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Consistent dynamics which couples classical and quantum degrees of free-
dom exists, provided it is stochastic. This dynamics is linear in the hybrid
state, completely positive and trace preserving. One application of this is to
study the back-reaction of quantum fields on space-time which does not suffer
from the pathologies of the semi-classical equations. Here we introduce several
toy models in which to study hybrid classical-quantum evolution, including a
qubit coupled to a particle in a potential, and a quantum harmonic oscillator
coupled to a classical one. We present an unravelling approach to calculate
the dynamics, and provide code to numerically simulate it. Unlike the purely
quantum case, the trajectories (or histories) of this unravelling can be unique,
conditioned on the classical degrees of freedom for discrete realisations of the
dynamics, when different jumps in the classical degrees of freedom are accompa-
nied by the action of unique operators on the quantum system. As a result, the
“measurement postulate” of quantum theory is not needed; quantum systems
become classical because they interact with a fundamentally classical field.

1 Introduction
We are often interested in the dynamics of composite systems where one system can be
considered classical while the other must be treated quantum mechanically. In quantum
thermodynamics and quantum chemistry, we often have small molecules interacting with
a large thermal reservoir which can be treated classically. In measurement theory the
quantum system interacts with a macroscopic device which can be considered classical.
In gravity, macroscopic objects such as evaporating black holes radiate thermally, and we
imagine there is a regime where we can treat the black hole space-time classically even
though the radiation must still be described by quantum field theory.

There is a lot of debate in the literature on whether one can consistently couple quantum
systems and classical ones, and many ways of doing so which although useful in some
regimes, are pathological [10, 21, 20, 29, 17, 67, 63, 62, 64, 5, 45]. Many proposals for such
dynamics [12, 26, 3, 42, 41, 61, 65, 66, 11, 27] are not completely positive or haven’t been
shown to be, and since both the density matrix of a quantum system and the phase-space
density of a classical system are positive functions or matrices, such maps lead to negative
probabilities, and are at best an approximation to the true dynamics. Other proposals,
such as semi-classical gravity, are non-linear and thus don’t respect the statistical nature
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of the density matrix [55, 35]. Another approach, inspired by quantum measurement
and control [71], sources classical degrees of freedom such as the Newtonian potential via
feedback and measurement of quantum matter [39, 40, 68, 69].

If on the other hand, one doesn’t wish to introduce auxiliary processes such as mea-
surement or collapse, then one can still construct consistent evolution laws which cou-
ple quantum and classical degrees of freedom. Two such evolution laws were introduced
in [9, 23]. These dynamics are completely positive, trace preserving, and preserve the split
between classical and quantum degrees of freedom. These dynamics are special cases of the
master equation (4), derived in [51, 53]. These evolution laws have been used to study the
collisionless Boltzmann equation [2] and even proposed as a fundamental theory coupling
quantum matter to classical Newtonian gravity [24, 60] and quantum fields to classical
space-time in the context of General Relativity[51]. Because we don’t have a quantum
theory of gravity, the prospect of understanding how classical space-time and quantum
fields interact is exciting, whether the dynamics are fundamental or merely effective. In
addition to the potential to better understand black hole evaporation, an effective theory
opens up the possibility of gaining new insights into cosmology, since the quantum nature
of vacuum fluctuations are important in structure formation in an expanding universe.

We will not discuss gravity in the present work, nor address the question of what degrees
of freedom can or should be considered classical. Rather the aim here is to introduce basic
techniques, and study some simple systems in order to build up an intuition for how
classical systems couple to quantum ones. In particular, we shall see that such coupling
not only leads to decoherence of the quantum system [38, 59, 51, 68], but also a ”collapse”
of the wavefunction, in the sense that the quantum system jumps to a pure state which
can be uniquely determined from the classical degrees of freedom. In this sense, we will see
that the state of the system can be considered to have some objectivity, unlike the purely
quantum case where a decomposition of the system’s density matrix into pure states (or
evolution into a history) is not unique [43, 28]. We also study another feature of hybrid
dynamics, namely a trade-off between decoherence and diffusion. Quantum systems which
have long coherence times necessarily have high diffusion in the classical degrees of freedom.
Here, we shall exhibit systems which have this feature. That there is necessarily a trade-
off between decoherence of the quantum system and diffusion of the classical one, will be
shown in [54].

We shall here consider a qubit and a quantum harmonic oscillator that are coupled
to classical degrees of freedom that are described by a phase-space manifold M, and for
simplicity in the following we takeM≡ R2n, the space of position and momentum z = q, p
for n particles. The quantum degrees of freedom are described by a Hilbert space H, which
might be finite or infinite dimensional. Given the Hilbert space, we define the set of positive
semi-definite operators as S(H). The object describing the state of this composite system
at a given time is the map % :M→ S(H) such that, when the quantum degrees of freedom
are traced out, returns a valid probability distribution over the phase-space. We will call
this the hybrid-density, and in this paper we are using natural units, setting ~ = 1. The
hybrid density is a probability density over a phase space, taking values in the collective
variable z = (q, p). As such, it need not be subnormalized for each z but it must be a
normalized distribution once integrated over all classical configurations. Mathematically,
we have that the distribution prob(z) = Tr [%(z)] is such that prob(z) ≥ 0 for all z ∈ M,
and it is normalized

∫
M dz prob(z) = 1. From the above property it is easy to show that,

if the classical degrees of freedom are traced out, the resulting state ρ =
∫
M dz %(z) is a

valid quantum state (i.e., a positive semi-definite operator with unit trace). The simplest
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such system is the hybrid qubit, whose state can be written as

%(q, p) =
(
u0(q, p) c(q, p)
c?(q, p) u1(q, p)

)

If we integrate over phase space, we obtain the density matrix of the qubit, while if we
take the trace of the density matrix, we are left with the phase-space density of a classical
particle.

A master equation which governs the dynamics of this hybrid state must posses several
necessary properties; it is linear in the state of the composite classical-quantum system,
and it is completely positive and trace preserving, so that it’s action preserves the statis-
tical interpretation of %(q, p). A valid quantum-classical state is transformed to another
valid quantum-classical state, with the master equation preserving the separation between
classical and quantum degrees of freedom. Two generators of this kind of dynamics have
previously been proposed. In [8], a master equation with diagonal coupling to Lindblad
operators was considered, which reduces to the GKSL or Lindblad equation under suitable
assumptions. This dynamics was shown to be the most general master equation in the case
of discrete classical variables and bounded Lindblad operators by embedding the classical
system in Hilbert space [60]. However, for continuous classical degrees of freedom, one
generally requires an uncountable number of Lindblad operators. Díosi, instead, consid-
ered a master equation exhibiting a diffusion term, which generates a continuous dynamics
for the hybrid system [23]. These two CQ master equations are special cases of Equation
(4) [51].1

It and other hybrid dynamics have also been proposed as a mechanism which leads
to fundamental decoherence of quantum states [38, 68, 69, 60, 51] In this paper, we are
interested in understanding the main features of the discontinuous dynamics generated
by the discrete master equation, given in Eq. (9). In order to study these properties, we
generalise a well-known tools from open quantum systems, known as the unravelling of
the master equation [7, 18, 30, 34, 14]. In open quantum systems [1, 13], one studies the
evolution of a quantum system coupled to an external environment. The most general
Markovian evolution of the quantum system given some reasonable assumptions is the
GKSL or Lindblad equation [44, 36], whose action over the set of quantum states forms a
semi-group [19]. The dynamics of a quantum state ρ are given by

∂ ρ

∂t
= −i [H, ρ] +

∑
α,β

λαβLαρL
†
β −

1
2
∑
α,β

λαβ (z)
{
L†βLα, ρ

}
+

(1)

with H the Hamiltonian of the system, {·, ·}+ is the anti-commutator and Lα, Lβ ∈ B(H)
are Lindblad operators. Such dynamics arise, for example, when a quantum system is
weakly coupled to a very large environment.

The unravelling is a technique that allows us to numerically simulate the evolution
of a quantum system generated by the GKSL equation [7, 18, 30, 16, 46, 47]. Instead of
considering the evolution of the full density matrix describing the system, in the unravelling
one consider a single pure state, which is evolved according to a stochastic dynamics.
Multiple paths in the Hilbert space are thus generated by the stochastic dynamics, and by
averaging over the paths we recover the evolution of the quantum system. This procedure is

1We have since shown in [53], that there are two classes of CQ master equation which can be generated
from the master equation (4). One class is continuous in the classical degrees of freedom, while another
exhibits finite jumps in the classical phase space, the later of which we study here. Both classes of dynamics
must generate diffusion in phase space and decoherence of the quantum system [54].
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computationally advantageous compared to evolving the full density matrix, in particular
when the dimension of the system is large. Moreover, the unravelling technique provides
a different perspective on the evolution of open quantum systems; indeed, the evolution
of the system can be understood as generated by a continuous, deterministic dynamics
(when the system does not interact with the environment), scattered by discrete jumps of
the wave-function (when system and environment interact), which occur stochastically in
time [30].

In the quantum case, there is generally not a unique unravelling for the master equation,
so one cannot regard a particular trajectory as actually happening. Indeed, the decompo-
sition of the dynamics in terms of Lindblad operators Lα and a Hamiltonian H in Eq. (1),
is not in general unique. One can rewrite the Lα in terms of some other basis of opera-
tors. This presents a problem [43, 28] for interpretations of quantum theory which take
the trajectories as giving a theory of microscopic state reduction [70], and likewise for the
decohering histories approach[49, 37, 31, 25]. In contrast, by extending the tools of unrav-
elling to the master equation which generates the dynamics of classical-quantum systems,
we shall find that, under the assumption that a unique classical shift is associated with a
different Lindblad operator Lα, trajectories are unique when one conditions on the classical
degrees of freedom. This imbues the unravelled trajectories with an ontological significance
and allows one to interpret the state of the system as ”collapsing” to a particular state.
This collapse of the wave-function is here generated by the interaction between classical
and quantum degrees of freedom as in [38, 68, 69, 60, 51], rather than the introduction of
an ad-hoc field as in spontaneous collapse models [32, 57, 33, 6]. Objective trajectories in
unitary quantum theory have previously been studied in [72, 56, 73, 15], where the envi-
ronment plays this role of the classical system in the limit where we take it’s size to infinity.
Classical systems can be in definite states, and we find that a classical-quantum interaction
causes the quantum system to inherit this property. This provides a new resolution of the
measurement problem of quantum theory – quantum systems become classical because
they interact with another system which is itself intrinsically classical (e.g. space-time as
in [51]).

A simple example illustrates this point. Consider the purely quantum case of a qubit
in an equal superposition of basis states |0〉 and |1〉. If the quantum state ρ undergoes pure
decoherence via the Linblad equation

∂ρ

∂t
= λ

2 [|0〉〈0|, [ρ, |0〉〈0|]] + λ

2 [|1〉〈1|, [ρ, |1〉〈1|]] (2)

then it’s state at any time is given by

ρ(t) = e−λt|+〉〈+|+ (1− e−λt)1
2I (3)

While we might be inclined to describe the state of the system as evolving continuously
from |+〉 := (|0〉+ |1〉) /

√
2 to the equal mixture I/2, others may describe the system’s

evolution in terms of its state starting in |+〉 and then at some random time, suddenly
collapsing to the |0〉 or |1〉 state at a rate given by λ. Still others may describe it as suddenly
collapsing to any other two orthogonal states. There is however no physical meaning to
these statements, since there is no way to perform an experiment which would distinguish
between these different descriptions. In quantum theory, the density matrix completely
determines the system, and any decomposition into an ensemble of states is arbitrary and
has no physical meaning in this case. In contrast to this, the evolution law we will consider
allows for the sudden change of the quantum state to be accompanied by a change in a
classical degree of freedom. Since a classical degree of freedom can be monitored without
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disturbing the system, one can perform measurements on the quantum system conditioned
on when the classical system changes, to verify that the quantum system has undergone a
sudden jump and to what state, unambiguously. This example is discussed in Subsection
3.1.

However, one needn’t make such an interpretational commitment. The unravelling
can merely be considered to be a calculations tool which allows us to better simulate the
dynamics of some simple hybrid systems and we present an algorithm and code for this
purpose. We study both the hybrid qubit and hybrid oscillator numerically and analyt-
ically, and explore a relation between the diffusion of the classical degrees of freedom in
phase space and the rate of decoherence of the quantum degrees of freedom. Interestingly,
this relation provides a way to experimentally test whether the master equation can be
used to construct a "post-" quantum theory of gravity [51]. We also study the energy of the
composite system, defined in terms of the sum of the classical and quantum Hamiltonian
operators. Because this composite energy is not the generator of time-translations, there is
no reason to expect it to be conserved [4] – Noether’s theorem doesn’t apply if the dynam-
ics is not unitary. Nonetheless, insofar as one can have a classical-quantum Hamiltonian,
one might want to keep violations of its conservation small. There are various mechanisms
one can employ for this purpose which we will briefly mention in the discussion. In the
gravitational setting, the more natural question to consider is whether the constraints are
preserved in time, a discussion which we reserve for the future [52].

The paper is structured as follow. In Sec. 2 we briefly review the hybrid master equa-
tion describing the evolution of classical-quantum systems, and we extend the unravelling
technique to this setting. In Sec. 3 we study two different toy models where the classical
degrees of freedom interact with a finite-dimensional quantum system (a qubit). We use
the unravelling technique to simulate the hybrid dynamics, and to identify its main fea-
tures. In Sec. 4 we consider the case in which the quantum system is infinite-dimensional
(a harmonic oscillator), and we repeat our analysis in this setting, with a special focus on
the decoherence of this system. We conclude in Sec. 5, and suggest various ways these
models could naturally be extended, for example, by having the quantum dynamics always
dependent on phase space degrees of freedom or by adding in friction terms which would
control the diffusion of the classical degrees of freedom in phase space.

2 The classical-quantum master equation and its unravelling
In this section, we show that the most general master equation governing the dynamics
of a classical-quantum (CQ) system can be unravelled, allowing us to efficiently simulate
the evolution of different finite-dimensional hybrid systems. Recasting the dynamics under
the unravelling formalism provides a useful perspective for understanding the evolution of
CQ systems. Indeed, from this point of view the hybrid system evolves continuously in
its classical and quantum degrees of freedom, and its evolution is interrupted at random
times by jumps in both the classical phase-space and the Hilbert space. It is worth noting
that the jumps are here due to the interactions between the classical and the quantum
system, and they are not, as in the case of open quantum systems, due to the presence
of an external environment. Since one can always consider the state of a hybrid classical-
quantum system to be the restriction of a pure quantum state on part of an enlarged
Hilbert-space, the evolution of Eq. (4) might in fact be the result of unitary dynamics on
the entire system. However, strong constrains would be placed on this global dynamics
due to the form of the reduced one, and it is doubtful that such dynamics can be made
completely positive and trace preserving. Dynamics which is completely positive on the
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reduced state of a restricted class of system and environment states, needn’t be completely
positive on the full state of the system when we include the environment [51].

Another difference between the unravelling for hybrid dynamics and the one used in
open system dynamics concerns the objectiveness of the jumps. In the case of open quan-
tum systems, a given dynamics can be obtained from an entire family of jumps [13]. There
are usually many ways in which one can decompose the dynamics in terms of jumps (Lind-
blad operators) in Hilbert space, and so one cannot think of the unravelling as representing
actual trajectories that the system makes. In contrast, for some classes of hybrid dynam-
ics, each classical jump in phase-space uniquely determines which Lindblad operator was
applied to the system. One can then imagine continuously monitoring the classical system
through time without disturbing the system, enabling one to uniquely determine the se-
quence of Lindblad operators, and thus the evolution of the quantum state, which remains
pure, conditioned on the classical degrees of freedom. We can thus think of the classical
trajectories as being ones which objectively occur.

Before we can extend the unravelling technique to the case of classical-quantum dy-
namics, we need to formally introduce the class of hybrid systems we consider, and the
form of the master equation describing their evolution. The most general Markovian CQ
dynamics in the case of bounded operators Lα is given by

∂ %(z, t)
∂t

=− i [H(z), %(z, t)] +
∫

d∆
∑
α,β

Wαβ (z|z −∆) Lα %(z −∆, t)L†β

− 1
2
∑
α,β

Wαβ (z)
{
L†βLα, %(z, t)

}
+
, (4)

where z = (q1, p1, q2, p2, . . .) ∈ R2n is the vector of phase space coordinates for n systems,
and %(z, t) is a classical-quantum state at time t. The Hamiltonian H(z), which appears in
the commutator with the CQ state, controls the unitary evolution of the quantum system,
and in principle depends on the classical degrees of freedom. For each α and β, the rate
Wαβ (z|z −∆) is non-negative, and it governs the transition of the classical degrees of
freedom from z−∆ to z, as well as the jump of the quantum state due to the map Lα ·L†β .
For the master equation to preserve the norm of the quantum state (once the classical
degrees of freedom have been traced out), we need to require that

Wαβ (z) =
∫

d∆Wαβ (z + ∆|z) ∀α, β. (5)

The hybrid master equation (4) is completely positive (CP) over the classical and
quantum degrees of freedom, and trace-preserving (TP) in the sense that the normalisa-
tion condition

∫
dzTr [%(z)] = 1 is preserved. Furthermore, its structure is such that the

separation between classical and quantum degrees of freedom is preserved i.e. %(z) is al-
ways a un-normalized density matrix. Finally, the master equation is clearly linear in the
CQ state. This ensures that the theory is operationally non-signalling: if one considers
two space-like separated systems then if the dynamics is local, local operations on one of
the systems does not alter the reduced density matrix of the other systems, just like in
standard quantum theory. All these properties ensure that a CQ state is mapped into
another CQ state by the dynamics generated by Eq. (4).

In the previous paragraph we mentioned how Eq. (4) is the most general Markovian
hybrid which is completely positive. It is important to notice that the dynamics is Marko-
vian on the whole hybrid system, that is, on both the classical and quantum degrees of
freedom. However, when we restrict our focus to either the classical or quantum degrees
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of freedom, this is not the case anymore. Indeed, the classical (quantum) system can act
as a memory for the state of the quantum (classical) one, so that the reduced dynamics is
not Markovian.

In Ref. [53], we have since shown that the master equation (4) gives rise to two dif-
ferent classes of hybrid dynamics. On the one hand, one can obtain a Fokker-Plank type
of equation, where the classical-quantum degrees of freedom evolve continuously. This
dynamics has been studied in [23] in the case where the dynamics is Markovian even when
restricted to either the classical or quantum. One can also obtain dynamics which, as we
shall see here, has finite jumps in the classical-quantum degrees of freedom. As we stressed
in the introduction, in this paper we focus on the latter kind of dynamics, and explore the
properties associated with a discontinuous hybrid dynamics.

Although Eq. (4) gives the general form of the dynamics, we are interested in evolution
which in some limit reproduces classical Hamiltonin dynamics on the entire hybrid system.
This was done in [51] by expanding Wαβ in terms of moments of ∆ and demanding that
the 1st moment reduce to the Poisson bracket of the state with some Hamiltonian. The
particular form we will explore here, is given by taking matrix Wαβ (z|z −∆) defined
through the following equation:∫

d∆
∑
α,β

Wαβ (z|z −∆) Lα %(z −∆, t)L†β =
∑
α,β

1
ταβ

eταβ {hαβ(z), ·} Lα %(z, t)L†β, (6)

where ταβ > 0 can be understood as a rate, {·, ·} is the Poisson bracket, and the functions
hαβ(z) are associated with the CQ interaction Hamiltonian

H(z) =
∑
α,β

hαβ(z)L†βLα. (7)

The Poisson bracket in the exponential acts on the CQ state as a linear operator:

∑
α,β

1
ταβ

eταβ {hαβ(z), ·} Lα %(z, t)L†β =
∑
α,β

1
ταβ

(
1 + ταβ

{
hαβ(z), Lα %(z, t)L†β

}
+ ...

)
(8)

The resulting master equation is

∂ %(z, t)
∂t

= −i [H(z), %(z, t)]+
∑
α,β

1
ταβ

(
eταβ {hαβ(z), ·} Lα %(z, t)L†β −

1
2
{
L†βLα, %(z, t)

}
+

)
.

(9)
The dynamics in this equation are completely determined by the choice of the free

parameters ταβ , and the choice of the Lindblad operators Lα and the functions hαβ(z).
We see that to 0’th order in the ταβ , this master equation reproduces Hamiltonian

dynamics in the appropriate limit. Namely, if we expand the exponential in the right hand
side of the equation for small values of the parameters ταβ ’s, we obtain

∂ %(z, t)
∂t

=− i [H(z), %(z, t)] +
∑
α,β

1
ταβ

(
Lα %(z, t)L†β −

1
2
{
L†βLα, %(z, t)

}
+

)
+
∑
α,β

{hαβ(z), Lα%(z)L†β}+ · · · (10)

where the parameters ταβ ’s play the role of the relaxation rates. The first term of Eq. (10)
is the dynamics of the quantum system, which can in principle depend on the classical
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degrees of freedom. In this way, it represents the evolution of the quantum system as
controlled by the classical one. The terms on the first line of Eq. (10) which include a
summation over α, β weighted by 1

ταβ
define purely Lindbladian dynamics and in the limit

that ταβ → 0, it can lead to rapid decoherence of the quantum system. The final term is
the interaction Hamiltonian dynamics we desire, namely under the trace, it is Tr [{H, %}].
We can think of it as the counter-part to the commutator in the sense that it gives the
back-action of the quantum system on the classical one, while the commutator reflects the
influence of the classical system on the quantum one. Indeed, in the classical limit, we
expect −i[H(z), %] to act as the Poisson bracket with respect to the degrees of freedom of
the quantum system, while in this limit one can verify that {hαβ, Lα%L†β} are the additional
terms of the Poisson bracket with respect to the degrees of freedom of the classical system.
We can take purely classical dynamics to correspond to identity Lindblad operators which
we take to be Lα=0 = I. If we wish this classical dynamics to be purely deterministic, then
we can take τ00 → 0, because in this limit, the only terms which remain in the expansion of
the exponential are the pure Lindbladian term which acts only on the quantum system and
the deterministic term in the dynamics given by {HC , %} with the classical Hamiltonian
defined as

HC(z) := h00(z) I. (11)

Higher order terms can lead to diffusion in phase space. For example, at first order in
τ , Eq. (10) will acquire terms of the form

D(%) = τDαβ
p,ij(z)Lα

∂2%

∂pi∂pj
L†β + τDαβ

qp,ij(z)Lα
∂2%

∂qi∂pj
L†β + τDαβ

q,ij(z)Lα
∂2%

∂qi∂qj
L†β (12)

where for ease of presentation we have taken all ταβ = τ and used the Einstein summation
convention to suppress the summation over α, β on the right hand side of Equation (12).
Such terms lead to diffusion in phase-space, with Dαβ

p,ij(z) being the diffusion term usually
found in the Fokker-Planck equation, or arising from Langevin dynamics. WhenWαβ(z|z−
∆) is deterministic in q, but diffusive in p, we shall refer to it as dynamics of the Langevin
type. It is possible to also have terms appearing in the expansion which give rise to
friction. We discuss such master equations in greater detail in Sec. 5. If the dynamics is of
the Langevin type, then one can verify that the equation of motion for q̇ is unchanged by
the diffusive terms appearing in Eq. (10). Inverting this expression gives p(q, q̇). On the
other hand, master equations which contain terms Dαβ

qp,ij and Dαβ
q,ij(z) in their expansion,

we shall call q-diffusive and we will discuss such master equations in more detail elsewhere.
Care should be taken in any expansion of Wαβ(z|z − ∆) – although the full dynamics
is completely positive, if we truncate our expansion to any finite order, it is not. Note
that because the jumps are in classical momenta, and not position, the dynamics is local
and there is no signalling. However, if we considered evolution operators which jump in
position, we would encounter some violation of faster-than-light signalling. To address this
problem, we have to go to a generalization of the classical-quantum theory, which involves
Lorentz symmetry and quantum field theory, which we study in [50].

2.1 Unravelling of the CQ dynamics
In the quantum open system formalism, the unravelling of a master equation takes the
master equation governing the evolution of the density matrix, and divides it up into
trajectories – i.e. probabilities assigned to an ensemble of histories, where each history
is the evolution of a pure quantum states which is described as undergoing a continuous
evolution punctuated by stochastic jumps, where the system is mapped from one state
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to another as a result of a Lindblad operator being applied to it. Due to the stochastic
nature of the unravelling, the initial state is mapped into different final states by the same
evolution. If we record each evolution in time (or trajectory) and we average over them, we
re-obtain the evolution law for the density matrix, as given via the master equation (in the
limit of infinite trajectories and infinitesimal time steps). As noted in the Introduction, this
formalism is merely one of many possible descriptions, and doesn’t have physical meaning.
If we consider only the quantum system, there is no measurement which can distinguish
between continuous evolution of the density matrix in the Hilbert space, and one which is
described in terms of jumps, nor is there physical meaning to what basis is used to describe
the jumps.

On the other hand, while the unravelling of the CQ master equation proceeds in analogy
with the quantum one, it can have physical content. In this section we provide an algorithm
to unravel the dynamics given by Eq. (4), where in addition we consider a fully classical
term, given by the Poisson bracket between a classical Hamiltonian HC(z) and the hybrid
state,

∂ %(z, t)
∂t

=− i [H(z), %(z, t)] + {HC(z), %(z, t)}

+
∫

d∆
∑
α,β

Wαβ (z|z −∆) Lα %(z −∆, t)L†β −
1
2
∑
α,β

Wαβ (z)
{
L†βLα, %(z, t)

}
+
.

Specifically, we will provide the tools to generate different classical-quantum trajectories,
and we will show that the average of these trajectories coincides with the evolution of the
CQ state under the above master equation.

In the following, we consider the case in which the matrix of rates Wαβ (z|z −∆) are
diagonal in α, β. If this matrix is not diagonal in the same basis at each point, we can
introduce unitary operators u(z) that diagonalize it,

W ′γ (z|z −∆) = uγ,α(z)Wαβ (z|z −∆) u†β,γ(z), (13)

and use the new Lindblad operators in the unravelling procedure, L′γ(z) = uγ,α(z)Lβ . In
this way, the same Lindblad operator acts on the left and the right of the CQ state in
Eq. (4), and we can use the same procedure explained in the following, with the difference
that now the Lindblad operators additionally depends on the phase space coordinate z.
The central object of this study is a pure CQ state, that is,

|%(z, t)〉 = δ(z − z̄(t)) |φ(t)〉 , (14)

where |φ(t)〉 is a quantum state independent of the classical degrees of freedom. This
object represent a classical-quantum system, centred in the point z̄(t) of the phase space,
and described by the quantum state |φ(t)〉.

The first step in the unravelling procedure is the discretisation of the dynamics of the
CQ state; we fix a time interval δt, and the evolution of the CQ state is given for multiples
of this interval. It is worth noting that the unravelling evolution is exact at first order in
this parameter, and coincides with the one given by the master equation in the limit of
δt→ 0. We now outline the procedure for generating each trajectory, and we will then show
that when we average over trajectories, we obtain the CQ master equation. For a given
point z in phase space, at each time step we either update the state with a continuous
evolution, or with a jump in the classical and quantum degrees of freedom. When the
evolution is continuous, we apply to the quantum part of the CQ state a unitary evolution
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given by the (non-Hermitian) effective Hamiltonian

Heff(z) = H(z)− i

2
∑
α

Wα (z)L†αLα, (15)

which is composed by the Hamiltonian H(z), which appears in the commutator of Eq. (4),
and by the operator appearing in the anti-commutator of the same equation. The classical
part of the CQ state is instead subjected to a translation in phase space generated by the
classical Hamiltonian HC(z), which appears in the Poisson bracket in the master equation.
In order to evolve the CQ state with a jump, we first need to choose at random a value
of the tuple (α,∆) from the (un-normalised) distribution Wα (z|z −∆). The α parameter
specifies which Lindblad operator Lα is performed over the quantum state, while the ∆
parameter quantifies the shift performed over the classical degrees of freedom.

The unravelling algorithm is then defined by the following set of instructions, that
specify how to update a pure CQ state at time t under continuous or jumping evolution,

|%(z, t+ δt)〉 =


1√

N0(z,t)
(I− i δtHeff(z)) |%(z − δtΩ∇HC(z), t)〉 with p0(z, t),

1√
Nα,∆(z,t)

Lα |%(z −∆, t)〉 with pα,∆(z, t).
(16)

At each time step, the hybrid pure state can be updated either continuously, first line
in the right hand side of the above equation, or with a jump, second line. The type of
evolution is chosen at random; the probability of updating the state with a continuous
evolution is given by p0(z, t), while the probability of evolving it with a jump is given by
pα,∆(z, t), where α specifies the quantum jump and ∆ specifies the classical one. In the
continuous evolution, the quantum degrees of freedom are evolved by the unitary operator
U(z) = e−iδtHeff(z), that we have expanded at first order in δt, while the continuous shift
in the classical degrees of freedom is generated by the operator eδt {HC(z),·}. The gradient
vector ∇HC(z) = (∂q1HC(z), ∂p1HC(z), . . .)T ∈ R2n, while

Ω =
n⊕
k=1

(
0 1
−1 0

)
∈M2n,2n(R), (17)

is the symplectic matrix. By iterating the procedure in Eq. (16),we can produce a single
trajectory. Different iterations provide different trajectories, since at every time step the
CQ state is evolved either continuously or with a jump.

The pure CQ states produced by the unravelling technique are normalized. In the
following, we provide the normalization coefficient for both the continuous and jumping
evolution, and the probability that either evolution occurs. For simplicity, in the rest of
the section we suppress the time t dependence. The normalization coefficient are given as

N0(z) = δ(z − z̄)
(

1− δt
∑
α

Wα (z) 〈φ|L†αLα |φ〉
)
, (18a)

Nα,∆(z) = δ(z − (z̄ + ∆)) 〈φ|L†αLα |φ〉 , ∀α,∆, (18b)

where we have used the form of the CQ pure state, given in Eq. (14), and we are only
considering terms in the first order of the time step δt. In the next section we explicitly
derive these coefficients. At a given time step, the probability of evolving the pure CQ
state continuously or with a jump is given by,

p0(z) = N0(z), (19a)
pα,∆(z) = δtWα (z|z −∆) Nα,∆(z), ∀α,∆. (19b)
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These probabilities are chosen such that the unravelling procedure, given the appropriate
averaging, reproduces the dynamics of the master equation, which is discussed in the next
subsection. It is easy to see that the above distribution is a valid probability distribu-
tion over the phase space. Clearly, each probability distribution is non-negative, and the
distribution is normalised,∫

dz
(
p0(z) +

∑
α

∫
d∆ pα,∆(z)

)
=

= 1− δt
∑
α

(∫
dzWα (z) δ(z − z̄)

)
〈φ|L†αLα |φ〉

+ δt
∑
α

∫
d∆

(∫
dzWα (z|z −∆) δ(z − (z̄ + ∆))

)
〈φ|L†αLα |φ〉

= 1− δt
∑
α

(
Wα (z̄)−

∫
d∆Wα (z̄ + ∆|z̄)

)
〈φ|L†αLα |φ〉 = 1, (20)

where the last equality follows from Eq. (5).
Before concluding the section, let us comment on an interesting feature of the unravel-

ling of the hybrid master equation, which is not shared by its quantum counterpart. If a
unique shift ∆ in the classical degrees of freedom is associated with each Lindblad operator
Lα, then by monitoring the classical degrees of freedom we have complete knowledge on
the jumps that occur in the quantum part of the hybrid state. Furthermore, the quantum
evolution conditioned on the classical degrees of freedom is unique, since only a specific
sequence of jumps could produce the sequence of shifts in the classical part. The hybrid
state can be said to actually make the transitions given in Eq. (16). This is in contrast
with the unravelling for open quantum systems, where the lack of a classical system which
can be monitored makes it impossible to single out different trajectories in the Hilbert
space.

Clearly, the above holds as long as the assumption that a unique shift ∆ in the classical
degrees of freedom is associated with each Lindblad operator Lα holds. In this paper, we
consider toy models where we demand the assumption to hold. However, it is interesting to
understand when the assumption holds in a physical setting, when there is an interaction
Hamiltonian H(z) as in Eq. (7). From Eq. (9) we find that the classical jumps are given
by the Hamiltonian components hαβ(z). If these components are different for each value of
α and β, then each shift is uniquely assigned to a different Lindblad operator. Notice that
additional freedom is given by the choice of the ταβ ’s, which contribute to the shifts. Then,
in any physical situation where classical-quantum fields interact with different coupling
strengths, one should expect the above assumption to hold.

We have since shown in [? ] that the continuous master equation has a unique unrav-
elling if it saturates an inequality we call the decoherence-diffusion trade-off.

2.2 From unravelling to the CQ master equation
We can now show that the update rule presented in Eq. (16) reproduces, at first order in
δt, the same dynamics of the hybrid master equation. First, let us derive the normalization
coefficients shown in Eqs. (18). To compute the normalization of the continuously evolved
state, we need to Taylor expand it and truncate the expansion at first order in δt. It is
straightforward to show that

|%(z − δtΩ∇HC(z))〉 = (1 + δt {HC(z), · }) |%(z)〉+O(δt2). (21)
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The normalization coefficient is then given by

N0(z, t) =

〈%(z − δtΩ∇HC(z), t)|
(
I + i δtHeff(z)†

)
(I− i δtHeff(z)) |%(z − δtΩ∇HC(z), t)〉

= 1 + δt {HC(z), 〈%(z, t)|%(z, t)〉} − δt
∑
α

Wα(z) 〈%(z, t)|L†αLα |%(z, t)〉+O(δt2)

= 1− δt
∑
α

Wα (z) 〈%(z, t)|L†αLα |%(z, t)〉+O(δt2),

where the second line follows from the Taylor expansion in Eq. (21), from the form of the
effective Hamiltonian Heff(z) and from Leibniz’s rule of the Poisson bracket, while the last
line follows from the fact that |%(z, t)〉 is normalized. The normalization of the CQ pure
state after a jump is simply

Nα,∆(z) = 〈%(z −∆, t)|L†αLα |%(z −∆, t)〉 . (22)

We can now derive the master equation (4) (equipped with the additional fully-classical
term) from the update rule given in Eq. (16). To so so, we express the state |%(z, t+ δt)〉 as
a density operator, and we re-write it as a mixture over the possible evolutions the system
undergoes. Let us first consider the continuous update for the CQ density operator, which
we refer to as ρ0(z, t+ δt), where we truncate at first order in δt,

ρ0(z, t+ δt) = 1
N0(z, t)

(
|%(z, t)〉 〈%(z, t)|+ δt {HC(z), |%(z, t)〉 〈%(z, t)|}

− i δt [H(z), |%(z, t)〉 〈%(z, t)|]− δt

2
∑
α

Wα (z)
{
L†αLα, |%(z, t)〉 〈%(z, t)|

}
+

)
,

where we have used the definition of Heff(z), see Eq. (15), and [·, ·] is the commutator while
{·, ·}+ is the anti-commutator. When the evolution is given by an α-jump in the quantum
degrees of freedom, and by a ∆-jump in the classical ones, we find the following density
operator

ρα,∆(z, t+ δt) = 1
Nα,∆(z, t) Lα |%(z −∆, t)〉 〈%(z −∆, t)|L†α. (23)

We can now express the overall evolution of the state by weighting the different updates
with the correct probabilities, given in Eq. (19). Thus, we find that

|%(z, t+ δt)〉 〈%(z, t+ δt)| =

= p0(z, t) ρ0(z, t+ δt) +
∑
α

∫
d∆ pα,∆(z, t) ρα,∆(z, t+ δt)

= |%(z, t)〉 〈%(z, t)|+ δt {HC(z), |%(z, t)〉 〈%(z, t)|}

− i δt [H(z), |%(z, t)〉 〈%(z, t)|]− δt

2
∑
α

Wα (z)
{
L†αLα, |%(z, t)〉 〈%(z, t)|

}
+

+ δt
∑
α

∫
d∆Wα (z|z −∆)Lα |%(z −∆, t)〉 〈%(z −∆, t)|L†α, (24)

and if we rearrange the above equation by moving |%(z, t)〉 〈%(z, t)| from the right to the
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left hand side, we divide by δt, and we send δt→ 0, we obtain

∂

∂t
|%(z, t)〉 〈%(z, t)| =− i [H(z), |%(z, t)〉 〈%(z, t)|] + {HC(z), |%(z, t)〉 〈%(z, t)|}

+
∫

d∆
∑
α

Wα (z|z −∆)Lα |%(z −∆, t)〉 〈%(z −∆, t)|L†α

− 1
2
∑
α

Wα (z)
{
L†αLα, |%(z, t)〉 〈%(z, t)|

}
+
. (25)

As a last step, we need to move from a CQ pure state |%(z, t)〉 to a (possibly mixed) CQ
state %(z, t). To do so, we perform an average over the classical-quantum configurations
of the initial state, that is, we average over a phase space distribution Pps of initial points
z̄(t = 0) = z̄0, as well as a distribution Pq over the initial quantum states |φ(t = 0)〉 = |φ0〉.
Thus, by applying this average over the CQ pure state |%(z, t)〉, we obtain

%(z, t) = E[|%(z, t)〉 〈%(z, t)|] =
∫

dz̄0 dφ0 Pps(z̄0)Pq(φ0) |%(z, t)〉 〈%(z, t)| . (26)

If we now perform the average in Eq. (25), we obtain the CQ master equation.

3 Main features of hybrid dynamics in qubit toy models
In this section we present a few toy models to illustrate the main features of the hybrid
dynamics generated by the master equation (4). The simplest hybrid dynamics we can
consider is that of a spin half particle in a classical potential, which in our examples is
taken to be linear. For each of the toy models we derive, both analytically and numerically,
the dynamics of the corresponding hybrid system. To numerically evolve the CQ state we
use the unravelling procedure presented in the previous section. We tailor the unravelling
to the specific master equation used for the toy models, see Eq. (28). This unravelling
procedure is shown in Appendix B.

The main features of the hybrid dynamics, that are highlighted in our toy models, are
i) the presence of stochastic collapses of the quantum degrees of freedom, ii) a trade-off
between the classical diffusion in phase space and the quantum decoherence, and iii) the
fact that energy is not conserved by the dynamics. More specifically, we find that the
interaction between classical and quantum degrees of freedom generates a sudden collapse
in the latter. This collapse occurs when the CQ state is subjected to a jump, that is, when
the classical degrees of freedom are shifted in phase space and a Lindblad operator acts
over the quantum state. If the Lindblad operators are associated with unique shifts in the
classical degrees of freedom, we find that the quantum dynamics can be unambiguously
recorded by monitoring the classical one, see for example Fig. 1. Furthermore, we find that
the rate of decoherence of the quantum degrees of freedom is linked to the rate of diffusion
of the classical ones; the faster the quantum state decoheres, the slower the classical degrees
of freedom spread in phase space. This is not a specific feature of the toy models we study,
but rather a general property of the hybrid dynamics, as shown in Ref. [54]. Finally, we
find that the average energy of the toy models studied is not conserved by the hybrid
dynamics. This should not come as a surprise, since the Hamiltonian operator appearing
in Eq. (4) is not the generator of the dynamics. A detailed study of the conservation laws
and symmetries present in the hybrid dynamics is performed in Ref. [52].

Let us introduce the toy models we study in this section, namely, a single spin half
particle in a classical potential. The position and momentum of the particle are taken to
be the classical degrees of freedom z = (q, p), while the spin of the particle (s = 1

2) is the
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quantum one. To simplify the notation, we take the transition matrix in the hybrid master
equation (9) to be diagonal in α, β (if the transition matrix is not diagonal, we have shown
in the previous section that we can always diagonalise it).

For a spin-1
2 particle, the most general quantum Hamiltonian can be written as λ · σ

where λ is a vector in R4 and σ = {I, σx, σy, σz} is the vector of Pauli matrices. By having
this depend on the classical degrees of freedom, we cause the classical and quantum system
to interact. Let us take the interaction term of the CQ-Hamiltonian to be

HI(q, p) = B(q) (ω0 |0〉 〈0|+ ω1 |1〉 〈1|) , (27)

where the coupling constantB(q) depends on the position of the particle q, and the operator
is diagonal in the basis {|0〉 , |1〉}. By comparing the above interaction Hamiltonian with
the general form of Eq. (7), we can easily see that we are left some freedom in the choice of
the Lindblad operators {Lα}α6=0 and of the functions hα(z). By exploiting this freedom, we
will study two different CQ models describing a particle in a linear potential. In both cases,
we choose a classical Hamiltonian HC(q, p) = p2

2m , that is, the one for a free particle of mass
m. One could imagine a purely quantum evolution determined by a Hamiltonian which is
not dependent on classical degrees of freedom, but in analogy with the gravitational case
we will not consider it here. Finally, we demand the rates τα 6=0’s to be all equal to τ > 0,
so that no non-trivial Lindblad operator acts more often than the others.

The CQ master equation (9) for the case we are considering is then given by

∂ %(z, t)
∂t

= −i [HI(z), %(z, t)] + 1
τ0

(
eτ0 {HC(z), · } − 1

)
%(z, t)

+ 1
τ

∑
α 6=0

(
eτ {h

α(z), · } Lα %(z, t)L†α −
1
2
{
L†αLα, %(z, t)

}
+

)
. (28)

The first term on the right is the evolution of the quantum degrees of freedom and it
depends on the position of the classical particle. The next term is the purely classical
evolution. If we take the rate τ0 to be a finite positive value, this classical evolution is
stochastic, while if it tends to 0 it is determinstic. In the former case, we will see that
the equation can be solved analytically. When τ0 → 0, the purely classical evolution
is given by the Poisson brackets between the classical Hamiltonian and the CQ state,
{HC(z), %(z, t) }. In this second case, we analyse numerically the dynamics generated by
the master equation, using the unravelling method shown in App. 2.1. The final set of
terms, gives the backreaction of the qubit on the classical degrees of freedom.

3.1 Qubit evolution with diagonal Lindblad operators in a linear potential
The first toy model we consider is a spin half particle interacting with a linear potential
through Lindblad operators that are diagonal in the interaction Hamiltonian eigenbasis
{|0〉 , |1〉}. We make the following choice for the operators,

Lα=1 = |0〉 〈0| , (29a)
Lα=2 = |1〉 〈1| . (29b)

Once the Lindblad operators are defined, they fix uniquely the functions hα(q, p). Indeed,
in order to identify the interaction Hamiltonian HI(q, p) in Eq. (27) with the expression
in Eq. (7), we need to define these functions as

hα=1(q, p) = ω0B(q), (30a)
hα=2(q, p) = ω1B(q). (30b)
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It is worth noting that, for a given interaction Hamiltonian, the above choice of Lindblad
operators and hα(q, p) functions is not unique. In the next section, for instance, we consider
non-diagonal operators that nonetheless return the same interaction Hamiltonian, but
generate a completely different dynamics. Furthermore, one could chose the same Lindblad
operators as we did above, but with a different normalization. To re-obtain the correct
Hamiltonian HI(q, p) we then need to scale the functions hα(q, p) consistently. Notice that
the normalization of the Lindblad operators influences the rate at which the operator is
applied, while the function hα(q, p) regulates the amplitude of the shifts in the classical
degrees of freedom. This freedom in the Lindblad operators and the functions hα(q, p)
is linked to the fact that the interaction Hamiltonian is not the generator of the hybrid
dynamics of Eq. (4), and this is highlighted by the fact that this operator is in fact not
conserved by the evolution.

In this example, we consider a potential linearly dependent in position, so that B(q) =
qB, where B has a constant value. We can express the CQ state %(q, p, t) as

%(q, p, t) =
(
u0(q, p, t) c(q, p, t)
c?(q, p, t) u1(q, p, t)

)
, (31)

where ui(q, p, t) is the population of the quantum state |i〉 (for i = 0, 1), and c(q, p, t) is
the coherence.

We now re-write the CQ master equation given in Eq. (28), in terms of the populations
and the coherence of the state %(q, p, t). In the equations below, we take τ0 → 0, so
as to obtain a system of non-local differential equations. When we solve the equations
analytically, however, we will require τ0 to be a positive (albeit small) constant. The
dynamics of the populations and coherence is thus given by

∂ ui(q, p, t)
∂t

= − p

m

∂ ui(q, p, t)
∂q

+ 1
τ

(
ui(q, p+ ωiBτ, t)− ui(q, p, t)

)
, i ∈ {0, 1} , (32a)

∂ c(q, p, t)
∂t

= −iqB (ω0 − ω1) c(q, p, t)− p

m

∂ c(q, p, t)
∂q

− 1
τ
c(q, p, t). (32b)

It is worth noting that the equation for the coherence can be solve analytically, and the
solution has the form

c(q, p, t) = c̃(q − p

m
t) e−iB(ω0−ω1)(q− p

2m t)t− t
τ , (33)

for any function c̃(q − p
m t) in C1, the set of all continuously differentiable functions. We

thus see that the coherence term decays exponentially fast. We will see that this is a result
of the quantum system collapsing to the 0 or 1 state while making a momentum jump.

3.1.1 Analytical and numerical evolution of populations

In order to study the evolution of the populations analytically, we can re-express Eq. (32a)
as a stochastic equation, see App. A. To do so, we do not send to 0 the rate τ0 in Eq. (28),
and we obtain the following evolution for the populations,

∂ ui(q, p, t)
∂t

= 1
τ0

(
ui(q−

p

m
τ0, p, t)−ui(q, p, t)

)
+1
τ

(
ui(q, p+ωiBτ, t)−ui(q, p, t)

)
, i ∈ {0, 1} ,

(34)
The solution of this equation is given in the appendix for general Hamiltonians, see Eq. (94).
For the specific case we have are considering, the solution is

ui(q, p, t) =
∞∑

k,n=0
P0(k)P1(n)ui(n, k) (35)
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Figure 1: The evolution of the population u0(q, p, t) and u1(q, p, t) in phase space, under the CQ
qubit dynamics with diagonal Lindblad operators. The initial CQ state is δ(q)δ(p) |+〉, where |+〉 =

1√
2 (|0〉+ |1〉). The interaction with the field makes the quantum state stochastically collapse into either
|0〉 or |1〉 at a rate given by ω

τ . The same collapse shifts the classical momentum of the particle by ±Bτ ,
depending on the quantum state it projects onto. By monitoring the classical degrees of freedom, we can
establish the state of the quantum system. Indeed, a particle in the state |0〉 has negative momentum,
whereas a particle in |1〉 has positive momentum. The evolution of the populations is shown for
t = 0.02 s, 0.06 s and 0.1 s. The state is evolved for t = 0.1 s, with time steps of δt = 10−4 s, and the
jump rate is τ = 10−2 s. The constant B = 1 J · s ·m−1, the mass m = 1 kg, and the frequencies are
ω0 = −ω1 = ω = 1 s−1.

where k is the number of position shifts, n is the number of momentum shifts, and both
P0(k) and P1(n) are Poisson distributions with mean value λ0 = t

τ0
and λ1 = t

τ , respec-
tively. The function ui(n, k) is given by

ui(k, n) = 1(n+k
k

) ∑
π∈Sn,k

π

e− p
m
τ0∂q . . . e−

p
m
τ0∂q︸ ︷︷ ︸

k

eBωiτ∂p . . . eBωiτ∂p︸ ︷︷ ︸
n

ui(q, p, 0), (36)

where Sn,k is a proper subset of the set of all permutations of the shift operators, with
k momentum shifts and n position ones. Each element π creates a different combination
of the n+ k shifts.

The model under consideration can additionally be solved numerically, using the unrav-
elling method presented in the previous section. In particular, we can use Eq. (28) to better
understand the evolution of the CQ state. In this equation, both classical and quantum
degrees of freedom evolve either continuously, or with a sudden jump. The latter evolution
is the most interesting, since during a jump one of the Lindblad operators is applied to
the quantum state, and this state is projected either in |0〉 or in |1〉, so that the coherence
of the state is destroyed, and the classical momentum receives a kick proportional to Bτ ,
whose direction depends on the quantum state. From this point of view, this hybrid model
mimics some of the features of a standard Stern-Gerlach experiment, namely the fact that
when the magnetic field measures the quantum state (and collapses it into |0〉 or |1〉), it
kicks the particle (that is, increase the classical momentum) either upward or downward,
depending on the state the spin is collapsed into. In Fig. 1 we provide the numerical
solution for the evolution of the populations, obtained using the unravelling technique of
Sec. (2.1).

This is the example mentioned in the Introduction and contrasted with the purely
quantum decoherence of Equation (2). For the Lindblad equation, and the state of the
system initially in the |+〉 state, there is no meaning to the statement that the quantum
state starts suddenly collapses to |0〉 or |1〉, while here, one can continuously monitor the
classical momentum without disturbing the quantum degree of freedom. Conditioned on
finding a jump in momentum, one can then measure the qubit to verify that it is now in the
|0〉 or |1〉 state, depending on the direction of the jump, while any previous measurement
of the qubit in the ± basis, will yield the initial |+〉 state.
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Figure 2: The mean value and standard deviation of the population u0(q, p, t) in phase space. Left.
The mean value 〈q〉 and standard deviation σq of the marginal distribution u0(q, t) (where we traced
out over the momentum degree of freedom). The solid lines are the values obtained from the numerical
simulation, whereas the dashed line are obtained from the analytical solution. Centre. The mean
value 〈p〉 and standard deviation σp of the marginal distribution u0(p, t). Right. The coherence |c|2 of
the quantum state located in q = 0 m and p = 0 kg ·m · s−1 , as a function of time. It is worth noting
that the numeric solution is obtained with the unravelling method, in which the position is updated
during the continuous evolution step, see Eq. (118). Instead, the analytic solution is obtained for the
case in which the position evolves through jumps, see Eq. (34). In order to match the two evolution,
we have to ask the stochastic rate τ0 to be of the order of the infinitesimal time steps δt used in the
simulation. The mean value and variance of position and momentum are therefore computed using
Eqs. (37) and (38) for a value of τ0 = δt.

3.1.2 Diffusion in phase-space and trade-off with decoherence

We can also study the diffusion in phase-space of the populations of the CQ state, both
numerically and analytically. Let us take the initial state of the CQ system to be at
the origin of phase-space (position q(t = 0) = 0 and momentum p(t = 0) = 0), and
in the quantum state |+〉 = 1√

2 (|0〉+ |1〉). In the unravelling picture when a quantum
jump occurs, the state jumps to either |0〉 or |1〉 due to the application of the Lindblad
operators of Eq. (29) to the state. After the jump, the quantum state cannot change
anymore, but additional jumps do increase the momentum of the particle. Since the initial
condition is symmetric in |0〉 and |1〉, as the evolution of the populations is, we can focus
on the population u0(q, p, t). The kind of decoherence affecting the quantum degrees of
freedom in this model can be understood in terms of a leakage of information about the
quantum degrees of freedom into the classical degrees of freedom. Indeed, each Lindblad
operator Lα is here associated to a distinct classical jump in phase-space, which allows an
observer monitoring the classical degrees of freedom to know exactly in which quantum
state the system is in and when the transition occurred. Thus, the possibility of monitoring
the quantum system using its position in phase space removes any coherence in the basis
{|0〉 , |1〉}. Furthermore, by conditioning over the classical degrees of freedom, the quantum
state remains pure and does not become mixed.

This is different to the standard decoherence found in the usual Lindblad equation.
There, the decomposition of the dynamics into Lindblad operators is not unique, and
there is no physical meaning to the jumps – rather, the density matrix of the system
evolves continuously in time with the off-diagonal matrix elements slowly decaying with
time. In contrast, here, the quantum jump is accompanied by a discontinuous jump in p.
The quantum jump thus has physical meaning, since an observer who is monitoring the
classical degree of freedom can verify the quantum jump. If they observe a sudden increase
(decrease) in momentum, they will expect that the quantum state is now in the |1〉 (|0〉)
state, and can verify this by measuring the quantum state. The crucial ingredient here is
that each classical jump corresponds to a single Lindblad operator being applied to the
quantum state.
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We will now see that the quantum system’s coherence time is related to the diffusion
in phase space. In order to obtain the diffusion constant from the numeric results, we
compute the marginal distribution for position and momentum as a function of time, and
we fit them with a Gaussian distribution to extrapolate mean value and variance. These
quantities can also be computed using the solution in Eq. (35), as we show in App. A.2.1.
From the analytic solution we find that the mean value of position and momentum is given
by

〈q〉(t) = 1
2
Bω0
m

t2 + 〈q〉(0), (37a)

〈p〉(t) = Bω0t+ 〈p〉(0), (37b)

which is the expected solution for the position and momentum of a particle in a linear
potential given by V (q) = qBω0. We notice that the expectation values of position and
momentum are independent of the parameter τ0, which can therefore be sent to 0. The
variance of position and momentum can be obtained too, as we show in the Appendix A,
and are given by

σ2
q (t) = 1

3

(
Bω0t

m

)2
((τ0 + τ)t+ 5τ0τ) τ0→0−−−→ 1

3

(
Bω0t

m

)2
τt, (38a)

σ2
p(t) = (Bω0)2τt. (38b)

The variation in momentum is due to the fact that the number of momentum jumps will
be normally distributed and as with a random walk, increase like

√
t, while the variation

in position is a consequence of the momentum having a variation. We can additionally link
the variance in momentum to the diffusion term appearing in the expansion of the hybrid
master equation, see Eq. (12). To do so, we need to expand the exponential operator in
Eq. (28) to second order, obtaining the following diffusion term,

D (u0(q, p, t)) = 1
τ

{
τ hα=1(q, p),

{
τ hα=1(q, p), u0(q, p, t)

}}
= (Bω0)2τ

∂2

∂ p2u0(q, p, t).
(39)

It is then easy to see that the variance in momentum arises from the diffusion coefficient
Dα=1
p (q, p) = (Bω0)2τ . This is consistent with the fact that the expansion of the master

equation at first order in τ has the form of a Fokker-Planck equation with the above
diffusion term.

In Fig. 2 we compare the numerical results with the ones obtained analytically, and
we show that indeed the numeric simulation accurately describes the evolution of the CQ
state. It is worth noting that, while the decoherence of the quantum system is inversely
proportional to τ as seen from Eq. (33), the diffusion in phase space is directly proportional
to it. Thus, we can have two opposite situations; for τ � 1, the state of the quantum
system quickly collapses and does not diffuses much in phase space, following an almost
Liouvillian deterministic evolution. When τ � 1, instead, the quantum system slowly
decoheres, but the classical degrees of freedom quickly diffuse in phase space. We thus
have a trade-off between the decoherence rate and the diffusion rate. This turns out to be
a standard feature of hybrid dynamics and can be understood in terms of the moments of
the Kramers-Moyal expansion of the CQ master equation, as proven in [54].

3.1.3 Energy conservation

We now turn to the question of energy conservation in this model of hybrid dynamics. We
will see that there is a violation of energy conservation at a rate proportional to τ , although
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it can be made arbitrarily small. The average energy of the system can be computed using
the total Hamiltonian H(q, p) = HC(q, p) +HI(q, p), and the solution obtained in Eq. (35)
for the populations. Indeed, the average energy of the CQ system is given by

〈H〉(t) =
∫

dqdpTr [H(q, p)%(q, p, t)] =
∑
i=0,1

∫
dqdp

(
p2

2m + qωiB

)
ui(q, p, t). (40)

Let us consider, for simplicity, that the initial state of the CQ system is %(q, p, 0) =
δ(q)δ(p) |0〉 〈0|, so that we only need to consider the energy contribution of the population
u0. Furthermore, given the specific initial state of the system, we can express the ensemble
u0(n, k), shown in Eq. (36), as u0(n, k) =

∫
dq̄dp̄ P (q̄, p̄ |n, k) u0(q̄, p̄), where u0(q̄, p̄) =

δ(q − q̄)δ(p− p̄). The evolution of the population u0 can therefore be expressed as

u0(q, p, t) =
∫

dq̄dp̄

 ∞∑
k,n=0

P0(k)P1(n)P (q̄, p̄ |n, k)

u0(q̄, p̄) =
∫

dq̄dp̄ P (q̄, p̄)u0(q̄, p̄),

(41)
and by replacing it in Eq. (40) we find that the average energy is

〈H〉(t) =
∫

dq̄dp̄ P (q̄, p̄)
(
p̄2

2m + q̄ω0B

)
=
∫

dp̄ P (p̄) p̄2

2m +
∫

dq̄ P (q̄) q̄ω0B, (42)

where the mean value and variance of the marginal probabilities P (q̄) and P (p̄) have been
computed in the previous section, in Eqs. (37) and (38) respectively.

Using these results, we can show that the energy associated with the classical Hamilto-
nian is given by 〈HC〉(t) = (Bω0τ)2

2m

(
t
τ +

(
t
τ

)2), while the quantum coupling contributes to

the energy as 〈HI〉(t) = − (Bω0)2

2m t2 (notice that in the previous section we have considered
the absolute value of the position for convenience). As a result, we find that the average
energy of the system is not conserved, and instead grows linearly in time from the initial
value of 〈H〉(0) = 0,

〈H〉(t) = (Bω0)2τ

2m t, (43)

see Fig. 3. In the limit when τ tends to 0, one recovers the classical evolution given by the
Liouville equation, and energy is conserved, but otherwise the energy increases at a rate
proportional to the jump distance τ .

As we stressed at the beginning of the section, the fact that the average energy is not
conserved does not come as a surprise. Indeed, we are taking the energy to be given by the
operator H(z) even though it is not the generator of the symmetry of time-translation. In
this model however, the failure of the system to conserve energy is not due to changes in
the quantum system – the interaction of the qubit with the classical system merely causes
it to decohere in a basis which commutes with the total CQ Hamiltonian. Instead, the
term appearing in Eq. (43) is due to dispersion in the momentum of the classical system.
This can be prevented by adding in a friction term, as discussed in Sec. 5.

3.2 Qubit evolution with non-diagonal Lindblad operators in linear potential
We now consider the same hybrid system, with the difference that now the Lindblad
operators are non-diagonal in the interaction Hamiltonian eigenbasis. We will see that the
dynamics of this CQ system is qualitatively and quantitatively different from the one in
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Figure 3: The different contributions to the total energy of the CQ dynamics, as a function of time.
The solid lines are the numerical results, while the dashed ones are the analytical ones. The energy
contribution given by the kinetic energy, EC = 〈HC〉, grows faster than the one given by the potential
energy, EI = 〈HI〉. As a result, the total energy of the system, Etot = 〈H〉, increases linearly as a
function of time.

the previous section. The form of the Lindblad operators is

Lα=1 = |1〉 〈0| , (44a)
Lα=2 = |0〉 〈1| . (44b)

In order to obtain the interaction Hamiltonian HI(q, p) of Eq. (27) from these operators,
the functions hα(q, p) are

hα=1(q, p) = ω0 qB, (45a)
hα=2(q, p) = ω1 qB, (45b)

where again the particle is in a linear potential, i.e., B(q) = qB, with B = const. If we
express the CQ state %(q, p, t) as in Eq. (31), and we take the rate τ0 → 0, then the master
equation given in Eq. (28) can be expressed as a system of non-local differential equations.
In particular, the evolution of the populations is given by of the following differential
equations,

∂ ui(q, p, t)
∂t

= − p

m

∂ ui(q, p, t)
∂q

+ 1
τ

(
ui⊕1(q, p+ ωiBτ, t)− ui(q, p, t)

)
, i ∈ {0, 1} , (46)

where ⊕ is addition modulo 2. Notice that the above equations have the same form as
the ones obtained in the previous section, see Eq. (32a), but now each population depends
non-locally on the other. The evolution for the coherence is unchanged from the one in
Eq. (32b).

3.2.1 Analytical and numerical evolution of populations

To solve the model analytically we can express Eq. (46), which describes the evolution
of the populations, as a stochastic equation, see App. A. To do so, we fix the rate τ0 in
Eq. (28) to be a (small) positive constant, so that the equation for the populations can be
expressed as

∂ ui(q, p, t)
∂t

= 1
τ0

(
ui(q−

p

m
τ0, p, t)−ui(q, p, t)

)
+1
τ

(
ui⊕1(q, p+ωiBτ, t)−ui(q, p, t)

)
, i ∈ {0, 1} ,

(47)
If τ0 → 0, we come back to the original equation for the populations shown in Eq. (46).
In order to solve this equation we can make use of the tools described in appendix, see

Accepted in Quantum 2022-09-18, click title to verify. Published under CC-BY 4.0. 20



q (m)

-1e-05
0.0

1e-05

p (kg ·m
· s−

1 )

−0.01

0.00
0.01

u
0

0.0
0.1
0.2
0.3
0.4
0.5

Time t = 0.00 s

q (m)

-0.0004
0.0

0.0004

p (kg ·m
· s−

1 )

−0.01

0.00
0.01

u
0

0.000
0.002
0.004
0.006
0.008

Time t = 0.04 s

q (m)

-0.001
0.0

0.001

p (kg ·m
· s−

1 )

−0.01

0.00
0.01

u
0

0.0000
0.0002
0.0004
0.0006
0.0008

Time t = 0.10 s

Figure 4: The evolution of the population u0 (blue) and u1 (green) under the CQ dynamics with
non-diagonal Lindblad operators. The evolution of the populations is shown for t = 0 s, 0.04 s and
0.1 s. In this figure, we set the initial CQ state to be δ(q)δ(p) |+〉, where |+〉 = 1√

2 (|0〉+ |1〉) is a
coherent superposition of the eigenstates of the interaction Hamiltonian HI . Notice that, in the rest
of the section, we instead focus on the case where the initial quantum state is |0〉, which simplifies
the analytical study of the dynamics; the qualitative behaviour of the phase-space evolution, however,
is the same as the one shown in this figure. This interaction makes the quantum degrees of freedom
stochastically collapse from |0〉 to |1〉 and vice versa, at a rate given by τ . When the quantum state is
mapped as |0〉 → |1〉, the classical momentum is increased by Bτ , while the transformation |1〉 → |0〉
is accompanied by a change in momentum equal to −Bτ . The simulation depicted here uses time steps
of δt = 10−4 s, and a jump rate τ = 10−2 s. The interaction constant is B = 1 J · s ·m−1, the mass is
m = 1 kg, and the frequencies are ω0 = −ω1 = ω = 1 s−1.

Sec. A.3, and the solution we obtain is,

ui(q, p, t) =
∞∑

`,j=0
P0(`)P1(2j)ui(`, j) +

∞∑
`′,j′=0

P0(`′)P1(2j′ + 1)ui⊕1(`′, j′), i ∈ {0, 1} ,

(48)
where P0 and P1 are Poisson distributions with mean value t

τ0
and t

τ , respectively. For the
specific case under consideration, we can express the state in terms of shift operators

ui(`, j) = 1(`+2j
`

) ∑
π∈S(1)

`,j

π

((
e−

p
m
τ0∂q

)` (
eBωiτ∂p eBωi⊕1τ∂p

)j)
ui(q, p, t = 0), (49a)

ui⊕1(`, j) = 1(`+2j+1
`

) ∑
π∈S(2)

`,j

π

((
e−

p
m
τ0∂q

)` (
eBωiτ∂p eBωi⊕1τ∂p

)j
eBωiτ∂p

)
ui⊕1(q, p, t = 0),

(49b)

where in the first equation above, S(1)
`,j is a proper subset of the set of all permutations of

the shift operators. Each element π ∈ S(1)
`,j creates a different combinations of the ` + 2j

shift operators for position and momentum, while preserving the relative order of the shift
operators for the momentum. The same applies to the set S(2)

`,j in the second equation,
with the difference that in this case there are 2j + 1 shift for the momentum operator.

To better understand the above solution, let us consider the case in which the initial
CQ state is δ(q)δ(p) |0〉 〈0|, so that at t = 0 only the level |0〉 is populated. Additionally,
we fix ω0 = −ω1 = ω > 0, so that opposite shifts in momentum cancel each others, see
Fig. 4. At time t we find that both quantum levels are populated, and in partiular we have
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u0(q, p, t) =
∞∑

`,j=0

1(`+2j
`

)P0(`)P1(2j)×

×
∑

π∈S(1)
`,j

π

((
e−

p
m
τ0∂q

)` (
eBωτ∂p e−Bωτ∂p

)j)
δ(q)δ(p), (50a)

u1(q, p, t) =
∞∑

`,j=0

1(`+2j+1
`

)P0(`)P1(2j + 1)×

×
∑

π∈S(2)
`,j

π

((
e−

p
m
τ0∂q

)` (
eBωτ∂p e−Bωτ∂p

)j
eBωτ∂p

)
δ(q)δ(p). (50b)

By counting the number of shift operators in momentum, we can see that the population
u0 spreads in position q while keeping the momentum p fixed at 0. On the other hand,
the population u1 has an odd number of momentum shifts, and therefore its momentum
is fixed at −Bωτ .

We can also use the unravelling technique to obtain a numerical solution for the CQ
dynamics of Eq. (46). In this equation, we see that the CQ state can evolve either contin-
uously, or through a jump in both the quantum and classical degrees of freedom. When
a jump occur, the quantum state is projected in either |0〉 or |1〉, and this change is ac-
companied by a positive or negative shift in momentum, respectively. Furthermore, due
to the form of the Lindblad operators, we have that a CQ state whose quantum degree
of freedom is described by |0〉 can only jump when it is hit by the operator L0, and vice
versa for |1〉. In our simulation, we require these jumps to be associated with an opposite
change in momentum. In this case, an initial CQ state with well-defined momentum (for
instance the one used in Fig. 4) can spread to at most 3 different values of momentum.

3.2.2 Diffusion in phase-space

We can additionally study the spreading, due to the interaction between classical and
quantum degrees of freedom, of the position of the particle as time passes by. The numerical
simulation shows that at later times, the populations u0(q, p, t) and u1(q, p, t) divide into
two Gaussian distributions, one with zero momentum, the other with non-zero momentum,
see Fig. 4. Here, we consider the same scenario as in the previous section, where the initial
CQ state is %(q, p) = δ(q)δ(p) |0〉 〈0|. As we noticed before, this state evolves into two
different ensembles, one associated with the quantum level |0〉, and the other with the
quantum level |1〉. In particular, the population u0 spreads in position while keeping
the momentum fixed at p = 0, while the population u1 spreads in position with a fixed
momentum p = −ωBτ . In Fig. 5, we show the average position and standard deviation of
the two populations as a function of time. We obtain these values by fitting the numerical
data, and by the following analytical considerations.

Let us consider the evolution in phase space of the initial state under consideration.
At each time step, this state has a probability Pjump = δt

τ of jumping in momentum, and
a probability 1 − Pjump of jumping in position. As we noticed before, given the initial
state under consideration, the momentum of the CQ state at time t can be either 0 or
pmin = −Bωτ . When the momentum is non-zero, a position jump modifies the position of
the state by ∆q = pminδt = −Bωτδt. We can then compute the average change in position
between two jumps, when the momentum is pmin. The (normalised) probability that n
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Figure 5: The mean value 〈q〉 (or better, its absolute value) and standard deviation σq of populations
u0 and u1. For the numerical simulation we choose the frequencies ω0 = −ω1 = ω = 1 s−1, the
interaction constant B = 1 J · s ·m−1, the mass m = 1 kg, and a jump rate τ = 10−2 s. The time step
used in the simulation is δt = 10−4 s. The solid lines are obtained by fitting the numerical data with
a normal distribution, while the dashed lines are obtained using analytical considerations discussed in
the main text. It is interesting to notice that, while σq is roughly the same for the two populations, the
mean position is shifted. This is because the distribution of u1 is the first to be populated, since only
one jump in momentum is needed when starting from the initial quantum state |0〉 〈0|. On the other
side, the distribution of u0 is populated (for values of q 6= 0) only after two jumps in momentum are
preformed. Since the rate of jump is given by τ , we find that the mean position of the two populations
is actually shifted (in time) by this parameter.

time steps separate two jumps is given by

prob (# steps = n) = Pjump(1− Pjump)n. (51)

Using the above distribution, we can compute the average distance travelled by the state
in between two momentum jumps, which is given by

∆Q =
∞∑
n=0

n∆q prob (# steps = n) = 1− Pjump

Pjump
∆q = −Bωτ (τ − δt) . (52)

After n time steps, the average number of jumps is Njump = nPjump. Furthermore, the
position of the state can only change after an odd number of jumps, since only in that case
the momentum is non-zero. As a result, we find that the average position of the state at
time t is

〈q〉(t) = 1
2Njump∆Q+ 〈q〉(0) = 1

2 (τ − δt) t+ 〈q〉(0), (53)

where we define t = n δt. It is worth noting that the above result only applies to the
average position of the population u1. In this case, since the initial quantum state is |0〉, a
single jump in momentum is required for the CQ state to populate |1〉. However, the CQ
state starts to populate |0〉 (with a position q 6= 0), only after two jumps in momentum
are performed. Since the rate of jumping is given by the parameter τ , we have that the
average position of the population u0 is roughly delayed by this amount of time, and it is
therefore equal to 〈q〉(t− τ), see Fig. 5.

To compute the variance of the position for the populations, we notice that the number
of jumps Njump is distributed according to a binomial distribution, and its variance is given
by σ2

jump = nPjump (1− Pjump). Then, keeping the other terms constant in Eq. (53), we
have

σq(t) = 1
2σjump |∆Q| =

Bω

2 (τ − δt)
3
2
√
t. (54)

As we noticed before, the CQ state starts in position q = 0 with momentum p = 0, and
roughly starts moving only after t = τ , that is, the time interval before a momentum jumps
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occurs (on average). As a result, the standard deviation of the populations needs to be
modified so as to account for this delay, and we find that for both u0 and u1 the standard
deviation is given by σq(t − τ), at least for t � τ . As a final remark we notice that also
in this model, like in the previous one, the average energy, as computed by averaging the
operator H(z) = HC(z) + HI(z) over the classical and quantum degrees of freedom, is
not conserved. Perhaps surprisingly, though, the energy increases from the initial time
until it saturates at a positive value, see Fig. 6. This is due to the form of the Lindblad
operators considered, which flip a |0〉 state into a |1〉 and vice versa, and thus create,
after an initial transient, an equilibrium between four possible states in the classical phase-
space, highlighted in the last panel of Fig. 4. In this equilibrium, we find that the kinetic
energy receives a contribution by those states associated with non-zero momentum, while
the potential energy equilibrates since the contribution from the term u0 is proportional
to that of u1, but with opposite sign (see the first panel of Fig. 5, and the above discussion
on the expected value of the position).
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Figure 6: The energy of the CQ state as a function of time, when the initial state is δ(q)δ(p) |0〉 〈0|.
The different contributions to the energy are shown, such as the kinetic energy EC = 〈HC〉 and the
potential energies E(i)

I = 〈H(i)
I 〉. As in the first model in the previous section, the total energy of the

system is not conserved. However, in this case the total energy Etot = 〈HC +HI〉 increases during the
initial part of the evolution, until it reaches the maximum value 1

2τ
2.

4 Quantum harmonic oscillator in a classical potential
In this section, we will consider the dynamics of coupling two degrees of freedom, one
quantum and one classical. It is a particle whose internal degree of freedom is a quantum
harmonic oscillator, coupled to its classical position and momentum. The model we focus
on here demonstrates some basic features of the classical-quantum dynamics, though it
describes a somewhat artificial situation where raising the energy level of the harmonic os-
cillator kicks the momentum towards the left, and lowering the energy kicks the momentum
towards right. One quickly sees that energy will not be conserved.

The simpler model we explore in this section has one important and universal feature:
starting from a state that is a delta function in momentum and position, and a superposi-
tion of two states in the harmonic oscillator, as expected, the numerical simulations show
the initially pure state going through a process of decoherence, with the parts of the state
associated to different energy levels becoming more and more distinguishable in the phase
space as time goes on. We numerically simulated the dynamics and analytically found the
decoherence rate, for the large n approximation (where n marks the energy levels of the
harmonic oscillator).
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We will begin with a simple model with interaction Hamiltonian, depending on both
lowering and raising operators, which are quantum operators acting on the internal quan-
tum degree of freedom, and the classical position q and momentum p of the particle carrying
it:

HI(q, p) = B(q)
(
ω0aa

† − ω1a
†a
)
. (55)

This simple model is analogous to the one used for the spin-1
2 particle. We consider a

model with two Lindblad operators, one of which is proportional to the creation operator
and the other is proportional to the annihilation operator:

Lα=1 =
√
|ω0| a, (56a)

Lα=2 =
√
|ω1| a†. (56b)

As a result, the functions hα(q, p) are defined as

hα=1(q, p) = sign(ω0)B(q), (57a)
hα=2(q, p) = sign(ω1)B(q). (57b)

In the following, we focus on the case in which B(q) = qB, where B is a constant, and for
simplicity we set the coupling constant ω0 = −ω1 = 1 s−1. Notice that, for this choice of
constants, the interaction Hamiltonian reduces to HI(q, p) = qB I, and the commutator in
Eq. (28) drops out. We will discuss more general models, including two coupled oscillators
in Sec. 5.

The resulting CQ master equation, where we additionally account for the free-particle
classical Hamiltonian HC = p2

2m , is given by

∂%(q, p, t)
∂t

=− p

m

∂ %(q, p, t)
∂q

+ 1
τ

(
γ↑a
† %(q, p−Bτ, t) a+ γ↓a %(q, p+Bτ, t) a†

)
(
−1

2
{
γ↓a
†a+ γ↑aa

†, %(q, p, t)
}

+

)
, (58)

where τ is the rate of jump in both the classical and quantum degrees of freedom. The
constants γ↑, γ↓ determine the rate of damping (γ↓) of the quantum oscillator compared
with the rate of pumping (γ↑). For simplicity we henceforth take γ↑ = γ↓ = 1 although
from a physical point of view, one might want to have the damping term be larger, to drive
the quantum oscillator to its ground state. In a field theory, taking the damping term
to be larger than the anti-damping term, can result in the theory violating causality[60],
a state of affairs which the authors of [60] tune down by allowing some degree of energy
non-conservation.

In this model, when the energy of the particle is increased with the raising operator a†,
its momentum is lowered, and vice versa, when the energy is lowered with the annihilation
operator a, its momentum is increased. It is worth noting that the momentum is here one
dimensional; thus, increasing the momentum does not necessarily mean increasing also its
absolute value, and therefore, for the free-particle Hamiltonian HC , we cannot conserve
the energy in this model. An example of the dynamics generated by this master equation
is shown in Fig. 7.

Because the CQ master equation introduces a new contribution to decoherence, coming
from the interaction between the classical and quantum degrees of freedom, we now aim to
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Figure 7: The evolution of the populations un(q, p, t) of the harmonic oscillator in phase space,. The
system is initially in a superposition over the state |n1 = 12〉 and |n2 = 16〉, centered in the origin
of the phase space. The evolution of the populations is shown for t = 0.01 s, 0.03 s and 0.5 s. The
state is updated every δt = 2.5 · 10−5 s, and the jump rate of the model is τ = 0.1 s. The constant
B = 1 J · s ·m−1, and the mass of the harmonic oscillator is m = 1 kg. Top panels. The evolution
of the population for n = n1 is shown. Initially, this population is peaked around the origin of phase
space, and it starts to diffuse in position due to the action of the rising and lowering operators. At later
time, a second packet can be seen, with momentum p = 0.4 kg ·m · s−1. This packet originated from
the population at n = n2, and reaches n = n1 thanks to the repeated action of lowering operators.
Central panels. The evolution of the population for n = n1+n2

2 is shown. The symmetric packets
with negative and positive momentum (p = ±0.2 kg · m · s−1) originated from n = n1 and n = n2,
respectively. Bottom panels. The evolution of the population for n = n2 is shown. The general
behaviour in phase space is analogous to that of the population for n = n1, but with a second packet
with negative momentum.

study the decoherence rate of the harmonic oscillator. In order to analytically find this rate,
we have to compute the time evolution of the CQ state; to simplify the analysis, however,
we will neglect the contribution of the Poisson bracket with the classical Hamiltonian HC ,
and only focus on the jumping dynamics, which is here responsible for the decoherence of
the system. First, we write out the CQ state %(q, p, t) in terms of the Fock basis,

%(q, p, t) =
∑
n,m

un,m(q, p, t) |n〉 〈m| . (59)

We can additionally perform the Fourier transform of the above state with respect to the
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momentum p. Thus, we get the following equation

∂%̃(q, x, t)
∂t

= 1
τ

(
a† %̃(q, x, t) eiBτx a+ a %̃(q, x, t) e−iBτx a† − 1

2
{
a†a+ aa†, %̃(q, x, t)

}
+

)
.

(60)

This step simplifies our analysis, since in this way we remove from Eq. (58) the non-
locality in momentum. However, at the end of our analysis we will have to perform an
inverse-Fourier transform to recover the state in the momentum domain.

If we sandwich the above equation with two energy eigenstates 〈n| · |m〉, we obtain the
following equation for the elements un,m(q, x, t) of the CQ state,

∂un,m(q, x, t)
∂t

=
√
nm

τ
un−1,m−1(q, x, t) eiBτx

+
√

(n+ 1)(m+ 1)
τ

un+1,m+1(q, x, t) e−iBτx

− n+m+ 1
τ

un,m(q, x, t).

The fact that the matrix element (n,m) interacts only with itself, and its nearest neighbours
(on a line parallel to the matrix diagonal) (n−1,m−1) and (n+ 1,m+ 1) will prove to be
convenient. Indeed, this implies that if we are interested in the problem where the initial
state of the CQ density matrix is a superposition of two energy eigenstates,

%(q, p, t = 0) = δ(p) δ(q) 1
2(|n1〉+ |n2〉)(〈n1|+ 〈n2|), (61)

then we only need to solve three differential vector equations, where the vector takes values
along the three diagonal lines involved; the main diagonal, among whose elements we find
(n1, n1) and (n2, n2), the second line parallel to the diagonal marked by the matrix element
(n1, n2), and the third one marked by (n2, n1).

4.1 Solving the differential equations for the CQ harmonic oscillator
We now attempt to solve the differential equation with the previously mentioned initial
conditions, where we know that the three diagonals along which we have to solve are the
ones marked with the matrix elements (n2, n1), (n1, n1) and (n1, n2). For example, we can
focus on the differential equation of the third diagonal,

∂un1+k,n2+k(q, x, t)
∂t

=
√

(n1 + k)(n2 + k)
τ

un1+k−1,n2+k−1(q, x, t) eiBτx

−n1 + n2 + 1
τ

un1+k,n2+k(q, x, t)

+
√

(n1 + k + 1)(n2 + k + 1)
τ

un1+k+1,n2+k+1(q, x, t) e−iBτx. (62)

Assuming that n1 < n2, we can now rearrange the functions un1+k,n2+k(q, x, t), for k ∈
{−n1,−n1 + 1, . . .}, into a vector

~v = (u0,n2−n1 , u1,n2−n1+1, ...)T =
∑
k

un1+k,n2+k ~ek, (63)

where the {~ek}k are unit vectors, and we suppressed the time and phase space dependence
for simplicity. The goal is then to find the solution of the equation

∂~v

∂t
=M~v, (64)
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where M is a tridiagonal matrix, whose entries are determined by Eq. (62). The size of
this matrix is infinite, but we can obtain an approximate solution to the above equation by
considering only part of the elements in the vector ~v. In particular, we require the index
k to take values in an interval

(
−N

2 ,
N
2

]
, for a given integer N . This approximation is

acceptable for short enough times, when the coherence un1,n2 has not yet spread too much.
By imposing these lower and upper bounds to the k index, we make the system effectively
finite dimensional, and therefore the finite-dimensional matrixM can be diagonalised. In
the following, we refer to the i-th eigenvector of this matrix as ~wi, with eigenvalue λi.

The equation regulating the dynamics of the eigenvectors ~wi is then given by

∂ ~wi
∂t

= λi ~wi, (65)

and the solution is given by ~wi(t) = eλi t ~wi(0). The same procedure can be followed for
the main diagonal, marked with the matrix elements (n1, n1) and (n2, n2), so as to obtain
the evolution for the populations. The diagonalisation of the matrixM can be performed
numerically, so as to obtain the decay rates for the coherences of the (Fourier transformed)
CQ state. However, obtaining the evolution of the actual CQ state ρ(q, p, t) would require
us to Fourier transform back to the momentum domain, which can be computational ex-
pensive, given that such transformation should be performed on every element un,m(q, x, t)
of the CQ state. For this reason, we preferred to make use of the unravelling technique to
obtain the evolution of the CQ harmonic oscillator, and to compute the decoherence rate.

4.2 Decoherence rate in the large n approximation
We now compute an analytical expression for the decoherence rate in the case in which the
Fock numbers n1 and n2 are large compared to the range of the k index. In this situation,
we can approximate the matrix elements along the diagonals of M to be equal, so as to
obtain a Toeplitz matrix. Concretely, if the k index takes value between

(
−N

2 ,
N
2

]
, where

N � n1, n2 is an even number, then the matrixM can be approximated as

M≈


. . . . . . 0 . . . . . .

. . . −n1+n2
τ

eiφ

τ

√
n1n2 0 . . .

0 e−iφ

τ

√
n1n2 −n1+n2

τ
eiφ

τ

√
n1n2 . . .

0 0 e−iφ

τ

√
n1n2 −n1+n2

τ . . .
. . . 0 0 . . . . . .

 , (66)

where we define eiφ = eiBτx for convenience. We can now find the eigenvalues λm of the
above Toeplitz matrix, which are given by [48]

λm = −n1 + n2
τ

+ 2
τ

√
n1n2 cos mπ

N + 1 , m = 1, . . . , N. (67)

The eigenvectors of the matrix {~ωm}Nm=1 are instead given by

~ωm =
N∑
r=1

Bm,r ~er−N2
, (68)

where Bm,r =
√

2
N+1 e

−irφ sin mr π
N+1 is the unitary matrix diagonalizingM.

Under the dynamics described by Eq. (64), the eigenvectors evolve as ~ωm(t) = eλm t ~ωm(0).
Thus, by re-writing the vector ~v, defined in Eq. (63), in terms of the eigenvectors ofM, we
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can compute the approximate time evolution of the coherence of the state, which is given
by

un1−N2 +`,n2−N2 +`(q, x, t) =
N∑

r,m=1
un1−N2 +r,n2−N2 +r(q, x, 0)B−1

r,m e
λm tBm,`, ` = 1, . . . , N.

(69)
We can now specialise the above approximate solution to the initial condition we in-

troduced in Eq. (61). In this case, the sole contribution to the coherence at time t = 0 is
un1,n2(q, x, 0) = 1

2 δ(q)δ(p) = 1
2 δ(q)

∫
dxeipx, and its time evolution is given by

un1,n2(q, x, t) = e−
n1+n2
τ

t

N + 1

N∑
m=1

sin2
(

N

2(N + 1) mπ

)
e

2
τ

√
n1n2 cos( mπ

N+1)t δ(q)δ(p), (70)

where the dominant rate of decoherence is given by Γ = n1+n2
τ , with corrections of the

order
√
n1n2. The above analytical result can be compared to the numerical one obtained

with the unravelling technique, see Fig. 8.
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Figure 8: The evolution of the coherence for two different choices of initial state for the CQ system. In
both cases, the system is evolved up to the time t = 2.5 · 10−2 s, with time steps of δt = 2.5 · 10−6 s,
and a jumping rate τ = 2.5 · 10−1 s. The interaction constant is B = 1 J · s · m−1, and the mass is
m = 1 kg. Left. The initial quantum state is an even superposition between |n1 = 15〉 and |n1 = 30〉.
The evolution of the quantum coherence |um1,m2 | is shown for different values of m1 and m2, and the
classical degrees of freedom have been traced out. The numerical evolution is represented with the
solid line, and the dashed line is the analytical solution given in Eq. (69), for N = 10. Centre. The
initial quantum state is a even superposition between |n1 = 22〉 and |n1 = 23〉, and the evolution of
the coherence is shown for those m1 and m2 close to n1 and n2. Again, the solid lines are obtained
through the numerical simulation, using the unravelling code, and the dashed ones are the (approximate)
analytical solutions. Right The evolution of the coherence |un1,n2 | for the two choices of initial state.
When the difference between n1 and n2 is big, the coherence reaches lower values than in the case in
which n1 and n2 are close together; this behaviour of the coherence is analogous to the case in which
the dynamics is fully quantum, and the system decoheres due to the coupling with an external bath,
rather than to the interaction with the classical degrees of freedom.

Notice that, in order to obtain the decoherence as a function of phase space variables,
we have to perform the inverse Fourier transform on the coherence given in Eq. (70).
However, since the time evolution of un1,n2 is constant in the x-space, we find that in p-
space the solution picks up a delta function δ(p), and the decoherence rate is not modified.
The presence of a delta function for the momentum is consistent with the dynamics we are
considering. Indeed, from Eq. (58) it is easy to see that the coherence un1,n2 is non-zero
for p = 0 only, while for any k 6= 0 the coherence un1+k,n2+k is non-zero for p = −kBτ .
Likewise, the position dependence is described by δ(q), since the master equation we are
considering does not include the classical Hamiltonian HC = p2

2m .
It is worth noting that the evolution of the coherence induced by the CQ dynamics

described in Eq. (58) is analogous to the evolution induced by a fully quantum master
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equation where the phase space degrees of freedom are neglected. The decoherence can
however be interpreted in two different ways; for the CQ dynamics, this is due to the in-
teraction with the classical degrees of freedom, and the fact that (quantum) information is
leaking in the classical phase space. For the fully quantum dynamics, instead, the decoher-
ence is due to the interaction with an external environment. The coherence evolution for
these two settings can still be distinguished if we introduce the classical Hamiltonian HC

in the CQ dynamics, since this term provides a non-trivial dependence on the position q
in phase space. As a final remark, we notice that coherence in this model is “moving” from
the initial superposition between |n1〉 and |n2〉 to superposition of nearby Fock states. This
is shown in the left and centre plots of Fig. 8; the coherence of the initial state |n1〉+ |n2〉
monotonically decreases, while the coherence of the superposition |n1 ± 1〉 + |n2 ± 1〉 in-
creases at early times and then start decreasing as well.

5 Discussion
5.1 Uniqueness of unravelling
We have here considered general dynamics which consistently couples a quantum system
with classical degrees of freedom. The combined system is described by a hybrid-density
which gives the probability of the system to be at any point in phase space and if so, what
the density matrix of the quantum system is. We introduced an unravelling approach to
solve the equations of motion. In this approach, both the classical and quantum systems
evolve along a particular trajectory with some probability, and when we average over these
trajectories, we recover the dynamics for the hybrid-density. Unlike the purely quantum
case, the trajectories considered here can lead to objectively certain state transformations,
in which the quantum system transitions to a particular pure state, conditioned on the
classical degrees of freedom. This happens when the Lindblad operators Lα are uniquely
determined by the classical transition Wα(z|z − ∆) rate, so that the observation of a
particular classical transition unambiguously informs us about the quantum transition.
Since the classical system has a definite trajectory, the trajectory of the quantum system
is also definite. This is contrast to the purely quantum case, where the decomposition of
a density matrix into an ensemble of pure states is not generally unique. A particularly
simple and illustrative example is the master equation

∂%

∂t
= Lαρ(q, p−∆α)L†α −

1
2
{
L†αLα, %(q, p)

}
+

(71)

where, if the ∆α are different for each α, observing a sudden jump in momentum by an
amount ∆α implies that the quantum state has changed from |ψ〉 to a suitably normalized
Lα |ψ〉. The classical system encodes the trajectory of the quantum system.

Furthermore, for the class of hybrid master equations we considered, there is a very
real sense in which the quantum system jumps from being in a superposition of several
states, to being in one of those states. Ironically, this is in contrast to spontaneous collapse
models [32, 57, 33] where collapse is meant to be caused by an unobservable field. In these
theories, as in ordinary quantum theory, the density matrix of the quantum system fully
describes the system, and so, one cannot distinguish between decoherence (which we think
of as the gradual decay of off-diagonal elements of the density matrix in a chosen basis),
and the case where the wavefunction has a probability per unit time of being projected to a
particular states, such that on average, off-diagonal matrix elements of the density matrix
decay with time. In both cases, the density matrix of the quantum system is the same. In
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contrast, in the theory studied here, by monitoring the classical degree of freedom one can
determine that a sudden change has occurred.

The system which is treated classically could be merely a large quantum system that
is effectively a classical system such as an environment or a measuring apparatus. But
it could also be fundamentally classical, for example, space-time, or it could be a system
whose classical nature is somehow assumed, such as the experimenter herself. This provides
a potential solution to the measurement or ”reality” problem of quantum theory. Namely,
quantum systems in superposition collapse to a particular state in that superposition be-
cause they interact with a system which is classical. Which set of possible states they can
collapse to (sometimes called the pointer basis) is determined by the interaction.

Turning towards more pedestrian phenomena, we have found that the toy models we
studied exhibited a trade-off between the amount of classical diffusion that occurred in
phase space and the amount of quantum decoherence or noise that occurred in the quantum
system. To minimise the disturbance on the quantum state, there needs to be a lot of
diffusion in the classical system. In Ref. [54] we will formally prove that this is indeed the
case.

5.2 Discussion on energy non-conservation
We also found as in [4], that because the Hamiltonian was not the generator of time-
translations, it typically is not conserved. We saw that this effect does not have to be
large, and there are a number of ways to keep it under control so that we can have stable
solutions. Violations of energy conservation present a possible experimental signature
of fundamental hybrid dynamics, but also feature in spontaneous collapse models, and
gravitationally induced decoherence [22, 58].A full study on the issue of energy conservation
is beyond the scope of the current work, but in the following we present a brief discussion
of the problem, at leading order.

It is instructive to recall the analogous issue in classical mechanics. If one has diffusion
as in the Fokker-Planck equation, then the magnitude of the momentum will gradually drift
and increase, resulting in energy increase. The introduction of a friction term prevents this,
by causing the system to settle down to an equilibrium state. The Fokker-Planck equation
for the phase space density ρ(q, p) is of the form

∂ ρ(q, p)
∂t

= {HC(q, p), ρ}+ ∂2D(q, p)ρ(q, p)
∂p2 + ∂

∂p

[
η(q, p)ρ(q, p)

]
, (72)

with the friction coefficient η := γ ∂HC∂p . This is just the theory of Brownian motion as
developed by Einstein and Smoluchowski, with a thermal stationary distribution given by

ρβ = e−βHC

Z
, (73)

where Z is the partition function and the inverse temperature is

β = γ/D. (74)

By adding a friction term, we can stop the diffusion in the classical degrees of freedom.
For the type of hybrid model presented in Sec. 3.1, with Lindblad operators that are a

basis of orthogonal projectors Lα = |α〉〈α| onto energy eigenstates of HQ, and hα = ωBq
(to take a simple example) we may add a friction term such as

F(ρ) = ∂

∂p

[
γ(q)∂HC

∂p
ρ
]

= γ(q)
m

[
p
∂ρ

∂p
+ ρ

]
(75)
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to the right hand side of the evolution law of Eq. (28). The friction coefficient γ can be
chosen to depend on q. To first order in τ , the diffusion term is given by Eq. (39), and
so from Eq. (74), we expect that to first order, the classical system will equilibriate to a
thermal state at inverse temperature β = γ(q)/(Bω〈α〉)2τ . Because the Lindblad operators
project onto eigenstates of HQ, the quantum system also equilibrates by decohering into
one of it’s energy eigenstates.

The case where the Lindblad operations cause noise is more interesting, since then
one has diffusion not only in phase space but also in the Hilbert space. What’s more,
the amount of diffusion in phase space can depend on the quantum state; for example,
for a quantum harmonic oscillator the diffusion can grow with n, the energy level of the
oscillator. This means that the diffusion term can be arbitrarily large, and overcome any
classical friction term. We would thus like the friction term to also increase with n so
that the classical system can reach a steady state. To explore this, let us consider a more
sophisticated model than Eq. (72), where a classical harmonic oscillator with Hamiltonian
HC = ωc(p2 + q2)/2 is coupled to a quantum harmonic oscillators with free Hamiltonian
HQ = ωQa

†a; the Lindblad operators are now Lα = a, the annihilation operator. A natural
coupling between the two oscillators would be to take the interaction Hamiltonian to be
HI = −2ωcωQqQ with Q = 1√

2(a + a†), but it is hard to make the hybrid dynamics of
such a coupling completely positive. An alternative, is to take the quantum part to be
positive definite (while leaving the classical part arbitrary), e.g. HI = B(q)Q2, which is
still a local coupling. Let us be slightly more general, and consider coupling to Q2 + κP 2

with P = i√
2(a† − a) and κ ≥ 0. It will prove convenient to use [a, a†] = 1 to rewrite this

as

HI = B(q)1
2
(
(1− κ)(aa+ a†a†) + (1 + κ)(a†a+ 1)

)
(76)

where we have dropped the purely classical terms from the interaction. A master equation
for such a theory is then

∂%(q, p)
∂t

= {Hc(q, p), %(q, p)}+ F(%(q, p))− iωQ
[
a†a, %(q, p)

]
− iB(q)

[
Q2 + kP 2, %(q, p, t)

]
+
∫
d∆W↑(q, p|q, p−∆)a† %(q, p−∆) a+

∫
d∆W↓(q, p|q, p−∆)a %(q, p−∆) a†

− 1
2
{
W↓(q, p) a†a+W↑(q, p) aa†, %(q, p)

}
+

(77)

where we are still to specify the transition rates W↑ and W↓, associated to the pumping
and dumping of the quantum oscillator, respectively, and the classical friction term F . The
last term in the first line is the influence of the classical system on the harmonic oscillator,
while the second and third lines is the influence of the quantum system on the classical
one. In the following, we will require the expansion of W↑ and W↓ to contain a term
proportional to τB′(q)∂%(q,p)

∂p , so as to balance the energy increase of the classical system
due to the interaction with the quantum one.

On the other hand, at leading order in ∆ the second and third lines give rise to a
Lindblad equation with a damping and pumping term,

D(%) := W↓(z) a† % a+W↓(z) a % a† −
1
2
{
W↓(z)a†a+W↑(z)aa†, %

}
+

(78)

and so when W↑(z) ≥W↓(z), the state of the harmonic oscillator will continue to increase
in energy. The quantum analogue of adding a friction term is to take the damping term
to be strictly larger than the pumping term, and if the classical system were to remain
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at rest, the quantum oscillator will thermalise to an inverse temperature proportional to
logW↓(z)/W↑(z), at which point one can verify that D(%) = 0. We can thus have the
system reach equilibrium by taking logW↓(z)/W↑(z) to be strictly positive and adding a
purely classical friction term F(%).

If on the other hand, we take B(q) and the rates W↓(z) and W↑(z) such that the
classical system equilibriates in a region of phase space with sufficient probability of having
W↓(z) ≤ W↑(z), then energy can be pumped into the harmonic oscillator indefinitely. In
such a case, we would like to control this, so that it happens slowly. To explore this, let
us consider the specific realisations,∫

d∆W↑(p|p−∆) %(q, p−∆) = 1
τ
h↑(q)eτ∂p(X↑·)%(q, p), (79a)∫

d∆W↓(p|p−∆) %(q, p−∆) = 1
τ
h↓(q)eτ∂p(X↓·)%(q, p), (79b)

where the differential operator ∂p(X·) acts over an hybrid operator ρ(q, p) as ∂p(X ρ(q, p)).
The two realisations are positive as long as h↑ and h↓ is everywhere positive, and the master
equation will preserve normalisation with W↑(q, p) = h↑(q)/τ and W↓(q, p) = h↓(q)/τ . Let
us now choose X↓ = ∆↓(q) + η↓, X↑ = ∆↑(q) + η↑, where η↑ and η↓ are friction terms as in
Eq. (72). Then, at zeroth order in τ we have the Lindblad equation (78) with temperature
proportional to log h↓(q)/h↑(q). However, even if we don’t have h↓(q) ≥ h↑(q), the rate at
which energy is pumped into the oscillator is

δHQ = ω
d〈a†a〉
dt

= 2
τ
ω2(h↑(q)− h↓(q))n−

ω

τ
h↑(q), (80)

which is easily calculated from the master equation. This term can potentially be made
small in the phase space region where the classical system equilibriates. The next order
terms give,

. . .+ h↓(q)∆↓(q) a
∂%

∂p
a† + h↑(q)∆↑(q) a†

∂%

∂p
a

+ τ

2h↓(q)∆↓(q)
2 a
∂2%

∂p2 a
† + τ

2h↑(q)∆↑(q)
2 a†

∂2%

∂p2 a

+ h↓(q) a
∂γ↓%

∂p
a† + h↑(q) a†

∂γ↑%

∂p
a+ . . . (81)

where we take the last two terms to be of roughly the same order as the previous diffusion
terms.

The κ = 1 case is a natural one to consider, since it is reminiscent of the master
equation of general relativity coupled to a scalar field [51]. The classical oscillator couples
to the energy of the quantum one, as the classical gravitational field couples to the scalar
field expanded in terms of momentum modes. Likewise, analogy with the gravitational
case suggests taking the pure commutator term of Eq. (77) since gravity is always coupling
to the energy. In this case, we can take

h↓(q)∆↓(q) = h↑(q)∆↑(q) = ω

2B
′(q) (82)

so that the first two terms in Eq. (81) will give the Poisson bracket {B(q)〈12Q
2 + 1

2P
2〉, %}
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in the classical limit. When we put this all together, the master equation (77) expands as

∂%(q, p)
∂t

= {Hc(q, p), %}+ F(%)− iB(q)ω
[
a†a, %(q, p, t)

]
+ ω

τ

(
h↑(q)a† % a+ h↓(q)a % a† −

1
2
{

(h↑(q) + h↓(q)) a†a+ h↓(q), %
}

+

)
+ B′(q)ω

2
(
a†
∂%

∂p
a+ a

∂%

∂p
a†
)

+ τ

4B
′(q)ω

(
∆↑(q)a†

∂2%

∂p2 a+ ∆↓(q)a
∂2%

∂p2 a
†
)

+ ω
(
h↑(q)a†

∂η↑%

∂p
a+ h↓(q)a

∂η↓%

∂p
a†
)

(83)

In analogy with the field theory case, we would like to take h↓(q) = h↑(q) = h(q),
since in that context, the theory is local with the consequence that the oscillator will not
equilibrate and will instead increase in energy [60]. This can be slowed down by any desired
amount by taking h(q)/τ to be small. However, anticipating the discussion in Ref. [54],
slowing the energy increase down results in a greater amount of classical diffusion. In
particular, the requirement that Eq. (82) be satisfied, which in this case is

h(q)∆(q) = ω

2B
′(q) (84)

encodes this trade-off. The right hand side governs the rate of evolution of p and is set by
the dynamics, and the left hand side then requires that a realisation of this form have a
trade-off between h(q) and ∆(q).

Let us consider the simplest example of B(q) = Gq, where G is a positive constant,
so that the classical system acts as if it is subject to a constant force F ≈ ωGn when
the quantum system is in the Fock state |n〉, with n large. The rate at which energy is
pumped into the quantum harmonic oscillator is δHQ = ωh(q)/τ , as shown in Eq. (80).
Recalling the Fokker-Planck equation, the effective diffusion coefficient D is the term in
front of 1

2
∂2%
∂p2 in Eq. (83), going as D ≈ Fτ∆(q)/2. Then, Eq. (84) gives δHQD ≈ 1

4nωF
2

so that a small amount of energy being pumped into the oscillator requires large diffusion
in the classical system in relation to the total back-reaction exerted by the quantum system
on the classical one. As n increases the relative trade-off, when the force F is held fixed,
becomes less pronounced.

There appears to be significant freedom in the choice of h(q) and ∆(q), the main
requirement other than Eq. (84) being that h(q) be positive. One can even take h(q) =
|B′(q)| and ∆(q) proportional to sign(B′(q)). If on the other hand, ∆(q) is large, we can
then get energy being pumped into the classical system, since large amounts of diffusion
in momentum will increase the energy of the classical system. This can be controlled by
increasing the friction term, to keep the momentum low. However, since the diffusion
term goes like D ∝ nωGτ∆(q) and thus increases with n, the friction term would also
need to scale with n or risk getting overwhelmed by the diffusion. For this reason, the
purely classical friction term F(%) will not be sufficient, while the hybrid friction terms in
Eq. (83),

FH(%) = ω
(
h(q)a† ∂η↑%

∂p
a+ h(q)a ∂η↓%

∂p
a†
)
, (85)

should allow us to compensate the increase. This is seen explicitly by tracing out the
oscillator, resulting in dynamics for the classical phase space density ρn conditioned on the
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the oscillator being in state n

∂ρn(q, p)
∂t

= {Hc, ρn}+ F(ρn)

+B′(q)ω(n+ 1
2)∂ρn

∂p
+ τ∆

2 B′(q)ω(n+ 1
2)∂

2ρn
∂p2

+ 2h(q)ω(n+ 1
2)∂ηρn

∂p
+ ... (86)

where we have taken η↑ = η↓ = η for simplicity. To this order, this is just the Fokker-Planck
equation, and if η = γ̃ ∂Hc∂p , then we expect the effective diffusion coefficient to be D ≈
τ∆(q)B′(q)ωn, and the effective friction coefficient to be γ ≈ nh(q)γ̃(q). Eq. (74) would
then give the effective inverse “temperature” that the classical system is held at, although
here, since it could depend on q, it is not a temperature but still defines the equilibrium
state β = h(g)γ̃(q)/τ∆(q)B′(q)ω, which is now independent of n. Note that this system
could act as if the classical system is being held at one temperature while the oscillator
is held at a different temperature. Were we to have access to the environment that each
system appears immersed in, we would presumably see heat flow from one environment to
the other. Understanding how this would work in detail, either analytically or numerically
would be an interesting research direction to pursue. One would like to better understand
the various trade-offs involved in systems like this, and what realisations lead to equilibrium
or steady states, or states which only change slowly.
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A The CQ master equation as a stochastic equation
In this appendix, we provide an analytical solution for the CQ master equations considered
in Sec. 3. These equations are special cases of the more general one shown in Eq. (28),
which we reproduce here for simplifying the exposition,

∂ %(z, t)
∂t

= −i [HI(z), %(z, t)] + 1
τ0

(
eτ0 {HC(z), · } − 1

)
%(z, t)

+ 1
τ

∑
α 6=0

(
eτ {h

α(z), · } Lα %(z, t)L†α −
1
2
{
L†αLα, %(z, t)

}
+

)
,

where we recall that the interaction Hamiltonian HI(z) =
∑
α 6=0 h

α(z)L†αLα drives a
stochastic evolution of the classical and quantum degrees of freedom with a rate τ > 0,
while the classical Hamiltonian HC(z) governs the stochastic evolution of the sole classical
degrees of freedom with a different rate τ0.

A.1 Solution of a stochastic equation
We first present the solution of Eq. (28) in the special case in which no classical-quantum
coupling is present, and the whole master equation only describes the evolution of the clas-

Accepted in Quantum 2022-09-18, click title to verify. Published under CC-BY 4.0. 40

https://doi.org/10.1103/PhysRevD.18.4580
https://doi.org/10.1103/PhysRevD.18.4580
https://doi.org/10.1103/PhysRevD.18.4580
https://doi.org/10.1103/PhysRevD.20.857
https://doi.org/10.1103/PhysRevD.20.857
https://doi.org/10.1103/PhysRevD.20.857
https://doi.org/10.1007/s10701-005-9007-y
https://doi.org/10.1007/s10701-005-9007-y
https://doi.org/10.1103/PhysRevD.93.024026
https://doi.org/10.1103/PhysRevD.93.024026
http://doi.org/10.1103/PhysRevD.93.024026
https://doi.org/10.1142/S1230161217400200
https://doi.org/10.1142/S1230161217400200
http://doi.org/10.1142/S1230161217400200
https://doi.org/10.1088/1355-5111/8/1/015
http://doi.org/10.1088/1355-5111/8/1/015
http://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1017/CBO9780511813948
https://doi.org/10.1017/CBO9780511813948
https://doi.org/10.1017/CBO9780511813948
https://doi.org/10.1103/PhysRevD.26.1862
https://doi.org/10.1103/PhysRevD.26.1862
https://doi.org/10.1103/PhysRevD.26.1862
https://doi.org/10.1007/978-3-7643-7808-0_1
https://doi.org/10.1007/978-3-7643-7808-0_1
https://doi.org/10.1007/978-3-7643-7808-0_1


sical degrees of freedom. The classical system is here described by the ensemble ρ(q, p, t),
and its evolution is given by

∂ρ(q, p, t)
∂t

= 1
τ0

(
eτ0{HC(q,p),·} − 1

)
ρ(q, p, t), (87)

where the finite parameter τ0 > 0 can be understood as the rate of jumping in phase space,
due to the effect of the shift operator eτ{HC(q,p),·}.

It is easy to show that the solution of Eq. (87) is given by

ρ(q, p, t) =
∞∑
k=0

P (k) ρ(kτ0), (88)

where P (k) is the Poisson distribution which carries the time dependence of the solution,

P (k) =
(
t

τ0

)k e− t
τ0

k! (89)

and the ensemble ρ(kτ0) is obtained from the initial ensemble ρ(q, p, t = 0) by applying
the operator k times,

ρ(kτ0) = ekτ0{H0(q,p),·}ρ(q, p, 0). (90)

It is worth noting that each ensemble ρ(kτ0) is the solution of the Liouville equation

∂ρ(q, p, t)
∂t

= {HC(q, p), ρ(q, p, t)} , (91)

at time t = kτ0, so that we can interpret it as the state of the system after k jumps in
phase space. Thus, the solution of Eq. (87) can be understood as a mixture of different
ensembles, where each of these ensemble are the solution of Eq. (91) at discrete times kτ0,
for k ∈ N, and the probability of making k jumps is given by the Poisson distribution
whose mean value is t

τ0
.

We can additionally use the simple master equation here introduced to better under-
stand the role of the diffusion term discussed in Sec. 2, and more generally the role of
the infinite number of corrections we obtain when the hybrid master equation is expanded
with respect to τ0. Let us first notice that Eq. (87) can be re-express as

∂ρ(q, p, t)
∂t

= ρ(q, p, t+ τ0)− ρ(q, p, t)
τ0

, (92)

where ρ(q, p, t + τ0) is the solution of the Liouville equation at time t + τ0, as we show
in Eq. (90). Thus, the solution of the master equation is given by an ensemble whose
instantaneous derivative at time t depends on the solution of the Liouville equation at
time t+τ0, and more in general on the phase-space trajectory imposed by the Hamiltonian
HC(q, p) through the Liouville equation, see Fig. 9. As a result, the instantaneous deriva-
tive of the solution of the master equation cannot be given by the sole Poisson bracket of
the Hamiltonian, but needs to be suitably corrected. These corrections are reflected in the
infinite expansion of the hybrid dynamics, see Eq. (10) in the main text.

A.2 Solution to the stochastic CQ dynamics with diagonal Lindblad operators
We can now provide a solution for Eq. (28) in a simple case, which nevertheless turns out
to be useful for obtaining an analytical solution in Sec. 3.1. Specifically, we study the case
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Figure 9: The phase-space of a classical system with Hamiltonian HC(q, p). The blue line represent
the continuous trajectory of the ensemble ρ(q, p, t), which initially is described by ρ(q, p, 0) = δ(q −
q̄)δ(p− p̄). This trajectory is obtained through the Liouville equation, see Eq. (91). Each point on the
trajectory corresponds to the position of the ensemble at discrete times t = kτ0, k ∈ N. The solution
of Eq. (87) is a mixture of the ensembles at these discrete times, weighted by a Poisson distribution
with mean value t

τ0
. This equation can be understood as a constraint on the instantaneous derivative

of the ensemble, as shown in Eq. (92). In particular, the derivative at time t needs to be equal to
ρ(q,p,t+τ0)−ρ(q,p,t)

τ0
, for a finite value of τ > 0.

in which a single population u(q, p, t) of the CQ state is considered, and only two shifts
are considered, one associated with the classical Hamiltonian HC(q, p), and one associated
with the quantum coupling HI(q, p). The equation we consider is then

∂u(q, p, t)
∂t

= 1
τ0

(
eτ0{HC(q,p),·} u(q, p, t)− u(q, p, t)

)
+ 1
τ1

(
eτ1{HI(q,p),·} u(q, p, t)− u(q, p, t)

)
,

(93)
where the action of the two Hamiltonians can either commute or not.

If the action of the two Hamiltonians commutes, {HI(q, p), HC(q, p)} = 0, then the
solution of the above equation can be easily obtained, and it is given by

u(q, p, t) =
∞∑

k,n=0
P0(k)P1(n)u(n, k), (94)

where k is the number of jumps associated with HC , and n is the number of jumps asso-
ciated with HI . Both P0(k) and P1(n) are Poission distributions, defined as

Pi(m) =
(
t

τi

)m e
− t
τi

m! , i = 0, 1, (95)

and the population u(n, k) is obtained from the initial one u(q, p, t) by applying k classical
jumps and n quantum jumps, that is,

u(k, n) = eτ0k{HC(q,p),·}+τ1n{HI(q,p),·} u(q, p, 0). (96)

It is easy to check that this is the solution of Eq. (93).
When the action of the two Hamiltonians does not commute, i.e., {HI(q, p), HC(q, p)} 6=

0, the solution of the stochastic CQ equation is still in the form of Eq. (94), with P0(k)
and P1(n) Poisson distributions. However, the population u(n, k) is now different, since
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the order of the shifts is now important, and we write it as

u(k, n) = 1(n+k
k

) ∑
i

πi

eτ0{HC(q,p),·} . . . eτ0{HC(q,p),·}︸ ︷︷ ︸
k

eτ1{HI(q,p),·} . . . eτ1{HI(q,p),·}︸ ︷︷ ︸
n

u(q, p, 0),

(97)
where πi is a permutation on the n + k shifts which create a different combination, and
i = 1, . . . ,

(n+k
k

)
.

A.2.1 Solution to the stochastic CQ dynamics for a qubit in linear potential

Let us now use the results obtained in the previous section to study the analytical solution
of the qubit in linear potential, where the Lindblad operators are diagonal, see Sec. 3.1. It
is easy to see that the differential equations for the populations, Eq. (32a), are almost in
the same form of the one we have studied in the previous section. Indeed, one can obtain
these equations from the stochastic one in Eq. (93) by setting the classical Hamiltonian
HC = p2

2m , the quantum coupling HI = q Bω, and sending τ0 → 0.
Notice that the action of the two Hamiltonians does not commute, since their Poisson

bracket is not zero, and the two shifts act as follow on the population,

eτ0{HC(q,p),·} u(q, p) = u(q − p

m
τ0, p), (98a)

eτ1{HI(q,p),·} u(q, p) = u(q, p+Bωτ1). (98b)

It is clear that shifts in momentum affect the subsequent shifts in position, since the latter
depend on the value of the momentum. We can define the jump units for position and
momentum as ∆p = Bωτ1, and ∆q = Bωτ1

m τ0.
We are now interested in expressing the population u(k, n) of Eq. (97) in terms of its

position and momentum, rather than in terms of its classical and quantum jumps. We can
write it as

u(k, n) =
∫

dq dp P (q, p|k, n)u(q, p) (99)

where the conditional probability distribution P (q, p|k, n) can be divided into two distri-
butions, one for the position and one for the momentum,

P (q, p|k, n) = P (q|k, n)P (p|n). (100)

By looking at the effect of the quantum jump on the state, see Eq. (98b), it is easy to show
that the distribution of the momentum, conditioned on the number of quantum shifts n,
is given by

P (p|n) = δ(p− n∆p). (101)

The conditional probability distribution for the position, instead, is less straightforward to
obtain.

In order to get the mean value and variance of the distribution P (q|k, n), we express
the problem in a different way. For a fixed value of classical and quantum jumps k and n,
we consider all possible combinations of jumps, or histories. We represent one such history
with a n + k-bit string x, where 0 is a position jump, and 1 is a momentum jump. The
final position of the particle for a given history can then be computed using the following
formula,

qk,n(x) = nk + n (n− 1)
2 −

n+k−1∑
`=0

` x`, (102)
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where x` is the `-th bit of the string x. Eq. (102) provides a link between a history x and
the final position q, and can therefore be used to get the conditional distribution we are
interested in. In particular, we can make the simplifying assumption that each x` is an
independent random variable,

x` =
{

1 with p = n
n+k ,

0 with 1− p = k
n+k .

(103)

The mean value and variance of x` is the same for all `, and they are given by 〈x`〉 = n
n+k

and σ2
` = nk

(n+k)2 , respectively. If we now use Eq. (102), together with the fact that each
x` is independent, we find that

〈qk,n〉 = nk + n (n− 1)
2 −

n+k−1∑
`=0

` 〈x`〉 = nk

2 , (104a)

σ2
qk,n

=
n+k−1∑
`=0

`2 σ2
` = nk(n+ k − 1)(2(n+ k)− 1)

6(n+ k) , (104b)

where in the second equation we have used the fact that, given two random variables X,
Y and two real numbers a, b, the variance of a random variable Z = aX + bY is given by
σ2
Z = a2σ2

X + b2σ2
Y .

We can now use the above results for estimating the mean value and variance of the
marginal distributions for position and momentum. These distributions are given by,
respectively,

P (q) =
∞∑

n,k=0
P (q|k, n)P0(k)P1(n), (105a)

P (p) =
∞∑
n=0

P (p|n)P1(n), (105b)

The mean value and variance for momentum are given by the Poisson distribution P1(n),
since P (p|n) = δ(p− n∆p), and we get

〈p〉 = ∆p t
τ1

= Bωt, (106a)

σ2
p = ∆p2 t

τ1
= (Bω)2τ1t. (106b)

To compute the mean value and variance of position, instead, we can make use of the law
of total expectation and the law of total variance. In the limit of n, k � 1, we have that
σ2
qk,n
≈ 1

3nk(n+ k), and after straightforward calculations we find

〈q〉 = 1
2
t

τ0

t

τ1
∆q = 1

2
Bω

m
t2, (107a)

σ2
q = 1

3
t2

τ0 τ1

(
t

τ0
+ t

τ1
+ 5

)
∆q2. (107b)

The results of Eqs. (106) and (107) are then compared, in Fig. 2, to the values obtained
by numerical simulation.
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A.3 Solution to the stochastic CQ dynamics with non-diagonal Lindblad operators
We now consider the case in which the Lindblad operators of Eq. (28) are non-diagonal,
and therefore the evolution of each population depends on the others. We consider the
case of a two-level quantum system, since this is the situation studied in the main text,
see Sec. 3.2. In particular, we study the evolution of the populations of a CQ system
with classical Hamiltonian HC(q, p) and interaction Hamiltonian HI(q, p) (whose action
we assume does not commute), and with Lindbald operators connecting the two levels (see
Eqs. (44) for an example). The stochastic equation for the population ui, where i = 0, 1,
is given by

∂ui(q, p, t)
∂t

= 1
τ0

(
eτ0{HC(q,p),·} ui(q, p, t)− ui(q, p, t)

)
+ 1
τ1

(
e
τ1

{
H

(i)
Q (q,p),·

}
ui⊕1(q, p, t)− ui(q, p, t)

)
, (108)

where the interaction Hamiltonian additionally depends on the level is acting on.
In order to solve this equation, we re-write the time derivative as (ui(t+ δt)− ui(t)) 1

δt ,
and we express Eq. (108) as

ui(t+ δt) = δt

τ0
eτ0{HC ,·} ui(t) + δt

τ1
e
τ1

{
H

(i)
Q ,·
}
ui⊕1(t) +

(
1−

(
δt

τ0
+ δt

τ1

))
ui(t) (109)

where we suppressed the dependence on the phase-space variables for compactness. If we
now group the terms in the above equation into the following operators, acting on ui and
ui⊕1 respectively,

A = δt

τ0
eτ0{HC ,·} +

(
1−

(
δt

τ0
+ δt

τ1

))
,

Bi = δt

τ1
e
τ1

{
H

(i)
Q ,·
}

i = 0, 1

we can express the evolution of the populations as

u0(t+ δt) = Au0(t) +B0 u1(t), (110)
u1(t+ δt) = Au1(t) +B1 u0(t). (111)

By considering a sequence of times t = {k δt}k∈N, we can recursively solve the above
equations, and we obtain

ui(k δt) = c
(i)
0 (k)ui(0) + c

(i)
1 (k)ui⊕1(0), (112)

where the coefficients (when k is even) are given by

c
(i)
0 (k) =

k
2∑
j=0

( k2j)∑
m=1

πm
(
Ak−2j (BiBi⊕1)j

)
, (113a)

c
(i)
1 (k) =

k
2−1∑
j=0

( k
2j+1)∑
m=1

πm
(
Ak−(2j+1) (BiBi⊕1)j Bi

)
. (113b)

In the above equations, πm ∈ Sk are permutations of the operators A’s and Bi’s such that
each combination obtained is different from the others, and the relative order between the
Bi’s is not modified.
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If we now replace the operators A and Bi, and we send k →∞ and δt→ 0 while asking
for k δt = t, we find that the solution of Eq. (108) is

ui(q, p, t) =
∞∑
`=0

∞∑
j=0

P0(`)P1(2j)ui(`, j) +
∞∑
`′=0

∞∑
j′=0

P0(`′)P1(2j′ + 1)ui⊕1(`′, j′), (114)

where both P0 and P1 are Poisson distributions with mean value t
τ0

and t
τ1

respectively,
and

ui(`, j) = 1(`+2j
`

) ∑
m

πm

(eτ0{HC ,·})`(eτ1
{
H

(i)
Q ,·
}
e
τ1

{
H

(i⊕1)
Q ,·

})jui(q, p, t = 0),

(115a)

ui⊕1(`, j) = 1(`+2j+1
`

) ∑
m

πm

(eτ0{HC ,·})`(eτ1
{
H

(i)
Q ,·
}
e
τ1

{
H

(i⊕1)
Q ,·

})j
e
τ1

{
H

(i)
Q ,·
}×

× ui⊕1(q, p, t = 0).
(115b)

In the above solution, the probability distributions P0 and P1 carry the time dependence,
while the functions ui(`, j) and ui⊕1(`, j) contain the phase-space information. In order to
find a more explicit solution, one needs to consider specific Hamiltonian operators HC(q, p)
and HI(q, p), as we do in the main text in Sec. 3.2.

B Unravelling code for CQ dynamics
The unravelling code is tailored to solve a specific model of CQ dynamics, whose master
equation is given in Eq. (28) for a rate of classical jump τ0 → 0, that is,

∂ %(z, t)
∂t

=− i [HI(z), %(z, t)] + {HC(z), %(z, t)}

+ 1
τ

∑
α

(
eτ {h

α(z), · } Lα %(z, t)L†α −
1
2
{
L†αLα, %(z, t)

}
+

)
, (116)

where HI(z) =
∑
α h

α(z)L†αLα is the interaction Hamiltonian between the classical and
quantum degrees of freedom. For simplicity, we consider the case in which z = (q, p), that
is, we consider a single system in phase space. The unravelling of this master equation
can be obtained following the steps shown in Sec. 2.1 of the main text. However, here we
will modify the updating rule of Eq. (16) to include a continuous evolution of the classical
degrees of freedom together with that of the quantum degrees of freedom.

As stressed in the main text, the unravelling code evolves the CQ pure state, see
Eq. (14), which we represent with the tuple (|φ〉 , q, p, t). The first element of the tuple,
|φ〉 ∈ Cd is the pure state of a qudit, while q ∈ R is the position and p ∈ R is the momentum
of the system, and t ∈ R+ is time. To update the state, we first sample from a uniform
distribution over the interval [0, 1], and check if the outcome p? is lower or equal that

p0 = 1− δt

τ

∑
α

〈φ|L†αLα |φ〉 . (117)

If this is the case, that is, p? ≤ p0, we apply the continuous update to the CQ state, and
we obtain the following tuple,( 1√

N0
(1− i δtHeff) |φ〉 , q + ∂HC

∂p
δt, p− ∂HC

∂q
δt, t+ δt

)
, (118)
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whereN0 is the normalisation of the updated quantum state, andHeff = HI(z)− i
2τ
∑
α L
†
αLα.

If p? > p0, instead, we randomly choose an α-jump according to the distribution,

pα = δt

τ
〈φ|L†αLα |φ〉 , ∀α. (119)

In this case, we evolve the state using the following update rule,( 1√
Nα

Lα |φ〉 , q + ∂hα

∂p
τ, p− ∂hα

∂q
τ, t+ δt

)
, (120)

where Nα is the normalisation of the new quantum state.
It is worth noting that the updating rule of Eq. (118) includes the continuous evolution

of the classical degrees of freedom, as opposed to the case shown in the main text, Eq. (16).
This addition in the updating rule is due to presence, in the above master equation, of the
Poisson bracket between the classical Hamiltonian HC and the CQ state. In fact, it is easy
to see that the first order in δt of the phase space shift operator coincides with the action
of the Poisson bracket, since for any (analytic) function f over the phase space we have

f

(
q − ∂HC

∂p
δt, p+ ∂HC

∂q
δt

)
=

= e
δt

(
∂HC
∂q

∂
∂p
− ∂HC

∂p
∂
∂q

)
f(q, p) =

(
1 + δt {HC , · }+O(δt2)

)
f(q, p). (121)

Using the above equation together with the fact that the unravelling provides a first or-
der approximation of the evolution given by the master equation, one can show that the
updating rule in this section correctly reproduces the dynamics of Eq. (116).

The code for the CQ unravelling can be found on GitHub.
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