thesis was

a primary author).

4.2. Chapter Summary 73

4.2 Chapter Summary

FIGURE 4.1: Visualising the problem described in this chapter.
What is the form of an electric driving signal which can be ap-
plied to a SOA in order to achieve an optical output with mini-

mal off-on time?

A high level summary of the problem/motivations, proposed solution

and outcomes as relate to this chapter is:

1. OCS networks can provide various bene�ts within the context of DCNs.

2. For optical circuits to switch (aka recon�gure circuits) at typical DCN

packet timescales, sub-nanosecond switch recon�guration is required.

3. SOAs have been proposed as suitable candidates within a wavelength

switched architecture which uses them as optical gates.

4. While in principle these devices are capable of sub-nanosecond gat-

ing, in principle the speed is slower when more realistic metrics are

observed.

5. SOAs can be optimised by directly optimising the input electronic driv-

ing signal such that the desired output optical signal is achieved.

6. The chapter presents a means of optimising this signal based on swarm

optimisation techniques and shows signi�cant switching speed improve-

ments over both conventional signal control methods and hand-designed

74 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

heuristic approaches, achieving sub-nanosecond optical gating with a

SOA.

7. Key advantages from this work include a 85% reduction in SOA gating

time, enabling � 0.5 nanosecond gating.

8. Following this, a proof-of-concept design for a sub-nanosecond wave-

length switch is shown with advantages in the way of bandwidth and

channels-per-component.

9. Key advantages from this exercise include sub-nanosecond switching

between 122 distinct wavelength channels (all-to-all) whilst requiring

only 4 components.

4.3 Introduction

Approximately 90% of all DC traf�c is intra-DCN Cisco, 2018. Additionally,

the proportion of requests being serviced by CPUs is expected to decrease

from 75% today to 50% in 2025 as specialised bandwidth-hungry hardware

is installed to enable new ML applications McKinsey, 2019. Furthermore, the

increasingly common approach of clustering compute resources for large-

scale data processing is requiring more network-intensive server-server com-

munication Andreades et al., 2019. These trends are exerting a growing strain

on internal DCNs, in which many of the interconnects are electronic switches.

Electronic switches have limited scalability, limited bandwidth, high latency

and high power consumption Zervas and Benjamin, 2019, Wang et al., 2018.

As such, switching is presenting a problematic bottleneck for DCN perfor-

mance, and current network architectures are un�t to meet next-generation

DCN requirements.

4.3. Introduction 75

Optical switches offer the potential to alleviate many of these network

performance issues. With an OCS implementation, there is no packet in-

spection, buffering, or OEO conversion overhead, therefore latency times are

signi�cantly lower Liu et al., 2015. They also have much higher bandwidth,

allowing more servers to be connected to the same switch without increasing

oversubscription-related buffering, thus improving scalability. Furthermore,

the lack of OEO conversion, the transparency to signal modulation format,

and the lower heat generation reduces the number of expensive transceiver

components needed, the hardware changes required when new transmission

protocols are adopted, and the overall network power consumption respec-

tively. The latter is particularly important since networking can account for

> 50% of the $20 bn annual DCN power costs, with CO2 emissions equal in

volume to the entire aviation industry Abts et al., 2010. In addition, optical

switches have a more compact physical design than their electronic counter-

parts, allowing for a smaller footprint in DCs.

The dif�culty of implementing all-optical DCN switching derives from

the bursty nature of most DCN traf�c and the lack of an all-optical mem-

ory alternative. Since no all-optical memory or processor architectures ex-

ist, current DCN packet-switched protocols cannot be implemented with an

exclusively optical network architecture based on all-optical switches since

header information must be processed and payload information stored on a

per-hop basis. An alternative to packet switching is circuit switching, which

is possible with an all-optical architecture. However, current state-of-the-art

commercial optical switches have slow (100s ms) switching times. Such long

switching times are not compatible with the small data packets that dom-

inate DCN traf�c (90% < 576 bytes) Zervas and Benjamin, 2019 since the

switching time would be comparable or greater in size than the forwarding

time making for an inef�cient network.

For OCS to be compatible with current DCN demands, it must be possible

76 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

to switch circuits at the packet timescale Zervas and Benjamin, 2019, Balanici,

2019. This requires minimal switching overhead when switching for epochs

of the order of 10s-100s of ns.

A promising candidate for realising such a high-speed switch is the SOA.

SOAs can be used for either space switching or wavelength switching due

to their high and relatively �at optical gain bandwidth. Further bene�ts of

SOAs over other potential optical switching technologies such as MEMS or

holograms include fast inherent switching times (theoretically limited only

by their � 100 ps carrier recombination lifetimes Connelly, 2003), high ex-

tinction/optical contrast ratio, and relatively compact design, making them

ideal for low latency-, scalability-, and footprint-constrained DCN applica-

tions Assadihaghi, Teimoori, and Hall, 2010.

The sub-ns off-on time of SOAs allows for an SOA-based optical switch

architecture that avoids the issues presented by the lack of all-optical mem-

ory/processor alternatives discussed above. This SOA-based OCS solution

is generally more simple and better performing than others suggested by

the literature such as optical loop memory Srivastava, Singh, and Singh,

2009, optical burst switching (OBS) Chen, 2005, Praveen et al., 2005, Kiran,

Venkatesh, and Murthy, 2007 and hybrid optical packet switching (OPS) Ben-

jamin et al., 2017, Wang et al., 2018. However, SOAs have an intrinsic opti-

cal overshoot (OS) and oscillatory response to electronic drive currents due

to exciton density variations and spontaneous emission in the gain region

Paradisi, 2019. This compromises their ability to switch at very high speeds

(O(� ns)). As discussed in (and motivating the work presented in) this chap-

ter, the OS and oscillatory optical output result in the key advantage of SOA

switching (rapid switching times) being negated, preventing sub-ns switch-

ing. Previous work (discussed below in section 4.4) seeking to improve the

basic switching behaviour of SOAs when driven by a step signal focuses on

4.3. Introduction 77

the expert-driven design of signal optimisation strategies. While improve-

ments are shown, the premise of this approach is fundamentally limited by

the design biases of the expert and the degree of improvement suffers as a

consequence. As will be shown in this chapter, data-driven methods can

achieve signi�cantly better optimisation outcomes when allowed to directly

optimise the signal and produce driving signals that are highly unlikely to

be found by a human.

This chapter presents a novel and scalable approach to optimising the

SOA driving signal in an automated fashion with AI (AI) techniques, namely

PSO ACO and `Genetic Algorithms' (GA) Mata et al., 2018. These algo-

rithms were chosen on the basis that they had previously been applied to

PID tuning in control theory Kusuma, Ali, and Sutantra, 2016. Moreover,

AI techniques propose the bene�t of not requiring prior knowledge of the

SOA and therefore provide a means of developing an optimisation method

that is generalisable to any SOA-based switch. All algorithms were shown

to reduce the settling and rise time (RT) to the O(100 ps) scale. The algo-

rithms' hyperparameters were tuned in an SOA equivalent circuit (EC) sim-

ulation environment and their ef�cacy was demonstrated in an experimental

setup. AI performance was compared to that of step, pre-impulse step injec-

tion current (PISIC) and multi-impulse step injection current (MISIC) driving

signals as well as the popular raised cosine and PID control approaches to op-

timising oscillating and overshooting systems, all of which the AI algorithms

outperformed. Of the AI algorithms, PSO was found to have both the best

performance and generalisability due to the additional hyperparameters and

search space restrictions that were required for GA and ACO.

78 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

4.4 Previous Work

A previous attempt to optimise SOA output applied a PISIC driving signal

to the SOA Gallep and Conforti, 2002. This PISIC signal pre-excited carriers

in the SOA's gain region, increasing the charge carrier density and the initial

rate of stimulated emission to reduce the 10% to 90% RT from 2 ns to 500

ps. However, this technique only considered RT when evaluating SOA off-

on switching times. A more accurate off-on time is given by the settling time

(ST), which is the time taken for the signal to settle within � 5% of the `on'

steady state. Before settling, bits experience variable signal to noise ratio,

which can impact the bit error rate (BER). Since the signal may not be reliable

until it has settled into a steady BER, the switch is effectively `off' during this

period.

A later paper looked at applying a MISIC driving signal to remedy the

SOA oscillatory and OS behaviour Figueiredo et al., 2015. As well as a pre-

impulse, the MISIC signal included a series of subsequent impulses to bal-

ance the oscillations, reducing the RT to 115 ps and the OS by 50%. However,

the method for generating an appropriate pulse format was trial-and-error.

Since each SOA has slightly different properties and parasitic elements, the

same MISIC format cannot be applied to different SOAs, therefore a different

format must be generated through this inef�cient manual process for each

SOA, of which there will be thousands in a real DC. As such, MISIC is not

scalable. Critically, the MISIC technique did not consider the ST, therefore

the effective off-on switching time was still several ns.

More recent work expands on the driving signal modi�cation shown in

Figueiredo et al., 2015. Taglietti et al., 2018 applies the MISIC signal detailed

in Figueiredo et al., 2015, but in addition applies a Wiener �lter, where the �l-

ter is determined by the steady state value of the SOA response and the MSE

between the output and the �lter is minimised by means of �nding optimal

4.4. Previous Work 79

weight-coef�cients of the �lter. The work accomplishes a roughly 60% reduc-

tion in guard time, with the goal of reducing guard time as much as possible

such that the BER of the output does not exceed a particular level. While the

objective of the work (reduce guard time with respect to BER guarantees) is

different to that of this work (minimise the ST of the SOA output), and thus

direct comparison is dif�cult, it is interesting to acknowledge this analogous

approach of MSE & weight optimisation to optimising the output of an SOA.

Similarly, Sutili et al., 2019 explores the optimisation of an SOA by means

of both modi�cation of the driving signal and optimisation of the SOA's mi-

crowave mounting. A best case of 33% reduction in guard time is accom-

plished with an improved microwave mounting architecture and a step driv-

ing signal, where various MISIC and PISIC driving signals were also tested.

This work demonstrates that signi�cant improvements in guard time can

be derived exclusively from improvements being made to the microwave

mounting of the SOA - something that is not addressed in this thesis. This is

an alternative approach of optimising SOA performance, though implement-

ing this method does not preclude the simultaneous improvement by optimi-

sation of the driving signal as explored in this chapter. The results therefore

are complementary to those presented in this work, which improves the SOA

output purely by means of driving signal optimisation. It is speculated here

that the optimisation of the SOA's driving signal by the methods presented in

this work combined with the optimisation of its microwave mounting could

achieve greater improvements in its output than seen in either Sutili et al.,

2019 or this work.

The previous solutions discussed so far have had a design �ow of �rst

manually coming up with a heuristic for a simpli�ed model of an SOA, fol-

lowed by meticulous testing and tuning of the heuristic until good real-world

performance is achieved. If some aspect of the problem is changed such as

the SOA type used or the desired shape of the output signal, this process

80 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

must be repeated. This chapter presents a novel and scalable approach to op-

timising the SOA driving signal in an automated fashion with AI, requiring

no prior knowledge of the SOA and being able to be generalised to any de-

vice without laborious manual con�guration. Three algorithms were chosen

on the basis that they had previously been applied to PID tuning in control

theory Kusuma, Ali, and Sutantra, 2016: PSO, ACO, and a GA. All algo-

rithms were shown to reduce the settling and RTs to the O(100ps) scale. The

algorithms' hyperparameters were tuned in an SOA EC simulation environ-

ment and their ef�cacy was demonstrated in an experimental setup. AI per-

formance was compared to that of step, PISIC and MISIC driving signals as

well as the popular raised cosine and PID control approaches to optimising

oscillating and overshooting systems, all of which the AI algorithms outper-

formed.

4.5 Optimisation Algorithms

All AI algorithms had the goal of minimising the MSE between the actual

SOA output and an ideal SOA step output with 0 RT, ST and OS. The closer

the driving signal's corresponding output process variable (PV) was to achiev-

ing this ideal set point (SP), the lower its MSE (de�ned in (4.1)).

MSE =
1
m

m

å
g= 0

(PV � SP)2 (4.1)

4.5.1 SOA Simulation and Hyperparameters

In order to develop and test the various algorithms discussed below more

ef�ciently, a simulation (detailed in Appendix A of a SOA was developed.

Note that this simulation was developed by a co-author of the associated

paper Parsonson et al., 2020a not the author of the thesis. Nonetheless, the

description of this simulation - taken largely from the aforementioned paper

4.5. Optimisation Algorithms 81

- is included in the appendix for completeness as it was a core part of the

whole experiment.

Since the number of physical SOAs was limited in the course of the ex-

periment, the simulation allowed for simultaneous development of multiple

algorithms, as well as parallelised testing making for a faster development

cycle. Moreover, while the behaviour of the simulation was not so similar

to the physical SOAs so as to allow direct transfer of simulation-generated

driving signals to the physical SOA, it was suitable to guide hyperparameter

tuning of the various swarm algorithms tested, where these hyperparameters

were then used when applying the algorithms on the experimental setup.

For each method described below, a set of hyperparameters was evaluated

by optimising the simulated driving signal with this parameter set 10 times

to observe both the average outcome as well as the spread; it is important to

ensure that any approximated optimisation method can consistently return

a given degree of improvement, especially when applying the method to a

very large number of devices as would be the case if this method were used

in an all-optical DCN architecture.

Finally, also given the limited number of physical SOAs, the simulation

was used to demonstrate the robustness of the method under variation of

SOA by varying the key simulation parameters to effectively simulate a large

number of differently characterised SOAs. These results are detailed in sec-

tion 4.7.2. The hyperparameters of the AI algorithms can be used to address

the general problem of `SOA optimisation'. This is because the hyperparame-

ters are only for restricting the search space to reduce the size of the problem,

and restricting how much the algorithm can change its solution between it-

erations; they relate to the general SOA optimisation problem, but not to a

speci�c SOA.

82 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

4.5.2 Particle Swarm Optimisation

Implementation

An overview of PSO is given in Kiranyaz, 2014, Iqbal, Zerguine, and Al-

Dhahir, 2015. PSO is a population-based AI metaheuristic for optimising

continuous nonlinear functions. First proposed in 1995 by Kennedy, Eber-

hart, and Gov, 1995, it combines swarm theory by observing natural phe-

nomena such as bird �ocks and �sh schools with evolutionary programming.

In the work presented, PSO is adapted to be applicable to SOA drive signal

optimisation.

To apply PSO to SOA optimisation, n particles (driving signals) were

initialised at random positions in a hyper-dimensional search space with

m = 240 dimensions (number of points in the signal). Since experimental

results showed spurious overshoots after the rising edge and therefore an

increase in the ST, the PSO search space was bounded by a PISIC-shaped

`shell' beyond which the particle dimensions could not assume values. An

added bene�t of the shell was a reduction in the complexity of the problem

and therefore also the convergence time. The shell area was a PISIC signal

with a leading edge whose width was de�ned as some fraction of the `on'

period of the signal. At each generation, in order to evaluate a given par-

ticle position, the MSE in (4.1) was used to calculate the �tness (which was

to be minimised). As discussed in Clerc, 1999, the particle inertia weights

(w) and personal and social cognitive acceleration constants (c1 and c2) can

be dynamically adapted as the PSO population evolves. This was done us-

ing the update rules in (4.2), (4.3), and (4.4) Clerc, 1999 at the start of each

generation, where pbestj was the historic personal best position of particle j,

xj was the position (amplitude taken) of particle j, w(0) was the initial in-

ertia weight constant (0 � w(0) < 1), w(nt) was the �nal inertia weight

4.5. Optimisation Algorithms 83

constant (w(0) > w(nt)), mj (t) was the relative �tness improvement of par-

ticle j at time t, and cmax and cmin were the maximum and minimum values

for the acceleration constants. So long as these values satis�ed (4.5), PSO

was guaranteed to converge on some driving signal Van Den Bergh and En-

gelbrecht, 2001. Using dynamic PSO signi�cantly improved the algorithm's

performance.

wj (t + 1) = w(0) +

"

(w(nt) � w(0)) �

emj (t) � 1

emj (t) + 1

!#

(4.2)

mj (t) =
pbestj (t) � xj (t)

pbestj (t) + xj (t)
(4.3)

c1,2(t) =
cmin + cmax

2
+

cmax � cmin

2
+

e� mj (t) � 1

e� mj (t) + 1
(4.4)

0 �
1
2

(c1 + c2) � 1 < w < 1 (4.5)

This PSO process could be repeated until the particles converged on a

position with the best �tness (i.e. the optimum SOA driving signal). To help

with convergence time and performance, some additional constants were de-

�ned:

• itermax = Maximum number of iterations that PSO could evolve through

before termination. Higher gives more time for convergence but longer

total optimisation time.

• max_v_f = Factor controlling the maximum velocity a particle could

move with at each iteration. Higher can improve convergence time but,

if too high, particles may oscillate around the optimum and never con-

verge.

84 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

• on_s_f and o f f_s_f = `On' and `off' suppression factors used to set

the minimum and maximum driving signal amplitudes the particle

positions could take when the step signal was `on' and `off' respec-

tively. Lower will restrict the particle search space to make the problem

tractable for the algorithm, but too low will impact the generalisability

of the algorithm to any SOA.

• shell_w_f = Factor by which to multiply the `on' time of the signal to

get the width of the leading edge of the PISIC shell. Higher (wider)

value will give the algorithm more freedom to rise over a longer period

at the leading edge of the signal and improve generalisability, but will

also increase the size of the search space and impact convergence.

Hyperparameter Tuning

To begin with, it was found that using dynamic PSO whereby w, c1 and c2

were adapted at the beginning of each generation led to multiple advantages.

Firstly, the solution found by 10 dynamic particles had the same MSE as that

found by 2,560 static particles, reducing the computation time by a factor of

256. Secondly, the �nal driving signal found by adaptive PSO was signi�-

cantly less noisy since it was less prone to local minima. Thirdly, the �nal

MSE found was 63% lower. Fourthly, although the relative cost spread of

dynamic PSO was 72% compared to 50% due to the lower MSE, the abso-

lute cost spread was just 8.7� 10� 13 compared to 140� 10� 13. Pursuing with

dynamic PSO, it was found that placing a `PISIC shell' on the search space

(with shell_w_f = 0.1) beyond which the particles could not travel led to

an absolute cost spread of 6.9� 10� 13 and a further 14% reduction in the �-

nal cost (despite initial costs being higher due to the fact that PISIC signals

lead to greater OS and subsequently also greater oscillations). Finally, it was

also found that initialising one of the n particle positions as a step driving

4.5. Optimisation Algorithms 85

signal improved the convergence time by a factor of two. Using dynamic

PSO, a PISIC shell and an embedded step, the following hyperparameter

values were found to give the best spread, �nal cost and convergence time:

itermax = 150,n = 160,max_v_f = 0.05,w(0) = 0.9,w(nt) = 0.5,cmin = 0.1,

cmax = 2.5, on_s_f = 2.0, and o f f_s_f = 0.2. This �nal tuning resulted

in a cost spread of just 1.8%. The evolution of this PSO tuning process is

summarised in Fig. 4.2, where the learning curves for the above sets of hy-

perparameters have been plotted in red, orange, blue and green respectively.

The �nal PSO SOA output, shown in Fig. 4.2, had a RT, ST and OS of 669

ps, 669 ps and 3.7% respectively. Fig. 4.2 also shows the optical response to

a step driving signal, showing a RT, ST and OS of 669 ps, 4.85 ns and 31.1%

respectively. Thus, the simulations indicated that the ST (and therefore the

effective off-on switching time) could be reduced by a factor of 7.2 and the OS

by a factor of 8.4 compared to a step. Although RT remained unimproved,

the experimental results section shows that, for a real SOA with optical drift,

PSO improves all three parameters.

4.5.3 Ant Colony Optimisation

Implementation

ACO is primarily a path-�nding evolutionary algorithm modelled on obser-

vations of how ant colonies �nd food sources in nature. As such, it optimises

to �nd an optimum path along nodes in a graph, G = f gig by means of

probabilistic exploration, and colony exploitation across generations of ants.

A more comprehensive explanation of ACO can be found in Dorigo and Stüt-

zle, 2004. Of several ACO variants, the `Ant Colony System' algorithm was

used in this work.

Since ACO is typically applied to routing problems, considerations must

be made as to how to represent parameter selection as such a problem. A

86 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

FIGURE 4.2: Simulated SOA optical response to (top left) PSO,
(top right) ACO and (middle left) GA driving signals relative
to a standard step input. For reference, the target SPs used
have also been plotted. Learning curves showing how both the
cost spread and the optimum solution improved as the (mid-
dle right) PSO, (bottom left) ACO, and (bottom right) GA al-
gorithms were tuned, showing 10 learning curves for each set
of hyperparameters. The curves for the optimum hyperparam-
eters have been plotted in green. For PSO in (middle right),
some additional information has been plotted: i) No dynamic
PSO, PISIC shell, or embedded step (red), ii) no PISIC shell or
embedded step (blue), iii) no embedded step (orange), and iv)
the �nal PSO algorithm (green, also plotted on separate graph
(inserted)). For GA, the i) default DEAP (red) and ii) optimised
(green) hyperparameter learning curves have been plotted. For
ACO, the blue curve is for a run with a larger pheromone ex-
ponent (0.5) value than the optimum, and the red is for a larger

dynamic range on the signal search space (� 50%).

4.5. Optimisation Algorithms 87

system with N parameters each having M possible values can be modelled

as a graph with jN j clusters of jM j nodes, where each node maps to a possible

value of a particular parameter. A path can then be found that visits one node

in each cluster, de�ning a set of parameter values after each cluster has been

visited once and only once.

For example, consider an N = 3 parameter (a, b, c) system where each

parameter can take 1 of M = 2 possible values which are selected in the or-

der a ! b ! c. A (N � N) � (M � M) matrix representing the probability

of choosing a value for one parameter, given a previous value choice for an-

other, can be written as in (4.6) where axy
ij is the probability of choosing value

j for parameter y, given that value i for parameter x was just chosen. Zeroing

the matrix entries appropriately ensures that parameter values are selected

in order.

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 aab
00 aab

01 0 0

0 0 aab
10 aab

11 0 0

0 0 0 0 abc
00 abc

01

0 0 0 0 abc
10 abc

11

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(4.6)

Hyperparameter Tuning

The important hyperparameters with respect to ACO (speci�cally the Ant

Colony System algorithm used here) are the pheromone exponent (where

higher values encourage more exploitation of previously found paths), the

evaporation exponent (where higher values discourage exploitation of previ-

ously found paths) and the probability of an ant travelling along a randomly

88 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

selected path. Additionally, the number of ants and generations must be se-

lected. Firstly, it was found that beyond 200 ants, the cost spread did not im-

prove signi�cantly. Similarly, regardless of the spread, the ACO routine was

typically converging after between 60 and 75 generations, so a generation cap

of 100 was imposed since this was suf�cient to guarantee convergence. The

values for the other parameters were the pheromone constant a = 0.25, the

evaporation constant r = 0.5 and the exploration probability p = 0.1. It was

also found that minimising the search space by reducing the dynamic range

of the signal to � 25% centred at 50% of the maximum shortened conver-

gence time without degradation of the �nal signal, which had the advantage

of making matrices memory sizes manageable. No further hyperparameters,

such as the PISIC shell applied with the PSO method, were utilised, which is

more desirable since fewer hyperparameters simplify the tuning process.

As seen in Fig. 4.2, the spread of the ACO routine was reduced from 23%

to 14.9% through tuning, but was still less consistent than the 1.8% spread of

the PSO algorithm. Fig. 4.2 shows the convergence of the Ant Colony Sys-

tem algorithm for various hyperparameter combinations (described in the

�gure's caption). While the spread in the early iterations of the routine is

explained by the embedding of a square signal in the PSO routine described

above (since it is very unlikely to randomly initialise a signal better than a

square and the ACO does not use any sort of initial signal embedding), the

spread in the later stages is thought to be due to some practical limitations

of the ACO optimisation method. For N parameters with M values each, the

ACO routine requires 2 (N2 � M 2) matrices (point-wise multiplied to make

a third). A 100 point signal with 100 possible values per point gives a matrix

with 100, 000, 000 elements. Implemented with the popular Numpy Python

library, a minimum of 8 bytes per �oating point means such a matrix is on

the order of gigabytes. Given the relatively low power PC used in the ex-

periment, restrictions on the state space had to be imposed due to memory

4.5. Optimisation Algorithms 89

limitations. This meant that rather than optimising each point on the sig-

nal (240) with the maximum resolution allowed by the arbitrary wavelform

generator (AWG) (8 bit = 256 points), only 180 points (those in the HIGH

state of the initial driving step signal) were optimised with a resolution of 50

points. This means that the state space viewed by the ACO routine was more

strongly discretised than that viewed by a method (such as PSO) with lower

memory requirements, limiting how optimum the generated signal can be

and how well ACO could generalise to other SOAs. Nevertheless, as will be

seen, the ACO still produced driving signals that improved upon previous

methods. The �nal ACO tuning output, shown in Fig. 4.2, had a RT, ST and

OS of 753 ps, 1.58 ns and 9.1% respectively.

4.5.4 Genetic Algorithm (GA)

Implementation

GAs are a group of nature-inspired population-based metaheuristics. The

term `Genetic Algorithm' relates to the model proposed by John Holland in

1975 Holland, 1975. A detailed explanation of GAs can be found in Whitley,

1994.

The DEAP Python library Fortin et al., 2012 was used to implement the

canonical GA. Each optimisation started with an initial population of 100

individuals with random positions in order to span as much of the search

space as possible. Each individual was represented by an array of 240 points

with values within the 7V range, therefore representing a driving signal.

During the evolutionary process, the mutation stage was performed by

applying Gaussian noise to some points of each individual. Any individuals

with points which went beyond the supported 7V range were discarded.

90 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

Hyperparameter Tuning

As described in Whitley, 1994, there are three parts to the evolutionary pro-

cess: selection, crossover, and mutation. Each of these can be implemented

in a few different ways (e.g. Proportionate, Ranking or Tournament for selec-

tion Sivaraj and Ravichandran, 2011), and each of these implementations use

different hyperparameters (e.g. tournsizefor Tournament Selection; or m, s,

and indpbfor Gaussian Mutation). This results in an overall high number of

hyperparameters which might signi�cantly impact the probability of the GA

getting stuck in a local minimum as well as the speed of convergence. The

high number of hyperparameters also meant that there were more values

to �ne-tune, which made tuning both more complex and time consuming,

thereby reducing its generalisability. Since the high number of hyperparam-

eters already impacted generalisability, search space was kept unrestricted

(as done with ACO and with the PSO PISIC shell) to try to still allow for as

much generalisability as possible, but this would have the knock-on effect of

poorer convergence and a lesser settled signal. However, as demonstrated in

Fig. 4.8, GA was still able to generalise fairly well to 10 different SOAs.

The DEAP library documentation came with a set of suggested default

hyperparameter values. These were varied using grid search over 61 opti-

misations. A limit on the number of generations was set to 500, which was

found to be suf�cient for convergence.

Mutation was implemented using Gaussian Mutation, which has a prob-

ability indpb (mutation rate) of changing each of an individual's points by

applying normally distributed noise of mean m and standard deviation s.

Using a negative mled to a solution with lower values, while a positive mdid

the opposite - each leading to a lower overall performance, so mwas set to 0.

Decreasingindpbor s slowed down the process as it reduced the overall mu-

tation speed, but increasing either one too much led to the GA getting stuck

4.6. Experimental Setup 91

at local minima. By performing grid search on the hyperparameters, the op-

timal values were found to be 0.06 and 0.15 respectively. A population size of

60 led to the fastest initial convergence speed (per number of �tness function

evaluations), however, the higher number of 100 individuals in a population

led to a better overall solution after many generations. Additionally, both

cxpb(the probability of mating two individuals), and mutpb(the probability

of mutating an individual), were increased signi�cantly from 0.6 to 0.9 and

from 0.05 to 0.3 respectively. Increasing tournsize(which controls the num-

ber of randomly selected individuals from which to choose the best one for

the next generation Miller, Goldberg, et al., 1995) above 4 did not have an

impact on the convergence, whereas using the values of 2 and 3 signi�cantly

slowed down the process. Most hyperparameters did not change by much

from the DEAP library's default values since the initial values were almost

optimal and changing them led to a slower convergence.

Fig. 4.2 shows the 10 learning curves for the default hyper parameters

(red) and the optimised parameters (green), where the cost spread was re-

duced from 58.6% to 10.8%. Fig. 4.2 also shows the simulated SOA output of

the tuned GA with a RT, ST and OS of 799 ps, 2.55 ns, and 9.0% respectively.

4.6 Experimental Setup

The experimental setup is shown in Fig. 4.3. An INPhenix-IPSAD1513C-5113

SOA with a 3dB bandwidth of 69 nm, a small signal gain of 20.8 dB, a 0-140

mA bias current range, a saturation output power of 10 dBm, a response

frequency of 0.6 GHz, and a noise �gure of 7.0 dB was used. An SHF 100

BP RF ampli�er was selected by calculating the ampli�ed MSE relative to the

direct signal for different ampli�ers, enabling a full dynamic range peak-to-

peak voltage of 7V. A 50W resistor was placed before the SOA, allowing for

92 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

FIGURE 4.3: Diagram of the SOA experimental setup used.

the maximum allowed dynamic current range of 140 mA to be applied across

the SOA

The 70 mA optimum SOA bias current was found by measuring how

MSE, optical signal-to-noise ratio (OSNR), RT, OS, and optical gain varied

with current. A 70 mA bias using a -2.5 dBm SOA input laser power pro-

duced the lowest RT and MSE. The SOA was therefore driven between 0 and

140 mA centred at 70 mA. The other equipment used included a Lightwave

7900b lasing system, an Agilent 8156A optical attenuator, an LDX-3200 Se-

ries bias current source, a Tektronix 7122B AWG with 12 GSPS sampling fre-

quency, an Anritsu M59740A optical spectrum analyser (OSA), and an Agi-

lent 86100C oscilloscope (OSC) with an embedded photodiode. The RF signal

going into the SOA had a RT of 180 ps, therefore this was the best possible

RT (and ST) that the SOA could have achieved. Throughout the experiments,

a wavelength of 1,545 nm was used.

4.7. Results 93

FIGURE 4.4: Experimental SOA responses to the step, PISIC,
MISIC1, raised cosine and PID driving signals.

4.7 Results

4.7.1 Optimisation of a SOA Driving Signal

In this section the experimental results for the SOA responses to step, PISIC,

MISIC, raised cosine, PID and AI driving signals have been compared. The

objective was to reduce the off-on switching time and power oscillations

(measured by the ST and OS metrics).

A step driving signal was the simplest format used to drive the SOA.

Fig. 4.4 (which has been normalised with respect to the steady state value as

done in Figueiredo et al., 2015 for easy comparison) shows the SOA optical

response to a step driving signal, resulting in a RT, ST and OS of 697 ps, 3.72

ns and 0.0% (since it undershot the steady state) respectively.

The PISIC format proposed by Gallep and Conforti, 2002 was applied

to the SOA with 2.95V step + 4.05V impulse, and the response is shown in

Fig. 4.4 with a RT, ST and OS of 502 ps, 4.35 ns and 40.5% respectively. The

form of the PISIC pulse used was optimised for the SOA in use, where differ-

ent step-impulse voltage combinations (as done in [18]) were tested, as well

as varying widths of the pre-impulse section of the PISIC signal as a percent-

age of the total signal length centered at the percentage used in [18]. It was

found that a 500ps pulse width gave the best results.

94 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

The MISIC 1-6 bit-sequences proposed by Figueiredo et al., 2015 were ap-

plied with 2.95V step + 4.05V impulse, where the same step-impulse voltage

combinations were tested as for PISIC. The format with the best performance

was MISIC1, whose response is shown in Fig. 4.4 with a RT, ST and OS of 502

ps, 4.02 ns and 0.0% (undershot) respectively.

A popular approach to optimising oscillating systems in control theory

is the raised cosine approach, whereby the rising step for a signal of period

T is adapted to a rising cosine de�ned by the frequency-domain piecewise

function in (4.7). As b increases (0� b � 1), the rate of signal rise decreases.

The best performing raised cosine was b = 0.5, whose response is shown in

Fig. 4.4 and whose RT, ST and OS were 921 ps, 4.69 ns and 0.0% (undershot)

respectively.

H (f) =

8
>>>>>><

>>>>>>:

1, if f � 1� b
2T

1
2

h
1 + cos

�
p T
b

h
f � 1� b

2T

i�i
, if 1� b

2T < f � 1+ b
2T

0, otherwise

(4.7)

Another popular approach in control theory is the PID controller. The

optical response of the PID control signal is shown in Fig. 4.4, with a RT, ST

and OS of 501 ps, 4.02 ns and 2.3% respectively. In order to quickly obtain

values for the 3 PID parameters, Kc, Ki and Kd, a First Order Plus Dead Time

(FOPDT) model was applied to the SOA, where the key parameters for this

model (Kp, t p and qp) can be measured directly from the step response of the

device. The PID tuning parameter, t c, which is inversely proportional to the

magnitude of the response to offset, was tested with values between that of

an `aggressive' tuning regime (t c � 0.1) and a `conservative' one (t c � 10.0).

The results shown in Fig. 4.4 are with t c = 5.0 which was found to be the

best performing value.

The PSO algorithm used in the simulation environment was applied to

the real SOA. The SP and the PSO response are shown in Fig. 4.5, with a RT,

4.7. Results 95

ST and OS of 454 ps, 547 ps and 5.0% respectively.

An ACO run with 200 ants accomplished a RT, ST and OS of 413 ps, 560 ps

and 4.8% respectively, performing similarly well to the PSO algorithm. The

ACO result is shown in Fig. 4.5

Similarly, the GA result shown in Fig. 4.5 had a RT, ST, and OS of 340

ps, 825 ps, and 10.3% respectively. The RTs of the AI algorithms were an

order of magnitude improvement on the step's, and the STs (and therefore the

effective off-on switching time) were several factors faster than the previous

MISIC1 optimum from the literature, bringing SOA switching times truly

down to the hundred ps scale. A scatter plot comparing these data is shown

in Fig. 4.7.

By comparison, PSO had the lowest ST and therefore the lowest overall

switch time. It is hypothesised that this was due to the fact that PSO, being

less memory-hungry than ACO and having superior convergence properties

compared to GA as a result of having fewer hyperparameters to �ne-tune

and a smaller search space with the PISIC shell, was able to be given a better

search space-hyperparameter tuning trade-off, and therefore was able to �nd

a more optimum driving signal. This larger search space also enabled PSO

to explore a wider variety of drive signal solutions without needing a large

number of hyperparameters tuned (which adds complexity), allowing PSO

to generalise to a more diverse set of SOAs than either ACO or GA were able

to. Therefore, although in theory all AI algorithms used were powerful and

generalisable, due to the number of hyperparameters and search space re-

strictions that were required in practice, PSO had both the best performance

and generalisability, although GA came close to matching PSO.

Compared to when driven by a simple step driving signal, the PSO, ACO

and GA methods improved the ST by 85%, 85% and 78% respectively. By con-

trast, the RT prioritising MISIC and PISIC methods worsened the ST by 8%

and 17% respectively. The raised cosine method which ultimately achieves

96 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

FIGURE 4.5: Experimental results showing the optimised SOA
optical outputs for (top) PSO, (middle) ACO, and (bottom) GA.

4.7. Results 97

FIGURE 4.6: Experimental results showing the optimised SOA
electrical driving signal inputs for (top) PSO, (middle) ACO,

and (bottom) GA.

98 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

FIGURE 4.7: Scatter plot comparing the experimental RTs, STs
and OSs of all the driving signals tested. The outlined tar-
get region highlights the performance required for truly sub-

nanosecond optical switching.

better stability, but not neceesarily better ST worsened the ST by 26% and

PID control by 8%. For RT, the PSO, ACO, GA, MISIC, PISIC and PID control

methods improved the metric by 35%, 51%, 41%, 28%, 28% and 28%, whereas

raised cosine also worsened it by 32%. As can be seen from these results, pre-

vious attempts to optimise switching time have focused naively on RT only.

This can be achieved by some means of a correspondingly fast rise in the

driving signal. However this method - as noted earlier - induces signi�cant

oscillation in the signal following it's rising edge. This oscillation therefore

undermines the notion of the signal having `switched', as the magnitude of

it's oscillations can be a signi�cant percentage of the steady state value, there-

fore undermining the signal's ability to be useful in a data transmission con-

text. By contrast, the data driven methods are guided to simply make the

output as square as possible. In doing so, they �nd counter-intuitive driving

signals which accomplish both rise and ST improvements.

Table B.1 in Appendix B shows the full set of results (both absolute, and

relative improvement for cross-comparison) of the RT, ST, OS and guard time

4.7. Results 99

for all methods implemented in this work, as well as a variety from the liter-

ature. The rows associated with Figueiredo et al., 2015 are the results for the

optimised PISIC and MISIC-6 signals de�ned and implemented in this work.

This is distinguished from the other two columns with `PISICánd `MISIC'

methods referred to as coming from this work, which are a re-implementation

of the methods described in Figueiredo et al., 2015 but applied to and opti-

mised for a different experimental setup.

Finally, Fig. 4.6 shows the electrical drive signals found by each algorithm.

While the primary focus of this chapter is the methodrather than the spe-

ci�c drive signal, the drive signal is important for real-World implementation

and general understanding of the search space restrictions used. As Fig. 4.6

shows, the derived driving signals are noisy despite a smooth resultant op-

tical output. This is likely because the AWG (AWG using an 8-bit digital

to analogue converter) drive signal frequency was 6 GHz offering 12 GSa/s

whereas the SOA used had a -3dB frequency response of 0.6 GHz, therefore

the drive signal was over-sampled by approximately 10x. In a real DCN

scenario, to implement the algorithms' driving signals in practice, an FPGA

or ASIC with an embedded on-chip DAC for multilevel signal generation

would likely be used, and there are already existing FPGAs (a.k.a. RF System

on Chip (RFSoC)) that support multiple DACs at 6 GSa/s. Therefore in prac-

tice the search space would be lower (fewer dimensions/number of points to

optimise) than assumed in the presented work, and this would be expected

to improve the AI convergence characteristics. Further experiments using

fewer points in the drive signal/a slower AWG are necessary to see what the

true effects are on the AI algorithms. Though this is beyond the scope of the

work presented in this chapter, it is a valid avenue of future work and has

been addressed in Alkharsan et al., 2022 (where the author of this thesis is a

second author).

Within the context of a DCN implementation of the presented methods,

100 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

some considerations were made with respect to the effect that the algorithms

have on the signal to noise ratio (SNR). Namely, it should be considered if

the oscillations caused by the algorithms (all of which are of the order of 5%)

have a negative effect on the SNR of the ON period of the output, particu-

larly in comparison to the output of a step driving signal, where the ON pe-

riod considered is de�ned as starting when the signal enters the � 5% (with

respect to the steady state) region for a 20 ns pulse length. Following from

the model of ampli�er noise given in Agrawal, 2002 and accounting for Shot

noise, intrinsic ampli�er noise (the noise �gure of the SOA) and the addi-

tional noise due to the �uctuations in the output, the penalty on the noise

�gure is considered (as de�ned in Agrawal, 2002) due to the deviations of

the output from its steady state value throughout the duration of its ON pe-

riod. Assuming (based on intrinsic and Shot noise contributions) a base noise

�gure (i.e. if the driving method caused no deviations at all) of 7.1dB, the

measured noise �gure penalties for ACO, PSO, GA and step were 1.05 dB,

0.65 dB, 1.12 dB and 0.53 dB with SNR values of 28.52 dB, 28.90 dB, 28.54 dB

and 29.06 dB respectively, showing that the additional noise �gure penalty

due to the AI methods ranges between 0.08 dB (PSO) and 0.59 dB (GA) com-

pared to a step in the case of the best performing algorithm (PSO).

4.7.2 Optimisation of Different (Simulated) SOAs

To test the above claim that these algorithms can in theory be generalised to

any SOA, the simulation was used to model 10 different SOA. These were

generated by multiplying the simulation parameters (shown in in table A.1,

Appendix A) by various factors (summarised in table A.2, Appendix A),

thereby simulating SOAs with different characteristics. The optical outputs

of these different SOAs in response to the same step driving signal are shown

in Fig. 4.8. Using the PSO and GA algorithms with the same hyperparameters,

4.7. Results 101

FIGURE 4.8: Simulated SOA optical responses of 10 different
SOAs (each with a different transfer function) to (upper-center)
step, (top right) PSO, (middle right) ACO, and (bottom right)
GA, and the corresponding driving signals for (top left) PSO,
(middle left) ACO, and (middle right) GA. All AI optimisations
were done with the same hyperparameters and a common tar-

get SP.

102 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

TABLE 4.1: Performance summary for the techniques applied
to the 10 different simulated SOAs, given in the format min |

max | mean | standard deviation (best in bold).

• Signals marked `-' never settled.

Technique Rise Time (ps) Settling Time (ns) Overshoot (%)
Step 502, 753, 653, 86.4 3.1, -, 5.8, 3.0 16.5, 70.4, 39.2, 14.1

PSO 669, 837, 703,58.5 0.67, 1.3, 0.87, 0.20 2.51, 6.01, 4.46, 1.22

ACO 502, 753, 644, 79.4 1.6, -, 2.6, 0.82 11.1, 70.4, 32.6, 17.0

GA 760, 930, 793,58.5 1.0, 1.5, 1.3, 1.5 4.31, 9.36, 7.04, 1.54

all 10 of these SOAs are able to be optimised with no changes to the algo-

rithms, as shown in Fig. 4.8 (where the AI electrical drive signals have been

included for reference). Due to search space restrictions, ACO could not gen-

eralise. For all 10 SOAs, a common target SP was chosen. The SP was de�ned

as a perfect 0 OS, RT and ST step response based on the steady states of the

initial step response of one of the simulated SOA's. However, the target can

be arbitrarily de�ned by the user if a different optical response is required,

demonstrating the �exibility of the AI algorithms to optimise optical out-

puts with respect to speci�c problem requirements. Relative to this target

SP, the performances are summarised in Table 4.1. Signals that did not settle

have been marked as `-' and excluded from performance summary metrics.

PSO had the greatest generalisability to optimising the STs of different SOAs.

Researchers in our �eld should therefore be able to black box our PSO AI

approach and optimise their SOAs even though they will have different EC

components from the speci�c device(s) optimised in the presented work.

4.8. Sub-Nanosecond Wavelength Switching with Fast-Gating SOAs 103

4.8 Sub-Nanosecond Wavelength Switching with

Fast-Gating SOAs

As claimed throughout the chapter, ultra-fast gating SOA's are interesting in

the context of ultra-fast switching architectures Ottino, Benjamin, and Zer-

vas, 2022; Benjamin et al., 2020; Benjamin et al., 2017, where their incorpo-

ration in network device and system design can enable a new breed of fast-

switching and all-optical networks which could provide the aforementioned

bandwidth and latency bene�ts in modern DC settings whilst still recon-

�guring at data packet timescales. To this end, further experimental work

has been done to show a proof of concept wavelength switch, which tran-

sitions in less than 1 nanosecond between a large number of wavelengths

whilst requiring fewer components (per-wavelength) than previously pro-

posed methods. The same scenario is considered as previously in the chapter,

where switching overhead must be small with respect to optical data packets

that last for > 20ns, and as in Benjamin et al., 2017 and Benjamin et al., 2020

wavelength circuit switching is considered.

Fast tuning wavelength tunable sources (WTS) based on digital super-

mode distributed Bragg re�ector (DS-DBR) lasers have been developed and

demonstrated experimentally and are demonstrated alongside the method

presented in this section in Gerard et al., 2020. Note that the design and

experimentation concerning the WTS devices were not done by the author

of this thesis, but were used within an experimental collaboration between

their designer and the author of this thesis. One such device is able to switch

any-to-any between 122 distinct wavelengths spanning 6.05 Thz, and takes

� 14ns to make such transitions. Clearly, a single one of these WTS devices

is unable to switch between different wavelengths without incurring signif-

icant overhead with respect to a 20ns data signal. A design is proposed that

incorporates two of these WTS devices alongside two sub-nanosecond gated

104 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

SOAs optimised as described earlier, to accomplish a sub-nanosecond wave-

length switching device.

The design is as follows (and visualised in Fig. 4.9). The optical output

of two fast-switching WTS devices are directed through two distinct SOAs,

which will be referred to as WTS1, WTS2 and SOA1, SOA2 respectively.

These SOAs are the same (experimentally and with respect to gating opti-

misation) as those described earlier in this chapter). The output of each of

these SOAs are then coupled, where output signals are forwarded to various

measurement devices (or receivers and so on if this were a component in a

real network system). The operational principle of this device is to stagger

the output of each laser, such that while data on a particular wavelength is

being transmitted by WTS1 devices (i.e. SOA1 is gated open) for the data-

packet duration of 20ns or more, WTS2 is tuning and gated closed by SOA2.

By the time the data transmission period on WTS1 is �nished, WTS2 will

have also �nished tuning to some wavelength which it will be emitting stably

from it. SOA1 and SOA2 can be simultaneously closed and opened respec-

tively so that the signal from WTS1 is cut off whilst the signal from WTS2 is

transmitted. Given the sub-nanosecond gating capabilities of the SOAs, this

simultaneous gating event can be completed in less than a nanosecond, thus

achieving sub-nanosecond wavelength switching between WTS1 and WTS2.

The setup used to demonstrate this principle is shown in Fig. 4.9 and con-

sisted of a pair of commerical DS-DBR lasers Ward et al., 2005 were driven

by 250 MS/s AWG with 125 MHz bandwidth. The SOAs are of the same type

as described earlier in this chapter, and are also drive-optimised in the same

way.

Results

After component optimisation, the operation of the complete hybrid WTS

was characterised. The DS-DBR lasers were driven out of phase with 12.5 MHz

4.8. Sub-Nanosecond Wavelength Switching with Fast-Gating SOAs 105

FIGURE 4.9: Experimental setup. While one laser is gated shut
and tuning to one wavelength, the other is gated open and
transmitting on another. When the transmitting laser is �nished
and the other laser is stable after tuning, the two SOAs can in-
vert their respective states so that now the formally tuning laser
is transmitting and the formally transmitting laser is not. This

achieves sub-nanosecond wavelength switching.

regression-optimised signals, resulting in dwell times of at least 25 ns on each

wavelength. The SOAs were driven by 25 MHz PSO-optimised signals, re-

sulting in 20 ns bursts, and aligned to block the �rst 15 ns and last 5 ns of each

laser burst. Fig. 4.10 shows the power output for the most dif�cult switch-

ing instance, where DS-DBR laser 1 switched from 1572.48 nm to 1524.11 nm,

incurring a large rear current swing of 45 mA. Note the rectangular lead-

ing edge of DS-DBR/SOA 1, especially compared to SOA 2 which has been

left un-optimised for comparison. Packet-to-packet power variations are due

to variations in laser wavelength power (which is a wavelength dependent

property of the DS-DBR); these can be addressed by applying slot-speci�c

SOA drive currents (not possible in the setup shown). Fig. 4.12 shows four

burst transitions in more detail with their 90-90% switch times. All these

transitions are below 900 ps, successfully demonstrating sub-ns switching.

As the SOA operation is independent of the laser switching, these switch

times are consistent across all wavelength bursts.

106 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

0 10 20 30 40 50 60 70 80
0

0.5

1

1572.48 nm

1563.05 nm 1524.11 nm

1532.29 nm

Time (ns)

N
or

m
al

is
ed

P
ow

er DS-DBR 1+ SOA 1
DS-DBR 2+ SOA 2

FIGURE 4.10: Output intensity of the hybrid WTS. SOA 1 is
driven with a PSO signal. For comparison, SOA 2 is unopti-

mised.

0 10 20 30 40 50 60 70 80 90 100

� 20

� 10

0

10

20

Time (ns)

F
re

qu
en

cy
O

ffs
et

(G
H

z)

1544.53 nm 1565.90 nm
1524.50 nm 1551.32 nm

FIGURE 4.11: Instantaneous frequency offset data of the hybrid
WTS without (faint) and with SOA gating (bold). All bursts are

always within � 5 GHz of their target.

� 1 � 0.8 � 0.6 � 0.4 � 0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1 624 ps
800 ps
896 ps
864 ps

Time (ns)

N
or

m
al

is
ed

P
ow

er 1572.48 to 1565.50 nm 1565.50 to 1524.11 nm
1524.11 to 1530.72 nm 1530.72 to 1572.48 nm

FIGURE 4.12: Detailed view of the intensity transitions of each
SOA. 90-90% switch times are overlaid.

Fig. 4.11 shows the coherent receiver output of four wavelength slots,

with (bold) and without (faint) SOA gating. The high � 25 GHz frequency

4.8. Sub-Nanosecond Wavelength Switching with Fast-Gating SOAs 107

1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580

� 40

� 20

0

35
dB

Wavelength (nm)

P
ow

er
(d

B
m

)

FIGURE 4.13: Spectra of all 22 channels under test undergoing
ultra-fast switching. The two TLs are continuously tuneable,

supporting 122 � 50 GHz channels.

deviations of both lasers are suppressed by the SOAs, such that the gated

outputs are always within � 5 GHz of their target values. The observed fre-

quency ripples are a result of the low sample rate of our 250 MS/s AWG that

introduces Fourier components to the driving signal; these can be suppressed

by using a higher sample rate.

Fig. 4.13 shows the optical spectra for all 22 channels under test measured

using an optical spectrum analyser, all undergoing ultra-fast gated switching.

A mean side mode suppression ratio (SMSR) of 38.9 dB (best 41.0 dB, worst

36.8 dB) with a worst-case broadband SMSR of 35.7 dB is seen from this plot.

The mean single-wavelength power was measured as 2.8 dBm (best 4.6 dBm

at 1566.31 nm, worst 0.8 dBm at 1572.48 nm). If all SOA bursts are limited to

match this worse-case intensity the full hybrid WTS has a maximum power

of 6.8 dBm. The mean extinction ratio was measured as 20.5 dB (best 22.9 dB,

worst 17.1 dB) where the worst case result also occured at 1572.48 nm. All

these values can be improved by increasing the voltage swing of the SOA

drive signals.

Furthermore, from a practical perspective the design also offers numerous

bene�ts. In a large DCN with many switches, device cost and footprint are

of considerable importance. Since the design presented here requires only

two lasers to switch between as many wavelengths are supported by that

108 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

10

This Work
[Shi '19]

[Gerard '20]

[Lange '20][Ueda '19]

[Simsarian '06]

(a)

Supported Channels

S
w

itc
hi

ng
Ti

m
e

(n
s)

0 50 100 150 200 250 300 350 400
0

20

40

60 C Band C+L Band C+L+S Band

(b)

Channels

O
n-

C
hi

p
A

re
a

(m
m

2)

LDs + SOAs [Shi '19]
Comb + SOAs [Lange '20]
Hybrid WTS [This Work]

FIGURE 4.14: (a) Summary of the state-of-the-art ns and sub-
ns WTSs, comparing switch time against number of supported
50 GHz spaced channels. Reported RTs are shown as solid,
while estimated settling times are faded. (b) Operational princi-
ple of the hybrid WTS. Two tuneable lasers switch out of phase
at half the burst rate, gated by SOAs. The time-interleaved out-
put provides wideband ultra-fast switching. (c) Comparison of
the integration area required to scale three sub-ns WTS designs,

assuming ideal device packing.

laser (and two SOAs to gate gate them), it has a very high wavelength-to-

component ratio. Comparison to various other proposed wavelength switch-

ing methods is shown in Fig. 4.14(a). Similarly, when using a laser that sup-

ports N distinct wavelengths, the design requires only 4 components for ev-

ery N wavelengths in use (two lasers, two SOAs). This also provides the ben-

e�t of (highly) sub-linear footprint scaling as the number of supported wave-

lengths increases - also highly bene�cial compared to previously demon-

strated methods as seen in Fig. 4.14(b). Overall, the wavelength switch de-

sign described here represents the largest number of sub-ns switching chan-

nels from a single sub-system reported to date, supporting 122 channels whilst

requiring only 4 core components, and is able to switch any-to-any in less

4.9. Summary 109

than 1 nanosecond.

4.9 Summary

4.9.1 Demonstrated Outcomes

Simulation and experimental results of SOA off-on switching were presented

for various driving signal formats. The work in this chapter outlined a novel

approach to SOA driving signal generation with AI algorithms which made

no assumptions about the SOA and therefore were general, required no his-

toric data collection and could be scaled to any SOA-based switch, opening

up the possibility of rapid all-optical switching in real DCs. Experimental

STs (and therefore effective off-on times) of 547 ps were achieved using PSO,

offering an order of magnitude performance improvement with respect to ST

over our implementation of the PISIC and MISIC techniques from the liter-

ature. Additionally, the standard PID control and raised cosine techniques

from control theory were shown to be inadequate for the problem of ultra-

fast SOA switching. Although ACO and GA demonstrated slightly faster RTs

than PSO, PSO had a faster ST and also a signi�cantly lower 1.8% cost spread,

giving greater reliability that any given PSO run had found the optimum so-

lution. Furthermore, due to the fewer restrictions placed on the search space

and the lower number of �ne-tuned hyperparameters compared to ACO and

GA, PSO was found to be more easy to generalise to unseen SOAs.

Following this, a proof-of-concept WTS architecture was proposed which

exploits these fast-gating components alongside a fast-tuning (O(10ns)) laser.

The architecture is bene�cial in numerous ways compared to several pre-

vious proposals from the literature. Firstly, it accomplishes consistent sub-

nanosecond switching between 122 distinct wavelengths, where this num-

ber of wavelengths is limited only by the number of channels supported by

110 Chapter 4. Sub-nanosecond Optical Gating with Swarm Optimisation

the laser. Secondly, it also achieves a notably high channels-per-component

count, requiring just 2 lasers and 2 SOAs to achieve this. This provides much

needed scalability particularly for domains such as DCs where a very large

number of transceivers are required.

4.9.2 Limitations

The SOA was sampled a rate that was higher than the response frequency of

the device. This means that many of the samples comprising the optimised

driving signal are redundant and therefore a lower driving signal could be

used. This is bene�cial in practical terms, since lower frequency driving sig-

nals allow for cheaper electronics to be used and therefore enable greater

scalability when costs are accounted for.

The WTS architecture proposed is contextualised by the need to perform

optical wavelength switching at sub-nanosecond speeds. As such, further

development of this towards more realistic experimental conditions would

further demonstrate the devices viability and bene�ts. In particular, optical

signals carrying data should be used rather than just steady laser light, as

this would indicate if there are any noise effects not yet observed which will

undermine it's actual application in systems. Similarly, not only should ex-

periments demonstrate data being carried, but data should �ow in packets

of O(10)ns where each is modulated on a different wavelength. This would

demonstrate the fundamental operational principle of the proposed architec-

ture in a data transfer scenario that is valid in the context of the kind of DC

architectures in which it would operate.

Further discussion of limitations as they relate to future work is presented

in 7.

111

Chapter 5

Production Scalable Control

Parameter Optimisation with Deep

Reinforcement Learning

5.1 Associated Publications and Contributions

Shabka et al., 2022: "One-shot, Of�ine and Production-Scalable PID Opti-

misation with Deep Reinforcement Learning"; Zacharaya Shabka , Michael

Enrico, Nick Parsons, Georgios Zervas; Under Review; arXiv:2210.13906.

• Primary author.

• Leading researcher.

• Sole code developer/led experiments.

• Collaborated with Huber+Suhner Polatis on experimental work; com-

pany provided access to optical switches and general testing facilities.

Shabka, U.K. Patent GB2210433.5, 2022: "Determining PID Parameters Us-

ing a Deep Reinforcement Learning Model"; Zacharaya Shabka , Georgios

Zervas; Patent Number GB2210433.5 (�led 2022).

• Lead inventor

112
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

• Patent licensed to Huber+Suhner Polatis for commercial integration.

• Consulted with Huber+Suhner Polatis to lead the initial implementa-

tion work (development of a production-tool): developed proprietary

code; provided extensive documentation; led various training sessions/exercises

and supervised early usage of the tool.

5.2 Chapter Summary

A high level summary of the problem/motivations, proposed solution and

outcomes as relate to this chapter is:

1. One of the most commercially successful optical switch architectures is

based on piezoelectric actuators, where actuation is used to direct light

between grids of input and output ports.

2. The switching speed and stability (� optical loss) are largely in�uenced

by how well the movement associated with actuation can be controlled.

3. Current market leading devices run on-device PID loops to implement

this procedure, therefore switching speed/stability is ultimately deter-

mined by how well this PID process can be optimised.

4. PID loops are governed by 3 continuously valued parameters, therefore

optimal switching in this context is closely related to �nding optical

values for each of these.

5. A method based on reinforcement learning is proposed which learns to

output PID parameters in a one-shot process which adhere to a multi-

objective performance criteria based only on generic information about

the physical characteristics of the actuator.

5.2. Chapter Summary 113

FIGURE 5.1: Visualising the problem described in this chap-
ter. Given an optical switch based on PID-controlled actuation,
how can PID parameters be optimised for an actuator during
production such that actuation is as fast and stable as possible
during product operation? Moreover, how can this be achieved
in a highly scalable way so that signi�cant production overhead
is not induced when a very large number of actuators must be

optimised?

6. Major advantages observed include 20% < improved switching time,

well as decreasing the time to generate unique parameters for a new

actuator from O(day) to O(ms).

7. Following this, a production-tool implementing this method was de-

veloped in the course of this research by the author of this thesis, for

114
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

commercial use in the manufacturing process of a market leading opti-

cal switch manufacturer.

5.3 Introduction

PID control remains one of the most widely used and reliable means of imple-

menting online system control. It is used extensively in many industries from

oil re�nement to paper production and accounts for approximately 97% of

control processes in industry Briefs, 2014; Desborough and Miller, 2002. PID

has advantages with respect to both optimisation/tuning (it only has 3 pa-

rameters to optimise) and computation (each control iteration only involves

a few simple operations which can easily be implemented on low-cost/high-

frequency hardware such as FPGAs or ASICs). However, the best means of

optimally tuning PID parameters still undermines it's application. In gen-

eral, tuning faces a compromise between long and exhaustive but highly op-

timal methods vs. fast and ef�cient but non-optimal ones.

Furthermore, in real world commercial scenarios, products/devices us-

ing control loops are manufactured at scale, where the performance of the

product/devices can be at least partially if not dominantly dependent on the

performance of the closed-loop control process used. For example, the work

presented here is done in the context of piezoelectric-actuator based optical

switching devices. Current models of switches can be built with up to 768

actuators (384 ports on both the input and output plane), where each is con-

trolled by 2 distinct PID loops (1 per axis). This means that to optimally con-

trol each actuator in a single switch of this size, 1536 distinct sets of PID pa-

rameters need to be determined. These switches bene�t from fast and stable

recon�guration times and low optical loss. Both of these properties depend

strongly on the control process underlying these switching processes.

5.3. Introduction 115

Optimising PID parameters for a large number of non-identical devices

faces three primary dif�culties. Firstly, since no manufacturing process is

perfect, no two manufactured devices will be identical. The subtle but de�-

nite differences can (as will be seen in this work) have signi�cant impact on

how well they can be controlled by the same set of PID parameters, motivat-

ing a means of having unique PID parameters for each device rather than a

single generic set. An ef�cient optimisation method would be able to exploit

this device-level information, and use it effectively to generate parameters

that are suitable for that device.

Secondly, since the number of devices manufactured can be arbitrarily

large, it is desirable to minimise the amount of time it takes to generate

these parameters to avoid signi�cant production overhead due to optimi-

sation. Devices can potentially undergo a large number of possible control

processes in their lifetime. For example, in a 384� 384 all-to-all switch where

each actuator in each plane can move from pointing towards any position

in the opposite plane, to any of the remaining 383 positions, each actuator

has 147,456 possible movements it can make per axis - almost 300,000 total

per actuator. Since each actuator switches at the order of O(10ms), check-

ing each of these movements for a single set of PID parameters will take at

least 50 minutes. When a large number of combinations in a search process

is being explored, it is clear to see how this can easily incur days of overhead.

An ideal optimisation routine would not require explicit exposure to each of

these movements in order to evaluate if a set of parameters are suitable.

Thirdly, dynamic PID loops, where PID parameters are constantly ad-

justed over the lifetime of a control process based on the closed loop response

of the system, are not suitable in the case of low-cost/high-speed electronics

like FPGAs, since they incur additional in-loop computation requirements in

order to re-calculate PID parameters. As such it is desirable to �nd single set

116
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

of parameters per-device that achieves good control outcomes over it's life-

time and with respect to potentially multiple different performance metrics.

Direct-search based methods have dominated tuning methodologies for

many decades Ziegler, Nichols, et al., 1942; Cohen, 1953. However, these

methods must be repeated each time a set of optimal parameters is to be

found (i.e. for a new device) and often require long monitoring cycle to iter-

ate over various parameter combinations to evaluate performance in compar-

ison to some set criteria. They are also dif�cult to implement in the context

of multiple simultaneous (and possibly contending) performance goals since

they are typically designed for a particular control outcome.

To summarise - the ideal method of PID parameter optimisation should

be able to generate PID parameters such that: 1. each device has a unique set

of parameters that are optimal for that device speci�cally; 2. these parameters

can be generated in a timely manner relative to production timeframes, not

requiring long tuning times or extensive closed-loop operation of the device

to do so; 3. these parameters are determined once for each device with respect

to a �exible and multi-faceted performance requirement and are consistent in

the face of environmental and operational variability.

This chapter presents a method (patent pending) based on DRL that im-

plements one-step, of�ine and instantaneous optimisation of PID parame-

ters. The method is trained (O(hours)) on a set of devices where it learns a re-

lationship between device information (e.g. resonance-per-axis etc), a multi-

objective performance criteria and PID parameter values. After training, the

method can be applied to previously unseen devices in a one-shot and of�ine

inference procedure (O(ms)) where some previously measured information

(e.g. during post-manufacturing characterisation processes) about the device

can be used to directly generate PID parameters that are performant for that

device speci�cally. In this way the method incurs effectively zero optimisa-

tion overhead as optimisation time for large numbers of devices is trivial and

5.4. Related Work 117

can be done in parallel to some other process once device information has

been measured.

Compared to a direct-search based tuning method implemented in the

production setting of a world leading optical switch manufacturer, our method

ensures that 5� more switching events are equal to or less than the most

challenging target switching time whilst improving average switching time

by 23%. The standard deviation of switching times also improves by 45%,

allowing for more consistent switching performance as well as better perfor-

mance on average. Moreover, the method is also able to achieve 3.5� greater

thermal stability across temperatures ranging from 5 � C to 73� C. In addition

to this, the proposed method takes O(hour) to train and � O (ms) to gen-

erate new unique parameters for previously unseen actuators. By contrast,

manual (direct search) tuning takes O(week) to calculate a single set of con-

trol parameters for a given actuator and must be re-run if it is to be used on a

per-device basis; otherwise using generic parameters leads to (as seen in sec-

tion 5.8) much more inconsistent performance. The proposed method is able

to achieve a 106� speed up when generating device-speci�c PID parameters

that achieve better all around multi-objective control-performance.

5.4 Related Work

Classical PID tuning methods have historically been based on a cost-function

driven search process Ziegler, Nichols, et al., 1942; Zhuang and Atherton,

1993; Wang, Fung, and Zhang, 1999. These processes are capable of produc-

ing high quality parameters. However, such methods often rely on having

reliable system models, which is often not possible. They are also slow, re-

quiring a large number of iterations before they �nd good parameters. This

may be acceptable for one-off optimisation processes, but it is prohibitively

118
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

slow and costly when large numbers of systems have to be individually op-

timised, where longer production-time per-system incurs additional cost. Fi-

nally, these methods are often designed to handle only single performance

objectives and their application becomes more complex when multiple, pos-

sibly con�icting, objectives are to be simultaneously handled.

More recent optimisation techniques that can handle multi-objective cri-

teria automatically without requiring exhaustive search have been presented

as promising PID auto-tuning techniques. Evolutionary/swarm optimisa-

tion techniques such as particle swarm or GAs have been applied to various

formulations of the PID tuning problem Aranza et al., 2016; Asifa and Vaish-

nav, 2010; Uren and Schoor, 2012, since they are computationally more ef�-

cient than direct search, have good convergence properties and can handle

multi-objective optimisation criteria �exibly. However, one fundamental is-

sue with such meta-heuristic algorithms is that the full optimisation process

has to be implemented every time a set of parameters is to be found, mean-

ing it is not appropriate when minimising optimisation time is desirable and

a large number of distinct devices/systems are to be optimised.

Another general short-coming that applies to all of the methods men-

tioned above, is the lack of generlisability in the optimisation process. Con-

sider the case when PID parameters need to be found for many devices which

are similar (e.g. the devices are the same model of device but are distin-

guished by inevitable manufacturing imperfections). In this case, it can be

reasonably expected that PID parameters would be similar, and that suf�-

cient exposure to a large number of such devices should be able to be ex-

ploited in order to more ef�ciently �nd parameters for such devices. This

premise is not accounted for in the above methods, wich instead must be

re-run for each application.

DRL has emerged as another promising means of system control. It has

5.4. Related Work 119

been demonstrated to be able to learn very complex control/operational poli-

cies that can yield superior results compared to top human performers in

considerably complex and uncertain environments Mnih et al., 2013; Silver et

al., 2017. While DRL can in principle be used to control a system directly, re-

placing PID loops altogether, the decision making process involves a forward

pass through a NN - a process that generally requires expensive and power-

hungry hardware such as GPUs - rendering it often inappropriate for the

kind of mass-production scenarios considered in this work where products

must be built with low-cost/power and high-frequency control electronics.

Various works explore the possibility of augmenting traditional PID loops

with a DRL-based pipeline, where the DRL agent will modify the PID pa-

rameters dynamically throughout the lifetime of a control process. These are

typically referred to as adaptive or dynamic PID controllers.

An adaptive PID controller that is augmented by RL using an actor-critic

method and temporal difference learning is shown in Guan and Yamamoto,

2020. Greater control stability is achieved compared to a conventional gradient-

based PID tuning method is shown in a purely simulated non-linear envi-

ronment. Linearity and inability to adapt to changing control scenarios are

identi�ed as major problems concerning PID controllers in Hynes, Sapozh-

nikova, and Dusparic, 2020 (in the application context of suspension control

in cars). The work introduces a dynamic augmented PID controller which

uses an RL agent to choose the suspension systems damping rate, using a

conventionally pre-tuned PID controller at the start. It is shown to achieve

marginal improvements over conventionally tuned PID controllers. Simi-

larly, Carlucho et al., 2017 identi�es key issues with PID control as being that

classical tuning techniques are not entirely suitable when the system opera-

tional conditions are uncertain. A Q-learning based method is presented that

implements an adaptive PID controller, incorporating temporal memory into

120
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

the learning process to improve performance in a real (non-simulated) sys-

tem and showing robust performance for controlling a mobile robot.

While the aforementioned methods all demonstrate a clear capability of

DRL to improve PID tuning outcomes, they are generally designed on the

basis of a dynamic PID control process, where the online PID control-loop is

augmented in some way to incorporate the DRL elements. As noted before,

with respect to minimising compute hardware complexity/energy require-

ments/cost and maximising control loop frequency, such methods fall short

of simpler control methods like classical PID-loops. While AI accelerator de-

vices are becoming faster, more cost effective and energy ef�cient, the cheap-

est/most power ef�cient hardware used commonly in mass-manufactured

products is still not ideally suited for these types of calculations.

Another adaptive PID controller is detailed in Lee and Jang, 2021, with

the goal of reducing the number of tuning attempts required to �nd good

parameters. This is comprised of a neural architecture which takes informa-

tion about previous PID coef�cients and performance as input and produces

a new set of PID coef�cients and is able to (mostly) complete tuning with 3

attempts. This is less restricted with respect to compute requirements, as the

DRL-based PID tuning is done once in closed-loop device operation to gener-

ate parameters that can be used in a regular PID loop. However, the method

still requires the presence and operation of the device to be optimised (i.e. it

is an online tuning process, not of�ine) and doesn't account for how physical

attributes of the underlying control system may contain useful information

for determining suitable PID parameters, so must still be repeated per device.

The randomness associated with the dynamics of a control system (as is

true for any real-world system) is identi�ed in Shipman and Coetzee, 2019 as

a dif�culty in the face of training DRL agents from scratch that will directly

change the controller output over the lifetime of a control process. A staged

training process (based on a simulation of the control system) is implemented

5.5. Optical Switching with Piezoelectronic-Actuators 121

FIGURE 5.2: (Top) Diagram of a single actuator-based sub-
system de�ning a single port in a switch. Data from the posi-
tion sensor can be used in a closed loop alongside x- and y- axis
driving voltage to implement PID control on the position of the
port. (Bottom) Diagram of an input and output plane based on
actuators as used in actuator-based optical switch design. Input
ports and output ports can point towards each other to create
viable light paths and do not require light to be passing through

the system to do so.

that gradually introduces the system-randomness as the agent learns a con-

trol policy over time and is compared to a DRL training procedure that is

exposed to full randomness from the start. The staged training procedure

allows the DRL agent to learn slightly better policies faster. The method can

also learn policies that perform similarly (� 3%worse) than direct synthesis

methods without requiring a model of the underlying control system. This

work demonstrates the advantage of using DRL for PID tuning when perfect

system models are unknown.

5.5 Optical Switching with Piezoelectronic-Actuators

5.5.1 Optical switching using piezoelectronic-actuators

Optically switched DC networks can provide signi�cant bene�ts over elec-

tronically switched ones, particularly in the current age of extreme growth in

122
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

Cloud based services. Optically switched DC networks can provide security

bene�ts (the network is passive so can't interact with transmitted data), reli-

able performance guarantees, increased server-server bandwidth, as well as

opening routes to entirely new disdaggregated DC architectures, which can

give way to both more ef�cient resource utilisation as well as more �exible

resource pooling options Shabka and Zervas, 2021; Parsonson et al., 2020b;

Mishra, Benjamin, and Zervas, 2021. OCS network backbones are also shown

in hyperscale sized DCs to reduce power consumption and increase capacity

Poutievski et al., 2022a. A common type of optical switch is based on free-

space beam-steering between input and output planes, where the steering

is implemented with a piezoelectric-actuator undergoing a control process

Deakin et al., 2019. Piezoelectric-actuators are small electro-mechanical de-

vices whose planar movement is controlled by applying a particular voltage

along each of its two degrees of freedom.

Each actuator is controlling the direction that a collimator lens (that has a

�bre directing a beam of light into it) is pointing, as shown in the left hand

side of Figure 5.2. Switches can be built by constructing an input plane and

output plane, each with M � N actuators. By moving the position of a par-

ticular input-output pair of actuators such that they are pointing towards

each other (referred to from now on as a `switching event'), a light path can

be established. The right hand side of Figure 5.2 visualises how these in-

put/output planes can be constructed as well as the notion of light paths be-

tween the input and output plane being established on the basis of actuator

position control.

Ports are constructed with a position sensor per degree of freedom for

each actuator, such that the position of the actuator can be measured in real

time. As such, closed loop control processes based on targeted positions

(such as PID control) are implemented in order to ensure the stability, relia-

bility and speed of these switching events. It is also noted here that an active

5.5. Optical Switching with Piezoelectronic-Actuators 123

optical signal is not required to establish these light paths, since the positions

are controlled by voltages supplied independently of the optical signal. This

is what is referred to as `dark switching'.

5.5.2 Piezo-electronic actuator control requirements

The performance features mentioned in section 5.5.1 are described more for-

mally below. The following 3 performance features described will serve as

the 3 performance metrics evaluated throughout this work.

Settling-time (ST) This is de�ned as the amount of time taken for the posi-

tion of an actuator to fall and remain within a particular margin, � STmargin, of

the desired position where this margin is set relative to what is practically rel-

evant (e.g. a very small margin corresponds to a very low port-to-port optical

loss). ST must not be larger than a particular target value, STmax. Minimis-

ing ST equates to minimising switching overhead and therefore minimising

communication latency incurred due to switching. For the work presented

here, STmax = 20msand STmargin = � 0.15mm. We also note that in the com-

mercial domain, for the very large switches used in this work, STmax = 50ms,

and the smaller 20ms value applies to the smaller switches. Since travelling

smaller distances requires less extreme corrections under control, smaller

switches (e.g. 16� 16 can generally switch faster than larger ones. In this

work we observe the more stringent 20ms settling objective while working

with a larger switch. This allows us to address a more dif�cult switching

scenario and show that even at the limit of more stringent product perfor-

mance speci�cations, DRL can be employed to design even better performing

switches.

Overshoot (OS) This is the maximum distance away from the target that

the actuator is at any point during switching. Its absolute value must be

124
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

smaller than a particular limit, OSmax. If OS is suf�ciently large, then the

switching port's input/output position may `leak' into an incorrect destina-

tion, compromising the accuracy of the switch and introducing cross-talk in-

duced noise as well temporal increased insertion loss and loss �uctuation.

For the work presented here, OSmax = 5mm

5.6 One-step PID Tuning with Deep Reinforcement

Learning

This work presents a method for �nding optimal PID parameters based on

DRL that overcomes the dif�culties noted in section 5.3. The method achieves

both a control performance improvement, whilst also signi�cantly reducing

optimisation overhead. This section will detail the relevant background to

and formulation of this method, and highlight it's bene�ts at a high level.

Following this, experimental results are detailed in section 5.8.

5.6.1 One-step of�ine PID optimisation as a MDP

Here we specify the MDP used to formulate the PID optimisation as a DRL

problem. The environment in this scenario is a PID-controlled system, which

in the case of the presented experiments is an actuator in an optical switch.

A DRL agent learns to make one step optimisation decisions to determine

the best set of PID parameters (for both axes simultaneously) based on basic

physical state information about the actuator and guided by a multi-objective

training regime. This process as described below is visualised in Fig. 5.5

State/Observation : The state of an actuator is represented as information

about the resonance frequency,w, and gain, G properties (per axis):

5.6. One-step PID Tuning with Deep Reinforcement Learning 125

s = [wx, Gx, wy, Gy] (5.1)

Feature scaling is applied to the state. The raw measurement value of each

feature type (i.e. frequency and gain) have different order of magnitudes to

each other, though all measurements of the same feature type share the order

of magnitude (i.e. all resonance measurements are the order of 10a and gain

of the order 10b). As such, each feature is normalised with respect to it's

type's order of magnitude. This ensures that all features vary at the order of

101 and that no feature is disproportionately in�uential during training.

The actuator state is measured each episode rather than using the pre-

determined measurement done during factory characterisation. This is done

to avoid over�tting to a set of pre-measured state values, especially rele-

vant if a small number of actuators are used for training. The error inher-

ent in measurement processes will expose the agent to a more realistic dis-

tribution of states and should allow it to learn a policy that accounts for

this uncertainty. As such, it generates parameters in production based on

some pre-measured state of a device, it should output parameters in a way

that accounts for the uncertainty in that state measurement process too. By

contrast, on testing/inference the agent generates parameters for previously

unseen devices based on factory-characterisation measurements that induce

very good control performance, showing that the policy is indeed gener-

alised across devices.

Additionally, both axes are shown at once to the agent. Since each axis

is controlled by distinct (non-coupled) control loops, it could be conceivable

that an agent learns to output PID parameters for each axis separately. How-

ever, some inter-axis coupling effects present in the system may be subtle and

dif�cult to measure amidst other more prominent sources of instability. By

allowing the agent to control both axes simultaneously, should coordinated

126
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

axis-parameter values lead to a better reward during training, then this as-

pect of the policy can be reinforced. As such, by allowing the agent to interact

with both axes simultaneously, suf�cient information should be available to

the agent via the reward signal for it to mitigate these effects with suitable

policies. This premise is continued below in the discussion of the bene�ts

due to the action space design.

Action : We de�ne the action space as the space of all possible PID coef�-

cients (for both axes simultaneously).

a = [Px, Ix, Dx, Py, Iy, Dy] wheref P, I , Dg 2 R (5.2)

where Px/ y, Ix/ y, Dx/ y are the proportional, integral and derivative parame-

ter values for the x/ y axis respectively. In practise, an approximate range

or order of magnitude for the P, I and D parameters will be known for the

device; a control system will typically have some associated ranges for each

PID parameter, outside of which control behaviour may be divergent. If not

known ahead of time, since an in�nitely large action space consisting of all

real numbers is intractable, a rough iteration of a simple procedure such as

that presented in Ziegler, Nichols, et al., 1942 can be implemented in order to

determine the order of magnitude of each parameter. Beyond this, no further

restrictions are required to be imposed on the action space.

Similarly to the above, the PID values for both axes are output simulta-

neously. While inter-axis effects may be dif�cult to measure directly, they

could still be present and disruptive to the stability of the actuators posi-

tion. If there was some disruption due to this phenomenon, this would be

re�ected in the reward signal received by the agent in the simple form of a

larger penalty. As such, being able to see state information about each axis,

as well as simultaneously make changes to each of their control loops, the

5.6. One-step PID Tuning with Deep Reinforcement Learning 127

agent can in principle respond to these effects simply by optimising the pol-

icy with respect to the reward signal as normal. If state information and PID

parameter outputs were separated by axis, then the agent would not be able

to relate reward penalties to inter-axis coordination in it's policy and perfor-

mance would suffer. On the other hand, with the current state- and action-

space form, if no such coupling effects are present, the reward function will

not have any additional penalty, and so the policy is free to effectively modify

each control loop separately.

Reward : In this work we use a scalar multi-objective reward function to

in�uence an agent to address the multiple relevant metrics for a given control

process. Given a set of metrics (e.g. settling-time, OS etc),S, we de�ne the

measured value of a metric s 2 S after a actuator has enacted a switching

process with some set of PID parameters asms. Moreover, for each metric

s 2 S the user will determine an acceptable threshold for that metric, ls, such

that the DRL agent will be punished should their PID parameters drive a

switching event that yields a measurement ms > ls. These thresholds are

generally informed by the context of the application. We implement this in

the following way:

R = � Õ
i

f (mi , l i) (5.3)

where

f (mi , l i) =

8
>><

>>:

mi
l i

, if mi � l i

1, otherwise
(5.4)

In taking the product of each metric's contribution to the reward, a more

punitive multi-objective criteria is imposed than other aggregations such as

addition. This is becuase it is not possible to `cheat' by �nding a policy that

optimises some metrics at the expense of others, since the product will still

be large if some metrics are signi�cantly over their threshold.

128
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

In our experiments we use the metrics S = f ST,OSg. Additionally, since

there is a reward value associated with each axis, we use the axis with the

worst result:

R = � Õ
i

max(f (mix , l ix), f (miy , l iy)) (5.5)

In this way, both with respect to the observed metrics and actuator, the

reward function incentivises a policy which minimises the worst case perfor-

mance with respect to axis and metric. This is designed in part to re�ect the

generic requirement of mass-manufactured products which in general must

provide some sort of guaranteed service/performance level to users.

This also allows for a simple means of asserting priority to certain met-

rics. Rather than setting the threshold to precisely the acceptable limit, it can

simply be set lower such that the metric generates a reward penalty even

when it is within acceptable working range but still above a more aggressive

lower threshold. This is useful in scenarios where one out of two contending

metrics is more important to maintain close to or below threshold. For exam-

ple, if metrics A and B have thresholds X and Y respectively, where X < Y,

then when both metrics exceed their respective thresholds by the same per-

centage,A will contribute more to the reward signal than B.

Transition/Episode : Episodes are one-step, where the agent receives an

initial state,

s = [wx, Gx, wy, Gy] (5.6)

and takes a single action

a = [Px, Ix, Dx, Py, Iy, Dy] (5.7)

5.7. Experiment 129

before receiving a reward based on the response of that actuator when it un-

dergoes a random switching event using those parameters. At the end of the

episode, a new actuator and switching event is randomly selected from the

set of training actuators.

Choosing a new random actuator and switching event each episode al-

lows for a broad statistical exposure of the agent to the full range of switching

events and actuator variation over the lifetime of it's training. Over enough

training episodes, the agent should reasonably have been exposed to an ap-

proximately accurate distribution of switching events with respect to the full

range that might be experienced throughout the average switch's lifetime.

Since it will have also been exposed to the underlying distribution of actua-

tor states (from repeatedly measuring those in it's training set) and will have

received numerous rewards for various PID parameters used to switch these

actuators through a variety of switching events, it should in principle be able

to learn a generic policy that can map an actuator state to a set of PID param-

eters that will yield good switching performance on average over the full

range of possible switching events.

Following from the generic description and visualisation of DRL in sec-

tion 3.4, Fig. 5.3 re-frames this visualisation in the context of the MDP for-

mulated for the problem described in this chapter. Similarly, Fig. 5.4 shows

the process on inference. This visualises how the process looks when a static

(e.g. previously trained) policy is deployed to generate PID parameters for

an actuator, as opposed to when it is being iteratively modi�ed in the course

of a training loop.

5.7 Experiment

In this section an experimental setup is described. This setup was used to

train and test the proposed DRL-based parameter optimisation method and

130
Chapter 5. Production Scalable Control Parameter Optimisation with Deep

Reinforcement Learning

FIGURE 5.3: Visualisation MDP/training loop for the one-shot
PID optimisation problem formulated in this chapter. PID pa-
rameters are calculated for an actuator based on gain and res-
onance information per axis. PID parameters are evaluated by
undergoing a random switching event and measuring various
metrics. Reward is a scalar multi-objective reward based on

these measurements.

FIGURE 5.4: Visualisation of the inference procedure for the
one-shot PID optimisation problem formulated in this chap-
ter. PID parameters are generated using gain and resonance
information about an actuator, which can in general be done
of�ine if this information has already been emasured (e.g. dur-
ing manufacturing). PID parameters can then be incorporated

into switch control/design.

5.7. Experiment 131

compare it against the default baseline method.

5.7.1 Test-bed Setup

Our experimental test-bed includes a PC, a set of actuators, and a controller

used to interface with the actuators (e.g. send switching commands, trace

position etc). This setup and the associated training and testing loops are

visualised in Figure 5.5. The set of actuators + controller are effectively a de-

constructed optical switch since the components are identical to those that

are found in a real optical switch product. The PC is used to implement the

DRL policy and all training and testing algorithms, as well as post-processing

of actuator signal traces to calculate the rewards/performance metrics. The

controller is effectively used as a pass-through device to interface between

the policy output and the PID values of the actuator, as well as to send in-

structions to and receive data from the actuators.

Each port is operated in closed-loop PID control, where the control loop is

implemented on an FPGA at 10kHz simultaneously for all ports in a switch.

In our experiments, we use a set of 32 actuators during training of the RL

model, where each actuator can switch to 384 unique positions as it could

if it were part of a 384 � 384 port optical switching product. This is done

since this is the largest switching product available, and as such ensures that

the actuators will on average experience the most extreme operational con-

ditions due to bigger movements required to access the further away ports.

This means that the training/testing scenarios are as tough as possible, since

smaller switches undergo a less extreme set of swtiching events and there-

fore have smaller STmax as referenced in section 5.5. An additional set of 16

actuators are reserved for testing and the agent does not interact with these

during training.

The high level structure of a actuator-based port, as well as a visualisation

	Abstract
	Impact Statement
	Acknowledgements
	Introduction
	Thesis Outline
	Chapter Outline
	Thematic Discussion

	The Growth of Data Centre Systems
	Data Centre Market and Usage
	Typical Data Centre Network Architectures

	Data Centre Networks and Scalability Challenges
	Network as a Bottleneck
	Scalability Challenges

	Scaling Data Centres with Optical Networks
	Research Problem
	Optimisation challenges in OCS DC system design
	Data-Driven Optimisation with Artificial Intelligence

	Publications, Patents and Media
	Publications
	Discussed in Thesis
	Not Discussed in Thesis

	Patents
	Media

	Background & Theory: Data Centers and Networks
	Optical Data Centre Networks and Switches
	Comtemporary Data Centres
	Optics in Data Centres

	Components for Optical Switching Devices
	Semiconductor Optical Amplifiers
	Component Basics
	Relevance to Optical Switching

	Piezoelectric Actuators
	Component Basics
	Relevance to Optical Switching

	Background & Theory: Artificial Intelligence
	Swarm and Evolutionary Optimisation Metaheuristics
	Ant Colony Optimisation
	Particle Swarm Optimisation
	Genetic Algorithms

	Deep Learning
	Deep Neural Networks
	Loss
	Backpropagation
	General Use

	Graph Neural Networks
	Topologically-Structured Data
	Graph Neural Networks
	Message Passing & Aggregation

	Deep Reinforcement Learning
	Model-based RL
	Model-free RL
	Exploration and Exploitation
	On-policy RL
	Off-policy RL
	Function approximation and Deep Reinforcement Learning
	Q-learning
	Policy Based Methods
	Policy Gradient Methods
	Reducing Variance in Policy Gradient Methods with Baselines
	Actor Critic Methods

	Classical Control Methods and PID Control
	Proportional-Integral-Derivative Control

	Sub-nanosecond Optical Gating with Swarm Optimisation
	Associated Publications and Contributions
	Chapter Summary
	Introduction
	Previous Work
	Optimisation Algorithms
	SOA Simulation and Hyperparameters
	Particle Swarm Optimisation
	Implementation
	Hyperparameter Tuning

	Ant Colony Optimisation
	Implementation
	Hyperparameter Tuning

	Genetic Algorithm (GA)
	Implementation
	Hyperparameter Tuning

	Experimental Setup
	Results
	Optimisation of a SOA Driving Signal
	Optimisation of Different (Simulated) SOAs

	Sub-Nanosecond Wavelength Switching with Fast-Gating SOAs
	Results

	Summary
	Demonstrated Outcomes
	Limitations

	Production Scalable Control Parameter Optimisation with Deep Reinforcement Learning
	Associated Publications and Contributions
	Chapter Summary
	Introduction
	Related Work
	Optical Switching with Piezoelectronic-Actuators
	Optical switching using piezoelectronic-actuators
	Piezo-electronic actuator control requirements

	One-step PID Tuning with Deep Reinforcement Learning
	One-step offline PID optimisation as a MDP

	Experiment
	Test-bed Setup
	Baseline
	Training
	Testing

	Results
	General performance evaluation
	Temperature sensitivity test

	Commercial Integration at Polatis
	Introduction
	Production Tool Structures
	Training/Testing Component
	In-Production Component

	Summary
	Demonstrated Outcomes
	Limitations

	Network Aware Resource Allocation in Optically Disaggregated Data Centre Networks with Deep Reinforcement Learning
	Associated Publications and Contributions
	Chapter Summary
	Introduction
	Previous Work
	RL and GNN for Generic CO Problems
	RL and GNN for Applied CO Problems

	(Composable) Data Centre Resource Allocation

	Problem
	Defining the Markov Decision Process
	Defining the deep reinforcement learning model

	Experimental Setup
	Training and Testing
	Baselines
	Complexity comparison of DRL method and baselines

	Results
	DRL agent allocates more requests overall
	DRL agent is more consistent than baselines across different DCNs
	DRL agent is more consistent than baselines with respect to request size
	The agent requires less networking resources for similar allocation performance
	Topology scale-up performance
	Interpreting the policy's allocation strategy
	DRL agent uses network when it is available
	The agent distributes requests differently based on their resource requirements

	Alternative Applications: Job Partitioning in Optical Data Centres
	Large Scale Machine Learning, Parallelisation and Partitioning
	Background
	Computational Job Graphs
	Job Parallelism and Partitioning
	Network Overhead due to Model Partitioning
	Job Completion Time
	Optical Networks for Distributed Machine Learning and the RAMP Architecture

	Problem
	MDP
	Deep Learning Model
	Partitioning and Allocation Heuristic

	Experiment
	DAG Datasets
	User-defined JCT limits
	Baselines
	Metrics
	Tests

	Results and Conclusion

	Summary
	Demonstrated Outcomes
	Limitations

	Conclusions and Future Work
	Conclusions
	Future Work
	Lower Resolution Driving Signal Optimisation and Application
	Fast Wavelength Switching with Data Transmission
	Network & Request Elaboration
	Test-Bed Demonstration of Network Aware Resource Allocation/Job Aware Partitioning

	Simulation of Semiconductor Optical Amplifiers
	Full Table of Results for SOA Optimisation Methods
	Graph-Neural-Network Based Resource Allocation/Job Partitioning: Learning Architecture Visualisation
	Full Table of Network-Aware Resource Allocation Results
	Table of Results for Network-Aware Resource Allocation on Larger Topologies
	Network Aware Resource Allocation Policy Visualisation of Servers-Distribution Relationship for RL Agent and all Baselines
	Network Aware Resource Allocation Policy Visualisation of Request-Distribution Relationship for RL Agent and all Baselines
	Job Parallelism and Partitioning
	First-fit Allocation Heuristic for RAMP Constraints
	Bibliography

