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Abstract: We propose a new algorithm for generating custom network traffic matrices
which achieves 13×, 38×, and 70× faster generation times than prior work on networks
with 64, 256, and 1024 nodes respectively. © 2023 The Author(s)

1. Introduction

Data centres (DCs) have become critical tools for modern computational tasks. To meet the ever-increasing de-
mands of DCs, recent years have seen a growth in the research and development of next-generation DC optical
systems [1]. However, most researchers rely on simulations, which require the generation of synthetic traffic. In
doing so, they often make overly simplistic assumptions about the characteristics of their generated traffic and
develop systems which, in practice, perform poorly under real-world conditions [2]. Furthermore, many works
omit open-accessing their synthetic traffic or even the methodology used to generate it, bringing problems with
reproducibility, benchmarking, and cross-validation. The lack of a reproducible and high-fidelity synthetic traffic
generation tool has been a long-standing problem in the DC research community.

Prior works [3,4] have released traffic generators, but these were either intended to be unrealistic, were for spe-
cific network topologies, required the cumbersome use of inflexible configuration files, or lacked a reproducibility
guarantee. To address this, recent work presented TrafPy; an open source tool for generating reproducible DC
traffic with custom distributions and characteristics [2]. However, the authors only demonstrated traffic generation
for 64 network nodes; far smaller than the O(1000) node DCs which are becoming increasingly common place.

In this work, we first show that the original flow source-destination assignment algorithm (‘packing’, see Section
2) used in the TrafPy generator is a major bottleneck because its time complexity scales poorly with the number of
DC nodes |N| for which |F | flows are being generated. This prevents the generation of traffic for large networks.
Next, we propose a novel vectorised packing algorithm which fits in with the rest of the authors’ traffic generation
framework. Finally, we demonstrate our vectorised packer achieving 13×, 38×, and 70× faster generation times
than [2] on networks with 64, 256, and 1024 nodes respectively with up to ≈ 5M traffic flows, with the speed-up
factor increasing with the network size. We expect this work to unlock a new realm of DC research at scale and to
further facilitate the development of next-generation systems and common platforms for benchmarking networks.
We note that while here we focus on generating traffic for optical DCs, the same traffic generation scheme and
vectorised packing algorithm could be re-purposed and applied to any network system.

2. Custom Traffic Matrix Generation

Problem statement. DC traffic is made up of flows. A flow f is fully described by its size f s (how much infor-
mation to send), arrival time f a (when the flow requests to be transported through the DC, thus giving rise to the
inter-arrival time in a dynamic multi-flow setting), and source-destination pair f p (which machines in the DC the
flow is requesting to be sent between). In the framework of [2], traffic generation is split into two stages. In the first
stage (‘shaping and sampling’), custom flow size and inter-arrival time distributions are generated and sampled
to attain a set of sizes bs and arrival times ba for f ∈ F flows which match the target distributions within some
Jensen-Shannon distance (JSD) threshold1. In the second stage (‘packing’), given bs and ba, the task is to assign
each flow f ∈ F to a source-destination pair such that some target node distribution (a.k.a. traffic matrix heat map)
PN with nodes n∈N and corresponding source-destination node pairs p∈ P is realised as closely as possible with-
out exceeding the load capacity limitations of any node. The authors formulate this task by extracting the fraction
of the overall load requested by each pair p ∈ P into an array, multiplying each element by the overall DC’s target
load rate to get the per-pair target load rate, and then again multiplying each element by the simulation duration
(the time between the first and last flows’ arrivals) to get the total amount of information to load onto each pair,

1The JSD ∈ [0,1] is a measure of how similar two distributions are to one another (lower is more similar), and the JSD ‘threshold’ as
defined by [2] is a constraint on how similar the generated traffic characteristics must be to the target distributions.
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Fig. 1: i) (a) The time for stages one (shaping and sampling) and two (packing) when generating flows with the original packing algorithm. ii)
The packing (b) time and (c) Jensen-Shannon distance between the target and the generated node distributions for the original and vectorised
packing algorithms when generating traffic for networks with different numbers of nodes. (a) shows that the original packing algorithm is the
major traffic generation bottleneck of [2]. (b) shows that as the number of network nodes is increased, the vectorised packer’s speed-up factor
over the original algorithm increases. (c) shows that both algorithms achieve the exact same resultant node distribution. Note that the original
algorithm’s time results for |N|= 1024 are extrapolations since it would have taken ≈ 200 days to run the packer.

bp,I
target , needed in order to achieve the desired target node distribution PN . The packing task is therefore reduced

to finding the source-destination node pair assignments for each flow f ∈ F such that the difference between the
actual and the target per-pair total information loads, bp,I

target −bp,I
actual , is 0 or, where this is not possible given any

incompatibility between the target node distribution PN and the overall DC load rate, to match PN as closely as
possible (see [2] for further details).

As shown in Figure 1a, as |N| is increased, stage two (packing) becomes a major bottleneck, taking ≈1000000
times longer than stage one for |N|=1024. We therefore focus on optimising stage two.

Original packing algorithm. The original packing algorithm of [2] works by sequentially iterating through the
set of flows and, for each flow, conducting two passes through the candidate source-destination pairs. In the first
pass, the packer attempts to match the target node distribution by looping through all pairs, sorted in descending
order of the total size of flow information previously assigned, to find a pair which has not yet met its target
information load given the target node distribution and total flow arrival duration provided. Failing to find such a
node pair, the packer moves to the second pass, whereby it again loops through each sorted pair but now in search
of a source-destination combination which, if allocated the flow in question, would not exceed either the source’s
or the destination’s maximum load capacity given any prior flow allocations.

Algorithm 1 Vectorised packing algorithm pseudocode.
Input: F , P, bp,I

target

Output: bp,I
actual

Initialise: bp,I
actual = 0(|P|), bp,c = node capacity

2 (|P|)
for f in F do

bp,m =where(bp,c− f s < 0,0,1) // Generate boolean mask

bp,I,m
target = bp,I

target [bp,m],bp,I,m
actual = bp,I

actual [b
p,m] // Mask invalid pairs

pmax = argmax(2 ·bp,I,m
target −bp.I,m

actual) // Get furthest pairs

pchosen = random choice(pmax) // Randomly choose pair
update trackers( f , pchosen) // Assign flow to pair

end for

Vectorised packing algorithm. We negate the need
for separate first and second passes and for nested pair
for loops by using vector array operations. We be-
gin by initialising the per-pair remaining capacity vec-
tor as the maximum port capacity (half the per-node
capacity, since it is split between the source and desti-
nation ports) bp,c. We then sequentially iterate through
f ∈ F and, for each flow f , we generate a boolean vec-
tor pairs mask bp,m which masks out any pair indices
i ∈ [0, ..., |P|] which would exceed their load capacity
were they to be allocated the flow in question:

bp,m
i =

{
0 if bp,c

i − f s < 0
1, otherwise

(1)

We then apply this pairs mask to filter out any invalid pairs, thus ensuring that any pair chosen from here on
would meet the requirements of the second pass of [2] and also reducing the time complexity of the argmax
operation below in Equation 2 (since the number of candidate pairs is now reduced). Next, we take the masked
candidate pairs’ current distances from the target information loads, bp,I,m

target −bp,I,m
actual , shift them by bp,I,m

target in order
to retain any skewness in PN for as long as possible given the overall DC load specified, and find the pairs in this
masked subset which are furthest from their target information loads, pmax:

pmax = argmax
(

2 ·bp,I,m
target −bp,I,m

actual

)
(2)

In order to avoid any bias towards smaller pair indices and create the fade phenomenon in the resultant traffic
heat map [2], we randomly choose a pair pchosen ∈ pmax to which to allocate the flow f , thus meeting the require-
ments of the first pass of [2]. Finally, we update the current total information vector’s element for the chosen pair,
bpchosen,I

actual , and the remaining capacity vector elements bp,c for any pairs p ∈ P which share either a source or a
destination with pchosen. The pseudocode for this vectorised packer is summarised in Algorithm 1.



Fig. 2: Custom traffic matrix distributions generated with 8, 16, 32, 64, 128, 256, 512, and 1024 nodes, where the colour of each source-
destination pair corresponds to the fraction of the overall network load it requests.

3. Simulation Setup

TrafPy enables the production of custom traffic distributions through the control of a handful of parameters. These
include the flow size and inter-arrival time distribution parameters, the node distribution’s inter- vs. intra-rack and
skew node fractions, and the overall network load. To measure the packing times for the original and vectorised
packing algorithms, we generated an assortment of custom traffic patterns typical for a ‘university’ DC2 as detailed
by [2] for networks with 4 racks and |N| = {8,16,32,64,128,256,512,1024} nodes (see Figure 2). We assumed
an optical DC network with with an overall network load rate of 50%. For each traffic matrix, we generated
|F |= 5 · |N|2 flows to ensure non-sparse packing. Each packing algorithm was ran on a shared cluster with an Intel
Xeon ES-2660 CPU across 4 seeds to ensure reliable packing times given the variance in use of the shared cluster,
with the 95% confidence interval bands plotted for any metrics recorded.

4. Results & Discussion

Figure 1b shows the packing times taken by the original and the vectorised packers when generating the dis-
tributions shown in Figure 2. The vectorised packer achieved a ≈ 38× speed-up over the original packer on the
|N| = 264 traffic matrix and ≈ 70× on the |N| =1024 matrix. Although the vectorised algorithm was slightly
slower than the original packer on the smallest |N| = 8 network due to performing a where vector operation
on all pairs, the absolute generation time was still O(s) and this additional overhead quickly becomes negligible
across |N|> 8 networks.

To verify that our proposed vectorised packing algorithm was generating the same node distributions as the
original packer used by [2], we measured the JSD between the target and the generated node distributions for each
algorithm (see Figure 1c). As expected, both packers deterministically reach the same solution, but the Jensen-
Shannon distance will not be exactly 0 for either due to the incompatability between the 50% network load and
the skewed target distribution (see [2] for more details).

In conclusion, we have proposed a flow source-destination pair assignment algorithm which makes novel use
of vector array operations to achieve orders of magnitude faster traffic generation times than the original algorithm
used by [2] when generating custom traffic matrices. This work significantly improves the utility of an open source
traffic generation framework in order to aid the production of high-fidelity traffic patterns and to test and develop
network systems at scale.
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2University DCs service applications such as database backups, distributed file system hosting, and multicast video streaming, with≈ 70%
of traffic being inter-rack and ≈ 20% of nodes requesting ≈ 55% of the traffic load.


