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Abstract. Blockchains have become ubiquitous in the world of robust
decentralized applications. A crucial requirement for implementing a
blockchain is a reliable “overlay network” providing robust communi-
cation among the participants. In this work, we provide communication-
efficient and churn-optimal (barring log factors) Byzantine-resilient al-
gorithms for maintaining blockchain networks. Our approach utilizes an
interesting “cross-layer optimization” wherein the overlay network relies
on the blockchain that is built on top of it. An important contribution is
a tight “half-life” analysis on the amount of churn that can be tolerated,
where peers have bandwidth restrictions. Moreover, by leveraging syner-
gies between the blockchain and the overlay network, we can provide non-
trivial recovery guarantees from unexpected catastrophic failures, which
include a large class of connectivity issues such as denial-of-service, or
exponentially unlikely lucky streaks for Byzantine peers, etc.

1 Introduction

A network formed by logical links among entities, wherein a logical link may
consist of many physical links, is called an overlay network. Blockchains, dis-
tributed ledgers, and most other distributed services rely on overlays to facili-
tate communication. For example, cryptocurrencies such as Bitcoin [25] rely on
a peer-to-peer network for fast and efficient communication among the peers.

However, existing overlay networks used by blockchains are insecure. In recent
years, there have been attacks on the network connectivity provided by overlays,
exploiting several aspects such as unsafe peer storage and connection policies [15,
22], weak network synchronization [33], and churn [34]. Moreover, such network
partitioning attacks form the basis of other powerful attacks such as double
spending, reducing effective honest resources, and selfish mining [10,28].

In this work, we make connections between blockchains and robust over-
lays for distributed hash table, resulting in improvements for both systems, in-
cluding efficient joining, guaranteed reliability, and the ability to recover from
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Table 1. Comparison under different performance metrics.

Join latency
(in rounds)

Join comm.
complexity

Network size
variation

Recovery (catastr-
ophic failures)

Group spreading [4] O(logN) O(log3 N) ✗ ✗

S-Chord [12] O(logN) O(log3 N) ✗ ✗

Cuckoo rule [5] O(logN) O(log3 N) ✗ ✗

NOW [14] O(log4 N) O(log6 N) ✓ ✗

This work O(1) O(log3 N) ✓ ✓

bad situations. We exploit a form of “cross-layer optimization”, where the over-
lay maintenance protocols use the blockchain for global coordination, and the
blockchain, in turn, uses the efficient overlay for its communication. We provide
a new Byzantine-resilient algorithm for maintaining an efficient overlay that tol-
erates near-optimal rates of churn. There are four key aspects in which our work
improves on existing solutions by augmenting the overlay with a blockchain.

1. Joining. Byzantine peers can strategically join and leave to affect the over-
lay connectivity. This leads to Byzantine join-leave attacks [4], where Byzan-
tine peers repeatedly rejoin the system. Thus, the join protocol is crucial to
maintain the properties of the overlay. Unfortunately, existing solutions to
such join-leave attacks can be expensive, both from latency and message
complexity perspective [4, 5, 12,14].

2. Bootstrapping and Churn Analysis. Often, the problem of securely in-
troducing a new peer to the system is unfortunately swept under the hood
(both in theory and practice). This is, in fact, crucial to the robustness of
join algorithms. This is also a reason for the lack of a thorough analysis on
the churn tolerance of a system. A fundamental question in dynamic sys-
tems, where peers can join and leave, is how long do peers necessarily have
to remain in the system so that it works properly? We answer this question
in the context of blockchain networks, where the peers have limited band-
width. We provide a “half-life” analysis of churn, showing that our overlay
design achieves near-optimal churn.

3. Changes in Network Size. Early solutions [4, 5, 12] for join-leave attacks
assumed that the network size changes by at most a constant factor. Those
solutions maintained highly structured (routable) topologies, making it hard
to shrink and expand the overlay if the network size were to polynomially
change over time. A crucial property of the design in [14] is being able to
efficiently adapt to such changes. We show that the peers can consistently
be in consensus on key parameters of the overlay (via the blockchain), which
results in a simple and efficient way to adapt to changes in network size.

4. Recovery. Existing solutions are “brittle” in that if Byzantine peers over-
whelm a part of the overlay, then it is difficult to recover the original proper-
ties of the overlay. This situation can occur over time as these protocols (with
probabilistic guarantees) are run indefinitely. Moreover, open distributed sys-
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tems are vulnerable to denial-of-service attacks, for e.g., the Gnutella net-
work, while resilient to random failures, could be split into a large number
of disconnected components after a targeted attack [36]. We combine several
ideas, i.e., limited lifetime for a peer [4], fault-tolerant topologies [8], and
blockchain consensus, to quickly and efficiently recover from a large class of
connectivity issues, termed as “catastrophic failures” (cf. Section 6).

Our Approach

The standard approach for fault tolerance in overlays is replication (e.g., [5, 11,
27]). Thus, our starting point is a virtual network, specifically a hypercube, in
which each vertex of the hypercube is implemented in a replicated fashion by a
small set of peers which are collectively termed as a committee. Such replication
ensures that there are sufficient number of honest peers in each committee.

Typically, replication in dynamic overlays subjected to churn and Byzantine
faults requires considerable coordination among peers. Our insight is that this
coordination can be solved via the blockchain itself by storing small amounts
of auxiliary data on the blocks to achieve the necessary synchronization. For
e.g., our committees do not need to run a consensus algorithm, perform random
walks, or do any other sort of coordination (unlike in [4,5,12,14]). This is similar
to a recent trend exploiting on-chain information to simplify and facilitate off-
chain distributed algorithms, see, e.g., payment channel networks (e.g., [31]) or
dynamic sharding [38].

A key observation is that blockchains are publicly available, i.e., their con-
tents can be read by anyone. Specifically, a recent copy of the blockchain is avail-
able at all times, and this provides an entry point to the service (e.g., blockchain
explorers [6,7]). This allows new peers to easily join the network, avoiding more
centralized solutions [20]. This paves the way for explicitly designing a secure
and dynamic bootstrapping service that tolerates churn and Byzantine faults.

An existing model that captures a similar idea is a “public bulletin board”
[24]. A blockchain differs from a typical bulletin board in three ways: (1) the
amount of auxiliary information in a block must be small, (2) the rate at which
information can be shared is limited by the block interval, and (3) the network
may never be fully synchronized where each peer holds the same chain. Thus,
one of our contributions is to carefully distill the properties provided by the
blockchain in a way that the overlay algorithms can be concisely described while
not losing track of real-world implementations.

Our goal is to minimally use the space on a block for maintaining the overlay.
Specifically, each block stores the identity of only one peer in the overlay. To
maintain a virtual hypercube with at most N peers, we rely on a set of about
Θ̃(

√
N) of the most recent blocks which store a set of about Θ̃(

√
N) peers, which

we refer to collectively as a directory. Each peer in the directory is responsible for
a subset of the committees, and keeps track of the members of those committees.

If the adversary can generate unlimited (Sybil) identities, and if the system
has churn, then over time, the adversary can take over honest peers’ connections.
As in many blockchains, we rely on proof-of-work to mitigate such attacks. The
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peers can simultaneously mine both identities and blocks without spending extra
computational resources by using the 2-for-1 PoW technique [13, 30]. While we
focus on proof-of-work for concreteness, our overlay design can similarly be made
to work with blockchains based on a different resource constraint.
Churn. A primary goal of this paper is to understand the limits of the rate of
churn. We adopt the half-life approach to churn rate for honest peers: if there
are H peers in the system, then over a specific interval of time, the half-life, at
most H/2 new peers can join or at most H/2 peers can depart. This allows for
highly bursty behavior, with large numbers of concurrent joins and departures.
We provide a lower bound for the feasible half-life that depends on the rate of
churn and the bandwidth constraints.

As new blocks are added to the blockchain, and as existing blocks age, the
members of the directory change, handing off information from old directory
members to new directory members in a controlled process. Similarly, when
the number of peers changes significantly, the size of the virtual hypercube has
to change, migrating information to new directory members. Such information
exchanges need to be carefully managed to avoid Byzantine interference.
Recovery. Finally, the blockchain is not just an alternative interface for new
peers to join, it also aids the overlay to recover from catastrophic failures (e.g., a
constant fraction of committees and their corresponding directory members are
instantly corrupted). As long as most of the committees and directory are still
functioning properly, our observation is that the overlay operates sufficiently well
to continue installing new blocks, to continue replacing directory and committee
members, and restoring the fully correct operation of the overlay, i.e., to ensure
that there are again sufficient number of honest peers in every committee. To
show recovery properties, we not only rely on fault-tolerant properties of the
overlay topology (e.g., [3,8,11]), but also prove that the overlay can reliably and
efficiently adapt to large network size variations during recovery.
Summary. We exploit the blockchain for securely bootstrapping peers and
(global) coordination among peers (e.g., agreement on new topology, etc.). We
summarize our contributions (that hold with high probability), in the context of
a network with at most N peers, where the average block interval is β.

1. We design protocols to maintain a hypercubic overlay of committees for a
polynomial number of rounds, where the half-life is α = Θ(β

√
N logN), the

network size can vary polynomially over time, and each peer sends/receives
only O(log3 N) messages per round.

2. We show that when catastrophic failures occur, the overlay recovers (i.e.,
retains its original properties) within a constant number of half-lives.

3. We give a lower bound, barring log-factors, for half-life, α = Ω̃(
√
βN), show-

ing that it is impossible to tolerate higher rates of churn, even if peers share
a public bulletin board that can be used for joining.

2 Related Works

An in-depth related work exposition can be found in the full version [1].
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Early Designs. Fiat and Saia [11] design an overlay based on bipartite ex-
panders where at least (1− ϵ)N peers can efficiently communicate with at least
(1− ϵ)N peers for a small constant ϵ. Their topology is fixed; [35] modified it to
handle a restricted form of churn. Datar [8] built a content addressable network
over multi-hypercube, having fault-tolerance against adversarial deletion similar
to [11], improving on the communication and storage costs. However, the design
is not resilient against Byzantine failures. Many overlays were designed to be
robust against random failures, where each peer (independently) has a bounded
probability of being Byzantine [9, 16,18,26].
Join-Leave Attacks. DHTs are typically made robust by replication of each
data item over a small group, e.g., a logarithmic number of peers, of which a
majority are honest [11, 16, 26, 35]. Alas, Byzantine peers can often repeatedly
join and leave until they overwhelm a particular group.

Awerbuch and Scheideler [4] showed that a hypercubic topology can be main-
tained (with logarithmic redundancy and honest majority) over polynomial num-
ber of join/leave events, where each peer simulates O(logN) nodes and every
node has a limited lifetime, if at most O(1/ logN) fraction of the nodes can be
Byzantine. Subsequent works tolerate a linear fraction of Byzantine faults. Fiat
et al. [12] used the k-rotation rule [37]; Awerbuch and Scheideler [5] introduced
the cuckoo rule; Guerraoui et al. [14] exploit random walks to maintain clusters.
Jaiyeola et al. [17] use the limited lifetime method and O(log logN) redundancy
to show that at least (1 − o(1))N peers can reach at least (1 − o(1))N peers.
This line of work either assumes static “gateway peers” with unlimited band-
width or access to random peers for bootstrapping new peers. Moreover, their
join algorithms are rather complicated and expensive (see Table 1).

Recently, Augustine et al. [2] designed a Byzantine-resilient overlay network
(for a fixed network size) using the idea of a “dynamic whiteboard” to incorpo-
rate new peers into the system. But their algorithms cannot be adapted in our
case, which is optimized for integration with blockchains. They use a constant-
degree expander topology; whereas we rely on a (fault-tolerant) routable topol-
ogy, and prove that the overlay can recover from catastrophic failures.
Blockchain Overlays. Kadcast [32] builds on Kademlia [23] and proposes a
structured broadcast protocol for disseminating blocks. It is unclear how this pro-
tocol performs with respect to high churn and Byantine faults. In Perigree [21], a
peer retains the “best” subset of neighbours after regular intervals, and connects
to a small set of random peers to explore potentially better-connected peers. But
Perigree may actually be prone to eclipse attacks because the adversary can mo-
nopolize a peer’s connections by providing well-connected neighbors.

3 Model

Entities. A peer is a real-world entity, and can be: (1) honest, following the
protocol, or (2) Byzantine, arbitrarily deviating from the protocol. A peer can
control multiple identities. The network size is the total number of peers. The
maximum network size is denoted by N . Byzantine peers always constitute at
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most a ρ fraction of the network size. They know the network topology at any
time (but they cannot modify or delete messages sent by honest peers).

Communication. Each peer maintains a set of neighbouring peers that it is
connected with. The system proceeds in synchronous rounds; in each round, a
message that is sent at the beginning of a round by a peer is assumed to reach
its neighbours by the end of that round.

Computational Restriction. The peers have a hash power constraint, i.e.,
each peer owns one unit of hash power that allows the peer to query a hash
function (modelled as a random oracle) q times in a round [13,29]. (If an entity
has more hash power, then it is viewed as a coalition of peers.) For any given in-
put, the hash function provides a (fixed) random output of length κ = Θ(logN).

Blockchain. If the overlay has at least µn(1−ρ)n honest peers3 with a diameter
of at most 2 logN , and there are at most ρn Byzantine peers, for appropriate con-
stants ρ < µn < 1, where n is the current number of peers, then the blockchain
is guaranteed to provide the following properties [29, 30] for honest peers. (In
this work, our goal is to provably maintain an overlay with such properties.)

Safety. There exists a confirmed chain4 Cr
u for any honest peer u in round

r having the following properties: (i) ∆-Synchronization: If |Cr
u| is honest peer

u’s confirmed chain length at round r, then by round r+∆, every honest peer’s
confirmed chain length is at least |Cr

u|; (ii) Consistency: Cr
u is a prefix of Cr′

u for
any round r′ ≥ r. At any round r, if |Cr

u| ≤ |Cr
v |, then Cr

u is a prefix of Cr
v , and

for a large enough constant µs, |Cr
u| − |Cr

v | ≤ µs.

Liveness. For large enough T and constant µb, any consecutive T ≥ Ω(1)
blocks are included in any confirmed chain in [Tβ/µb, Tµbβ] rounds; β is the
average block interval.

δ-Approximate Fairness. Any set of honest peers controlling a ϕ fraction of
hash power is guaranteed to get at least a (1− δ)ϕ fraction of the blocks in any
Ω(κ/δ) length segment of the chain.

Public Availability. There exists an introduction service I that provides a
local copy of an existing honest peer’s chain.

Churn. We consider the standard “partially oblivious” adversary [4, 5, 12, 14]
that specifies the join/leave sequence σ for honest peers in advance. However,
it can choose to adaptively join/leave Byzantine peers. In particular, after the
first i events in σ are executed, the adversary can either choose to join/leave a
Byzantine peer or initiate the (i+ 1)th event in σ.

Churn Rate. We consider the half-life measure [19] to model the churn rate for
honest peers. At any given round r, the halving time is the number of rounds
taken for half the number of honest peers (which were alive at round r) to leave
the network; the doubling time is the number of rounds required for the number
of honest peers to double. An epoch, denoted by α, is defined as the smallest
halving time or doubling time over all rounds in the execution. Furthermore,

3 We consider a (large) subset of honest peers because the network can get split into
multiple components during a catastrophic failure (cf. Section 6).

4 The interpretation of confirmed chain is typically blockchain-specific; for example,
Bitcoin deems a block to be confirmed if it is at least 6 blocks deep.
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we assume that the epoch is much greater than the average block generation
interval; in other words, α ≫ β logN .
Change of Network Size. The network size can change by a factor of at most
2 in any epoch. It can thus polynomially vary over time; the number of peers at
any round r, Nr ∈ [N1/y, N ] for any constant y > 1.

4 Overlay Design and Algorithms (Stable Network Size)

We first describe our overlay algorithm for a fixed network size of Θ(N). Two
key parameters are the epoch length α (half-life) and the “directory size” B. We
will observe that α should roughly be the time it takes Θ̃(

√
N) blocks to be

added, and B (number of blocks in a directory) should be about Θ̃(
√
N).

Nodes. Each peer generates and controls Θ(logN) (virtual) identities, known
as nodes in the overlay. Each peer participates (sends and receives messages)
via its nodes. All peers are required to perform proof-of-work to generate nodes.
Each node has a lifetime after which it will be considered invalid.
Directory. Every node is initially a “non-directory” node. Some nodes also
become directory nodes: a peer that adds a block to the blockchain promotes one
of its nodes to a directory node, adding the identity of the promoted directory
node, along with its network address, to the new block.
Committees. We maintain a hypercubic network of committees; each vertex
corresponds to a committee. There are C = N committees, each consisting of
Θ(logN) nodes. If two committees are adjacent in the hypercube, then every pair
of nodes in those committees are neighbors. Logarithmic redundancy ensures
that a sufficient fraction of peers are honest so that the hypercube structure is
maintained. Each committee is identified by a (unique) committee ID. As a peer
may control multiple nodes, it may be present in multiple committees.
Limited Lifetime. Byzantine peers can repeatedly rejoin until their nodes get
placed (by chance) in desired committees, potentially resulting in honest nodes
having mostly Byzantine neighbors. A standard solution is to limit the lifetime
of nodes, forcing them to rejoin (e.g., [4]). To avoid too much induced churn,
the lifetime should be large, but not so large as to allow Byzantine join-leave
attacks. Thus, we set the node lifetime to be Θ(α/β) blocks, i.e., a constant
number of half-lives. This ensures that at most a constant fraction of any honest
peer’s neighbours are Byzantine. Moreover, limited node lifetime is important
for providing time bounds on recovery from catastrophic failures (see Section 6).

We now provide further details on the overlay maintenance. The technical
difficulty lies in enabling directory nodes to help honest nodes join, while re-
specting the bandwidth constraints—even as the adversary may try to flood
some directory nodes with requests. Figure 1 gives an overview of our design.

Directories

A directory on the blockchain comprises of B consecutive “buckets”, and each
bucket consists of consecutive λd log

2 N blocks, where λd is a suitable constant.
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Fig. 1. High-level overview of our design for 8 peers.

Each block refers to one directory node, so a directory refers to K = Bλd log
2 N

directory nodes. (The chain is divided into buckets from the beginning.)

There must always be enough honest directory nodes in each bucket, despite
churn. By the blockchain fairness assumption, Θ(log2 N) bucket size is sufficient
to ensure Ω(logN) honest peers per bucket at any time.

Directory Responsibilities. Each bucket is responsible for a set of commit-
tees, i.e., directory nodes in that bucket help new nodes join those committees.
There are two main functions of a directory node. (1) A directory node stores
information about the nodes in its committees. (2) A directory node sends that
information to new joining nodes and to neighboring committees. There exists a
predetermined mapping [C] → [B] from committees to buckets, specifying which
bucket manages a given committee, such that each bucket is responsible for
(almost) the same number of committees.

Phases of a Bucket. We describe the phases of buckets and its directory nodes
(and the transitions between phases), which determine the nodes’ functions over
time: (1) Infant. A bucket in which at least one block (out of λd log

2 N) is
confirmed, but not all the λd log

2 N blocks are confirmed. The directory nodes
neither store entry information, nor respond to any requests. If all λd log

2 N
blocks of the bucket are confirmed in the blockchain, then the bucket transitions
to middle-aged. (2) Middle-aged. These directory nodes store new node entry
information as they receive it, and reply to requests. If the bucket is not among
the most recent (confirmed) B buckets, then the bucket transitions to veteran
phase. (3) Veteran. These directory nodes do not store new nodes’ entry informa-
tion, but they do reply to requests with committee information already known
to them. If the bucket is not among the most recent (confirmed) Bact buckets
(to be defined), then it shifts to dead phase. (4) Dead. These directory nodes
(as in the infant phase) neither store any new node information, nor respond to
requests. During the transitions, there is a delay of ∆ rounds to ensure that the
confirmed chains of honest peers reach the same required height.

Active Directory. The active directory, also known as bootstrapping service,
is the most recent Bact consecutive (confirmed) buckets. The most recent B
consecutive buckets, forming an entire directory, are middle-aged. The rest of
the buckets, forming one or more directories, are veteran. The number of blocks
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Fig. 2. An illustration of buckets (and their blocks with directory nodes), represented
by their IDs, in different phases.

and number of buckets in an active directory are denoted as Kact and Bact

respectively. An example of an active directory is illustrated in Figure 2.
New nodes figure out the sequence of buckets in the active directory (using the

blockchain and committee-directory mapping), and contact the relevant buckets
to get the required committees’ entry information for joining the network.

Node Joins and Lifetimes

A new node must provide a proof-of-work for joining the network, and directory
nodes only interact with a new node if its proof is valid.
Proof for Joining. Let Nc be a nonce, B̂l be the hash of the latest confirmed
block Bl, and net addr be the network address of the peer. Then, the peer
evaluates, Pjoin = H(B̂l ∥ net addr ∥Nc), where H is the (pseudorandom) hash
function, to join the network through a new node. If Pjoin < Tjoin , where Tjoin is
the mining target for joining, then the node is said to be a “valid” node, which
means that the peer would be able to communicate with the bootstrapping
service to register that node, and join the network. A directory node rejects the
proof if Bl is not among the most recent µs blocks in its confirmed chain.
Joining the Network. A node’s entry information constitutes its network
address, the nonce Nc and the block number of the block that was used while
mining for that node. We now describe the steps taken by a peer p to generate and
join a new node q into the network. (1) It first produces a proof for joining. The
leftmost logN bits of Pjoin represent the ID of the (random) committee, denoted
by c, to which this new node would belong to. Let Crel be the set of committees
neighboring c in the hypercube, including c. (2) Peer p sends its entry information
to all directory nodes in the middle-aged bucket responsible for committee c. (3)
Peer p requests information, sampling Θ(logN) nodes uniformly in each bucket
responsible for committee c and requesting information on each of its neighbors in
the hypercube. The directory nodes respond with the relevant entry information.
(4) Peer p appropriately sends messages to handle ∆-synchrony. Let b1 and b2
be the first and (B + 1)th confirmed buckets (i.e., most recent middle-aged and
veteran buckets). If the number of blocks confirmed after bucket b1 is at most
µs, and if b1 is responsible for committee c, then p send its entry information to
all nodes in b2. (5) To complete the join, node q takes the union of valid entry
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information received in responses (as the adversary can only under-represent the
nodes in a committee). It then sends its entry information to the nodes in each
neighboring committee in the hypercube.

The key observation is that a constant fraction of directory nodes in a bucket
are honest and available at any time, due to logarithmic redundancy in buckets
and blockchain fairness. Thus, it is sufficient for the new node needs to hear back
information from O(logN) directory nodes in each bucket (Step 3), reducing the
communication complexity of join down to O(log3 N), i.e., the new node contacts
at most logN buckets, wherein O(logN) directory nodes in each bucket reply
with committee information of O(logN) nodes.
Lifetime of Non-directory Node. The lifetime of a non-directory node is
Tl = Θ(α/β) blocks. The node u that had joined at block number bl (which can
be checked in its proof for joining) is considered invalid after block bl + Tl is
confirmed, at which point the peer stops controlling that node u, and all other
nodes that had node u as a neighbour remove u from their neighbour list.
Lifetime of Directory Node. If a node is promoted to a directory node, then
it obtains another life (separate from the non-directory life). The directory node
is considered to be alive for Tdl blocks from the block in which it is embedded
in. We set Tdl to be Θ(α/β) blocks, where Tl < Tdl . This time is chosen to
be sufficiently long for the directory node to reach the veteran phase, and then
for the lifetimes of all the non-directory nodes in its committee to fail (i.e., an
additional Tl blocks), i.e., Tdl > (1 + B)λd log

2 N + Tl.
Node Generation Rate. The mining target Tjoin is set such that, in each
epoch, the expected number of valid nodes that can be generated during an
epoch is equal to Θ(N logN). Each committee has Θ(logN) nodes at any time
because in every epoch, about Θ(N logN) nodes join, while a similar number of
them leave due to limited lifetime (set to be a constant number of epochs).

Directory Size and Half-Life (Relation between B and α)

First, the lifetime of a non-directory node is Θ(α/β) blocks, so B ≤ Θ
(

α
β log2 N

)
,

so that the node can fully participate in a directory’s life cycle.
Due to node generation rate, the system must have bandwidth for Θ(N logN)

nodes to join in any α (consecutive) rounds. As a new node sends a join request
to all directories within the active directory (both middle-aged and veteran), it
suffices to focus on the number of join requests handled by one directory.

Due to the proof-of-work mechanism, we can ensure that the join requests
are load-balanced across the rounds in an epoch. Let λjr be the highest number
of join requests that can be handled by a bucket per round. For any directory, we
calculate the total number of join requests that need to be handled in any round

as Bλjr ≥ Θ
(

βN log2 N
α

)
, where LHS is the total number of join requests that can

be handled in a round, and RHS represents the minimum number of join requests
that need to be handled in a round. The extra β factor is due to a possible
precomputation attack, where an adversary sends join requests computed over
the last µs confirmed blocks, and the extra logN factor is due to new nodes



Robust Overlays Meet Blockchains 11

contacting O(logN) buckets while joining. These extra multiplicative factors
ensure that the communication complexity per peer per round is O(log3 N).

Ideally, we want to minimize α to handle maximum churn. Solving the above
constraints, with bandwidth cost of O(log3 N) messages per round for a peer,
we find that α = Θ(β

√
N logN) and B = Θ(

√
N/ logN). In Section 7, we show

that this value of α is close to optimal.

Analysis Overview

We present the key lemmas and theorems for stable network size. The complete
analysis can be found in the full version [1]. Consider a connectivity property
called partition resilience, where (1) each committee has O(logN) nodes and
Ω(logN) honest peers, (2) every pair of honest nodes in each committee are
connected, and (3) each honest node is connected to Ω(logN) honest peers in
each neighbouring committee. An epoch e is said to be bandwidth-adequate if
each peer needs to send/receive O(log3 N) messages for overlay maintenance in
any round. The active directory is said to be robust if each bucket has Ω(log2 N)
honest nodes that store entry information of all nodes in the relevant committees.

First, we see that no peer gets too many join requests due to load balancing,
random committee assignment (via hash function), and random sampling:

Lemma 1. Each peer receives O(log2 N) join requests and information requests
in any round in an epoch with high probability.

Next, we argue that if the bandwidth is not exceeded, then the active directory
is properly constructed and has the correct information to process join requests:

Lemma 2. The active directory is robust in the epoch with high probability, if
the last Θ(βTdl/α) epochs are bandwidth-adequate.

Together, these lemmas imply that all joins are successful, ensuring the overlay
is well-connected with each committee having sufficient number of honest peers:

Theorem 1. The network is partition-resilient for polynomial number of rounds
with high probability.

5 Extension to Dynamic Network Size

We briefly discuss how to augment the protocols described in Section 4 to handle
polynomial variation in network size over time. These techniques are an extension
of the previous idea—see the full version [1] for the details.

The main problem caused by changing numbers of peers is that the system
needs to adapt to maintain logarithmic redundancy. If the number of committees
remains fixed, while the number of peers decreases, then each peer would need
to simulate too many nodes at any time in order for the system to maintain
Θ(logN) nodes in every committee, exhausting the peer’s bandwidth. And if the
network size keeps increasing, then some peers may not be able to participate
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in the network all the time because they may take too long to generate nodes.
Therefore, we adapt the size of the hypercube and the number of committees.

The key insight is that the blockchain can facilitate the necessary coordi-
nation to switch to a new topology. The first step is to efficiently estimate the
network size, every constant number of epochs. Each node keeps track of new
nodes that joined its committee in a span of fixed number of blocks. Then, all
the nodes of a (random) committee (determined by a hash function) broadcast
that count along with the entry information of new nodes that joined that com-
mittee (as evidence of the count) to everyone. This sampled change in committee
size allows peers to estimate the size of the network. This information is then
included on the blockchain to ensure that all peers agree on it.

Each peer then uses this estimate to determine whether the dimension of the
hypercube is changing and number of committees in the new hypercube. Again,
the information is placed on the blockchain to ensure agreement.

At that point, if necessary, the dimension of the hypercube is changed. Dur-
ing dimension change, the new hypercube is constructed while the old one is kept
around to ensure connectivity. The directory goes into a “split state” for about
one epoch, serving committees in the current hypercube and also constructing
committees in the next hypercube. New nodes also get placed in the next hy-
percube, as well as the old one. Until each committee in the next hypercube
has a sufficient number of new (honest) nodes, the overlay operates in the old
hypercube. The directory then stops serving committees in the old hypercube,
and the network adopts the new hypercube for broadcasting blocks.

6 Recovery

Catastrophic failures model a large class of connectivity issues, e.g., denial-of-
service attacks or low probability events. We say that a bucket fails if > 1/2 of
its honest peers are corrupted ; a committee fails if it has < 20 logN honest peers,
or if the bucket responsible for it has failed. The corruption could be Byzantine,
or simply crashing, if honest peers leave faster than allowed by the churn model.

Consider an “(ϵ, δ)-catastrophic failure” where at most ϵ fraction of commit-
tees and/or buckets may have failed, and in total, at most δ fraction of honest
peers get corrupted (for small constants ϵ and δ), while there still exists a con-
nected network of honest peers of linear size and logarithmic diameter for which
bootstrapping can be securely done. Such failures model exceptional scenarios
that occur in practice wherein the network is split into multiple components,
resulting in considerable wastage of honest peers’ hash power over time.
Recovery. Our goal is to provably show that the network recovers from such
catastrophic failures in a short period of time. Here, we naturally define recovery
as the event at which the overlay retains its original properties.

There are two basic requirements for the overlay to recover from a catas-
trophic failure. First, a large fraction of honest peers can continue to run the
blockchain protocol (ensuring the blockchain provides the same guarantees), al-
beit some honest peers may end up unable to participate fully (i.e., effective
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honest hash power is reduced) for a brief period of time. Secondly, the introduc-
tion service is not affected by the failure, i.e., it continues to return the chain of
an honest peer in the largest connected component of honest peers.

The high-level intuition for recovery is to replace the entire active directory by
a new one (that has no bucket failures), which will reliably facilitate new honest
node joins. After a catastrophic failure, there is a large connected component of
sufficient number of honest peers with a low diameter, that is responsible for the
progress of the blockchain. First, this component should get replenished with
new (honest) peers amidst churn, maintaining the required proportion. Then,
the coordination protocols such as network size estimation, etc, must work for
that component during recovery. Specifically, we rely on the fault-tolerance of
the overlay topology [8] and properties of bipartite expanders [11] for showing
that changing dimensions after a catastrophic failure does not inhibit recovery.

For a wide range of failures, the overlay, augmented with a blockchain, can
exhibit a novel recovery property. The security arguments in existing designs for
join-leave attacks [4,5,12,14,17] heavily rely on honest majority in committees.
In the full version [1], we show the inherent difficulty of such localized algorithms
to recover from committee failures, e.g., a small number of committees having
malicious majority, can keep maintaining the majority over time.

Theorem 2. If the network experiences (ϵ, δ)-catastrophic failure, then it be-
comes partition-resilient within O(1) epochs with high probability.

7 Lower Bound for Half-Life

In dynamic overlays, there is always a problem of bootstrapping a new peer,
i.e., how does a new peer contact an existing peer within the network? A boot-
strapping service S should have two properties: (i) Secure: the service responds
with the identity of at least one honest peer in the network; and (ii) Bandwidth-
constrained: Each peer communicates at most Õ(1) bits in any round.

We show that there are unavoidable trade-offs in implementing such a service.
Notably, the overlay algorithm described in this paper satisfies these basic service
requirements—and so it is also subject to these inevitable trade-offs.

Let N be the number of peers in the network, and assume peers are hon-
est. Assume network addresses require Ω(logN) bits, i.e., there is no encoding
scheme to compress network addresses. Peers can write O(logN) bit messages
to a publicly visible bulletin board (e.g., [24]). An arbitrary peer is selected to
write to the board at every β rounds. The bulletin board is the only interface
through which the peers can disseminate information to the public.

We prove the following theorem by analyzing the number of bits of useful
information on the bulletin board, compared to the number of identifiers needed
to support the bandwidth required for all joins. Our theorem depends only on
the minimum requirement that to complete a join operation, a newly joining
node must receive at least one message from an existing member of the network.

Theorem 3. Any dynamic system that implements a bootstrapping service S
using a public bulletin board can support a half-life of only Ω̃(

√
βN).
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