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A statistical and machine learning approach to the study
of astrochemistry

Johannes Heyl,a‡ Serena Viti,b,a‡ and Gijs Vermariënb

In order to obtain a good understanding of astrochemistry, it is crucial to better understand the key
parameters that govern grain-surface chemistry. For many chemical networks, these crucial param-
eters are the binding energies of the species. However, there exists much disagreement regarding
these values in the literature. In this work, a Bayesian inference approach is taken to estimate these
values. It is found that this is difficult to do in the absence of enough data. The Massive Optimised
Parameter Estimation and Data (MOPED) compression algorithm is then used to help determine
which species should be prioritised for future detections in order to better constrain the values of
binding energies. Finally, an interpretable machine learning approach is taken in order to better
understand the non-linear relationship between binding energies and the final abundances of specific
species of interest.

1 Introduction
Giant Molecular Clouds in our Milky Way as well as in other
galaxies host gas which is almost entirely molecular, with den-
sities above ∼ 100 cm−3 and temperature below ∼ 100 K. These
denser, cooler regions contain a significant fraction of the non-
stellar baryonic matter in a galaxy and they are usually much
more massive than large tenuous ones. The importance of these
regions lie in the fact that they are key for our understanding of
how galaxies form and evolve because this denser, cooler gas is
the reservoir of matter that forms stars and planets, as well as the
gas that fuels the centres of galaxies.

From an astrochemical point of view, due to their high den-
sities and low temperatures, these regions are great laborato-
ries to study the interactions of gas and dust, with species from
the gas phase ‘freezing’ onto the dust grains present, and form-
ing icy mantles rich in hydrogenated as well as complex organic
molecules (COMs), due to the many fast surface reactions that
take place. As stars form in these clouds (or if any other en-
ergetic process takes place) then the dust temperature may reach
the mantle sublimation temperature (∼ 100K), and the molecules
in the mantles are injected into the gas, where they react and
form new, more complex, molecules. Associated with star forma-
tion, as well as with active galactic nucleus (AGN) activity, are
highly supersonic collimated jets and molecular outflows. When
the outflowing material encounters the quiescent gas of molec-

a Department of Physics and Astronomy, University College London, Gower Street,
WC1E 6BT, London, UK; E-mail: johannes.heyl.19@ucl.ac.uk
b Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Nether-
lands
‡These authors contributed equally.

ular cloud, it creates shocks, where the grain mantles are (par-
tially) sputtered and the refractory grains are shattered. Again,
here, the interaction of gas and dust varies within very short
timescales and the effects of chemistry and dynamics are inter-
locked in a complex non-linear fashion. In summary, the gas and
dust surface compositions exhibit a complicated time dependent,
non-linear chemistry that strongly depends on the physical envi-
ronment. There are many open questions - still - about such in-
teraction: what is the unprocessed ice composition? What are the
efficiencies of the viable surface reactions? And how do the ener-
getics of the ISM (cosmic rays, UV radiation, shocks) influence the
processed ices? In order to determine accurate estimates of the
abundances of molecular species as a function of all the parame-
ters that influence their chemistry we need to be able to answer
such questions. In other words, we need to understand the chem-
ical pathways towards each molecule and its dependencies on the
density, temperature and energetics of the gas and dust before
molecules can be truly considered powerful tools.

In recent years coupling chemical and radiative transfer models
for the interpretation of molecular emission has been routinely
done and the success of such techniques has varied to different
degrees, depending on whether one wants to model the physi-
cal and chemical structure, or the hydrodynamical history of the
gas1–4. However the shortcomings of such methods are two-fold:
(i) understanding the physical conditions in molecular gas via a
systematic and applicable to many galaxies methodology is an in-
verse problem subject to complicated chemistry that varies non-
linearly with both time and the physical environment5; hence it
may not have a solution, solutions might not be unique and/or
might not depend continuously on the observational data. Tradi-
tionally astrochemistry has always been dominated by trial and
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error grid-based analysis combined with simple statistics6, an ap-
proach that becomes impossible or ineffective when datasets (e.g
from ALMA) and/or parameter space are large, complex, or het-
erogeneous; (ii) the knowledge of the micro-physics and chem-
istry of what occurs on the dust is well behind what is known for
the gas-phase. While surface reactions and dynamics (including
desorption and diffusion) can be experimentally investigated (but
always within a constrained range of laboratory conditions), ex-
perimental data for interstellar ices are still limited. In order to
make the best use of experimental resources, the chemical data
that models require need to be prioritized according to what will
have the most impact.

In recent years progress based on the use of Bayesian as well
as Machine Learning (ML) techniques to deal with both the is-
sues above has been made, from the creation of neural network
based statistical emulators7–9 in order to optimize the integration
of chemical, radiative transfer and hydrodynamical models to the
use of ML techniques to disentangle multiple gas components in
unresolved beams10.

In this paper we will focus our attention to Bayesian and ML
techniques applied to the study of chemical networks and the
key parameters that govern their interactions. In recent years
there has been a substantial body of work concentrating on re-
ducing the cost of solving chemical networks computations us-
ing various techniques from Monte Carlo approaches to constrain
important reactions11, to automated reduction schemes12,13, to
topological methods14,15 to, finally, ML algorithms9,16. In paral-
lel several studies have concentrated on the estimation of poorly
known reaction rates, with particular emphasis on surface chem-
ical networks: an initial approach considered a simple grain-
surface network and applied a Bayesian inference method cou-
pled with Markov Chain Monte Carlo sampling in order to infer
reaction rates11. This was followed up with an approach that con-
sidered the topological structure of the network15, while another
exploited the characteristics of the chemical reaction mechanism
to significantly reduce the dimensionality of the problem under
consideration by simply considering the binding energies and the
role they play in the determination of grain-surface chemistry17.
Subsequent work using the ’Massive Optimised Parameter Esti-
mation and Data compression’ (MOPED) algorithm, helped make
predictions about which ice species needed to be detected to re-
duce the variance of binding energy estimates18.

Due to the significant role that binding energies play in grain-
surface chemistry, we shall concentrate on the estimation of bind-
ing energies as well as on priorization of the ice species that
should be observed with instruments such as the JWST to better
improve our understanding of their values. We will then use ma-
chine learning interpretability to consider the forward relation-
ship between binding energies and the abundances of species of
interest. Our methods are described in Sections 2. The results are
presented in Section 3 and a brief conclusion is given in Section
4.

2 Methodology
In this section we first describe the chemical code we use and
the chemical assumptions we make in our work (Section 2.1),

followed by a description of the analytical approach we employ
(Section 2.2).

2.1 The Chemical Code
All modelling in this work is done with the open-source astro-
chemical code UCLCHEM19*. The chemistry of a collapsing dark
cloud was modelled. The dark cloud collapsed isothermally at
10K from 102 cm−3 to 106 cm−3 over 5 million years. The com-
position of the ices as a result of the ensuing chemistry was then
compared to the recent ice observations with the James Webb
Space Telescope (JWST)20.

As this work focuses solely on grain-surface chemistry, it is per-
tinent to describe the details of the underlying reaction mecha-
nisms we consider in this work. This will be used as justification
to explain why binding energies are of such great importance in
the context of this work.

In UCLCHEM, the main grain-surface reaction mechanism is
the Langmuir–Hinshelwood mechanism21. The rate at which two
species A and B react through diffusion is given by:

kAB = κAB
(kA

hop + kB
hop)

Nsitendust
, (1)

where Nsite is the number of sites on the grain surface and ndust

is the dust grain number density.
In equation 1, kX

hop is the thermal hopping rate of species X on
the grain surface which is given as:

kX
hop = ν0 exp

(
−ED

Tgr

)
, (2)

where ED is the diffusion energy of the species, Tgr is the grain
temperature and ν0 is the characteristic vibration frequency of
species X . The diffusion energy is a fraction of the binding energy
of the species, Eb.

The characteristic vibration frequency, ν0, is defined as:

ν0 =

√
2kbnsEb

π2m
, (3)

where kb is the Boltzmann constant, ns is the grain site density
and m is the mass of species.

The final term, κAB, which gives the reaction probability is:

κAB = max
(

exp
(
−2a

h̄

√
2µkbEA

)
,exp

(
− EA

Tgr

))
, (4)

where h̄ is the reduced Planck constant, µ is the reduced mass,
EA is the reaction activation energy, kb is Boltzmann’s constant
and a = 1.4 Angstrom is the thickness of a quantum mechani-
cal barrier that is used as the default in UCLCHEM. The reaction
probability encodes the competition between the quantum me-
chanical probability of a tunnelling through a rectangular barrier
of thickness a, which is the first term, and the thermal reaction
probability, which is the second term.

Species do not necessarily need to react with each other on
the grains. It is also possible for them to diffuse away from a

* https://uclchem.github.io/
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potential reactant or evaporate. As such, a modification needs to
be made to the κAB term to take this into account. This is the
reaction-diffusion competition22,23. The reaction probability is
now defined as:

κ
f inal

AB =
preac

preac + pdi f f + pevap
, (5)

where preac, pdi f f and pevap represent the probabilities of
species A and B reacting, diffusing and evaporating per unit time,
respectively. These quantities are defined as:

preac = max(νA
0 ,ν

B
0 )κAB, (6)

pdi f f = kA
hop + kB

hop (7)

and

pevap = ν
A
0 exp

(
−

EA
b

Tgr

)
+ν

B
0 exp

(
−

EB
b

Tgr

)
. (8)

The term κAB in Equation 1 is replaced with κ
f inal

AB .
Equations 1-8 show that the key quantities are ν0, kX

hop, Eb and
EA. The first two are functions of the binding energies of the
reacting species. We assume that the activation energies in Equa-
tion 4 are well-known, so do not include these as parameters to
be estimated.

If we wish to better understand grain-surface diffusion-based
chemistry, we must have accurate values of the binding energies
of species. For most cases, at 10K, the reactant with the lower
binding energy will dominate the total hopping rate, due to the
exponential dependence of the hopping rate on the diffusion en-
ergy. Across the literature, there is often significant disagreement
when it comes to the values of binding energies24–26. While there
exist many different methods of estimating these values27–29, we
utilise a Bayesian inference approach.

The chemical network used consists of a gas-phase and ice-
phase network. The gas-phase network is the UMIST network24.
The ice network used is the same as in previous work18, but aug-
mented with a sulphur network based on work done to explain
the sulphur depletion problem30. The inclusion of the sulphur
network is important, since recently sulphur-bearing species have
been confirmed in the ices20.

2.2 Analytical Approach

2.2.1 Bayesian Inference

One of the goals of this work is to estimate the binding energies of
the most diffusive species in the network. These species were cho-
sen based on a literature search that suggested they were amongst
the species with the lowest values for their binding energies. The
binding energy parameters are represented as a vector, EEE = (Eb,H,
Eb,H2 , Eb,C, Eb,CH, Eb,N, Eb,CH3 , Eb,NH, Eb,CH4 , Eb,O). UCLCHEM
was rewritten so that it would take the vector as an input and out-
put the abundances of species of interest. The mapping between
the input and output can be summarised as YYY = f (EEE), where f
represents UCLCHEM. We are looking to estimate the binding
energies that give us abundances that match our measurements

Species Abundances relative to H

H2O (8.8±1.1)×10−5

CO (2.2±0.3)×10−5

CO2 (1.1±0.2)×10−5

CH3OH (3.1±0.7)×10−6

NH3 (8.8±1.6)×10−6

CH4 (1.8±0.1)×10−6

OCN ∼ 2.0×10−7

SO2 ∼ 6.6×10−8

OCS ∼ 1.3×10−7

Table 1 The abundances and uncertainties taken from McClure et al. 20 .
These abundances were taken from sources with an Av of 95.

best. This is an inverse problem, as we are trying to determine
the best-fitting inputs that give an output of interest.

Bayes’ Law was used to solve this inference problem. Given the
data, ddd, of abundance measurements of species, the probability
distributions of the binding energies of interest are given by:

P(EEE|ddd) = P(ddd|EEE)P(EEE)
P(ddd)

, (9)

where P(EEE|ddd) is the posterior probability distribution, P(EEE) is the
prior, P(ddd|EEE) is the likelihood and P(ddd) is referred to as the ev-
idence. The prior distribution encodes the initial understanding
of the binding energy distribution. The likelihood gives the data’s
likelihood as a function of the binding energies. Within the like-
lihood function, the physical model is encoded. The evidence
serves as a normalising factor and represents the marginalised
likelihood. The posterior distribution represents the updated
probability distribution of reaction rates based on the data, the
prior distribution, and the physical model.

The prior for all binding energies was selected as a uniform
distribution between 400 K and 2000 K. The abundance mea-
surements, given in Table 1, were assumed to be Gaussian. The
species without associated uncertainty, OCN, SO2 and OCS, were
given a relative uncertainty of 50%. Assuming a Gaussian distri-
bution, the likelihood function can be specified:

P(ddd|EEE) =
nd

∏
i=1

1√
2πσi

exp

(
− (di −Yi)

2

2σ2
i

)
, (10)

where nd is the number of observations and σi is the uncer-
tainty of the ith observation. Only the species for which there are
abundances measurements are indexed over.

The inference was implemented using the UltraNest Python
package31. The package implements efficient methods to con-
struct a neighbourhood to sample from, allowing for better con-
vergence of the sampling of the likelihood32,33. The package con-
veniently also outputs the maximum likelihood-estimator, EEEML,
which will be utilised later.

2.2.2 The MOPED Algorithm

While our knowledge of the molecular inventory in the gas-phase
is quite complete, we are still far from being confident about the
ice composition as well as the ice chemistry. To this end, we em-
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ploy the "Massive Optimised Parameter Estimation and Data com-
pression" (MOPED) algorithm34–36.

The aim of the algorithm is to determine which of the M species
in our chemical network would best constrain our knowledge for
our p binding energy parameters. In this work, p= 9 and M = 119.
Some binding energies will have a greater influence on certain
species than others. The key is to determine the species that are
most sensitive to the binding energies of interest. In doing so,
we can then make recommendations for future ice observations
as was done in a proof-of-concept work recently18.

There will be uncertainty associated with all of our potential
future abundance measurements. It is likely that these uncertain-
ties will vary by species. However, it is difficult to determine these
species-dependent uncertainties a priori. As such, we assume the
uncertainty on each abundance measurement is the same. This is
summarised in a covariance matrix: CCC = diag(σ2

1 ,σ
2
2 , ...σ

2
M).

We apply a filtering technique developed by Heavens et al. 34,
35 , Heavens et al. 36 who propose using a linear combination of
the final abundances of network, YYY , to compress data points into
numbers. Such a compression takes the form:

cα = bbbT
αYYY , (11)

where α ranges from 1 to p and bbbα is a set of orthonormal lin-
ear filters. Each filter vector is unique to each parameter and does
not contain information contained in any of the other vectors. YYY
represents a vector containing the final, steady-state abundances
for some value of EEE, though we employ EEE = EEEML, which can be
obtained from the Bayesian inference, as this has been found to
be sufficient as the fiducial model34,35. For each cα , there will be
greater dependence on some of the components of bbbα than oth-
ers. As each component represents a different species, this implies
that a component with a greater magnitude has more information
about that parameter.

The vectors bbbα are given by

bbb1 =
CCC−1YYY ,1√

YYY ,T1 CCC−1YYY ,1
(12)

and

bbbα =
CCC−1YYY ,α −∑

α−1
β=1 (YYY ,,,

T
α bbb,,,β )bbb,,,β√

YYY ,,,Tα CCC−1YYY ,α −∑
α−1
β=1(YYY ,

T
α bbb,β )2

, (13)

where YYY ,α is the partial derivative of YYY with respect to the pa-
rameter α around the point YYY = f (EEEML). The equations for bbbα

were derived via a Lagrange multiplier procedure34. When it is
said that all filters are orthonormal, this means that

bbbT
αCCCbbbβ = δαβ , (14)

which is another way of saying that all filter vectors are uncor-
related. Each component of bbbα is weighted:

• inversely by the size of the uncertainties associated with
each species, as encoded by the covariance matrix

• the sensitivity of the species’ abundance to the value of the
binding energy, which is represented by the YYY ,α .

If one wished to obtain a ranking of species in terms of their im-
portance in helping constrain binding energies, one would need
to come up with a ’score’ for each species. Recall, that as the
magnitude of each component of bbbα is a weight for that species’
influence on the parameter α, one would need to sum over the
absolute values of the components of bbbα for species across all α.
That is, we perform the sum over our linear filters

p

∑
α=1

[|b1
α |, |b2

α |..., |bM
α |]. (15)

We now have a “filter sum" for each of the M species in our
network, which serves as a means of comparing the importance
of each species in helping us better constrain binding energy dis-
tributions. A species with a larger filter sum will have a larger
influence in helping constrain the p binding energies.

2.2.3 Machine Learning Interpretability

The previous methods explore the influence of the abundances on
the values of the binding energies. This is an inverse problem. In
order to tackle the forward problem of assessing the impact of the
binding energies on the abundances instead, one needs to use a
different set of methods.

As UCLCHEM solves a system of coupled ordinary differential
equations, it stands to reason that the relationship between the
input parameters (the binding energies) and the output parame-
ters (the abundances of species) is non-linear. As such, the rela-
tionship between the input and output is not necessarily intuitive
and is likely to be different for various ’binding energy regimes’.
We make use of machine learning interpretability to help uncover
this relationship.

In order to better understand the relationships between the
inputs and outputs, we utilise SHapley Additive exPlanations
(SHAP)37. SHAP approximates Shapley values: these are mea-
sures of the marginal contribution of a feature to the output value,
relative to the mean value of all output in the dataset38. This is
done by considering various coalitions of feature values. A coali-
tion of features represents all subsets of the total set of features.
The Shapley value of a feature represents the average change in
the prediction when that feature is included in the coalition of fea-
tures selected. This change is assessed by considering the change
in the prediction when the feature is included, averaged over all
coalitions39. However, this becomes computationally unfeasible
as the number of features grows, as the number of subsets grows
exponentially with the number of feature. SHAP is particularly
useful, as it approximates the Shapley values, greatly reducing
the time taken to compute them. This is done through the use of
the TreeSHAP algorithm40.

500,000 data points were created from UCLCHEM by using a
Latin Hypercube sampling scheme41 implemented with the help
of the Python surrogate modelling toolbox42. We employ the XG-
Boost Python package† to build an XGBoost regressor43 that is
made to fit the relationship between the input parameters and
the output abundance for each species.

† https://xgboost.readthedocs.io/en/stable/index.html
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Fig. 1 Marginalised posterior distributions of the binding energies of the diffusive species we consider of interest in this work. We also plot the uniform
prior distribution. Only H’s binding energy marginalised posterior distribution differs significantly from the prior distribution. For the other binding
energies, there is less difference. This is due to the lack of enough sufficiently constraining data. We also observe that decreasing the value of ε in
general decreases the variance of the distribution. Both of these points motivate the need for further ice observations to reduce the variance of the
distributions.
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Fig. 2 Bar chart displaying the filter sums for all grain-surface species. Species with a larger filter sum are higher priority detection targets, as they are
more affected by the binding energies of the species we consider. Some of the highest-ranked species have already been detected, which potentially
implies that future observations should aim to improve the level of precision of these abundance measurements.
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Fig. 3 Scatter plot depicting filter sum against the predicted abundances when the maximum-likelihod estimate for the binding energies is input into
UCLCHEM. Given constraints on instrumental uncertainties, we should look to prioritise species that are not only important, as determined by their
filter sums, but that can also be realistically detected. These include saturated species such as #CH4, #NH3, #SiH4, #H2S and #H2O, as well as their
precursors. We find that many of the species we observe are the intermediate species formed during the creation of the saturated species in Table 1.
This indicates that understanding these intermediate products is essential to better constraining the binding energies of interest.

3 Results

3.1 Results of the Bayesian Inference

At first, the Bayesian inference was run using the original dataset.
However, it was found that despite running the inference in par-
allel using MPI over 128 cores, that there was no convergence,
even after several days. This was attributed to the fact that the
model struggled to match the constraints. Many of these con-
straints have very low relative error, compared to the data used
in previous works which typically had relative errors of the or-
der of 50%11,15,17. A nested sampler will move from areas of
low likelihood to areas of high likelihood. However, if the model
struggles to find combinations of parameters that lead to a higher

likelihood, then it will inevitably take longer to perform the infer-
ence. To properly run the inference, a significantly larger comput-
ing cluster would be required. As an alternative, we decided to
investigate how the relative error, ε, impacted the obtained pos-
terior probability distributions. We used values of 0.5, 0.33 and
0.25 and ran the inference each time. Our results are displayed
in Figure 1. Also plotted are the prior distributions.

We observe that with the exception of hydrogen’s binding en-
ergy, the binding energy posteriors are prior-dominated. How-
ever, it can also be seen that a decrease in the relative error of
the data appears to be accompanied by a decrease in the variance
of some of the posteriors, such as for CH3, CH4, NH and O. This
is consistent with lower variance posteriors for H and O binding
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energy with the artificially reduced uncertainties for H2O obser-
vation in prior work18. However, even in this scenario we are
finding that our posteriors have a relatively large variance. The
best way to address this is to figure out which other species we
should observe to further constrain the distributions.

3.2 Using the MOPED Algorithm

We now look to analyse the results of the MOPED algorithm. The
fiducial model we use is the one with ε = 0.25. In Figure 2 we
plot the filter sums for each species to provide us with an ini-
tial ranking. We only consider species formed on the grains. As
the UCLCHEM code models both the bulk and the surface abun-
dances, we sum the abundances of each species on the surface as
well as in the bulk to provide us with a total abundance on the
ices.

However, in order to inform future ice observations, it would
be useful to also consider the likely abundances of each species.
Ideally, we would wish to observe species that are highly abun-
dant and that have large filter sums. The first requirement means
it is easier to observe a species given a particular instrumental un-
certainty, whilst the second ensures that we are observing species
that are dependent on the binding energies and are therefore rel-
evant to the chemistry we are considering. To do this, we plot the
filter sum of each species against the abundance produced when
we use binding energies equal to EEEML. The resulting plot is Fig-
ure 3. We only consider species with an abundance greater than
10−10 relative to H, as anything less abundant is unlikely to be
detected in the ices. As in previous work18, we observe that the
species H2O, CH4, NH3, H2S, SiH4, CO and H2CO are amongst
the highest-ranked species with abundances that are predicted to
be detectable. These species all have modes in the range consid-
ered by JWST. Unlike in previous work, however, CO2, CH3OH
and HCN are not amongst the most significant species. This can
be attributed to the fiducial model, as we used different con-
straints, which lead to the maximum-likelihood estimate being
different.

3.3 Insights from the Machine Learning Interpretability

Previously, we considered the impact of the data, i.e. the species
abundances, on the binding energy values and their distributions.
We now wish to consider the opposite situation, which is the im-
pact of the binding energy values on the final steady-state abun-
dances of molecules of interest. This is important to consider
as the binding energy of a species can be dependent on the ice-
composition as well as on the individual sites44,45.

In the interest of brevity, we consider a subset of the molecules
so as to demonstrate the effectiveness of this approach as a proof-
of-concept. We are interested in better understanding the impor-
tance of each of the features in predicting the final abundance
of a species of interest, as well as the relative importances of the
features. Figures 4 and 5 are so-called beeswarm plots for H2O
and CO respectively. The features are listed from top to bottom
in decreasing order of importance to the model output. Along
the horizontal axis, individual predictions are plotted in terms of
their SHAP value. Recall that the SHAP value states the difference

in the value of the model output for that prediction relative to
the global average. Furthermore, the points are colour-coded in
terms of the size of the feature value. From this, we can attempt
to better understand the directionality of each feature’s relation-
ship with the output.

From the beeswarm plots, we can make a number of comments
about which binding energies are most relevant for that species.
For example, H2O is unsurprisingly dependent on the H and O.
Others seems less intuitive, such as CO’s strong dependence on
the H binding energy or CO2’s dependence on nitrogen. These can
typically be reasoned out by considering the chemical network
used.

We can also consider the exact nature of the relationship be-
tween the features and the final abundance. To do this, we
consider the partial dependence of specific variables relative to
the output variable. The partial dependence is defined as the
marginal effect of one or several features on the output of a
machine learning model39,46. To demonstrate the utility of the
partial dependence, we consider H2O and CO. Both of these
molecules are largely dependent on two binding energies: that
of H and O. We plot their 1-D and 2-D partial dependences in Fig-
ures 6 and 7. Note that the y-axis of the 1-D plots are simply the
log-abundance of the respective species.

We observe that for water, there is a small area of parame-
ter space in which the abundance peaks. This roughly matches
the maximum-posterior hydrogen binding energy value obtained
in Figure 1. Despite the oxygen’s binding energy being the sec-
ond most important feature, we observe that over the range of
binding energies considered, it has far less impact in changing
the obtained water abundance. Even so, the parameter favoring
binding energies lower than ∼1000K for oxygen is consistent with
the posterior for the inverse problem.

We can make a similar comment about carbon monoxide. The
abundance peaks for hydrogen binding energy values greater
than 1100K. This makes sense, as having too low a binding energy
for hydrogen would result in CO being hydrogenated efficiently.
For binding energies above 600K for oxygen, we notice a slight
decrease in the abundance of carbon monoxide.

4 Conclusions
In this article we focus our attention on the estimation of bind-
ing energies, key parameters in the interaction among surface re-
actions in ice. We use three statistical approaches to estimate
binding energies, prioritise future ice species to be observed, and
to understand better the non-linear relationship between binding
energies and abundances of such species. Our conclusions can be
summarized as followed:

• As in our previous work, we find that Bayesian inference can
be a very useful tool to constrain binding energies. However
further ice observations are needed in order to reduce the
variance of the distributions.

• Indeed, the MOPED algorithm can help towards the priori-
tization of such observations. As in previous work, we find
that solid H2O, CH4, NH3, H2S, SiH4, CO and H2CO are the
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Fig. 4 A beeswarm plot for the statistical emulator trained to predict H2O’s abundance. The features are listed from top to bottom in decreasing
order of importance to the model output. Along the horizontal axis, individual predictions are plotted in terms of their SHAP value, that is the change
to the log-abundance relative to the average value in the dataset. Recall that the SHAP value states the difference in the value of the model output
for that prediction relative to the global average. Furthermore, the points are colour-coded in terms of the size of the feature value. We observe
that the binding energies of H and O are the most important features. This makes sense, as both species are necessary to form water via successive
hydrogenations of an oxygen atom.
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Fig. 5 A beeswarm plot for the statistical emulator trained to predict CO’s abundance. The features are listed from top to bottom in decreasing order
of importance to the model output. Along the horizontal axis, individual predictions are plotted in terms of their SHAP value, that is the change to
the log-abundance relative to the average value in the dataset. Recall that the SHAP value states the difference in the value of the model output for
that prediction relative to the global average. Furthermore, the points are colour-coded in terms of the size of the feature value. We observe that
the binding energies of H and O are the most important features. Increasing H’s binding energy appears to increase CO’s abundance, which can be
attributed to a decrease in the efficiency of the hydrogenation of CO.
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Fig. 6 Top: A plot of the 1-D partial dependence plots of the binding energies of H and O for water. The partial dependence represents the expected
value of the log-abundance of water as a function of the variable in features, marginalised over all other features. We observe that for a narrow range
of atomic hydrogen’s binding energies at around 1100 K, there is a sharp increase in the abundance of water. This is roughly the point at which the
marginalised posterior distribution for H’s binding energy in Figure 1 peaks. The dependence for O’s binding energy shows a similar consistency with
the posteriors, having a clear preference for energies smaller than ∼ 1000K. Bottom: A 2-D partial dependence plot for the binding energies of H and
O. Yellow represents the region with the highest abundance of water.
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Fig. 7 Top: A plot of the 1-D partial dependence plots of the binding energies of H and O for CO. The partial dependence represents the expected
value of the log-abundance of CO as a function of the variable in features, marginalised over all other features. Bottom: A 2-D partial dependence
plot for the binding energies of H and O. Yellow represents the region with the highest abundance of CO.
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most important species to observe; surprisingly ice observa-
tions of CO2, CH3OH and HCN are not amongst the most
significant species.

• Using SHAP we establish the key relationships between bind-
ing energies and the abundances of the ice species. For ex-
ample, we find that for water and CO the key parameter is
the hydrogen binding energy, and to a much lesser extent the
oxygen one. Prioritizing which binding energies are keys for
the potentially observable species may be of use in prioritiz-
ing experiments and calculations of such energies to reduce
their errors.

Probabilistic methodologies as well as Machine Learning meth-
ods have now started to be used to solve astrochemical problems.
As larger chemical reaction networks and more complex models
are being employed in astrochemistry, statistical methods and ma-
chine learning (ML) techniques will become ever more necessary
in order to reduce the uncertainty in such networks.
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