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Abstract
Background: The World Health Organization (WHO) recommends that outpatient people living with HIV
(PLHIV) undergo tuberculosis screening with the WHO four-symptom screen (W4SS) or C-reactive
protein (CRP) (5 mg·L−1 cut-off ) followed by confirmatory testing if screen positive. We conducted an
individual participant data meta-analysis to determine the performance of WHO-recommended screening
tools and two newly developed clinical prediction models (CPMs).
Methods: Following a systematic review, we identified studies that recruited adult outpatient PLHIV
irrespective of tuberculosis signs and symptoms or with a positive W4SS, evaluated CRP and collected
sputum for culture. We used logistic regression to develop an extended CPM (which included CRP and
other predictors) and a CRP-only CPM. We used internal–external cross-validation to evaluate performance.
Results: We pooled data from eight cohorts (n=4315 participants). The extended CPM had excellent
discrimination (C-statistic 0.81); the CRP-only CPM had similar discrimination. The C-statistics for WHO-
recommended tools were lower. Both CPMs had equivalent or higher net benefit compared with the
WHO-recommended tools. Compared with both CPMs, CRP (5 mg·L−1 cut-off) had equivalent net benefit
across a clinically useful range of threshold probabilities, while the W4SS had a lower net benefit. The W4SS
would capture 91% of tuberculosis cases and require confirmatory testing for 78% of participants.
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CRP (5 mg·L−1 cut-off), the extended CPM (4.2% threshold) and the CRP-only CPM (3.6% threshold) would
capture similar percentages of cases but reduce confirmatory tests required by 24, 27 and 36%, respectively.
Conclusions: CRP sets the standard for tuberculosis screening among outpatient PLHIV. The choice
between using CRP at 5 mg·L−1 cut-off or in a CPM depends on available resources.

Background
In 2021, there were 187 000 tuberculosis deaths among people living with HIV (PLHIV) [1].
Approximately half of HIV-associated tuberculosis deaths go undiagnosed [2] and appropriate testing and
treatment may avert these undiagnosed deaths. Confirmatory testing (e.g. Xpert MTB/RIF Ultra (Xpert
Ultra)) for all PLHIV is often not feasible in low-resource settings, meaning that screening strategies are
needed to determine who needs further confirmatory testing.

According to the World Health Organization (WHO), a tuberculosis screening tool should meet optimal
(95% sensitivity, 80% specificity) or minimum (90% sensitivity, 70% specificity) performance
characteristics [3]. Since 2011, the WHO has recommended that outpatient PLHIV be screened for
tuberculosis with the WHO four-symptom screen (W4SS) (comprising any one of current cough, fever,
night sweats or weight loss) [4], followed by confirmatory testing (e.g. Xpert Ultra) if the screen is
positive. However, the specificity of the W4SS is low in some subgroups (e.g. antiretroviral therapy
(ART)-naïve PLHIV who still represent a third of all PLHIV) [5], resulting in large numbers of
unnecessary, expensive confirmatory testing. Recently, the WHO also recommended chest radiography and
C-reactive protein (CRP) as a screening tool [6, 7]. Chest radiography alone has suboptimal diagnostic
performance [6]. CRP (5 mg·L−1 cut-off ) showed similar sensitivity but higher specificity than the
W4SS [5]. CRP can be done using a point-of-care assay at ∼$2 with results in <3 min. The W4SS and
CRP were recommended based on sensitivity and specificity, but their clinical utility is unknown.

Clinical prediction models (CPMs), which combine multiple predictors, may also be used for screening.
Although there are a few CPMs for tuberculosis screening in PLHIV [8–15], these CPMs have limitations. Some
have been developed using many predictors relative to number of events [8–10, 14] or categorised continuous
variables [8–11]. Some have also shown suboptimal performance at external validation [8, 9], not undergone
extensive external validation [9–11, 14, 15] or not been assessed for clinical usefulness [8–10, 14, 15].

Thus, we sought to overcome the limited data on clinical utility of WHO-recommended tuberculosis
screening tools and methodological limitations in the development and validation of current CPMs for
tuberculosis screening. Using data from eight cohorts identified following a systematic review [5], we
performed an individual participant data (IPD) meta-analysis to 1) develop and validate CPMs
that incorporate CRP for active pulmonary tuberculosis among outpatient PLHIV and 2) compare the
performance and clinical utility of WHO-recommended screening tools to the newly developed CPMs.

Methods
We reported our findings according to the TRIPOD and PRISMA-IPD statements [16, 17]. We also
adhered to additional guidelines for developing and validating CPMs in an IPD meta-analysis [18–20].

Data sources and study population
We previously conducted a systematic review to compare the accuracy of several tuberculosis screening
tools with the W4SS in outpatient PLHIV [5]. The search of the systematic review was conducted from 1
January 2011 (the year the W4SS was first recommended by the WHO) to 12 March 2018. From that
systematic review, we identified and obtained IPD for prospective cross-sectional studies, observational
studies and randomised trials conducted in facility-based, active case-finding settings that systematically
measured CRP and collected sputum for culture from outpatient PLHIV regardless of signs and symptoms
of tuberculosis. We only included studies that measured CRP since we aimed to assess if a multivariable
modelling approach could improve CRP performance. From the systematic review, we identified four
studies (five cohorts) from active case-finding settings [21–24], comprising outpatient PLHIV not on ART
(figure S1). Active case finding involves systematic screening of PLHIV irrespective of symptoms. Passive
case finding involves patients recognising and seeking care for their symptoms (often defined in research
studies as a positive W4SS). After discussion with policy makers and domain experts, we supplemented
the active case-finding IPD identified through systematic review with two further studies (three cohorts)
from passive case-finding settings [15, 25], comprising outpatient PLHIV receiving and not receiving
ART. The purpose of this protocol change was to assess the effect of case-finding status on model
performance, because case-finding status was deemed to be of significant interest to policy makers.
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Defining the outcome of prediction models
The primary outcome was active tuberculosis, defined as positive culture of Mycobacterium tuberculosis
complex from sputum.

Candidate predictors and sample size
Since all included studies evaluated CRP, we assessed these studies for availability of several variables
considered a priori for potential inclusion in the CPMs. We selected variables following expert clinical
experience and a systematic review [5] that were assessable immediately and that are readily available in
resource-limited settings. The clinical variables we evaluated were age, sex, W4SS components (cough,
fever, night sweats and weight loss) and body mass index (BMI). The laboratory variables we evaluated
were CD4 count and CRP. The study-level variable we evaluated was case-finding setting (active versus
passive case finding).

The derived population was considered sufficient [26] and sample size calculations are provided in the
appendix.

Statistical analysis
We developed two CPMs, as follows: an extended CPM, which considered all candidate predictors; and a
CRP-only CPM, which only included CRP as a continuous predictor along with spline transformations.
The CRP-only CPM differs from CRP (5 mg·L−1 cut-off ), which is recommended by the WHO and is a
typical binary diagnostic test. Figure 1 summarises the steps taken to develop and validate each CPM.

CPM development
We performed single-level multiple imputation within each cohort to deal with missing data (detailed in
the appendix). We created 10 imputed datasets. All further analyses were performed in each of the imputed
datasets and pooled using Rubin’s rules [27].

We used a logistic regression approach for variable selection and CPM development with active
tuberculosis as a binary outcome. To model continuous variables, we used restricted cubic splines with a
default of four knots. For the extended CPM, we performed backward stepwise selection with
bootstrapping to select the most predictive variables using the Akaike information criterion [28]. We kept
variables retained in ⩾70% of bootstrap samples and ⩾5 of 10 multiply imputed datasets. This process led

Generate spline
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10 imputed datasets

Select predictors by 

backward elimination with 

bootstrapping for the 

extended CPM only

Final CPMs based on

selected predictors

Visualise heterogeneity by 

fitting linear mixed-effects 
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FIGURE 1 Steps taken to develop and validate each clinical prediction model (CPM). IECV: internal–external
cross-validation.
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to a final CPM based on the selected predictors along with their corresponding estimated β coefficients and
the associated intercept term. To visualise predictor heterogeneity, we fitted linear mixed-effects models
across all datasets (excluding nonlinearities).

Internal–external cross-validation (IECV)
To assess CPM generalisability, we used IECV, which involved several steps [18]. First, the CPM is
developed in all but one study. Second, the omitted study is used to externally validate the CPM and
derive performance statistics. Third, this process is repeated until each study has a chance to be omitted.
We performed IECV on each imputed dataset and pooled performance statistics using Rubin’s rules. In the
omitted study, we also compared both CPMs to WHO-recommended screening tools and one other
published CPM [9]. Other published CPMs were not evaluated because some predictors were not measured
in some or all cohorts [8, 10–15].

We calculated several performance statistics. We assessed discrimination, which quantifies how well a
CPM can differentiate between those that have tuberculosis and those that do not, using the C-statistic. We
considered a C-statistic of ⩾0.7 and ⩾0.8 as acceptable and excellent performance, respectively [29]. We
then assessed calibration, which refers to agreement between expected and observed outcomes, using
calibration in the large (value of 0 indicates perfect calibration), calibration slope (value of 1 indicates
perfect calibration) and calibration plots.

We performed a univariate random-effects meta-analysis of performance statistics derived from the IECV
[30, 31]. To assess heterogeneity, we visually examined forest plots. We also performed a multivariate
meta-analysis to pool the C-statistic and calibration slope [31]. We calculated the joint probability that the
CPMs would achieve a C-statistic of >0.70, >0.75 or 0.80 and a calibration slope between 0.8 and 1.2 in
future patients using bootstrapping.

We assessed clinical utility using two approaches. First, during IECV, we performed decision curve
analyses by pooling (stacking) multiply imputed validation datasets [32, 33]. Decision curves show the net
benefit of screening tools over a range of clinically relevant threshold probabilities. A threshold probability
is the minimum probability of disease at which further diagnostic workup would be justified [33]. Net
benefit is the difference between proportion of true positives and proportion of false positives weighted by
the threshold probability. We chose a threshold probability range from 0 to 20% because it is unlikely that
more than 20% risk would be required before confirmatory testing is recommended [34]. The CPMs were
compared with a confirmatory testing for all strategy (i.e. sputum culture for all), confirmatory testing for
none strategy (i.e. sputum culture for none), WHO-recommended screening tests (W4SS and CRP
(5 mg·L−1 cut-off )) and an existing CPM [9]. Second, we assessed the trade-off between percentage of
tuberculosis cases captured and percentage of participants needing confirmatory testing by applying
WHO-recommended screening tests to the stacked validation cohorts during IECV and then comparing
them to the newly developed CPMs at a threshold that provides similar sensitivity and 95% sensitivity
(WHO optimal sensitivity requirements) [3].

In sensitivity analyses, we used an alternative imputation procedure using the aregImpute function in the
rms package in R. We performed all analyses using pmsampsize, mice, rms, metamisc, meta, metafor, lme,
mada and dcurves packages in R (version 3.6.1)

Results
Study population
IPD were provided for all six eligible studies (eight cohorts). The cohorts collected data between 2010 and
2020 (table S1). Six cohorts were from South Africa. Five were active case-finding cohorts and three were
passive case-finding cohorts. Table 1 and table S2 show participant characteristics overall and by study,
respectively. We included 4315 participants. Of 4209 participants with sputum culture results, 652 (15%)
had tuberculosis. The prevalence of tuberculosis in active case-finding cohorts was 13% and in passive
case-finding cohorts was 29%. Most participants (85%) were recruited from active case-finding settings.
Most (91%) participants were not on ART. Table S3 shows missing data by study.

CPM development
After backward stepwise selection on the full dataset, 5 of 10 candidate predictors were selected in ⩾70%
of bootstrap samples in ⩾5 of 10 multiply imputed datasets (table S4). The predictors selected were age
(60% of multiply imputed datasets), BMI (100%), CD4 count (100%), CRP (100%) and cough (50%).
The predictors not selected were sex (0%), fever (0%), weight loss (0%), night sweats (0%) and case
finding (0%). Table S5 shows all coefficients and knot locations of the CPMs. CRP had the strongest
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association with the outcome from all predictors (figure S2). Figure S3 shows the associations (excluding
cubic spline transformations) between each retained predictor and the outcome after fitting a linear
mixed-effects model across datasets.

CPM validation
For the extended CPM, figure 2 shows forest plots for performance statistics calculated during IECV.
Discrimination was excellent. The pooled C-statistic was 0.81 (0.77, 0.84). C-statistics were consistent
within active case-finding settings but heterogenous in passive case-finding settings. Calibration was
adequate. Pooled calibration in the large was 0.02 (−0.15–0.20; value of 0 indicates perfect calibration).
There was slight underestimation of risk in the Lawn and Scottsdene cohorts. Pooled calibration slope was
0.96 (0.83–1.09; value of 1 indicates perfect calibration). The calibration plots suggest reasonable
agreement between predicted and observed risk for most cohorts (figure S4) but suboptimal calibration in
the Reeve cohort (figure S4A). The joint probability of achieving a C-statistic >0.80 and a calibration
slope between 0.8 and 1.2 was 54% (table S6).

For the CRP-only CPM, figure 3 shows forest plots for performance statistics calculated during IECV.
Discrimination was similar to that of the extended CPM with a pooled C-statistic of 0.79 (0.74–0.83); calibration
was also adequate. Pooled calibration in the large was 0.01 (−0.20–0.22). There was slight underestimation of
risk in the Scottsdene cohort and slight overestimation in the Reeve cohort. Pooled calibration slope was 0.97
(0.86–1.08). Figure S5 shows that calibration plots were similar to those of the extended CPM with suboptimal
calibration in the Reeve and Scottsdene cohorts (figures S5A and S5G). The joint probability of achieving a
C-statistic >0.80 and a calibration slope between 0.8 and 1.2 was 38% (table S6).

Table 2 compares performance statistics for both CPMs with WHO-recommended screening tools and
another published CPM. Both CPMs had higher discrimination.

Assessment of clinical utility
Figure 4 and figure S6 show decision curve analyses from the pooled IECV validation sets. The net benefit
of both CPMs was equivalent or higher than that of other strategies across the range of threshold
probabilities. Between-threshold probabilities of 0 and 3.1%, net benefit of a “confirmatory testing for all”
strategy was at least equivalent to that of both CPMs. Between-threshold probabilities of 3.1 and 7.7%, net

TABLE 1 Summary of main characteristics for all participants

Variable Overall# N¶

Participants 4315 (100)
Demographics
Active case-finding 3667 (85) 4315
Age (years) 33.2 (27–40) 4315
Female 2381 (55) 4315

HIV history
On ART 380 (9) 4315
CD4 count (cells·µL−1) 204 (93–319) 4188
CD4 ⩽200 cells·µL−1 2056 (49) 4188

Clinical characteristics
History of tuberculosis 602 (14) 4309
Cough 2256 (52) 4314
Fever 1541 (36) 4283
Weight loss 2638 (62) 4283
Night sweats 1674 (39) 4313
Cough ⩾2 weeks 1455 (34) 4306

Tuberculosis diagnostic tests
Sputum culture+ 652 (15) 4209

Laboratory tests
BMI (kg·m−2) 22 (19.4–25.8) 4306
CRP (mg·L−1) 6.4 (2.5–38.6) 4093
Hb (g·dL−1) 12.5 (11–13.9) 2453

ART: antiretroviral therapy; BMI: body mass index; CRP: C-reactive protein; Hb: haemoglobin. #: Data are count
(%) or median (25–75th percentiles). ¶: Participants with data available for variable.

https://doi.org/10.1183/16000617.0021-2023 5

EUROPEAN RESPIRATORY REVIEW TUBERCULOSIS | A. DHANA ET AL.

http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials
http://err.ersjournals.com/lookup/doi/10.1183/16000617.0021-2023.figures-only#fig-data-supplementary-materials


benefit of CRP (5 mg·L−1 cut-off) was at least equivalent to that of both CPMs. At a threshold probability
>7.7%, the net benefit of both CPMs was higher than that of the other strategies. The net benefit of one
published CPM [9] was generally lower than that of both CPMs except at very low threshold probabilities
(<3.1%). Results were similar when excluding passive case-finding cohorts (figure S6). The net benefit of
the W4SS was lower than that of both CPMs and CRP (5 mg·L−1 cut-off) across all threshold probabilities.

We applied CRP (5 mg·L−1 cut-off ) to the stacked multiply imputed datasets (table 3). CRP (5 mg·L−1)
would have captured 91% of tuberculosis cases and resulted in confirmatory testing for 54% of
participants. In comparison, to capture a similar percentage of cases, both CPMs would have resulted in
confirmatory testing for a similar percentage of participants. To capture 95% of those with tuberculosis, the
extended and CRP-only CPMs would have resulted in confirmatory testing for 74 and 75% of participants,
respectively. Excluding passive case-finding cohorts, since all participants in those cohorts were W4SS
positive, we applied the W4SS to the stacked multiply imputed datasets (table 3). The W4SS would have
captured 91% of tuberculosis cases and resulted in confirmatory testing for 78% of participants. CRP
(5 mg·L−1 cut-off ), the extended CPM (4.2% threshold) and the CRP-only CPM (3.6% threshold) would
have captured a similar percentage of cases but required confirmatory tests for only 50, 59 and 57% of
participants, respectively.

Sensitivity analyses
We repeated analyses for the extended CPM using an alternative imputation method (figure S7 and table S7).
The results were similar to the main analyses.
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Discussion
We investigated the utility of WHO-recommended screening tools (W4SS and CRP (5 mg·L−1 cut-off ))
and developed and validated two CPMs for pulmonary tuberculosis screening in outpatient PLHIV using
eight cohorts (4315 participants). At validation, the extended CPM showed excellent discrimination and
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FIGURE 3 Forest plots showing a) C-reactive protein only clinical prediction model discrimination, b) calibration in the large and c) calibration
slope. MJAP: Makerere University Joint AIDS Program; RE: random effects; TASO: The AIDS Support Organization. Studies in blue are from active
case-finding settings and studies in green are from passive case-finding settings.

TABLE 2 Performance statistics of extended and C-reactive protein (CRP)-only clinical prediction models
(CPMs), World Health Organization (WHO)-recommended tools and other CPMs#

Model/test Concordance statistic Calibration in the large Calibration slope

Extended CPM 0.81 (0.77–0.84) 0.02 (−0.15–0.20) 0.96 (0.83–1.09)
CRP-only CPM 0.79 (0.74–0.83) 0.01 (−0.20–0.22) 0.97 (0.86–1.08)
W4SS¶ 0.57 (0.51–0.63)
CRP (5 mg·dL−1)+ 0.70 (0.63–0.75)
CPM from HANIFA et al. [9] 0.71 (0.68–0.75) 0.41 (−0.21–1.03) 1.05 (0.79–1.32)

#: The extended CPM contained CRP, age, body mass index, CD4 cell count and cough as predictors along with
spline transformations for continuous variables. The CRP-only CPM only included CRP as a predictor along with
spline transformations. ¶: WHO four-symptom screen (W4SS) performance statistics calculated only for active
case-finding datasets as all participants in passive case-finding datasets were W4SS positive. +: CRP (5 mg·dL−1

cut-off) performance statistics exclude the study by BOYLES et al. [15] as all participants in that study had a CRP
level ⩾5 mg·L−1.
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FIGURE 4 Decision curve analysis comparing the extended and C-reactive protein (CRP)-only clinical prediction
models (CPMs) to other tools or strategies other than the World Health Organization four-symptom screen
among active and passive case-finding cohorts. Grey shaded region: if testing 32 or more patients per
tuberculosis (TB) case diagnosed, confirmatory testing for all has at least an equivalent net benefit to that of
the extended and CRP-only models. Blue shaded region: if testing between 32 and 13 patients per TB case
diagnosed, CRP (5 mg·L−1 cut-off ) has at least an equivalent net benefit to that of the extended and the
CRP-only models. Red shaded region: if testing 13 or fewer patients per TB case diagnosed, the extended
model has more net benefit than the CRP-only model. The results exclude the study by BOYLES et al. [15], as all
participants in that study a CRP level ⩾5 mg·L−1.

TABLE 3 Trade-off between percentage of tuberculosis cases captured and percentage of participants needing confirmatory testing for the
extended clinical prediction model (CPM), C-reactive protein (CRP)-only CPM and World Health Organization (WHO)-recommended tools using the
10 stacked multiply imputed datasets#

CPM or tool CPM-based tuberculosis
threshold (%)

Percentage of tuberculosis
cases captured

Percentage of all needing
confirmatory testing

Number of confirmatory
tests to capture one
tuberculosis case

Active and passive case-finding cohorts (n=41 080)#,¶

CRP 5 mg·L−1 91 54 4
Extended CPM¶ 4.9 91 56 4.1
CRP-only CPM¶ 4.2 91 54 4
Extended CPM+ 2.9 95 74 5.3
CRP-only CPM+ 3.0 95 75 5.3

Active case-finding cohorts (n=36 670)ƒ

W4SS 91 78 6.5
CRP 5 mg·L−1 89 50 4.3
Extended CPM§ 4.2 91 59 4.9
CRP-only CPM§ 3.6 91 57 4.8
Extended CPM+ 2.7 95 76 6.1
CRP-only CPM+ 2.8 95 80 6.4

#: Excludes study by BOYLES et al. [15], as all participants in that study had CRP level ⩾5 mg·L−1. ¶: For both CPMs, thresholds were selected to
capture a similar percentage of tuberculosis cases compared with CRP at 5 mg·L−1 cut-off (91%). +: For both CPMs, thresholds were selected to
capture a similar percentage of tuberculosis cases compared with an ideal triage test according to WHO target product profile (95%). §: For both
CPMs, thresholds were selected to capture a similar percentage of tuberculosis cases compared with the WHO four-symptom screen (W4SS).
ƒ: Excludes three passive case-finding cohorts, as all participants in those studies had a positive W4SS.
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adequate calibration; the CRP-only CPM showed similar performance. The W4SS and CRP (5 mg·L−1

cut-off ) had lower discrimination. Both CPMs had equivalent or higher net benefit across all threshold
probabilities compared with other tools or strategies. However, CRP (5 mg·L−1 cut-off ) demonstrated
similar net benefit to both CPMs over a clinically plausible range of threshold probabilities; CRP
(5 mg·L−1 cut-off ) also met WHO minimum sensitivity requirements (90% sensitivity). At lower threshold
probabilities or if WHO optimal sensitivity requirements (95% sensitivity) are preferred, both CPMs and a
“confirmatory testing for all” strategy had similar net benefit. The W4SS had suboptimal net benefit. CRP
(5 mg·L−1 cut-off ) had similar sensitivity to the W4SS but required 36% fewer confirmatory tests.

By assessing clinical utility, we provide further evidence of CRP’s value for tuberculosis screening in
outpatient PLHIV. In a recent meta-analysis, CRP (5 mg·L−1 cut-off ) showed similar sensitivity but higher
specificity compared with the W4SS [5], leading to its inclusion in updated WHO tuberculosis screening
guidelines [6]. It is recommended that emerging biomarkers be evaluated against available tools [35]. Our
findings suggest that CRP and the newly developed CPMs be used as a benchmark to evaluate emerging
biomarkers for tuberculosis screening. CRP may also be combined with other biomarkers to improve
predictive performance. The addition of clinical characteristics (i.e. W4SS symptoms) to CRP provided
minimal extra information, since both CPMs showed similar performance. The W4SS is a key component
of tuberculosis screening guidelines but has suboptimal utility. Variable selection further demonstrated the
limited role of symptoms in predicting tuberculosis as only one of the four W4SS symptoms was retained
during backward selection.

Although CRP (5 mg·L−1 cut-off ) and both CPMs had high net benefit across a wide range of thresholds,
a “confirmatory testing for all” strategy may be considered following economic analyses and if a setting
has resources to perform many confirmatory tests per case diagnosed. Given the high prior probability
of tuberculosis in this study (tuberculosis prevalence between 25–38% in passive case-finding cohorts
and 10–17% in active case-finding cohorts not yet on ART), a “confirmatory testing for all” strategy may
be plausible.

We externally validated a published CPM by HANIFA et al. [9], which showed suboptimal utility and
performance compared with our CPMs. HANIFA et al. [9]. included similar predictors but did not include
CRP or account for nonlinear associations. AULD et al. [8] recently developed a CPM for tuberculosis in
outpatient PLHIV and validated the CPM in three cohorts. The CPM included W4SS symptoms, sex,
smoking status, temperature, BMI and haemoglobin as predictors. However, at a cut-off that provides
similar sensitivity to the W4SS, the score did not improve specificity. The score was also externally
validated using a cohort included in this article, showing much lower discrimination than the extended
CPM (C-statistic of 0.63 versus 0.82 for the extended CPM) [21]. BAIK et al. [11] recently developed a
CPM for tuberculosis in symptomatic outpatients irrespective of HIV status. However, performance was
not assessed in PLHIV. BALCHA et al. [10] developed a relatively complex CPM for tuberculosis among
outpatients with a positive W4SS. However, the CPM has not been validated internally or externally.
Similarly, the TBscore has been developed but is complex, consisting of 11 symptoms and signs, and has
low specificity (36%) [12].

Our study has several strengths. This study is the only one to validate a CPM and other tools for
tuberculosis using the recommended IECV framework [18]. We included a large population of outpatient
PLHIV from eight different settings to evaluate generalisability. We used various measures of clinical
utility, including net benefit and the trade-off between number of tuberculosis cases captured and
unnecessary additional confirmatory testing. For CPM development, we used multiple imputation to handle
missing data, selected readily available predictors, avoided categorisation of continuous variables and
accounted for nonlinear relationships. We have also presented the full equation for both CPMs to enable
use in clinical practice. In the future, the CPMs may be easily presented using a website calculator, mobile
app or spreadsheet software. Finally, we adhered to the TRIPOD statement and additional guidelines [18–20].

Our study has several limitations. First, active case-finding study populations did not include PLHIV on ART
and passive case-finding cohorts only comprised 15% of all data. Therefore, results should be extrapolated
with caution to these subpopulations. However, PLHIV not on ART – who comprised 91% of participants –
currently still represent a third of all PLHIV (∼13 million people) [36] and have a high tuberculosis prevalence
(∼10–15%) [5]. Second, all cohorts were drawn from high-burden outpatient settings in South Africa and
Uganda, meaning results may not generalise to low-burden settings. Our results might also not be
generalisable to children. Third, we did not include certain well-known predictors of tuberculosis, such as
haemoglobin [37], because of missing data. We were also unable to evaluate chest radiography – another
WHO-recommended screening tool – since only one study performed chest radiography. However, chest

https://doi.org/10.1183/16000617.0021-2023 9

EUROPEAN RESPIRATORY REVIEW TUBERCULOSIS | A. DHANA ET AL.



radiography has suboptimal diagnostic performance as a screening tool and is only recommended in
combination with the W4SS [6]. Besides, it is often unavailable in primary health centres [38]. Fourth,
although our results are largely applicable to pulmonary tuberculosis, extrapulmonary tuberculosis is less
likely in outpatient settings. Furthermore, our results are based on an imperfect reference standard since some
pulmonary tuberculosis cases may have been culture negative. Fifth, we were unable to evaluate several
published CPMs with predictors that were not measured in some or all cohorts [8, 10–15]. Finally, we did not
investigate the cost and resource implications of CRP-based strategies. Further economic analyses (e.g. cost
minimisation and budget impact analyses) are needed for these strategies.

In conclusion, our findings define optimal tuberculosis screening strategies in outpatient PLHIV based on
currently available data, accounting for the trade-off between the number of tuberculosis cases diagnosed
and number of confirmatory tests performed. CRP (5 mg·L−1 cut-off ) – which has been recently
recommended by WHO – showed optimal net benefit across a plausible range of thresholds. Two newly
developed CPMs that incorporate CRP as a predictor may add value at more extreme threshold
probabilities – where resources allow more or fewer confirmatory tests per diagnosed case. A
“confirmatory testing for all” strategy might also be considered if resources permit. Conversely, the W4SS
showed suboptimal utility. CRP (either alone or as part of a CPM) sets the standard for tuberculosis
screening in outpatient PLHIV and the newly developed CPMs may also be used as a benchmark to
evaluate future biomarkers or combined with other biomarkers to improve predictive performance.
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