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Thesis abstract

Inversions are genomic structural variants in which a segment of a chromosome is re-

versed orientation. One consequence is the near-total suppression of recombination

within the inverted region. This region of tight linkage can have profound implica-

tions for the evolution of the genome, by enabling sets of alleles to be inherited as a

single unit without being in close proximity. This thesis investigates how inversions

evolve and influence evolution, from the genome up to the level of populations. One

example is the architecture of meiotic drivers — genetic elements that have a trans-

mission advantage over their wild-type counterparts. These systems often comprise

multiple loci within an inversion. The first chapter models the spread and demo-

graphic consequences of X-linked meiotic drivers in the face of the associated fitness

costs. When the costs are such that X-drive can remain polymorphic, the resulting

female-biased sex ratio increases the equilibrium population size and persistence

time relative to a wild-type population. Inversions may also promote the evolution

of local adaptation under gene flow by linking coadapted alleles and preventing the

production of hybrid, maladaptive genotypes. Work on this phenomenon often con-

siders the limited case of a ‘’continent-island” model. We extend this and include the

probability of the formation of locally adaptive inversions. Our results contrast with a

simple interpretation of existing literature, suggesting strongly selected loci are likely

to underpin locally adaptive inversions. Higher mutation load is expected in regions

of suppressed recombination, due to the reduced efficacy of purifying selection on

deleterious alleles. Furthermore, in the inversion case, the mutation load captured by

an inversion is likely to persist throughout future lineages. The relative importance
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of each of these phenomena depends on how long the inversion spends at a low fre-

quency. We use simulations to determine the conditions in which the accumulation

of deleterious mutations during the early stages of inversion spread is important in

deciding the fate of an otherwise adaptive inversion. This is placed in the context

of the existing literature, which underestimates the effect of mutation accumulation

during the early stages of inversion lineages.
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Impact statement

I present work demonstrating the capacity for chromosomal inversions to induce

changes at various levels of selection, from the genome to the population. Inver-

sions have been implicated in the existence of a plethora of phenomena, includ-

ing mimicry, mating strategies, local adaptation, speciation, and the evolution of sex

chromosomes. The existence of inversions has been known for much of the history of

genetics itself, however their prevalence across genomes was vastly underestimated

prior to the emergence of recent sequencing techniques. As such, there has been

a surge in interest in understanding how inversions evolve. In addition, population

genetic theory has been limited in how far inversion evolution can be understood.

Analytic tractability often requires models to comprise one or two loci, or a simplify-

ing assumption of uniformity across many loci. A further assumption often made is

that of large population sizes, so that the effects of genetic drift can be ignored. Con-

trary to this, inversions often comprise many loci of various effects, and the effects of

their interference with the process of recombination require the presence of drift to

model accurately. Perhaps analogous to advances in genomic methods, advances in

computing power have made the quick simulation of inversions possible. This thesis

utilises both population genetic theory and simulation to aid our understanding of

how inversions evolve.

Work from this thesis has been disseminated to the wider scientific community. Re-

sults from Chapter 3 were presented as a poster at Population Genetics Group 53 (Jan

2020), and published in in the journal Genetics. I presented a poster based on results
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from Chapter 4 at the Congress of the European Society of Evolutionary Biology in

Prague (Aug 2022), and gave a talk on the same subject at Population Genetics Group

56 in London (Jan 2023). Further, a manuscript based on this work has been submit-

ted to an academic journal and is available as a preprint.
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General Introduction

The composition and structure of the genome are ever-changing. Mutation con-2

stantly introduces genetic variation, from changes at single nucleotides to insertions

and deletions of longer sequences of DNA. Selection on this genetic variation is the4

means by which evolution by natural selection proceeds. A radical source of genetic

variation comes in the form of structural variants — changes in the number, order,6

or location of genes on a chromosome, that often affect gene activity and transmis-

sion (Mérot et al. 2020). One particular class of these rearrangements, chromosomal8

inversions, occur when a segment of chromosome breaks off and is reinserted in the

reverse orientation, so that all the genetic content is retained but in an altered or-10

der. This happens by means of a double-stranded break in two places along the chro-

mosome or more rarely via intrachromosomal recombination, where ectopic recom-12

bination occurs between related and opposite-facing DNA sequences on the same

chromosome (Hartwell 2000; Ling and Cordaux 2010). The effects of this are gen-14

erally deleterious, as inversion breakpoints alter the expression pattern of genes in

their vicinity. If the breakpoints lie within the genes themselves, the gene is split and16

its function more severely disrupted — though adaptive breakpoint effects have also
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Chapter 1. General Introduction

been documented and could play a significant role in their spread (Villoutreix et al.18

2021).

A key property of inversions is that they interfere with recombination in heterokary-20

otypes (Sturtevant 1917; Roberts 1976). Crossing over and the formation of the chi-

asma are essential in eukaryotes for proper meiotic segregation (Maynard Smith22

1998). Without them, meiosis can be disrupted resulting in gametes without a full

chromosomal complement, which lead to aneuploid offspring (having an abnormal24

number of chromosomes). An inverted chromosome section will not align with the

rest of the chromosome during meiosis and therefore tends not to recombine, unless26

the inverted chromosome forms an inversion loop (Hartwell 2000). This aligns ho-

mologous regions of both chromosomes, allowing meiotic recombination between28

the two to proceed, however this may also prevent the formation of chiasmata (Hale

1986; Coyne et al. 1993). Worse, recombinant gametes produced in this manner of-30

ten contain duplications and/or deletions that cause genetic imbalance, leading to

their loss (Sturtevant and Beadle 1936). Some recombinant gametes can be produced32

in the rare case of an even number of crossovers within the inversion — usually two

(Sturtevant and Beadle 1936). Therefore, inversion heterozygotes produce few viable34

offspring with crossovers in the inverted region. Due to the lack of recombination, in-

versions increase linkage between genes located between the breakpoints — in some36

ways, acting as a form of asex within the process of sexual reproduction.

Recombination, and therefore also the suppression of recombination, has major evo-38

lutionary consequences. Genetic variation is key for evolution to proceed, and re-

combination is responsible for around a quarter of this (Navarro, Betrán, et al. 1997).40
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Chapter 1. General Introduction

Recombination breaks associations between loci, for better or for worse. Selection on

one allele is influenced by selection on linked alleles, a concept known as ’selective in-42

terference’ (Sharp and Otto 2016). So, linkage between alleles tends to weaken the ef-

ficacy of selection at an individual locus (Hill and Robertson 1966). For example, with-44

out exchanging alleles between chromosomes, distinct beneficial mutations can only

appear on the same chromosome if each of them independently arises (Fisher 1930),46

a fairly unlikely event. Otherwise, these alleles on the same chromosome cannot be

joined together and end up in competition with each other (Muller 1932). Recombi-48

nation also enables purifying selection — the purging of deleterious mutations. With-

out recombination, genomes accumulate deleterious variation that persists through-50

out lineages, because there is no way for offspring of relatively fit individuals to lose

deleterious mutants that are in physical linkage. Eventually, some mutations will be52

carried to fixation by genetic drift, resulting in the loss of the fittest class of individual.

This process, known as “Muller’s Ratchet” (Muller 1964; Felsenstein 1974), continues54

to occur, steadily decreasing the fitness of individuals in the population. However,

recombination introduces variance in the mutation load of progeny. Individuals with56

high mutation loads are likely to be selected out while those with low mutation loads

survive. So, deleterious variation is removed more efficiently from the gene pool while58

enabling the production of the fittest class of individuals.

On the other hand, recombination is often not immediately adaptive. Recombination60

load is present when the recombinant genotypes are less fit than the original, by sep-

arating beneficial allele combinations (Santos 2009). This could be because there is62

positive epistasis between a set (or sets) of alleles such that they are fitter than alter-

3



Chapter 1. General Introduction

native allele combinations (Haldane 1957; Wasserman 1968). Alternatively, epistasis64

need not be invoked if locally adapted allele combinations are subject to maladaptive

gene flow, so that recombination can produce maladaptive genotypes (Kirkpatrick66

and Barton 2006). In these cases, localised recombination suppression in the form

of an inversion means that specific allele sets can be maintained without losing the68

benefits of fitness variation brought about by recombination. Thus recombination

can be a double-edged sword — a concept known as Felsenstein’s dilemma (Faria,70

Johannesson, et al. 2019).

Inversions lose some of the benefits of sexual reproduction because of the reduced72

effective rate of recombination. Recombination will only occur in heterokaryotypes

unless there is a double crossover, meaning any such events are more likely to involve74

the middle part of the inversion. Gene conversion between different arrangements is

possible too, and can play a significant role in the evolution of the content of inver-76

sions, especially when they aren’t too large (Navarro, Betrán, et al. 1997; Berdan et al.

2021). As such, the efficacy of purifying selection is comparatively weak, so that inver-78

sions are prone to the accumulation of deleterious variation at low frequencies. How-

ever, if an inversion manages to reach a frequency high enough to often be homozy-80

gous then recombination can proceed as normal again (Barton and Charlesworth

1998; Charlesworth, Harvey, et al. 2000). Furthermore, alleles captured in the an-82

cestral inverted arrangement are likely to persist throughout the lineage even when

recombination becomes more common, because they will usually be homozygous in84

homokaryotypes. In the presence of recessive deleterious alleles, this results in bal-

ancing selection on the inversion through associative overdominance (Ohta 1971).86
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Chapter 1. General Introduction

The interactions between inversions and deleterious variation spawned a body of the-

ory in the 1960s. It was recognised early on that inversions that capture a smaller88

load than the average collinear region have a selective advantage (Nei, Kojima, and

Schaffer 1967). However, this advantage is transient. Eventually, mutation catches up90

with the inversion such that it carries a load similar to the the standard arrangement

as well as its captured load, which is fixed within inversions. So, in the absence of92

any other selective advantage, inversion selection coefficients degenerate until they

are negative, and so will ultimately be lost. This conclusion was called “unrealistic”94

by Kimura and Ohta 1970, who developed influential methods to analyse the fate of

an allele whose fitness decreases through time in a finite population. Applying this96

method to an inversion, with the same rate of decay derived by Nei et al, shows that

inversions can capture mutations and still fix. In finite populations, it is not guaran-98

teed that the transient advantage afforded by capturing a better-than-average back-

ground will decay prior to fixation. So, the conditions for inversion fixation are less100

stringent than previously asserted. More recently, multilocus models and simulations

have been able to determine the long-term fate of an inversion in large populations102

(Connallon and Olito 2021), and the relative importance of deleterious variation be-

tween sex chromosomes and autosomes (Connallon, Olito, et al. 2018). Another sim-104

ulation study considered exclusively recessive deleterious mutations, which revealed

how different inverted arrangements can diverge, each with different recessive muta-106

tions and giving rise to a balanced lethal system (Berdan et al. 2021).
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Chapter 1. General Introduction

Adaptation and coadaptation108

Inversions have long been a subject of interest to evolutionary biologists, occupying

a central role in the development of evolutionary thinking. It was a selected inver-110

sion polymorphism in Drosophila pseudoobscura that inspired Dobzhansky’s school

of thought that genetic variation could be maintained by balancing selection, rather112

than purely by mutation-selection balance (Dobzhansky 1955; Charlesworth 2016).

Dobzhansky argued that the generation of linkage disequilibrium was the most im-114

portant consequence of inversions (rather than the creation of reproductive isolation

between populations, Kirkpatrick and Barton 2006), and that inversions consisted of116

sets of coadapted alleles with positive epistasis (Dobzhansky 1947; Dobzhansky and

Dobzhansky 1970). Motivated by Dobzhansky’s findings that i) polymorphic inver-118

sions tended to be fitter in heterozygotes than either homozygote, and ii) sets of genes

differed between the same inversion in different populations as well as between the120

inversion and the collinear region (Dobzhansky 1947; Dobzhansky 1955), early work

focused on scenarios in which there was some explicit heterozygote advantage, or122

positive epistasis between captured alleles (Haldane 1957; Charlesworth 1974). Oth-

erwise, the deleterious effects of inversions dominated discussions on how inversions124

might fix, relying on founder effects or genetic drift (Feder, Gejji, et al. 2011).

Inversions can be favoured whenever there is selection for linkage disequilibrium be-126

tween sets of genes. Positive epistasis is one such example. Linkage disequilibrium is

also favoured where there is gene flow between differently adapted populations, such128

that recombinant offspring are less adapted. Some theory had been developed show-
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Chapter 1. General Introduction

ing that modifiers reducing recombination between alleles in local adaptation models130

could spread (Charlesworth and Charlesworth 1979; Lenormand and Otto 2000), but

it wasn’t linked explicitly to inversions until highly influential work by Kirkpatrick and132

Barton 2006 (although they note that the spread of inversions in a similar model to

theirs had previously been shown in simulations by Trickett and Butlin 1994), who134

showed inversions capturing locally favoured alleles could be favoured by selection

in a model where one population experiences homogeneous maladaptive gene flow.136

This was significant because all prior explanations for how inversions might be adap-

tive relied on interactions between genes. Inversion research had fallen out of fashion138

with the rise of molecular genetics in the years preceding this work (Kirkpatrick 2010).

However, in the last 20 or so years, powerful genomic methods and sequencing tech-140

niques revealed that inversions are far more common than was previously expected

(Kirkpatrick 2010; Wellenreuther and Bernatchez 2018), and associated with a vast142

array of different phenotypes, sparking a revival in interest in the theory of how inver-

sions evolve.144

Empirical studies among this recent work has shown that the maintenance of partic-

ular allele combinations within inversions allows for the evolution of sophisticated146

local adaptations controlled by multiple genes, but inherited as one. Such karyotypes

are referred to as “supergenes” when they enable the existence of several discrete148

phenotypes at polymorphism (Thompson and Jiggins 2014). Often, linkage between

these allele combinations is maintained by an inversion (Villoutreix et al. 2021), but150

supergenes could also evolve in areas of low recombination (eg close to the cen-

tromere, Entani et al. 1999), through hemizygosity (Li et al. 2016), where there can be152
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Chapter 1. General Introduction

no recombination because there is no corresponding collinear sequence present for

a crossover to occur, or through a combination of multiple structural variants (Kim et154

al. 2021). Examples include the adaptive colouration of deer mice (Harringmeyer and

Hoekstra 2022), “wave” and “crest” ecotypes of the Littorina sea snail (Faria, Chaube,156

et al. 2019; Koch et al. 2021), and dune and prairie ecotypes of Helianthus sunflowers

(Huang, Andrew, et al. 2020). In each of these cases, inversions protect genotypes that158

confer locally adaptive phenotypes, where hybridisation between ecotypes could re-

sult in unfit offspring. One can also find evidence for inversions maintaining epistatic160

interactions in mimicry supergenes (e.g. Joron et al. 2011) and different reproductive

strategies (e.g. Lamichhaney et al. 2016). Unpicking the exact loci within inversions162

and their respective contributions to supergene-associated phenotypes is challenging

(Tigano and Friesen 2016; Villoutreix et al. 2021), because loci need to be separated in164

order to examine their individual effects. Many of the supergene candidates whose

most significant loci have been characterised are related to meiotic drive systems166

(Villoutreix et al. 2021) — selfish genetic elements that ensure their own propagation

to subsequent generations at the expense of other genes (Burt and Trivers 2006). One168

such example is the t-haplotype, an autosomal meiotic driver in Mus musculus com-

prising hundreds of genes within four overlapping inversions (Ardlie 1998; Schimenti170

2000).

Thesis overview172

This thesis aims to deepen our understanding of both inversion evolution and

inversion-driven evolution. Inversions are a significant evolutionary force and we174
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Chapter 1. General Introduction

now know, common. As sequencing technology has developed, an understanding

of structural variation has become more important to make sense of what we see in176

genomic data (Mérot et al. 2020). Here, I demonstrate how meiotic drive gene com-

plexes linked by inversions can influence population level traits (Chapter 2), how in-178

versions can aid individuals maintain local adaptation under gene flow (Chapter 3),

and how the nature of inversion evolution means they may be more likely to fix in180

small populations (Chapter 4). Together, these works show how the breadth of the

capability of inversions to influence evolution across selection at different scales.182

When meiotic drivers are linked to sex chromosomes and are expressed in the het-

erogametic sex, they can result in population sex ratio bias, with consequences for184

population viability and productivity (Hamilton 1967). In Chapter 2, I determine con-

ditions for polymorphism of an X-linked male meiotic driver under varying sperm186

competitive ability, mating behaviours, and direct fitness effects, and then explore

the consequences maintenance of polymorphism can have on population size and188

persistence. Being X-linked has the effect of biasing offspring sex ratios towards fe-

males. When X-drivers segregate they increase population productivity, and so can190

increase equilibrium population sizes, and the persistence time of small populations

relative to non-drive populations, all else being equal.192

Maladaptive gene flow favours inversions that protect locally adaptive allele com-

binations (Kirkpatrick and Barton 2006; Charlesworth and Barton 2018). Migration194

generates linkage disequilibrium without the presence of epistasis or other previ-

ously invoked phenomena used to explain inversion fixation. These analytical mod-196

els consider a single population experiencing homogenous migrant gene flow. While

9



Chapter 1. General Introduction

sufficient as a proof of concept, it is hard to apply to many real world scenarios, in198

which geographically close populations are likely to exchange migrants. In Chapter 3,

I extend analyses of inversions in the “continent-island” model (Kirkpatrick and Bar-200

ton 2006; Bürger and Akerman 2011; Charlesworth and Barton 2018) to a two-deme

model (e.g. Akerman and Bürger 2014). In this setting, heterogeneity in gene flow is202

an emergent property of the model. Furthermore, I determine the overall likelihood

of adaptive inversions arising, given the frequency of locally adaptive haplotypes.204

During the early stages of inversion establishment, a combination of the suppres-

sion of recombination and low frequency severely weakens purifying selection and206

strengthens the effects of genetic drift. As such, inversions could be prone to the accu-

mulation of deleterious mutations. Existing work addresses how this impacts the long208

term fate of inversions, when inversions might spend a long time at low frequency or

be maintained at intermediate frequency (Connallon, Olito, et al. 2018; Connallon210

and Olito 2021; Berdan et al. 2021). However, little attention has been paid to cases

where the short-term dynamics are relevant, most notably in finite populations. In212

Chapter 4, I discuss the current state of the field and use simulations to show where

early events can prevent the fixation of otherwise adaptive inversions.214
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X-linked meiotic drive can boost

population size and persistence1
216

Abstract

X-linked meiotic drivers cause X-bearing sperm to be produced in excess by male218

carriers, leading to female-biased sex ratios. Here, we find general conditions for

the spread and fixation of X-linked alleles. Our conditions show that the spread of220

X-linked alleles depends on sex-specific selection and the way they are transmitted

rather than the time spent in each sex. Applying this logic to meiotic drive, we show222

that polymorphism is heavily dependent on sperm competition induced both by fe-

male and male mating behaviour and the degree of compensation to gamete loss in224

the ejaculate size of drive males. We extend these evolutionary models to investi-

gate the demographic consequences of biased sex ratios. Our results suggest driving226

X-alleles that invade and reach polymorphism (or fix and do not bias segregation ex-

1A manuscript based on this chapter has been published in Genetics, with Andrew Pomiankowski

and Michael Scott as co-authors (Mackintosh, Pomiankowski, and Scott 2021).
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Introduction Chapter 2. Demographic effects of X-drive

cessively) will boost population size and persistence time by increasing population228

productivity, demonstrating the potential for selfish genetic elements to move sex

ratios closer to the population-level optimum. However, when the spread of drive230

causes strong sex ratio bias, it can lead to populations with so few males that females

remain unmated, cannot produce offspring and go extinct. This outcome is exacer-232

bated when the male mating rate is low. We suggest that researchers should consider

the potential for ecologically beneficial side effects of selfish genetic elements, espe-234

cially in light of proposals to use meiotic drive for biological control.

Introduction236

Meiotic drivers violate Mendel’s law of equal segregation by ensuring that they are

transmitted to more than half of a carrier’s progeny (Burt and Trivers 2006). While238

beneficial at the chromosome-level, this transmission benefit usually comes at a cost

to carrier survival or fecundity (Werren 2011). Meiotic drive has been observed across240

a wide variety of animal and plant taxa (Sandler, Hiraizumi, and Sandler 1959; Turner

and Perkins 1979; Jaenike 1996; Ardlie 1998; Taylor, Saur, and Adams 1999; Fishman242

and Willis 2005; Tao et al. 2007; Lindholm et al. 2016), particularly in flies and rodents

(Helleu, Gérard, and Montchamp-Moreau 2015). Many of the described systems are244

sex-specific (Úbeda and Haig 2005; Lindholm et al. 2016), arising due to activity in

either female (e.g., Fishman and Willis 2005) or male meiosis (e.g., Sandler, Hiraizumi,246

and Sandler 1959). When meiotic drivers arise on sex chromosomes, they change

the relative frequencies of gametes carrying the sex-determining alleles, resulting in248
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brood sex ratio bias (Burt and Trivers 2006). In particular, where X-linked meiotic

drivers bias segregation in males, X-bearing sperm outnumber Y-bearing sperm and250

the sex ratio among offspring is female-biased. Hamilton 1967 noted that extreme

sex ratios caused by X-linked meiotic drivers could lead to population extinction, as252

eventually the almost entirely female population will go unmated and be unable to

produce offspring.254

Substantial theoretical work since Hamilton’s pioneering study (Hamilton 1967) has

investigated the spread of meiotic drive, and the conditions that lead to its polymor-256

phism and prevent population extinction. Polymorphism and population persistence

are most directly achieved via suppression systems that evolve at other loci to negate258

meiotic drive (Hamilton 1967; Charlesworth and Hartl 1978; Frank 1991). In the ab-

sence of suppression, fixation of autosomal (Ardlie 1998; Larracuente and Presgraves260

2012) or X-linked (Taylor and Jaenike 2002; Taylor and Jaenike 2003; Price, Bretman,

et al. 2014) meiotic drive can be prevented by direct fitness costs associated with car-262

rying the driving allele. Meiotic drive systems often occur within inversions that link

together the required drive and enhancer loci (Pomiankowski and Hurst 1999). These264

inversions may also capture deleterious alleles and/or allow deleterious mutations

to accumulate through Muller’s ratchet, potentially explaining the fitness costs as-266

sociated with meiotic drivers (Edwards 1961; Curtsinger and Feldman 1980; Dyer,

Charlesworth, and Jaenike 2007; Kirkpatrick 2010). Such effects have been demon-268

strated empirically, with female carriers of X-linked meiotic drive observed to have

reduced survival or fecundity, especially when homozygous (Larner et al. 2019; Dyer270

and Hall 2019; Keais, Lu, and Perlman 2020). However, these fitness costs are not
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necessarily sex-specific or recessive (Finnegan, White, et al. 2019).272

Meiotic drive can also have deleterious effects by reducing male fertility, most obvi-

ously because sperm/spores that do not carry the driving element are rendered dys-274

functional or killed (Price, Hodgson, et al. 2008). This effect may be negligible when

females mate with a single male, but drive can alter competition between the ejacu-276

lates of different males in a polyandrous mating system. Not only do drive-carrying

males deliver fewer sperm per ejaculate, but drive-carrying sperm can also perform278

more poorly in sperm competition with sperm from wild-type males (Price, Hodgson,

et al. 2008; Manser, Lindholm, et al. 2017; Dyer and Hall 2019; Manser, König, and280

Lindholm 2020). Offspring sired by drive males have lower fitness which may favour

the evolution of increased sperm competition through female polyandry, an argu-282

ment for which there is some theoretical and experimental evidence (Price, Hodgson,

et al. 2008; Wedell 2013; Price, Bretman, et al. 2014; Holman et al. 2015; Manser, Lind-284

holm, et al. 2017), but see (Sutter et al. 2019). The fertility cost to drive males, and

associated selection for female polyandry, becomes less important as male frequency286

declines leading to lower competition for mates and fertilisation (Taylor and Jaenike

2002; Taylor and Jaenike 2003). In line with this, modelling has shown that polyandry288

can limit the spread of meiotic drive alleles, but the evolution of polyandry is not suf-

ficient to stop meiotic drive alleles fixing (Holman et al. 2015).290

The above models have focused on the evolutionary dynamics of meiotic drive but ig-

nored its demographic consequences. This is surprising as in one of the foundational292

models of the field, Hamilton 1967 showed that sex-linked drive causes transient pop-

ulation expansion before extinction. Population decline occurs when the sex ratio is294
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pushed beyond the point where females can find sufficient mates. This model did

not include density-dependent population regulation or fertility/viability costs asso-296

ciated with meiotic drive. Nevertheless, it suggests that X-linked meiotic drivers will

increase population size when they cause sex ratios to be biased, but not extremely298

biased. Some subsequent analyses support this hypothesis, but it has not been ex-

amined directly. Unckless and Clark 2014 showed that species with X-linked meiotic300

drivers can have an advantage during interspecific competition, shifting the commu-

nity competition in their favour (James and Jaenike 1990). Similar effects can occur302

with other systems that cause female-biased sex ratios. For example, feminisation

caused by Wolbachia can increase population size until females go unmated due to a304

lack of males (Hatcher et al. 1999; Dyson and Hurst 2004). Finally, under temperature-

dependent sex determination, shifts in climate can bias the sex ratio towards females306

(West 2009), which is predicted to increase population sizes providing males are not

limiting (Boyle et al. 2014).308

First, we derive new general analytical expressions for the invasion and maintenance

of X chromosome variants. The results define the relative weighting of selection310

in males/females and maternal/paternal transmission, refining the heuristic that X-

linked alleles weight their fitness effects twice as strongly in females because they312

spend twice as much time in females (Patten 2019; Hitchcock and Gardner 2020). We

use these results and a simulation-based model to investigate the interplay between314

female mating rate (polyandry), male mating rate (limits to the number of females

each male can mate with) and male sperm compensation (for losses caused by mei-316

otic drive) in the maintenance of X-drive polymorphism. Having established the evo-
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lutionary dynamics, we investigate the demographic consequences of meiotic drive318

and show that drive can cause population sizes to be larger than wild-type popula-

tions, enabling them to persist for longer and with lower intrinsic birth rates.320

Materials and Methods

We model a well-mixed population with XY sex-determination where generations are322

discrete and non-overlapping. There are two types of X chromosome segregating in

the population, a standard X chromosome and a drive Xd chromosome. There are324

three female genotypes XX, Xd X and Xd Xd , and two male genotypes XY and Xd Y, which

we describe as wild-type and drive males respectively. In XY males, meiosis is fair. The326

Xd chromosome biases segregation such the ratio of Xd to Y chromosomes among

their sperm is (1+δ)/2 : (1−δ)/2. When δ= 0, meiosis is fair and sex chromosomes are328

transmitted with equal probability; when δ= 1 drive males produce only Xd sperm.

We assume males (whether drive or wild-type) produce sufficient sperm in an ejac-330

ulate to fertilise all a female’s eggs. Drive males have reduced ejaculate size because

Y-bearing sperm are rendered dysfunctional, reducing their success in sperm compe-332

tition. The ejaculate size of Xd Y drive males is determined by the degree of compen-

sation c (c ∈ [0,1]). When c = 1/(1+δ), there is no compensation for dysfunctional Y334

sperm. When c > 1/(1+δ), drive males produce extra sperm in their ejaculate to com-

pensate for those lost through meiotic drive. In the extreme when c = 1, drive male336

ejaculates contain the same number of viable sperm as wild-type males. Compen-

sation affects the success of drive males in sperm competition which is assumed to338
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female genotype i w f
i EX ,i EXd ,i

i = X X 1 1 0

i = Xd X 1−hs f 1/2 1/2

i = Xd Xd 1− s f 0 1

male genotype j w m
j SX , j SXd , j SY , j

j = X Y 1 1/2 0 1/2

j = Xd Y 1− sm 0 c(1+δ)/2 c(1−δ)/2

Table 1: Relative fitness and transmission parameters for different male and female

genotypes

follow a fair raffle (Parker 1990). In this paper, we refer to c in the context of ejaculate

size, however it can also be interpreted as the competitive ability of drive male sperm.340

This could apply to cases where sperm have reduced motility, for example.

We track the genotypes of adults, who experience density dependent competition for342

resources and mate at random before producing offspring. We assume that fertil-

ization follows sperm competition among the ejaculates of all males a female mates344

with. The resulting offspring experience selection according to their genotype before

they become the adults of the next generation. The fitness of each genotype is given346

by w f
i and w m

i , allelic fitness effects in males and females are given by s f , sm ∈ [0,1]

and h ∈ [0,1] determines dominance in females (Table 1).348
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Analytical model

The total number of adults in the population is given by N = ∑
i Fi +∑

j M j , where350

Fi and M j represent female and male population densities respectively and i ∈

{X X , X Xd , Xd Xd } and j ∈ {X Y , Xd Y }. We assume that competition for resources352

among adults linearly reduces the fecundity of females. Specifically, each adult female

gives birth to BN = b(1−αN ) offspring, where b is the intrinsic female fecundity in the354

absence of competition andα is the per-individual competitive effect on fecundity. In

the absence of meiotic drive or other genotypic effects on fitness, the population size356

in the next generation is N ′ = (b/2)(1−αN )N and the equilibrium population size is

N̂ = (b −2)/bα. This form of density dependence can equally apply to intra-specific358

competition that reduces female survival probability before reproduction. We con-

sider cases where the strength of density dependence is a function of the birth rate in360

Appendix .

In this model, we consider various degrees of polyandry determined by a fixed integer362

λ f : females mate λ f times, with a male mate chosen uniformly at random. When

each female mates once (λ f = 1), the adult female densities of genotype ab in the364

next generation, summed across matings between all possible female i and male j

parents, are given by366

F ′
ab =

( ∑
i female

BN Fi Ea,i

)( ∑
j male

m j Sb, j∑
k Sk, j

)
w f

ab , (1)

and the male densities of gentotype aY are given by

M ′
aY =

( ∑
i female

BN Fi Ea,i

)( ∑
j male

m j SY , j∑
k Sk, j

)
w m

aY , (2)
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Term Definition

Mi Density of males with genotype i

Fi Density of females with genotype i

mi Within-sex frequency of males with genotype i

λ f Number of matings before laying eggs in a females’ lifetime

Ea.i Proportion of eggs of genotype a produced by a female of genotype i

Sb,i Units of sperm of type b produced by a male of genotype i relative to wild-type

N Total density of males and females

α Per-adult cost to average female fecundity

b Intrinsic female fecundity (in the absence of competition)

BN Female fecundity in a population of size N

c Ejaculate size of a drive male compared to a wild-type male

δ Strength of drive

Table 2: Table of terms

where Ea,i is the proportion of eggs with haploid genotype a produced by females368

with diploid genotype i , m j = M j /
∑

k Mk is the frequency of males with genotype j ,

and Sb, j is the proportion of sperm with haploid genotype b contributed by males370

with genotype j (Table 1). That is, diploid parental genotypes are denoted by sub-

scripts i and j for males and females, while subscripts a and b represent haploid chro-372

mosomes inherited maternally and paternally, respectively. As there are no parent-of-

origin effects, the sum of F ′
Xd X and F ′

X Xd
is represented simply as F ′

Xd X . When each374
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female mates twice (λ f = 2), female densities in the next generations are given by

F ′
ab =

( ∑
i female

BN Fi Ea,i

)( ∑
j ,k male

m j mk
(
Sb, j +Sb,k

)∑
l
(
Sl , j +Sl ,k

) )
w f

ab , (3)

where there is competition for fertilization of each egg among the sperm contributed376

by two males, firstly with genotype j and then with genotype k. When each female

mates many times (λ f large), the female densities in the next generation approach378

F ′
ab =

( ∑
i female

BN Fi Ea,i

)(∑
j

m j
M j Sb, j

MX Y + cMXd Y

)
w f

ab , (4)

where females effectively sample sperm randomly from the total pool of gametes pro-

duced by all males in the population. Recursion equations for male densities follow380

similarly, replacing Sb,i with SY ,i and w f
ab with w m

aY in equations Eq(3) and Eq(4). Full

derivations can be found in Appendix 1.382

Simulation model

The previous model assumes that male matings are not limiting. Population extinc-384

tion can only occur when the birth rate is low and/or no males remain. In the simula-

tion model, we allow limitations on the mating rate in both female and male matings386

which are capped by λ f and λm respectively. When an individual reaches the maxi-

mum number of matings they cannot mate again. This constraint precludes the pos-388

sibility that a small number of males can fertilise a large number of females, which is

possible in the analytical model. Under these more realistic conditions, it is possible390

for a population to become extinct because the sex ratio is female biased and there

are insufficient males to sustain the population.392
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As in the analytical model, adult females experience density-dependent competition

for resources. In the absence of any competition, females lay b eggs each. In the394

case where b is non-integer, females lay a mean of b eggs by laying a minimum of ⌊b⌋

eggs with a 100(b −⌊b⌋)% chance of laying one more. Whether or not a birth occurs396

depends on the competitive influence of other adults, with birth probability 1−αN .

The first generation comprises N0 wild-type individuals at an equal sex ratio, and the398

driving Xd chromosome is introduced into the population at a proportion q in Hardy-

Weinberg equilibrium. Generations then proceed similarly to the previous model.400

Adults mate randomly until there are either no females or no males available to mate.

Assuming they are able to mate, every individual is picked with equal probability. We402

track the sperm carried by each female as a 3-tuple (x, y, z), representing the quantity

of X, Xd , and Y bearing sperm respectively. When a male mates with a female, he adds404

to the sperm that the female carries. XY males add (0.5,0,0.5), and Xd Y males add

(0,c(1+δ/2),c(1−δ)/2). Once mating is complete, each egg is fertilised by a sperm406

sampled randomly, weighted by the probability distribution (x, y, z) after normalisa-

tion. The juveniles then undergo viability selection according to their genotypic fit-408

ness, with survival probabilities given in Table 1.

There are three main sources of stochasticity present within the simulation model410

but not in the analytical model. First, the exact sperm that fertilises an egg is sam-

pled at random. Second, juvenile survival to adulthood and the realisation of births412

is probabilistic. And finally, mating is at random. These three sources can result in

fluctuations in genotype frequencies, which can affect the population sex ratio and414

population size.
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Results416

Invasion of a rare X chromosome

We first give general conditions for the spread of a rare X chromosome. A rare X-linked418

allele increases in frequency if

1

2
w f

mat +
1

2
w m

mat ∗w f
pat > 1, (5)

where w i
j is the relative fitness of the mutant X chromosome in sex i when inherited420

maternally ( j = mat ) or paternally ( j = pat ). These relative fitnesses include any

transmission biases that arise during gamete production or competition, relative to422

the transmission of the resident chromosome in the same sex. This is a general ex-

pression that covers classical models of sex-specific selection on the X chromosome424

without sperm competition or meiotic drive (e.g. Curtsinger and Feldman 1980; Rice

1984).426

A widespread heuristic posits that X-linked alleles weight female fitness components

twice as much as male fitness effects because X chromosomes spend twice as much428

time in females as in males (Patten 2019; Hitchcock and Gardner 2020). This two-

thirds to one third weighting is a linear weak selection approximation of Eq (5), in430

which all the terms become additive. The more-accurate full expression Eq(5) has

two parts, reflecting the two pathways via which a rare X chromosome can increase432

in frequency in females, which are equally weighted (Figure 1). First, X chromosomes

can be inherited from mother to daughter (w f
mat ). Second, X chromosomes in males434

are always inherited from the mother and will always then be passed to a daughter
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Figure 1: For a rare X chromosome variant to spread in a population, it must in-

crease in frequency in females, which may occur via either of the paths shown.

Females transmit X chromosomes (maternally) to either sons or daughters.

Sons transmit all X chromosomes (paternally) to females in the next genera-

tion

(w m
mat ∗w f

pat ). If, averaged over these two pathways, the frequency of female carriers436

increases, then a rare chromosome type will spread in the population. This condition

(Eq(5)) shows that the spread of X-linked alleles depends on sex-specific selection and438

their transmission through the generations rather than the time spent in each sex.2

Maintenance of drive polymorphism440

We now apply this general condition to a driving Xd chromosome. To remain poly-

morphic, a rare Xd chromosome must increase in frequency when rare but not fix in442

the population. That is, w f
mat = 1−hs f is the viability of the heterozygous female;

w m
mat = 1−sm is the viability of the drive male; and w f

pat = (1+δ)[cλ f /(c+λ f −1)](1−444

hs f ) is the transmission of meiotic drive alleles through sperm competition and then

their viability in female heterozygotes. Combining these terms, the driving Xd chro-446

2This derivation and interpretation was done by Michael Scott, after the results particular to this

paper were obtained.
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mosome spreads if

(1−hs f )

2

(
1+

[
cλ f

c + (λ f −1)

]
(1+δ)(1− sm)

)
−1 > 0. (6)

The success of a rare drive allele in sperm competition is c/(c + (λ f −1)), given that a448

female mates with a single drive male and λ f −1 wild-type males. Across all matings,

the relative success of rare drive alleles during sperm competition is given by the term450

in square brackets.

Using the same logic, the driving Xd chromosomes will not fix in the population if452

(1−hs f )

2(1− s f )

(
1+

[
λ f

1+ c(λ f −1)

]
1

(1+δ)(1− sm)

)
−1 > 0. (7)

As X chromosome meiotic drive (Xd ) becomes common, the transmission and fitness

advantage/disadvantage of Xd chromosomes in males is unchanged (terms involving454

δ and sm). The sperm competition term (in square brackets) now reflects the relative

competitiveness of sperm from non-drive males.456

Importantly, close to fixation, most females are either heterozygous or homozygous

for meiotic drive and, unlike Eq(6), Eq(7) depends on these relative female fitnesses.458

The maintenance of polymorphism (satisfying inequalities in both Eq(6, 7)) occurs

when meiotic drive causes low fitness cost in female heterozygotes (hs f ) relative to460

the cost in female homozygotes (s f ), which allows invasion but prevents fixation. For

example, meiotic drive alleles are less likely to reach fixation when the negative fitness462

effects of drive are recessive (h = 0, Figure 2).

Sperm competition affects the dynamics of rare X-alleles through a combination of464

polyandry (λ f ) and any reduction in ejaculate size caused by drive (c) (Figure 2). If
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females mate with only one male (λ f = 1) then sperm competition has no effect. The466

same holds if drive males produce the same amount of sperm as wild-type males

(c = 1) (Figure 2). In both cases, the sperm competition term in the square brack-468

ets of Eqs(6-7) is equal to 1. At the other extreme, where females mate many times

(λ f →∞) the sperm competition term becomes c - the relative ejaculate size of drive470

males. If there is also no compensation for Y-bearing sperm killed by meiotic drive

alleles (c = 1/(1 + δ)), meiotic drive cannot invade (Figure 2B). Between these ex-472

tremes, increases in polyandry (larger λ f ) and decreases in compensation in drive

males (smaller c) hinder both invasion and fixation of meiotic drive alleles (Figure 2).474

Sperm competition is most important when there is both extensive polyandry and a

large reduction in ejaculate size caused by meiotic drive (Figure 2).476

Limiting male matings narrows the polymorphism space

In the results presented above, we assume that there is no sperm limitation, so even a478

small number of males is capable of fertilizing a large female population. In this case,

extinction by meiotic drive only occurs when there are no males left in the population.480

Here, we use the simulation model to consider limitations on the number of matings

that a male can perform. First, we compare the proportion of numerical simulations482

that result in drive polymorphism to the predictions from the analytical model, where

there are no limits to male mating. With male mating set at λm = 20 (Figure 3A), the484

region of polymorphism shrinks (the orange tiles do not completely fill the theoreti-

cal polymorphism space). On the upper boundary, this represents conditions where486
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the polymorphism is unstable because meiotic drive alleles have only a slight advan-

tage and remain at low frequencies where they are exposed to loss by genetic drift.488

The leftmost boundary is where drive is strong enough to reach a high frequency and

the sex ratio is heavily female biased, so many females go unmated due to male mat-490

ing limitation, and the population can go extinct. When the maximum number of

matings per male was reduced to λm = 2 (Figure 3B), just as many lose drive stochas-492

tically (on the upper boundary). But the problem of females remaining unmated is

exacerbated. More populations go extinct close to the fixation boundary, with fewer494

simulations resulting in polymorphism. Thus, we predict that population extinction

is likely when male mating rates are low and strong meiotic drive alleles reach high496

frequencies.

Population size in the presence of drive498

By creating female biased sex ratios, meiotic drive can influence population size. Fig-

ure 4 illustrates two different outcomes when drive spreads (extinction and polymor-500

phism). As a base for comparison, parameter values are chosen under which a wild-

type population is stably maintained (Figure 4A). When a driving X allele is introduced502

into the population it rapidly increases in frequency. This can skew the sex ratio fur-

ther and further towards females until extinction ensues because there are insuffi-504

cient males to fertilise all the females (Figure 4B). When the fitness costs of drive

in females are higher, drive can be stably maintained. The resulting population is506

female-biased and larger than it would be in the absence of drive because the higher

proportion of females increases the productivity of the population (Figure 4C).508
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In the absence of meiotic drive (p = 0), the population reaches an equilibrium popu-

lation size (N̂ ) given by the intrinsic birth rate (b) and the density-dependent reduc-510

tion in female fecundity caused by competition among individuals (α):

N̂ |p=0 = b −2

bα
, (8)

which is a standard result for logistic population growth with non-overlapping gen-512

erations (pp.44-46 with r = b/2 and d = bα Edelstein-Keshet 1987). The equilibrium

population size is larger when the intrinsic birth rate (b) is higher or the competitive514

effect of other individuals (α) is weaker. For the population to persist, each female

must produce at least two offspring (bmi n |p=0 = 2).516

To derive the population size with meiotic drive, we focus on the case where females

mate only once, excluding the effects of sperm competition. First, we define φ and ψ

as the LHS of Eq(6) and Eq(7) respectively, withλ f = 1;φ gives the selective advantage

of drive alleles when rare and ψ is the advantage of wild-type alleles in a population

fixed for drive. If an X chromosome meiotic driver invades (i.e. φ > 0, Eq(6)) and

reaches a polymorphic equilibrium (i.e. ψ > 0, Eq(7)) then its frequency in females

and males is given by

p̂ f =
φ

φ+ψ , (9)

p̂m = (1− sm)φ

(1− sm)φ+ψ . (10)

At the polymorphic equilibrium, the sex ratio will be female-biased and this in turn

affects the ecological equilibrium population size518

N̂ |p=p̂ = b∗−2

b∗α
, (11)

27



Results Chapter 2. Demographic effects of X-drive

where

b∗ = b(1+φp f /2)
1−pm

1−p f
> b. (12)

b∗ is the effective birth rate given the change in the sex ratio caused by meiotic drive.520

The effective birth rate with drive is higher, b∗ > b, becauseφ and p f are non-negative

and pm ≤ p f (from Eq(10)). The effective birth rate is increased by a factor equal to the522

number of females surviving to reproductive age (given the equilibrium frequency of

drive) relative to the number of females in a wildtype population (see File S1). As b∗ >524

b, the population size with drive is always larger than it would have been without drive

(Figure 5A). Drive populations effectively behave like wild-type populations with a526

higher birth rate, as a result of the sex ratio bias.

A similar outcome holds when a drive allele fixes. The total population size is528

N̂ |p=p̂ = b̃ −2

b̃α
, (13)

where

b̃ = b(1+δ)(1− s f ). (14)

For drive alleles that reach fixation, b̃ > b. Again, by biasing the sex ratio towards fe-530

males, fixed drive increases the population birth rate and thereby increases the over-

all population size (Figure 5A). However, this result may be most relevant for weak532

meiotic drivers (δ< 1) because there will be no males in the population when strong

meiotic drivers (δ≈ 1) reach fixation.534

By increasing population productivity, meiotic drive alleles also help to protect pop-

ulations from extinction. With strong drive at an intermediate equilibrium frequency,536

the minimum intrinsic birth rate required for population persistence is bmi n |p=p̂ =
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2/(1+ p̂ f φ), while for weak drive at fixation this is bmi n |p=p̂ = 2/(1− s f )(1+δ). Both538

of these values are less than two, the cut-off value for a population to go extinct in

the absence of drive. Populations with drive can persist with a lower average num-540

ber of offspring per female than those without, because a higher proportion of the

population are female. The results of the simulation model align with the analytic542

model. Whenever a polymorphism is reached, the resulting population size is bigger

than in the absence of drive (Figure 5B). The extent of the boost in population size de-544

pends on the viability cost associated with drive. As the cost decreases (either h or s f

decreases), the equilibrium frequency of drive increases, the sex ratio becomes more546

female biased, and the increase in population size becomes larger. Overall, these sim-

ulations confirm that meiotic drive can boost population size even when males can548

only fertilize a limited number of females.

Population persistence time550

Populations that are relatively small are liable to go extinct within a reasonable time

due to demographic stochasticity. To examine the effect of drive on persistence times552

simulations were run in small populations with a low intrinsic birth rate (b = 2.4,

α = 10−2.4), reflecting for example a small patch in a suboptimal or marginal envi-554

ronment. In these simulations, the mean population size without meiotic drive was

N̄ ± s.d . = 36.3±12.7 (consistent with the expected population size from Eq(8), which556

is N̂ = 41.9) and the persistence time was mean ±s.d . = 1088±1001 generations. The

approximate alignment of the mean and standard deviation is expected because the558

persistence times of stochastic logistic growth models are exponentially distributed
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(Ovaskainen and Meerson 2010).560

First, we consider the case where meiotic drive has no fitness costs (s f = sm = 0) and

either spreads to fixation or is lost by drift (Figure 6A). With δ= 0 (i.e. no transmission562

distortion), the Xd allele is completely neutral and the population persists as if it were

wild-type (Figure 6A). For increasingly strong meiotic drivers (increasing δ), the prob-564

ability of invasion increases and meiotic drive alleles are present at the end of more

simulations, causing populations to persist for longer. In this example (Figure 6A), the566

male mating rate is high (λm = 20), so there are sufficient males to maintain female

fecundity and resist extinction, even with strong drive (Figure 6A). However, when568

drive is very strong (δ≥ 0.8), the sex ratio can become excessively female biased and

population extinction becomes more likely.570

Population persistence was also evaluated for strong meiotic drivers (δ= 1). For sim-

plicity, the dominance coefficient in females was set to h = 0, limiting viability reduc-572

tion to homozygous female carriers (Figure 6B). When drive incurs no or small fitness

costs (s f < 0.2), it spreads to fixation and causes rapid extinction through extreme sex574

ratios. As the cost increases (0.2 < s f ≤ 0.5), meiotic drive spreads more slowly and the

persistence time increases back towards that found in wild-type populations. Eventu-576

ally, with higher cost (s f > 0.5), drive does not fix. Here, the sex ratio is skewed towards

females but there are sufficient males, leading to longer population persistence than578

wild-type populations. Where the cost is very high (s f > 0.7), drive is maintained at a

low frequency and may itself be stochastically lost. However, the transient presence580

of drive still increases the overall longevity of the population.
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These two examples demonstrate how drive increases population persistence until582

sex ratio biases are so strong that the males cannot fertilise all the females. The effect

of drive on population persistence depends on its frequency and thus the sex ratio584

bias created. As outlined in our evolutionary analysis above, other parameters affect

the frequency of meiotic drive alleles (dominance, male fitness effects, polyandry,586

ejaculate size compensation) and have corresponding effects on population persis-

tence.588

Discussion

This paper sets out a general condition for the spread, polymorphism and fixation of590

X-linked alleles, Eq(5), which we apply to the study of the evolutionary dynamics of

meiotic drive. There are two equally important pathways by which X-alleles spread:592

either from mother to daughters, or from mother to sons and then into granddaugh-

ters (Figure 1). Our condition shows that the success of X-linked alleles depends on594

sex-specific selection as well as the asymmetric transmission through the sexes. If

selection is weak, female fitness effects are twice as influential, as X chromosomes596

spend twice as much time in females as in males (Patten 2019; Hitchcock and Gard-

ner 2020). But this 2:1 rule does not apply when selection is strong, as is likely to be598

the case in meiotic drive.

A central finding is that X-linked meiotic drivers generally increase population size.600

By biasing the sex ratio towards females, meiotic drive effectively boosts the popula-

tion birth rate which is typically limited by the number of females (Eq(12,14)). This602

31



Discussion Chapter 2. Demographic effects of X-drive

increases the expected population size beyond the level in wild-type populations (Fig-

ures 4 and 5). In small populations at risk of stochastic population extinction, the in-604

crease in population size through meiotic drive can dramatically increase population

persistence time (Figure 6). This should enable populations to persist in marginal606

environments where they would otherwise go extinct. The population-level benefit

of drive breaks down when males become limiting and are no longer able to mate608

often enough for females to achieve full fecundity (Figure 6). Previous work (Pomi-

ankowski and Hurst 1999; Taylor and Jaenike 2002; Taylor and Jaenike 2003; Dyer and610

Hall 2019; Larner et al. 2019) has shown that female fitness in drive heterozygotes and

homozygotes affects the frequency of meiotic drive alleles. We show the additional612

dependence on the female (Figure 2) and male mating rate (Figure 3), and how this

then impacts the sex ratio bias, population size and persistence time of populations614

invaded by meiotic drive alleles (Figures 4, 5, 6). We find that the male mating rate

(λm) is key to determining whether meiotic drive cause population extinction. When616

males can mate repeatedly, their rarity does not cause sperm limitation amongst fe-

males and the distortion in the sex ratio is beneficial to population persistence. Limits618

on the number of females each male can mate with cause some females to go un-

mated resulting in population extinction as meiotic drive spreads and skews the sex620

ratio. This higher likelihood of extinction narrows the space in which meiotic drive is

likely to occur as a polymorphism in natural populations (Figure 3).622

Most previous work has concentrated on the consequences of female rather than

male mating rates, that is polyandry (λ f ), as this is a cause of sperm competition that624

hinders the spread of meiotic drive alleles (Price, Hurst, and Wedell 2010; Price, Bret-
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man, et al. 2014; Holman et al. 2015). Our work shows that this is only the case when626

ejaculate size is significantly reduced in male meiotic drive carriers (Figure 2). Gener-

ally, as compensation increases (i.e. c → 1), so does the likelihood of polymorphism,628

because drive male success in sperm competition reaches towards that of wild-type

males. In the modelling, we consider drive males to have lower fertility because of630

reductions in ejaculate size (proportional to the strength of drive δ). The same logic

applies to other mechanisms that might disadvantage the success of drive males in632

sperm competition, like slower sperm swimming speeds or reduced sperm longevity

(Olds-Clarke and Johnson 1993; Kruger et al. 2019; Rathje et al. 2019).634

Although there are few empirically obtained estimates for the fitness costs of X-linked

drive, many of them are compatible with polymorphism according to our model. Fe-636

male viability costs in Drosophila are often recessive but strong (h = 0 − 0.11, s f =

0.56− 1, see Table 1 in (Unckless and Clark 2014) and (Larner et al. 2019; Dyer and638

Hall 2019)). A counterfactual is the estimate from the stalk-eyed fly Teleopsis dal-

manni (Finnegan, Nitsche, et al. 2019) which found additivity and weaker viability640

loss in egg-to-adult viability, though the range on the dominance estimate is large.

A limitation of attempts to measure fitness is that they are based on laboratory con-642

ditions that may distort the pressures that exist in natural populations. They also

typically measure one component of fitness, for example survival over a particular644

life stage, neglecting others such as reproductive success. Furthermore, we note that

these empirical estimates may be biased towards systems with strong meiotic drive646

(δ≈ 1) because weak meiotic drivers are less easy to detect (Burt and Trivers 2006).

Population persistence is predicted to increase exponentially with population size648
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(Ovaskainen and Meerson 2010) (Figure 6). Therefore, we predict that populations

with meiotic drive are more likely to be observed in marginal habitats where wild-650

type populations may go extinct. In natural populations, tests of this prediction may

be confounded by a range of other factors associated with marginal habitats. For in-652

stance the rate of polyandry is likely to be lower in poor quality environments and this

will favour the spread of drive (Pinzone and Dyer 2013; Finnegan 2020). A viable first654

experimental step may be to use lab populations to evaluate whether X-linked mei-

otic drive can increase population birth rates and/or rescue declining populations656

from extinction.

A relationship between sex ratios and population size/persistence is also not yet658

clearly established in species with temperature-dependent sex determination, de-

spite similar predictions (Boyle et al. 2014; Hays et al. 2017). As predicted previously660

(Hamilton 1967), severely male limited populations should be quickly driven to ex-

tinction, which can occur in lab populations (Price, Hurst, and Wedell 2010) and may662

have been observed in a natural population (Pinzone and Dyer 2013). However, high

male mating rates can facilitate population persistence in the face of extremely biased664

sex ratios. A Wolbachia infection in butterflies resulted in a sex ratio of 100 females

per male, but these populations persisted perhaps because males can mate more than666

50 times in a lifetime (Dyson and Hurst 2004).

The population dynamics of sex ratio distorting elements are thought to be influ-668

enced by their propensity to colonise new patches and drive them to extinction,

i.e., metapopulation dynamics (Hatcher 2000). When drive is strong and confers670

little fitness cost in females, new populations cannot be established by drive geno-
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types because of the deficit in the numbers of males and resulting weak population672

growth. This could lead to cycling dynamics where colonisation by non-drive geno-

types is needed to establish populations, which can then be invaded by drive geno-674

types whose spread is followed by extinction (Taylor and Jaenike 2003). These popu-

lation level costs can decrease the overall frequency of selfish genetic elements across676

the metapopulation (Boven and Weissing 1999). Our results emphasise the potential

for X-linked meiotic drivers to boost population sizes and persistence times, which678

we expect would increase the proportion of patches expected to have drive. It has

also been suggested that individuals carrying selfish genetic elements may show a680

greater propensity to migrate between populations, increasing their fitness by reach-

ing patches with lower numbers of heterozygotes and less polyandry (Runge and682

Lindholm 2018). However, the full metapopulation dynamics where local population

sizes are affected by drive frequency remains to be investigated.684

We generally predict population size to be increased when the sex ratio is biased to-

wards females. Thus we expect our results to hold in species with ZW sex determi-686

nation when meiotic drive favours W chromosomes (Kern et al. 2015) but not when

meiotic drivers favours Y chromosomes or Z chromosomes (Hickey and Craig 1966;688

Gileva 1987). A general constraint on our conclusions is that they hold for competi-

tion models where an increase in birth rate increases population size (Supplementary690

Information). If the population is limited by the availability of resources regardless of

the birth rate, boosts in population size are not expected. Likewise, where males con-692

tribute to parental care either through direct care or via control of resources used by

females, sex ratio distortion will not have such a profound effect because the expected694
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change in the number of offspring produced will be reduced and have a lesser effect

on population size and persistence (West 2009). A further caveat of these results is696

that they assume density dependent selection is contributed to equally by both sexes.

Where males contribute less than females the sex-ratio skew will have a lesser im-698

pact on population size. There may also be cases where increased birth rates cause

competition to become increasingly intense and reduce population size. An example700

is given in the Supplementary Information, where drive counter-intuitively decreases

population size by increasing the effective birth rate beyond a critical level (see Figure702

S1). Although this pattern of density dependence seems likely to be atypical, it points

to the need for the biological details of particular species to be taken into account.704

Our results are also pertinent to the design of synthetic gene drive systems. Gene drive

systems have been proposed as a method of controlling pest populations through al-706

tering the sex ratio so that one sex becomes limiting. Many of these proposals are

analogous to Y-linked meiotic drive, for example “X-shredders” (Windbichler, Pap-708

athanos, and Crisanti 2008; Galizi et al. 2014; Burt and Deredec 2018) that limit the re-

productive output of the population by biasing segregation towards Y-bearing sperm.710

We expect systems that cause male sex ratio bias to be effective. X-drive has also been

recently suggested as a tool for biological control (Prowse et al. 2019). As observed in712

some simulations, as long as males are not limiting, the population may benefit from

the introduction of an X-drive that increases the population productivity and carry-714

ing capacity (Prowse et al. 2019). That is, less efficient synthetic X-drivers may fix and

result in larger populations without causing populations to crash (Prowse et al. 2019);716

this is analogous to fixation of weak meiotic drive in our model. Another possibility
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is that the driving allele does not fix but is maintained at a polymorphic equilibrium718

by the evolution of suppressors or associated fitness costs, for example. The result-

ing population will have a female-biased sex ratio, which our results suggest could720

increase population size and persistence. Thus, we urge caution when considering

the use of X-linked gene drive for population control.722

At the population level, the optimal sex ratio is likely to be female biased because rel-

atively few males are required for complete fertilization. In some circumstances, such724

as local mate competition, individual-level and group-level selection can align, and

female-biased sex ratios can evolve (West 2009; Hardy and Boulton 2019). Here, we726

show that selfish genetic elements (specifically, X-linked meiotic drivers) can move

populations towards their population-level optimum and benefit population-level728

traits (such as population size and persistence time), a possibility that has probably

been under-emphasised relative to their detrimental effects on populations.730
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Figure 2: Fitness parameters under which X chromosome meiotic drive in-

vades, reaches polymorphism (orange border), or fixes (blue border), given dif-

ferent levels of sperm compensation (c). Boundaries at c = 1 (full compensa-

tion) are equivalent to the condition of a single female mating (λ f = 1). In A),

females mate twice (λ f = 2), in B) females mate many times, effectively sam-

pling at random from all male sperm produced. If females mate many times

and there is no sperm compensation (c = 0.5), then polymorphism is not possi-

ble. Other parameter values: no fitness effects in drive males (sm = 0) who only

produce Xd -bearing sperm (δ= 1).
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Figure 3: The effect of the male mating rate. Numerical simulation data show-

ing the proportion of times (out of 50 simulations) that a polymorphism was

maintained for 2000 generations when A) males mate 20 times (λm = 20) and B)

males mate twice (λm = 2). The region of polymorphism is demarcated on the

assumption that there are no constraints on male mating (area within orange

line). The simulation parameters used were δ = 1, c = 1, λ f = 1, q = 0.01, N0 =
200,b = 2.4,α= 0.001.
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Figure 4: Illustrative examples of population dynamics with and without drive.

A) the wild-type population without drive, B) the addition of drive causing

rapid population extinction (h = 0.4, s f = 0.2), C) the addition of drive sub-

ject to stronger counter selection leading to a population polymorphic for drive

(h = 0.2, s f = 0.55). Female genotypes are shown in red, and male in blue.

The mean wild-type population size was 161 and is shown by the dotted line

(analytical model predicts approximately 167). Other parameters used were

c = 0.75,δ = 1,b = 2.4,α = 10−3,λ f = 2,λm = 20, q = 0.01, and the initial pop-

ulation size was 150.
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Figure 5: Population size is increased with meiotic drive. A) Two examples

where populations with meiotic drive have higher population size and persist

with lower intrinsic growth rates (b < 2). The first when drive is weak and at fix-

ation (δ= 0.25) and the second when drive is strong and at equilibrium (δ= 1).

Other parameter values: s f = 0 for weak drive, s f = 0.8,h = 0.1 for strong drive,

sm = 0, c = 1, α = 10−3. B) The average increase in population size compared

to a wild-type population without meiotic drive for the data in Figure 3A. The

population size for each simulation was taken to be the mean size after a 100

generation burn in period, and the value for each tile in the plot is the mean of

those simulations that resulted in polymorphism from a sample of 50.
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Figure 6: Persistence times for populations as A) the strength of drive increases

(δ), and B) the strength of selection in females increases (s f ). Orange points de-

note populations where drive was present and blue points where drive was ab-

sent at the time of extinction or at the maximum simulation duration of 105 gen-

erations. The green line represents the mean persistence time of wild-type pop-

ulations without meiotic drive and the black lines show mean persistence times.

Populations began with an initial drive frequency of q = 0.1. Female adults

had a mean birth rate of b = 2.4 with a high cost of competition, α = 10−2.4.

In A) s f = 0, drive acts by killing a fraction of Y sperm with no compensation

(c = 1/(1+δ)) and in B) viability costs were in homozygotes only (h = 0), males

produced only Xd sperm and had full compensation (δ= c = 1). Other parame-

ter values sm = 0,λ f = 2,λm = 20.

42



Locally adaptive inversions in

structured populations 3
732

Abstract

Inversions have been proposed to facilitate local adaptation, by linking together lo-734

cally coadapted alleles at different loci. Classic prior work addressing this question

theoretically has considered the spread of inversions in “continent-island” models in736

which there is a unidirectional flow of maladapted migrants into the island popula-

tion. In this setting, inversions are most likely to establish when selection is weak, be-738

cause stronger local selection more effectively purges maladaptive alleles, thus less-

ening the advantage of inversions. Here, we show this finding only holds under lim-740

ited conditions. We study the establishment of inversions in a “two-deme” model,

which explicitly considers the dynamics of allele frequencies in both populations742

linked by bidirectional migration. For symmetric selection and migration, we find

3Work based on this chapter is published as a preprint on bioRxiv and has been submitted to an

academic journal, with Michael Scott, Max Reuter, and Andrew Pomiankowski as coauthors.
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that stronger local selection increases the flow of maladaptive alleles and favours in-744

versions, the opposite of the pattern seen in the asymmetric continent-island model.

Furthermore, we show that the strength and symmetry of selection also change the746

likelihood that an inversion captures an adaptive haplotype in the first place. Consid-

ering the combined process of invasion and capture shows that inversions are most748

likely to be found when locally adaptive loci experience strong selection. In addition,

inversions that establish in one deme also protect adaptive allele combinations in the750

other, leading to differentiation between demes. Stronger selection in either deme

once again makes differentiation between populations more likely. In contrast, dif-752

ferentiation is less likely when migration rates are high because adaptive haplotypes

become less common. Overall, this analysis of evolutionary dynamics across a struc-754

tured population shows that established inversions are most likely to have captured

strongly selected local adaptation alleles.756

Introduction

Chromosomal inversions are a form of structural variant that suppress recombination758

between loci. Inversions can result in reduced fitness due to the disruption of genes

around their breakpoints (Kirkpatrick 2010), or from the capture and accumulation of760

deleterious alleles due to their lower effective recombination rate (Wasserman 1968;

Berdan et al. 2021). Furthermore, inversion heterozygotes may experience reduced762

fecundity as a result of improper meiosis that results in aneuploid gametes (White

1978). Despite these negative fitness effects, the ubiquity of inversions has led to764
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several putative explanations for their continued persistence (see reviews Kirkpatrick

2010; Wellenreuther and Bernatchez 2018; Faria, Johannesson, et al. 2019; Huang and766

Rieseberg 2020; Villoutreix et al. 2021). In particular, inversions could facilitate local

adaptation under gene flow by increasing linkage between coadapted alleles and re-768

ducing effective migration of maladapted haplotypes (Kirkpatrick and Barton 2006).

Empirical evidence for this hypothesis has since been documented across a wide ar-770

ray of taxa (e.g. Lowry and Willis 2010; Cheng et al. 2012; Ayala, Guerrero, and Kirk-

patrick 2013; Lee et al. 2017; Christmas et al. 2019; Faria, Chaube, et al. 2019; Huang,772

Andrew, et al. 2020; Koch et al. 2021; Hager et al. 2022; Harringmeyer and Hoekstra

2022), and a body of related theoretical work has also developed from the original774

model, investigating the roles of geography, chromosome type, and inversion length

on the fate of adaptive inversions (Feder, Gejji, et al. 2011; Charlesworth and Barton776

2018; Connallon, Olito, et al. 2018; Connallon and Olito 2021; Proulx and Teotónio

2022). For simplicity, this work often considers a “continent-island” model, in which778

inversions are introduced into an “island” population which receives maladapted mi-

grants from a larger “continent” population. In this model, the selective advantage of780

an adaptive inversion is proportional to the rate of gene flow (Kirkpatrick and Barton

2006), and inversely proportional to the strength of selection on the island (Bürger782

and Akerman 2011; Charlesworth and Barton 2018). These results rely on the homo-

geneous maladaptation of migrant alleles which follows from the extreme migration784

asymmetry assumed between the continent and island populations (Kirkpatrick and

Barton 2006). This scenario is unlikely to apply to many empirical systems, where786

local adaptation occurs in a structured population with greater symmetry and indi-
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viduals migrate between similarly sized populations at rates that are similar to and788

from each population (e.g. Feder, Gejji, et al. 2011, Proulx and Teotónio 2022). With

two-way dispersal, selection will interact with migration to determine the overall rate790

of maladaptive gene flow. However, there has been no thorough analytical dissection

of the roles that migration and selection play individually in such a model.792

In addition, it is important to consider not only whether an inversion spreads but also

how the frequency of adaptive haplotypes affects their probability of being captured794

by an inversion. This has been briefly discussed before (Kirkpatrick and Barton 2006),

and in relative terms when comparing X-linked and autosomal inversions (Connal-796

lon, Olito, et al. 2018). But so far models have sidestepped the problem by assum-

ing that either an inversion capturing the coadapted haplotype simply existed or that798

such an inversion arose during a period of allopatry (Feder, Gejji, et al. 2011). Explic-

itly modelling the origin of the inversion is important because parameters favourable800

for the establishment of an adaptive inversion are not necessarily those where adap-

tive inversions are likely to arise. Assuming an inversion captures a random genotype,802

the probability of capturing a particular adaptive combination is proportional to its

frequency. For example, adaptive inversions are expected to be favoured most when804

there are high rates of migrant gene flow, so there are fewer fit genotypes to be cap-

tured.806

Here, we model the fate of locally adaptive chromosomal inversions in a two-locus,

two-allele, two-deme model with migration and selection. We consider the case of808

symmetrical deme sizes and migration, as well as asymmetrical scenarios with the

continent-island model as the extreme case. To understand the dynamics of inver-810
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sions, we determine the probability of an adaptive inversion arising and its subse-

quent selective advantage in a population in which the locally adaptive alleles have812

reached their equilibrium frequencies and linkage under migration and selection. By

considering the processes of inversion origin and spread in both demes, we deter-814

mine population structures which favour the evolution of inversions that allow local

adaptation under environmentally variable selection.816

Methods

We consider a population consisting of two demes linked by bidirectional migration818

with selection for local adaptation. We first derive analytical expressions for equi-

librium allele frequencies at the local adaptation loci and the linkage disequilibrium820

(LD) between them. This will allow us to assess the frequency of each haplotype and

hence the invasion probability of an inversion capturing a locally adapted combina-822

tion of alleles. We then determine the probability of such an inversion arising and

establishing itself in the population.824

Model

We model an infinite population of two demes, consisting of haploid, hermaphroditic826

individuals with discrete non-overlapping generations. The model is equally applica-

ble to the case where there are two sexes at even sex ratio whose genetic determina-828

tion is unlinked to the adaptive loci under consideration. Selection acts on two loci,
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A and B , that have two alleles each, Ai and Bi , where i ∈ {1,2} denotes the deme in830

which the allele provides a benefit si (equal between the two loci). The relative fit-

ness of an individual in deme i is either (1+ si )2, (1+ si ) or 1, depending on whether it832

carries two, one or no allele(s) conferring local adaptation to its environment.

The life cycle begins with adults. These individuals reproduce, whereby pairs of par-834

ents are sampled according to their relative fitness in their current deme to produce

one joint offspring. During reproduction, recombination occurs between the parental836

chromosomes (and their loci for local adaptation) at rate r . When alleles are held in

an inversion, the recombination rate with non-inverted chromosomes drops to zero838

(double cross-overs and gene conversion are ignored). Migration between demes

then occurs such that a proportion mkl of juveniles in deme l are migrants from deme840

k. After migration, the juveniles in each deme become the adults of the next genera-

tion. As the life cycle consist of just two phases, reproduction/selection and dispersal,842

the order of events within a generation does not affect the results.

At the beginning of a generation, Ai B j adults in deme k are at proportion pk
i j and844

have fitness w k
i j . Among the parents sampled for reproduction, the frequencies are

p̃k
i j = pk

i j (w k
i j /w̄k ), where w̄k is the mean fitness in deme k. Dk = pk

11pk
22 −pk

12pk
21 is846

the coefficient of linkage disequilibrium in deme k, and D̃k = p̃k
11p̃k

22 − p̃k
12p̃k

21 is the

linkage disequilibrium after selection, among parents. Among the juveniles of the848

next generation, the frequency of genotype Ai B j in deme k after migration, is given

by850

pk
i j

′ = (1−mkl )(p̃k
i j − r D̃k )+mkl (p̃ l

i j − r D̃l ) (15)
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if i = j , and

pk
i j

′ = (1−mkl )(p̃k
i j + r D̃k )+mkl (p̃ l

i j + r D̃l ) (16)

otherwise.852

For analytical tractability, we convert this discrete time system to continuous time

by taking the limit when all rate parameters (m, s,r ) are small and of the same order.854

When migration is limited to one direction (i.e., m12 or m21 = 0) or when selection

in one environment is very strong (si ≫ s j ), the model approaches the well stud-856

ied “continent-island” model (hereafter superscript “C-I”, e.g., Kirkpatrick and Barton

2006 and Charlesworth and Barton 2018).858

Analysis

To use the quasi-linkage equilibrium (QLE) approximation, we first rewrite the geno-860

type frequencies in terms of allele frequencies and LD, and then calculate their equi-

libria (Kirkpatrick, Johnson, and Barton 2002; Otto and Day 2011). This approxima-862

tion assumes that recombination between the two loci is sufficiently high compared

to migration and selection (r ≫ mi j , sk ) to allow LD to reach an equilibrium much864

more quickly than the allele frequencies. This is justified here if we do not consider

loci that are already tightly linked. But this is not an interesting case, because inver-866

sions then offer minimal advantage from suppressing recombination. To ensure the

existence of an equilibrium, migration must also be weak compared to selection (i.e.868

max(m12,m21) < min(s1, s2)). These values allow the calculation of the equilibrium

mean fitness in each deme, and hence the rate of increase of an adaptive inversion.870
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Using Equations 15 and 16 with r = 0, the dynamics of an A1B1 inversion are de-

scribed by the matrix A11, in which the (i , j )-th entry describes an inverted adult expe-872

riencing selection in deme i , and whose offspring is located in deme j post-dispersal,

given by874

A11 =


(1−m21)(1+s1)2

ˆ̄w1

m12(1+s1)2

ˆ̄w1

m21
ˆ̄w2

(1−m12)
ˆ̄w2

 . (17)

where ˆ̄wk is the equilibrium mean fitness in deme k, calculated from the allele fre-

quencies at QLE (we use the circumflex symbol ˆ for equilibrium values throughout).876

A11 is a mean matrix, in which the entry akl describes the expected number of off-

spring a parent in deme k has that end up in deme l . The rate that a rare A1B1 inver-878

sion increases in frequency in the whole population is given by the leading eigenvalue

of A11 (λ11). As the population is at equilibrium the growth rate of a recombining A1B1880

haplotype is 1, so λ11 > 1 implies a benefit to the inversion that can be ascribed to the

absence of recombination.882

Capture of locally adaptive alleles

Locally adaptive inversions must have captured locally adaptive haplotypes. The884

chance of this occurring depends on the frequency of said haplotypes in each popula-

tion. The probability that an inversion captures coadapted alleles (Ai Bi ) and invades886

is given by

γi = p1 f 1
i i +p2 f 2

i i , (18)

where pi is the probability of invasion conditional on the inversion arising in deme888

i . The probabilities pi can be derived using the theory of branching processes. First,
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define the random variable Xk
l to be the number of offspring that, post-migration, are890

in deme l from a parent in deme k. Under Wright-Fisher conditions, Xk
l has a Poisson

distribution with mean akl . Then, let q = (q1, q2), where qi is the probability an inver-892

sion that starts in deme i is ultimately lost. In this case, q is the unique solution to the

pair of equations894

f (k)(z) = E

[
z

Xk
1

1 z
Xk

2
2

]
= z, (19)

where k ∈ {1,2},z = (z1, z2) ∈ [0,1]2.

After some algebra and using the fact that all the Xk
l are independent, we can find that896

the two extinction probabilities are the solution to

q1 =e−(a11(1−q1)+a12(1−q2)),

q2 =e−(a21(1−q1)+a22(1−q2)).

(20)

The establishment probabilities p = (p1, p2) are thus given by 1−q, and can be found898

numerically using root-finding algorithms to solve the simultaneous equations. The

probability of invasion overall is given by p1+p2. This invasion probability is specific900

to the A1B1 haplotype and hence conditional on an inversion capturing this allelic

combination. To account for the probability of an inversion actually capturing the902

A1B1 haplotype in the first place, we also need to take into account the frequency of

this haplotype in a population at equilibrium. Finally, the probability of any locally904

adapted inversion establishing when it arises needs to consider both A1B1 and A2B2

haplotypes, and is given by906

Γ= γ11 +γ22. (21)

This is also equal to the probability of an inversion establishing itself overall, because

inversions that capture allele combinations that are not advantageous in either deme908
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(i.e. A1B2 or A2B1) are never favoured. Invasion probabilities for A2B2 haplotypes can

be calculated analogously.910

Results

Equilibrium allele frequencies and linkage disequilibrium912

Define αi = mi j /s j < 1 and

f̂ 1
0 =1

2

(
1−2α1 +

√
1+4α1α2

)
,

f̂ 2
0 =1

2

(
1+2α1 −

√
1+4α1α2

)
,

(22)

which respectively are the frequencies of adaptive and non-adaptive alleles when914

there is free recombination between the adaptive loci (i.e. r large or D = 0). At equi-

librium, the frequencies of the alleles ( f̂ i
j for allele j in deme i ) are916

f̂ 1
A1

= f̂ 1
B1

≈ f 1
0 + α1

r
( f 1

0 − f 2
0 )

(
s1 − α2(s1 + s2)p

1+4α1α2

)
,

f̂ 2
A1

= f̂ 2
B1

≈ f 2
0 − α2

r
( f 1

0 − f 2
0 )

(
s2 − α2(s1 + s2)p

1+4α1α2

)
,

(23)

and the linkage disequilibrium between loci in deme 1 (D1) is

D̂1 ≈
m21( f̂ 1

0 − f̂ 2
0 )2

r

≈m21

r

(
α1 +α2 −

√
1+4α1α2

)2
.

(24)

Linkage disequilibrium in deme 2 (D̂2) is given by replacing m21 with m12 and vice918

versa. These equilibrium values, derived here for haploidy, are in accord with previous

results (Akerman and Bürger 2014).920

In the case where migration and selection are symmetric, mkl = m and si = s (i.e.,

two populations with exactly opposing local selection pressures exchanging an equal922
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proportion of migrants), the demes have symmetric allele frequencies ( f 2
A1

= f̂ 2
B1

=

1− f̂ 1
A1

= 1− f̂ 1
B1

) and linkage disequilibria (D1 = D2)924

f̂ 1
A1

= f̂ 1
B1

≈ 1

2

(
1−2α+

√
1+4α2 − m

r

(
8α−2

1+8α2

p
1+4α2

))
, (25)

D̂ ≈ m

r

(√
1+4α2 −2α

)2
. (26)

In the other extreme case, where there is unidirectional gene flow from deme 2 ("con-926

tinent") to deme 1 ("island"), the "continent" genotypes remain fixed to A2B2. Setting

s1 = s and m21 = m928

f̂ A1 = f̂B1 ≈
(
1− m

s

)(
1+ m

r

)
, (27)

D̂ ≈ m

r

(
1− m

s

)2
. (28)

With free recombination between the loci, the system is decoupled and the alleles are930

at migration-selection balance.

Locally adaptive alleles are more abundant in the symmetric scenario (equation 25)932

than in the continent-island scenario (equation 27). This difference arises because

in the symmetric scenario a fraction of locally adapted migrants from a focal deme934

migrate to and survive in the other deme, only to return back and contribute to the

frequency of beneficial alleles in the focal deme. In the continent-island scenario,936

in contrast, continental migrants can only introduce deleterious alleles into the focal

deme.938

In both scenarios, linkage disequilibrium is positive, indicating that the adaptive al-

leles tend to be found together in coadapted haplotypes (A1B1 and A2B2). This ten-940

dency increases with the strength of selection in both models (∂D̂/∂s ≥ 0), because
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selection favours the association of coadapted alleles, but decreases with the rate of942

recombination (∂D̂/∂r ≤ 0) which breaks the coadapted haplotypes apart to create

more intermediate haplotypes (A1B2 and A2B1).944

The role of migration is less straightforward and differs between the two scenarios. At

small migration rates, selection tends to be stronger relative to migration and demes946

are enriched for locally adapted haplotypes. Linkage disequilibrium then increases

with m because more A2B2 combinations are introduced into deme 1 (and more948

A1B1 combinations are introduced into deme 2 in the symmetric scenario). When

migration becomes higher, the balance between selection and migration shifts and950

migration tends to introduce proportionately more maladaptive haplotypes from the

other deme, thus degrading the linkage disequilibrium that is built up locally by se-952

lection. The rate of migration at which this effect sets in depends on the model. In the

continent-island scenario, migration decreases linkage disequilibrium when m > s/3.954

In the symmetric case, migration begins to decrease linkage disequilibrium at a lower

point, when m > s
p

3/6, because the presence of A1B1 migrants in deme 2 generates956

more intermediate haplotypes through recombination. These individuals can back-

migrate and degrade linkage disequilibrium in deme 1 (with the same process going958

on in the reverse direction).

Invasion probability of a locally adaptive inversion960

Having established the equilibrium composition of populations, we can now consider

the fate of a new inversion that captures allele A1 and B1, which are locally adaptive in962
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deme 1. We calculate the rate of increase and probability of fixation of this inversion.

We again compare the two extreme models, the continent-island and the symmetric964

scenarios before examining the full model.

While stronger selection increases the frequency of maladaptive alleles among mi-966

grants, it will also remove them more effectively from the focal deme. This effect

was not fully captured by our QLE approximation, so we numerically calculate the968

advantage of a rare inversion while assuming that allele frequencies are at the exact

equilibrium calculated to second order in selection and migration (Figure 7). In the970

continent-island scenario, the genotypic composition of migrants is unaffected by se-

lection. Stronger selection reduces the advantage of an inversion (as found by Bürger972

and Akerman 2011; Charlesworth and Barton 2018) because the island population be-

comes better adapted as selection increases, so that recombining adaptive haplotypes974

results in less fit offspring less often (Figure 7).

In the symmetric scenario, the numerical results confirm that increasingly strong se-976

lection favours inversions.This happens because selection reinforces local adapta-

tion and makes migrants more maladapted. However, this advantage plateaus as the978

strength of selection increases, because adaptive alleles become more common. This

decreases the advantage of inversions, as selection alone tends to weed out the mal-980

adapted combinations. Unless selection is very strong, the former force dominates,

meaning that the selective advantage of inversions is primarily determined by the982

genotypic composition of migrants. Under very strong selection, the invasion proba-

bility under symmetric migration converges on that in the island-continent scenario984

(Figure 7), because the composition of migrants in each become similar.
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Figure 7: Invasion probabilities approximated to second order in migration

and selection for an inversion capturing A1B1 in each of the symmetric and

continent-island scenarios under various rates of migration.. Data with s < m

are excluded as the adaptive alleles may not be at a stable equilibrium. The rate

of recombination between the two loci was r = 0.15.

Unlike the continent-island model, the two-deme model allows us to include asym-986

metric local selection and migration (Figure 8). Selection in the focal deme (s1) in-

creases the degree of local adaptation and inversions therefore have a lesser advan-988

tage. This effect is strongest when there are more maladapted migrants entering deme

1 (higher m21, Figure 8A) or when the genotypic composition of migrants is more mal-990

adapted (higher s2, Figure 8C), but has a weaker effect on inversion invasion proba-

bility than parameters that change the genotypic composition of migrants (m21 and992

s2). For a fixed level of migration into deme 1 (m21), the growth rate of the inversion

decreases with increasing migration out of deme 1 (m12) because inversions migrate994

out of the environment in which they are adapted (Figure 8B). Overall, a combination

of increased migration from, and selection in, deme 2, are the most important factors996
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Figure 8: A1B1 inversion invasion probabilities calculated to second order in

migration and selection terms. Where they do not vary, migration parameters

are 0.02 and selection parameters are 0.05. Recombination was set to r = 0.15.

in generating the inversion’s advantage (Figure 8D) — exactly the two parameters that

are most extreme in the continent-island model.998

Combined capture and invasion probability of locally adaptive inver-

sions1000

The analysis above calculates the invasion probability assuming that an inversion

captures the A1B1 haplotype. It does not take into account the probability that an1002

inversion occurs in an A1B1 individual . It seems reasonable to assume that an inver-
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m=0.01 (two deme)
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Figure 9: Combined probability of an inversion arising on an A1B1 haplotype

and then invading (γ11). The invasion probabilities from Figure 7 are adjusted

to account for the frequency and relative reproductive value of A1B1 in each

deme. Equilibria are unstable for m < s, r = 0.15.

sion captures a random haplotype which means that the invasion probability should1004

reflect the relative frequency of A1B1 as well as its reproductive value in each deme.

Under this assumption, both the continent-island and two-deme scenarios predict1006

similar patterns of invasion probabilities. As the strength of selection s increases,

more locally adaptive genotypes are available to be captured by an inversion (Fig-1008

ure 9). The positive effect of selection on the frequency of locally adapted genotypes

(A1B1) has a larger positive effect on the combined invasion probability than the neg-1010

ative effect of selection on the inversion’s subsequent selective advantage relative to

the population (as illustrated in Figure 7). Thus, our results predict that stronger se-1012

lection is more likely to drive the evolution of locally adaptive inversions. Importantly,

this is true for both scenarions and radically alters the prediction for how inversions1014

should contribute to local adaptation in the continent-island scenario (c.f. Figure 7).
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We can also see how asymmetric migration or selection affect the combined process1016

of haplotype capture and invasion by inversions. While high migration into deme 1

strongly favours the invasion of existing adaptive inversions (Figure 8B), it also lowers1018

the probability of them arising in the first place, due to the lower frequency of coad-

apted haplotypes. Thus, adaptive inversions are most likely to form and invade when1020

m21 is intermediate, such that the probability of an inversion capturing an adaptive

haplotype and the inversion’s subsequent selective advantage are both reasonably1022

large (Figure 10A).

Increasing the strength of selection in either deme typically increases the chance that1024

adaptive inversions will arise and spread. Increasing the strength of selection in deme

2 (s2) increases migration load and therefore the inversion’s advantage and increasing1026

selection in deme 1 (s1) increases the probability of capturing the adaptive haplotype

(Figure 10B). Yet, as discussed above, A1B1 inversion invasion probabilities decline1028

under very strong selection in deme 1 (very high s1) by increasing preexisting adap-

tation. Nevertheless, stronger local selection usually creates a more favourable envi-1030

ronment for adaptive inversions to arise and proliferate.

So far, we have only considered the evolution of a specific inversion, adaptive in one1032

deme. This is the only plausible scenario in the continent-island scenario, where only

inversions that capture the island-adapted haplotype A1B1 are of interest. However,1034

with two demes, divergent local adaptation can occur from either adaptive inversion,

both due to the beneficial effects in the favoured deme and due to the protection1036

from deleterious recombination that such an inversion offers to individuals adapted

to the other deme. So in this final section we consider the overall probability of local1038
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Figure 10: Total establishment probability of an adaptive inversion across the

whole population. A, B: Combined probability of an inversion arising on the

A1B1 haplotype and then invading (γ11) for asymmetric migration (A) or selec-

tion (B). C, D: Probability of an inversion capturing either adaptive haplotype

(A1B1 or A2B2) and invading (Γ) for asymmetric migration (C) or selection (D).

The continent-island model corresponds to m12 = 0 (Y axis in A, C) and the sym-

metric two-deme model corresponds to the s1 = s2 diagonal in panels B and D.

Unless varying along axes, m12 = m21 = 0.02 and s1 = s2 = 0.05. To ensure stabil-

ity, we vary parameters in the range where max(m12,m21) < min(s1, s2), r = 0.15.

adaptation through the spread of an inversion that arises anywhere in the population

(Γ := γ11 +γ22; Figure 10C, 10D).1040

Under symmetric local selection, inversions are most likely to establish when migra-

tion is symmetric and intermediate (Figure 10C). Migration rates that are favourable1042

for the establishment of inversion in one deme are not so favourable in the other (γ22
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values can be seen by reflecting Figures 10A, 10B across the diagonal) such that sym-1044

metric migration rates give the highest overall probability of inversion establishment.

Similarly, when migration is symmetric, strong and symmetric local selection is most1046

conducive to the formation and spread of locally adaptive inversions (Figure 10D).

Across both demes, this maximises the probability of capturing an adaptive haplo-1048

type while maintaining migration load.

Discussion1050

Here, we have examined the evolution of locally adaptive chromosomal inversions

while explicitly modelling selection across a structured population. Inversions can1052

keep locally favoured allele combinations together in the face of maladapted mi-

grants. Therefore, adaptive inversions spread fastest when migrant alleles are homo-1054

geneously maladaptive, as assumed in the continent-island scenario that has been

well studied (Kirkpatrick and Barton 2006; Charlesworth and Barton 2018). The1056

continent-island scenario represents an extreme, where migrants are fixed in their

genetic composition, being purely maladaptive, with the migration rate alone deter-1058

mining selection for the inversion. In comparison, the two-deme model leads to a

number of novel insights. By including the dynamics of selection and migration in1060

the source population, we find that inversions capturing alleles experiencing rela-

tively strong selection are more favoured, unlike the condition found when migration1062

is unidirectional in the continent-island scenario (Figure 7). Extending the model

to account for the probability that inversions initially capture favourable haplotypes1064
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shows that relatively strong selection is most likely to underlie inversions (Figure 9)

and continent-island scenarios aren’t necessarily most conducive to inversion evo-1066

lution (Figure 9). We further examine asymmetric selection pressures across demes,

showing that strong selection in either deme generally promotes the establishment of1068

adaptive inversions by either increasing the selective advantage or the probability of

capture (Figure 10). Overall, our results suggest that inversions are particularly likely1070

to arise and establish when selection on locally adaptive alleles is strong.

Theories concerning the origins of adaptive inversions can broadly be split into three1072

categories (Schaal, Haller, and Lotterhos 2022): “capture”, in which an inversion cre-

ates a linkage group of existing adaptive variation and spreads (Kirkpatrick and Bar-1074

ton 2006); “gain”, in which an inversion is initially polymorphic (e.g. due to drift,

underdominance, or acquisition of a good genetic background), and then accumu-1076

lates adaptive variation which is subsequently protected from recombination (e.g.

Lamichhaney et al. 2016, Samuk et al. 2017); or “generation”, in which adaptive vari-1078

ation is created when the inversion occurs through the breakpoint disrupting coding

sequence or gene expression (Feder and Nosil 2009; Villoutreix et al. 2021, e.g. Jones1080

et al. 2012). Our work focuses on the “capture” hypothesis in which locally adaptive

alleles are already segregating and have reached migration-selection equilibrium and1082

may have already evolved enhanced local fitness. This scenario is the most analyti-

cally tractable, and hence we analyse it here. However there is a priori no reason why1084

any inversion with “capture” origins could not subsequently gain more adaptive vari-

ation at a later date as set-out in the “gain” hypothesis. In a pure “capture” scenario,1086

we show large effect alleles are the most likely to underlie adaptive inversions.
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The evolution of the effect size distribution of locally adaptive alleles is likely to favour1088

those that are strongly selected, facilitating the evolution of adaptive inversions. In

the short term, locally adaptive alleles must experience fairly strong selection to be1090

able to resist being swamped by migration (Lenormand 2002; Yeaman 2015). Small

effect alleles can still contribute to local adaptation when they arise in close linkage1092

with large effect alleles, resulting in aggregated regions of adaptation which could be

modelled as a single locus of large effect (Yeaman and Whitlock 2011). Alternatively,1094

they can contribute transiently before being lost (Yeaman 2015). With high gene flow,

and over long timescales, the architecture of local adaptation is expected to evolve to-1096

wards a few, highly concentrated clusters of small effect alleles linked with large effect

alleles (Yeaman and Whitlock 2011), which are likely to be particularly conducive to1098

inversion establishment.

Migration regimes under which inversions are likely to form and spread are fairly spe-1100

cific because they must satisfy multiple requirements. Firstly, we assume that locally

adaptive alleles are polymorphic, which means they must be able to resist swamp-1102

ing by migration. This condition requires relatively weak migration and is likely to be

a significant constraint on the evolution of local adaptation (Feder, Gejji, et al. 2011).1104

Then, given that locally adaptive alleles are maintained, higher migration rates favour

the spread of inversions because they increase the frequency of the maladaptive alle-1106

les and thus the cost of recombination (Figures 7, 8). However, this also has the effect

of reducing the frequency of adaptive haplotypes so that inversions are less likely to1108

capture a full complement of adaptive alleles (Figure 10). The result is that higher

migration rates do not always favour the evolution of inversions. In general, rates1110
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of migration may turn out to restrict the evolution of capture-origin inversions more

than previously though.1112

Schaal, Haller, and Lotterhos 2022 used simulations to study the invasion of inver-

sions capturing variation that influences a polygenic quantitative trait, finding that1114

inversions involved in local adaptation tended to exhibit more of a capture than a gain

effect when alleles were unlikely to be swamped. When alleles were prone to swamp-1116

ing by migration, persisting locally adaptive inversions had often gained much more

adaptive variation post-capture. Under high rates of gene flow both capture and gain1118

scenarios are plausible, depending on the effect size of the loci captured. Because

adaptive alleles can be gained after the inversion arose and spread, recent inversions1120

may offer the best opportunity to test our predictions about the effect size of alleles

driving the evolution of locally adaptive inversions. The allelic content of such inver-1122

sions could depend on how long the populations in question have been diverging,

with the expectation that long periods of divergence results in a more concentrated1124

architecture (Yeaman and Whitlock 2011). However, separating the individual trait ef-

fects of different loci within the inversion is challenging once they have been linked1126

together. Thus, despite the prevalence of putatively adaptive inversions, mapping of

quantitative trait loci has been achieved in only a handful of cases (e.g. Peichel and1128

Marques 2017; Koch et al. 2021; and Poelstra et al. 2014 for an example unrelated to

local adaptation) leaving open questions about the number and effect size of loci that1130

underpin inversion selective advantage (Tigano and Friesen 2016).

We only consider the evolution of inversions that link alleles at two relatively nearby1132

loci. It is possible that an inversion could capture more than two loci that affect lo-
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cal adaptation. As the number of loci contributing towards adaptation increases, it1134

becomes less likely that an inversion will capture all the adaptive alleles on the same

haplotype. Nevertheless, inversions will still spread if they capture more locally adap-1136

tive alleles than the population mean. A similar process has been proposed for the

evolution of inversions that happen to capture fewer deleterious mutations than av-1138

erage (Nei, Kojima, and Schaffer 1967; Jay et al. 2022; Lenormand and Roze 2022).

The relationship between invasion fitness and haplotype frequencies as the number1140

of loci increases remains to be explored, but we expect inversion evolution will con-

tinue to depend on a balance between the selective advantage of the captured haplo-1142

type and on the probability of capturing a favourable haplotype.

Our model does not include deleterious mutations or breakpoint effects, which can1144

affect the fate of inversions. Low rates of gene flux within inverted arrangements

means that deleterious variation captured by the inversion persists for a long time1146

throughout lineages, as purging this variation relies on rare events such as gene con-

version and double crossover events. Inversion breakpoints can also disrupt gene1148

function and result in lower individual fitness (White 1978; Kirkpatrick 2010), though

this can occasionally be adaptive (e.g. Corbett-Detig 2016). These effects can be in-1150

corporated into the model by introducing a fixed cost or benefit. Reduced recombi-

nation within inversions severely weakens the efficacy of purifying selection on new1152

mutations (Charlesworth 1996; Betancourt, Welch, and Charlesworth 2009). Muta-

tion accumulation is particularly important while the inversion is at low frequency,1154

because most inverted chromosomes will occur in heterokaryotypes where recombi-

nation is suppressed (Navarro, Barbadilla, and Ruiz 2000), though gene conversion1156
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and double crossover events may alleviate this a little (Berdan et al. 2021). We model

a haploid population, but in diploids the presence and accumulation of strong reces-1158

sive mutations within inversion will result in negative frequency-dependent selection

which limits inversion frequency and the recombination rate (Nei, Kojima, and Schaf-1160

fer 1967; Wasserman 1968; Ohta 1971). The generally deleterious effects associated

with inversions likely mean that their invasion probabilities are much lower than we1162

obtain here.

In summary, our results emphasise the likelihood that strongly selected loci can con-1164

tribute to local adaptation in two ways: by increasing the frequency of adaptive hap-

lotypes that can be captured by an inversion, and by increasing the rate of migrant1166

gene flow and thus the potential cost of recombination. High migration rates also in-

crease this recombination load and thus the selective advantage of an inversion, but1168

this also reduces the frequency of adaptive haplotypes. The probability of adaptive

inversion formation could be as important as its selective advantage in determining1170

where such inversions are likely to be found.
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Mutation accumulation and the1172

establishment of adaptive inversions in

finite populations1174

Abstract

By suppressing recombination, inversions maintain linkage between loci they en-1176

compass. This restriction may limit the ability of an inversion to spread through a

population by increasing the mutation load associated with them. Recombination1178

is necessary for efficient purifying selection, and any deleterious variation captured

by the inversion when it first arises is likely to be present in all future descendants.1180

The presence of deleterious variation has been shown to have a significant impact

on whether inversions establish within populations or are ultimately lost. However,1182

some of the theoretical literature is based on early work in which an assumption of

free recombination between inversion loci is implicit, leading to results that only ap-1184

ply when the inversion is common. This theory predicts that otherwise neutral in-
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versions that capture even a single deleterious mutation will always be lost, because1186

the transient advantage afforded by a relatively mutation-free background decays as

mutation-selection balance is reached within inversions. As a result, the possibility1188

such inversions might establish is often discounted. We simulate the fixation of in-

versions in a finite haploid population under a wide range of parameters. Our results1190

suggest that not only can inversions capturing deleterious variation fix before their

transient advantage fully decays, but that mutation accumulation preventing inver-1192

sion establishment is most significant when inversions are rare, when they undergo

Muller’s ratchet-style degradation.1194

Introduction

Through the suppression of recombination, chromosomal inversions can cause seg-1196

ments of a chromosome to be inherited in tandem. Since their discovery in the early

1920s, interest in inversions has grown — especially since the widespread availability1198

of genome-sequencing has revealed their relative abundance and their links to sev-

eral important evolutionary processes, including local adaptation and mating strat-1200

egy (Kirkpatrick 2010; Wellenreuther and Bernatchez 2018).

Selection acts both directly on the inversion itself and also on the genetic material1202

it captures, maintained by increased linkage between loci (Berdan et al. 2021). Pos-

itive selection on the inversion as a whole can result directly from adaptive break-1204

point effects (Corbett-Detig 2016; Villoutreix et al. 2021), or indirectly when the inver-

sion captures a better-than-average mutation load (Nei, Kojima, and Schaffer 1967),1206
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sets of coadapted alleles with positive epistasis (Dobzhansky 1947; Haldane 1957;

Charlesworth 1974) or alleles involved in local adaptation (Ch. 3, Kirkpatrick and Bar-1208

ton 2006; Charlesworth and Barton 2018). In general, where there is selection for link-

age disequilibrium (LD) between alleles of a set of genes, an inversion that captures1210

this set can be advantageous by preventing the decay of LD (Kirkpatrick and Barton

2006).1212

While the contents of an inversion are inherited together, they are liable to change

through time due to the input of mutations at any of the loci within the inversion.1214

Recombination is suppressed only between standard and inverted arrangements, so

that their respective evolutionary trajectories diverge (Sturtevant 1917; Roberts 1976).1216

In particular, the overall rate of recombination in the inverted region is decreased and

consequently so too is the efficacy of purifying selection on deleterious alleles (Bar-1218

ton and Charlesworth 1998). This effect is more pronounced when one arrangement,

usually the inversion, is rare. The inversion “subpopulation” is also fixed for variation1220

it captures when it first arises, though some could be lost through gene conversion

between inverted and standard haplotypes (Navarro, Betrán, et al. 1997). Such dele-1222

terious variation cannot be removed through purifying selection when recombination

occurs in inversion homozygotes, because they will also be homozygous for the dele-1224

terious alleles. When this variation is recessive, it can result in inversions being under

balancing selection through associative overdominance (Ohta 1971). Furthermore,1226

this can result in them carrying an inherent load that will fix in the population if the

inversion fixes.1228

The methods used in recent inversion work (e.g. Connallon, Olito, et al. 2018; Con-
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nallon and Olito 2021) are based on previous theory that showed that inversions cap-1230

turing one or more mutations will be unable to fix, unless the inversion has some

unique advantage outweighing the cost of the captured mutation load (Nei, Kojima,1232

and Schaffer 1967). This is because the advantage of capturing a good background

is transient, and will degenerate in the long term. At this equilibrium, the inversion1234

contents reach mutation-selection balance but are also burdened with the captured

mutations, which are present in all inversion copies. The best case scenario is that1236

the inversion captures no mutations, becoming selectively neutral at equilibrium. So,

one would expect observable inversions to either be very small, so as to increase the1238

chances of capturing a mutation-free background, or have strong positive selection

acting on the inversion itself. However, this assumes that the long-term degenera-1240

tion of the inversion will always occur before fixation. This problem was noticed by

Kimura and Ohta 1970, who extended the model to allow for the possibility that in-1242

versions could plausibly fix before degenerating.

Yet even this extended model still does not tell the full story. Implicit in Nei et al.’s1244

derivation is free recombination between loci contained within the inversion. How-

ever, this can only have an appreciable effect when the inversion is at a sufficiently1246

high frequency so that recombination can occur between homozygotes. Further-

more, their results assume that the rate of mutation accumulation is constant through1248

time. This is despite the fact that at low frequencies, reduced recombination should

qualitatively result in a different manner of degeneration of inverted regions, as new1250

mutations arising can fix or hitchhike as the inversion increases in frequency in a

manner similar to Muller’s ratchet.1252
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Here, we address these issues in more detail. Using simulations, we show that inver-

sions under directional selection can fix in finite populations even when they capture1254

a mutation load greater than their advantage, contrary to Nei, Kojima, and Schaf-

fer 1967. Transient selective advantages readily drive inversions to fixation. Further-1256

more, we show that early-stage mutation accumulation can prevent inversions from

establishing, and propose that this is a key determinant in deciding inversion fate.1258

These results hold across a range of mutation rates, population sizes, direct inversion

advantages, and backgrounds captured. We conclude by proposing a framework for1260

thinking about inversion evolution, and how this might be tackled properly from a

theoretical point of view.1262

Previous Models

Nei and Kimura models1264

Here, we outline the analytical approach for the case of a finite population as pre-

sented in previous work, before discussing its limitations. Nei, Kojima, and Schaffer1266

1967 derived an expression for the relative fitness of an inversion through time. They

model the inversion as a single locus whose selective advantage decreases as it ac-1268

crues mutations through time. This expression was then used by Kimura and Ohta

1970 in their framework for determining the corresponding fixation probability in a1270

finite population.

For ease of analysis, we modify these approaches to apply to haploids. This is accept-1272
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able here because early events (when recombination would be at its lowest) are the

most important and haploid selection coefficients are parallel to heterozygous hap-1274

loid selection coefficients. Conclusions made here will also apply to the additive case

(h = 1/2) in diploids. First, consider the frequency (q) of a deleterious mutation at an1276

initially non-mutated locus through time. This can be described by the differential

equation1278

dq

dt
=µ−uq. (29)

Mutations arise at this locus at a rate µ, and where present they are selected against

at a rate u. This equation has the solution1280

q(t ) = (µ/u)(1−e−ut ), (30)

with initial condition q(0) = 0, from which it can be seen that an average wild-type al-

lele approaches mutation-selection balance (µ/u) at a rate u. Since q is the frequency1282

of mutations at a locus, qu is the average mutation load, i.e. the average reduction

in fitness due to alleles segregating at the focal locus. Now consider an inversion that1284

has a direct selective advantage s (due to beneficial effects of rearrangements at the

breakpoint, for example), but also captures c deleterious mutations. The fitness of the1286

inversion through time can be approximated as the product of the fitness of all its loci

— captured mutations contribute (1−u)c , while wild-type loci degrade as in Equation1288

30:

wt = (1+ s)(1−u)c (
1−µ(

1−e−ut ))L−c

≈ (1+ s)(1−u)c e−(L−c)µ(1−e−ut )

≈ (1+ s)(1−u)c (1− (L− c)µ(1−e−ut )).

(31)
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At t = 0, this inversion has fitness given by the beneficial effect and the captured dele-1290

terious alleles (1+s)(1−u)c , whereas the population mean fitness is (1−u)Lµ/u ≈ 1−Lµ,

assuming mutation-selection balance. However, the inversion fitness then decays at1292

a rate u until it reaches a relative fitness (1+ s)(1 −u)c (1− (L − c)µ). At this point,

mutation-selection balance is reached at every locus except those where a mutation1294

was captured, where mutations are fixed. While µ determines the rate of input of mu-

tations to a locus and their eventual frequency, it is u alone that determines the rate1296

of decay of fitness. When there is no advantage unique to the inversion, inversions

capturing no deleterious mutations will eventually deteriorate until they are as fit as1298

the rest of the population. Further, those capturing even a single mutation will even-

tually be lost, since (1−u)c (1− (L − c)µ) < 1−Lµ for all c ≤ 1. For inversions to have a1300

long-term advantage, the total effect of s and the capture of c mutations must be net

positive. The key disadvantage of an inversion is that whatever deleterious alleles it1302

captures are forever part of its genetic content, they cannot be lost through recombi-

nation as all inversion carry the same set of captured alleles.1304

As Kimura and Ohta 1970 pointed out, this is not especially realistic given that inver-

sions could fix before the long-term dynamics are realised. They use an inversion as1306

an example of an application of a method to find the fixation probability of a new mu-

tant whose selection coefficient changes in time. First, they derive a diffusion equa-1308

tion for the fixation probability of a new mutant whose selective advantage decays

over time. Specifically, they model the case where the selection coefficient has an1310

initial value s0 that declines at a rate k—that is,

st = s0e−kt . (32)
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This approach can be used for an inversion by substituting the corresponding rate of1312

decay k = u, and initial selection coefficient

s0 = w0 −1 ≈ s − (c − c̄)u, (33)

ignoring terms of order us, s2,u2. The full detail of the method is omitted, but after1314

adjusting for haploidy, it comes down to solving the following differential equation

for Y = Y (s)1316

dY

dS
= Y (S −Y )(1−e−Y )

K S
(
1− (1+Y )e−Y

) (34)

where S = 2Ne s0 and K = 2Ne u. The invasion probability of the inversion, given that

it arises in a single individual, is1318

γ= 1−eY /N

1−e−Y
. (35)

It is hard to get any intuitive sense of the fate of inversions from this, as Y has no

meaning per se, and values for Y need to be obtained numerically.1320

Nei’s method makes implicit assumptions that make it invalid in some scenarios.

Firstly, Nei’s method considers the inversion as a collection of loci, but implicitly as-1322

sumes free recombination between them. Selection against mutations dampens their

frequency, and with free recombination between loci can act precisely on each locus1324

as they evolve independently. This can only be valid when inversions are at some in-

termediate frequency, so that homozygotes are common enough for recombination1326

to occur. As a result, it is not applicable to the early stages of inversion evolution, when

recombination within inversions is very rare and there is tight linkage between loci.1328

In truth, a small inversion population will degenerate in a manner similar to Muller’s

ratchet — mutation accumulation in small, asexual populations. Since inversions1330

74



Previous Models Chapter 4. Short-term fate of adaptive inversions

cannot recombine, new mutations will always be carried by inversion descendants.

When every individual carries an extra mutation, the fittest class of inversions is lost.1332

While asexual populations, and so also rare inversions, do ultimately reach mutation-

selection balance, they do so at a different rate and in a different way to sexual popula-1334

tions. Inversions are unlikely to degenerate to mutation-selection balance as quickly

as in Nei’s model because recombination can only introduce existing mutations. Mu-1336

tations must first arise on an inversion before they can be recombined onto another.

Furthermore, selection acts across the entire complement of loci, rather than each1338

individually. Surprisingly, this means that asexual populations have a lower mutation

frequency at a given locus. This happens because when loci are linked, the presence1340

of one mutation acts to decrease the frequency of mutations at other loci (Pénisson

et al. 2013).1342

Adjusting Kimura’s method to account for this is infeasible. Firstly, the method re-

quires that the selection coefficient changes at a constant rate, however the man-1344

ner of fitness decay should be dependent on inversion frequency. Secondly, while

Nei’s model does apply to inversions at intermediate frequency (assuming there are1346

enough mutations segregating within inversions), the application of Kimura’s model

from this point on may not be valid because it assumes that the inversion starts at1348

low frequency. So, a new approach is needed if we are to faithfully model inversion

evolution.1350
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Time-dependence of inversion evolution

The nature of inversion evolution depends on both its frequency and number. So, it1352

is necessary to consider how long the inversion spends at low, then intermediate fre-

quency. The fixation of a new beneficial allele generally consists of three phases. First,1354

at low frequencies there is a stochastic phase in which genetic drift dominates the dy-

namics of a new mutation (Charlesworth 2020). During this phase, the trajectory can1356

be approximated as that of a neutral mutation (e.g. Kimura and Ohta 1973). The allele

will increase in a more or less deterministic fashion only once it frequency exceeds a1358

threshold, given by 1/N s in a haploid population. Finally, there is a second stochastic

phase before fixation, where the alternative allele is so rare that frequency dynamics1360

are again dominated by drift.

We can apply this thinking to the inversion as a whole. A Muller’s ratchet process1362

will occur when both the number and frequency of inversions in the population is

small. The frequency must be low so that recombination is rare, and the inversion1364

population size below which degeneration of the inversion (or of the standard ar-

rangement, when the inversion is close to fixation) is unavoidable is approximately1366

eµL/u (Haigh 1978). Large inversions or higher mutation rates increase the inversion

number threshold below which they will degenerate. In inversions, this process over-1368

laps with the initial stochastic phase which occurs when the number of inversions is

less than 1/s0, so more degeneration is likely to occur when inversions have a weak1370

advantage and behave stochastically for longer.

Nei’s model can be used once the inversion is at sufficiently high frequency. For the1372
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inversion to decrease in fitness such that it will ultimately be lost, it must be poly-

morphic for long enough that mutation-selection balance is reached and also so that1374

there has been sufficient mutational input into inversions.

Methods1376

To address these points, we simulate a Wright-Fisher population consisting of N hap-

loid, hermaphroditic individuals, each of which has a chromosome of G loci. Gen-1378

erations are discrete and non-overlapping. Mutations occur at a rate µ per locus per

generation uniformly across the chromosome, each having a deleterious multiplica-1380

tive fitness cost u = 0.005. Recombination occurs with a minimum of one crossover,

with further crossovers occurring with probability ρ between each pair of consecutive1382

loci. So, the mutation rate per chromosome per generation is Gµ, and the expected

number of crossovers is 1+ρG . Inversions are of length L and are introduced into1384

the centre of the chromosome (ie spanning locus G/2−L/2 to locus G/2+L/2− 1).

The inversion directly confers a selective advantage s. Recombination between chro-1386

mosomes with the same conformation occurs freely, but exchange between the stan-

dard and the inverted arrangement is permitted only when there are an even num-1388

ber of crossover points sampled within the inversion. Otherwise, the offspring is

assumed inviable and new crossover points are drawn. In general, we use values1390

of G = 1000,L = 100 so that the inversion makes up 10% of the chromosome, and

ρ = 5×10−4 so that each meiosis results in an average of 1.5 crossovers. We calibrate1392

our parameter values such that the chromosome-wide mutation rate is similar to that

77



Methods Chapter 4. Short-term fate of adaptive inversions

of Drosophila melanogaster, estimated to be 1.2 deleterious mutations per diploid1394

genome (Haag-Liautard et al. 2007). Since the autosomes are approximately twice

the size of the X chromosome, this leads to a chromosome-wide mutation rate esti-1396

mate of 0.48 mutations per diploid autosome, or 0.24 for a haploid. In our model,

with the above chromosome length, 0.24 mutations per chromosome per generation1398

corresponds to a mutation rate of µ= 2.4×10−4.

Simulations were performed using SLiM v4.0 (Haller and Messer 2022). Before in-1400

troducing the inversion, we simulate a burn-in period of 105 generations to reach

mutation-selection-drift balance. This process occurs separately for every replicate,1402

and a minimum of 5000 replicates were run for each set of parameter values. After

the burn-in period, an inversion occurs in a randomly sampled individual in the pop-1404

ulation. The simulation continues until the inversion is either lost or fixed, and we

record which of these occurred. No other fate was possible because all the modelled1406

alleles experience directional selection only.

We use the term “capture” to describe the deleterious variation that exists within the1408

inversion at the moment it arises (i.e., the deleterious mutations carried by the spe-

cific chromosome that gives rise to the inversion). “Accumulation” refers to mutations1410

that arise post-introduction. To differentiate between the separate effects of capture

and accumulation we require a control simulation to compare the results of the full1412

simulation to, a scenario in which there is no accumulation effect. The total selection

on a new inversion can be broken down into two factors: the direct selective advan-1414

tage we ascribe to it (s), and the relative fitness of the background it captures relative

to the rest of the population. So, if an inversion captures c mutations and the average1416
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number of mutations in the same region across the population is c̄, the initial relative

fitness of the inversion is1418

w0 = (1+ s)(1−u)c−c̄ . (36)

While the inversion is segregating, new mutations will occur and reduce the fitness

of individual copies below w0. In contrast, a single locus with selection coefficient1420

w0 will maintain that coefficient through time. Therefore, any difference between the

fixation probabilities of the inversion and the single locus control must be due to new1422

mutations that have appeared post-introduction. Sometimes, we stipulate that an

inversion captures a mutation load equal to the population mean in that region. This1424

mean is almost never an integer number of mutations. In these cases, the inversion

captures a minimum of ⌊c̄⌋mutations, with a probability c̄−⌊c̄⌋of capturing one more.1426

Results

The mutation load captured by an inversion is Poisson distributed with meanµL. The1428

same quantity is proportional to the rate of mutation accumulation within an inver-

sion. So, we expect a proportional increase in µ or L to have the same effect as a1430

similar increase in the other. In order to cover multiple orders of magnitude, it was

more practical to vary µ rather than L. In general, conclusions regarding inversion1432

length could also be inferred from µ.

The effects of the mutation rate on invasion probability are multiple. First, the fixation1434

probability of positively selected inversions is negatively impacted by the presence of

deleterious mutations around it, because selective interference between the two low-1436
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Figure 11: Simulated fixation probabilities for inversions of length 100 which

capture the mean mutation load, and a single locus with the same direct selec-

tion coefficient. As the mutation rate increases, there is greater mutation accu-

mulation in the inversion which retards the fixation probability compared to a

single locus. The effect is more pronounced under weaker selection (top panel).

Bars show twice the standard error. Each data point is based on 105 simulations.

Parameter values are as detailed in the methods, with N = 1000.
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ers the efficacy of selection. Increasing the mutation rate increases the number and

density of deleterious mutations and hence the strength of interference. This effect1438

is independent of inversion length, so has an identical effect on each of the inversion

and single locus simulations. This effect is more pronounced when the selective ad-1440

vantage of inversions is small, as weak direct selection on the inversion increases the

relative strength of selective interference (Figure 11, blue lines). Since an inversion1442

behaves similarly to a single locus, we can compare the invasion probability of an in-

version to that of a single locus of the same selection coefficient (i.e. L = 1), which is1444

equally affected by linkage to mutations. We expect both to decrease under stronger

selective interference. The single locus comparison allows to determine the effects of1446

new mutations on inversions, as any difference between the two occurs as a result of

mutation accumulation.1448

When an inversion captures the mean mutation load (i.e. when c = c̄), its background

is neither advantageous nor disadvantageous relative to the population mean. So,1450

in the absence of any further mutation accumulation, it would be expected to have

the same fixation probability as a single locus with an identical selection coefficient.1452

Using this idea, we investigate when high mutation rates cause mutation accumu-

lation to the point where they prevent inversion fixation. When mutation rates are1454

sufficiently low, the degree of accumulation is also low and so it has no discernible ef-

fect on fixation probability (Figure 11). However, fixation probabilities decrease with1456

higher mutation rates. The rate of mutation at which this effect becomes significant

depends on how strongly the inversion is favoured. New deleterious mutations have1458

a higher impact when s is low. There are two possible reasons: fewer mutations are
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required to offset a lower selective advantage, and/or the stochastic phase of the in-1460

version’s trajectory is longer, increasing the probability of the inversion accumulating

mutations in a process similar to Muller’s ratchet. In this case, mutation rates can be1462

relatively low and still prevent fixation. Very high mutation rates can cause the inver-

sion to degenerate so quickly that it almost never invades, irrespective of the intrinsic1464

selective advantage it confers. The decline in inversion fitness in these cases must

be associated with early mutation events causing Muller’s ratchet-style degeneration,1466

because the rate of decay of the transient advantage is a function of u, not µ, which

influences only the frequency of mutations at equilibrium.1468

On average, a new inversion will capture a mutation load equal to the population

mean in that region. However, those inversions that capture mutation loads that are1470

relatively low compared to the population mean have an advantage over the standard

arrangement and so are more likely to fix. Conversely, inversions that capture poor1472

backgrounds with a greater than average mutation load are less likely to fix. Further,

an inversion capturing more mutations than expected can still be favoured as long as1474

the cost of the relative fitness of its background does not exceed the direct benefit s

provided by the inversion. The number of mutations an inversion copy can afford to1476

accumulate, and so the importance of mutation accumulation, depends on how close

it is to this threshold.1478

We simulated inversions that captured a fixed number of mutations, and compared

them to single locus simulations with selection coefficient s0 (Figure 12). Increas-1480

ing the population size lowered the frequency of deleterious mutations at mutation-

selection-drift balance, so care must be taken when comparing results from different1482
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Figure 12: Simulated fixation probabilities for inversions of length 100 which

capture a particular load of mutations, and a single locus with selection coef-

ficient s0 as defined in the Methods. Bars show twice the standard error. Each

data point is based on 105 simulations. Crosses show the proportion of simu-

lations where non-fixation can be attributed to the presence of mutation accu-

mulation. Vertical grey bars show the population wide mean mutation load in

the inversion region at introduction. Parameters values are as detailed in the

methods, with µ= 2.5×10−4.

83



Results Chapter 4. Short-term fate of adaptive inversions

population sizes. For example, the population mean mutation load when N = 1000 is

6 mutations, compared to 5 when N = 10000. So, inversions that capture 5 mutations1484

are relatively fitter in the smaller population. Taking this into account, alterations

in population size had very little effect on the fixation probability of inversions within1486

the range tested (right hand side of Figure 12). Generally, as s increases the proportion

of fixations prevented by accumulation decreases, as direct selection on the inversion1488

dominates (left hand side of Figure 12).

Accumulation is more likely to cause extinction when inversions capture high mu-1490

tation loads. There are again two possible explanations for this. These inversions

start closer to the threshold where the cost of the mutation load is greater than1492

the inversion’s direct selective advantage (s). As s increases, so too does the dis-

tance from this threshold. Or, the stochastic phase of the inversion is longer as s0 is1494

smaller, meaning more mutations are accumulated. If many mutations are captured,

then accumulation-associated extinctions are less important because such inversions1496

were unlikely to fix in the first place.

Comparing the simulation results to the probability obtained from the Kimura-Nei1498

method shows their approximation hugely overestimates the importance of popula-

tion size (Figure 13). In the simulations, there was no discernible difference in inva-1500

sion probability in the range of population sizes from 2000 to 10000. However, the

approximation predicts that inversions should be much less likely to fix in larger pop-1502

ulations, because inversions arising as a single copy take longer to fix and degenerate

for longer. This again suggests that a Muller’s ratchet process is indeed what pre-1504

vents inversion fixation rather than long-term degeneration, because it depends on
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Figure 13: Fixation probabilities from Figure 12 (solid lines) and the corre-

sponding probability derived using the Kimura-Nei method (dashed lines), as-

suming that population-wide mutation frequencies are at theoretical mutation-

selection balance.

the number of inversions rather than their frequency.1506

Proposed trajectory of directly selected inversions

In summary, we propose the following description of how inversions evolve during1508

each phase of their trajectory:

1. Mutation capture: a new inversion arises on a chromosome in the population,1510

which is assumed to be at mutation-selection-drift balance. Any deleterious

variation within the inverted region at this point is fixed within the population1512

of inversions, giving it an innate mutation load. When this mutation load is
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lower than the population average in the collinear standard arrangement, the1514

inversion is selectively favoured and may increase in frequency. If the inversion

has some other selective advantage independent of deleterious variation, then1516

inversions with an average (or higher) mutation load may also be selected for.

2. Mutation accumulation: while the inversion is at low frequency, recombina-1518

tion is rare as recombination can generally only happen within inversion ho-

mozygotes, so purifying selection is weak. During this phase, the small inver-1520

sion population evolves similarly to a small asexual population. In this scenario,

Muller’s ratchet-style degeneration occurs, increasing the mutation load. For1522

some of this phase, the frequency of the inversion is stochastic and heavily in-

fluenced by drift. The time spent in this phase depends on the initial selection1524

coefficient, as the time spent in the drift-dominated phased is inversely related

to s0.1526

3. Intermediate frequency: inversion numbers are sufficiently high that Muller’s

ratchet degeneration is prevented. Whether they are approaching mutation-1528

selection balance for sexuals or asexuals depends on their frequency, and this

can change during the inversion’s transit time. The mutation frequencies in the1530

standard arrangement are still at mutation-selection-drift balance, although

this is higher than before because their population size is reduced due to the1532

presence of inverted chromosomes. Within inversions, mutations that were

captured or accumulated early on are fixed. If inversions spend a long time at1534

intermediate frequency, they approach mutation-selection-drift balance at loci

where mutations are not already fixed. But overall these inversions eventually1536
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have a higher mutation load than the standard arrangement, due to their fixed

load. Unless there is a source of positive selection the outweighs the fitness cost1538

of this load, the inversion will ultimately be lost.

4. Fixation: if the inversion emerges from the mutation accumulation phase fit-1540

ter than the population mean, and does not spend a long time at intermediate

frequency, then it, along with any captured or accumulated mutations, will fix.1542

Discussion

Nei’s model of inversion evolution has been the basis of recent theoretical and sim-1544

ulation studies of inversion evolution (e.g. Connallon, Olito, et al. 2018; Connallon

and Olito 2021). In particular, it has been taken for granted that inversions captur-1546

ing a greater mutation load than any unique advantage they have will ultimately be

lost. Here, we show how this relies on the inversion attaining its long-term equilib-1548

rium state (though the implausibility of the result was pointed out by Kimura and

Ohta 1970). The transient advantage of capturing a better-than-average background1550

generally did not decay before fixation of the inversion could occur. We posit that a

Muller’s ratchet-style degeneration of inversions occurs while the number of inver-1552

sions is low, and that this plays a bigger role in determining the inversion’s fate than

any long-term effects.1554

The degradation of inversions before fixation requires that they spend sufficiently

long at intermediate frequencies. One way this could happen is the case where an in-1556
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version has an intermediate equilibrium frequency. Inversion polymorphism is often

maintained by selection on the inversion-linked phenotype, e.g. frequency depen-1558

dent selection on inversion-linked morphs (e.g. Dagilis and Kirkpatrick 2016; Lamich-

haney et al. 2016), or local adaptation inversions under gene flow (e.g. Lee et al. 2017;1560

Stenløkk et al. 2022). However, the vast majority of new inversions are unlikely create

supergene-style structures at their time of formation because it relies on pre-existing1562

variation. Alternatively, a new allele could arise on an inversion in a “capture-and-

gain” scenario, forming a linked pair of coadapted genes (Schaal, Haller, and Lotter-1564

hos 2022) Inversions are often under balancing selection, but this could be a result

of selection bias as inversions can only be detected while polymorphic. So, it could1566

be the case that inversions arise and fix relatively often. For example, comparisons

between Drosophila melaongaster and Drosophila subobscura reveal a large number1568

of inverted synteny blocks (Karageorgiou et al. 2019).

This work models haploid individuals rather than diploids. In the diploid case, inver-1570

sions could carry recessive deleterious alleles such that associative overdominance

results (Ohta 1971). If such an allele were fixed among inversions, either by capture or1572

early accumulation, then the inverted arrangement will be under balancing selection

and could plausibly degenerate as in the Nei model. Otherwise, recessive mutations1574

could arise on different inversion copies and result in a system of balanced lethals

in which the inversion is fixed but various haplotypes segregate (Berdan et al. 2021).1576

Our results are applicable to the codominant case, h = 1/2. The early dynamics in a

diploid system will depend on hs, though the effect is double-edged when h < 1/2. In-1578

dividual recessive mutations are less likely to contribute towards stochastic loss of the
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inversion, but could also slow down or prevent the deterministic increase phase when1580

expressed as homozygotes. In addition, recessive mutations would be at higher fre-

quencies. This case is of particular interest given estimates of h̄ = 0.25 for deleterious1582

alleles (Manna, Martin, and Lenormand 2011). If h > 1/2, then fixation is impeded

less, given survival of the initial phase.1584

Including the probability of capturing a given mutation load, as well as its subsequent

probability of fixation, would give a better idea of the nature of inversions likely to1586

be observed (as in Ch. 3 and Connallon and Olito 2021). Inversions capturing rela-

tively mutation-free backgrounds are strongly favoured but rarely arise. The number1588

of mutations carried by an individual is theoretically a Poisson distribution with mean

µL, which could easily be incorporated into these results. More accurate would be to1590

record the empirical distribution from the simulations, which would incorporate any

additional effects due to selective interference or genetic drift.1592

We allow recombination to occur within inversions if there are an even number of

crossovers. When this occurs in inversions with a high number of mutations it is1594

likely to result in it having fewer, and vice versa. If such events were common, we

expect them to depress the invasion probability of invasions capturing good back-1596

grounds, and inflate those that capture poor ones. The probability of a recombina-

tion event between an inverted and a standard chromosome is approximately 0.5%,1598

using our model parameters. So, while a purer comparison might use simulations

in which inversions completely suppress recombination, it should have little effect1600

here. Berdan et al. 2021 found that gene conversion between arrangements signifi-

cantly increased the mean time spent segregating, but our results are not compara-1602
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ble because they model only recessive deleterious variation. Then, gene conversion

could purge strongly harmful alleles that lower the inversion’s equilibrium frequency.1604

In this model, gene conversion between standard and inverted arrangements could

remove some of the mutation load fixed in inversions, but further modelling would1606

be required to test how impactful this would be.

A theoretical framework for modelling inversion dynamics is difficult to derive be-1608

cause of the non-linear relationship between mutation accumulation and inversion

frequency, and the change in effective rate of recombination. One possibility would1610

be to break the phases down and combine known results about the rate of degen-

eration due to Muller’s ratchet and Nei’s model with approximations of the time1612

spent in in each of the stochastic drift and deterministic increase phases (Haigh 1978;

Charlesworth 2020). In particular, Muller’s ratchet can be considered during the time1614

it takes to reach a population size of at least eµL/u , which may also include some of

the deterministic increase phase. For example, degeneration occurs when there are1616

fewer than approximately 150 inversions under our model parameters. For an inver-

sion capturing the mean mutation load with s = 0.02, the stochastic drift phase lasts1618

until it attains a frequency of 0.05, which is expected to take 50 generations. Then the

increase from a frequency of 0.05 to 0.15 would take approximately 60 generations1620

(Charlesworth 2020). So, we might expect Muller’s ratchet degeneration to occur for

110 generations. From here, the inversion population will start to approach mutation1622

selection balance in a manner dependent on the rate of recombination. In particular,

one would need to know at which frequency inversions are common enough to ef-1624

fectively reproduce sexually. Otherwise, branching process models could be used to
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model the first phases (Uecker and Hermisson 2011), though this may face tractability1626

issues when inversions can recombine.

We suggest early mutation accumulation probably determines the fate of inversions1628

based on relationships between model parameters and fixation probability, and that

long-term mutation-selection balance is seldom attained by inversions. A truer anal-1630

ysis of the effects of transit time in determining the inversion’s fate would measure

the average mutation load of inversions through time. To do so would require a more1632

detailed analysis of mutation loads over the transit time of an inversion. The simu-

lations also suggest negatively and neutrally selected inversions could also sweep to1634

fixation by capturing a fit background. Although not explicitly modelled, an inversion

capturing no deleterious alleles with a selection coefficient of s =−0.01 would behave1636

similarly to an inversion capturing 4 mutations with s = 0.01 (see Figure 12).

While only inversions under directional selection are considered here, those with in-1638

termediate equilibria will undergo the same process of establishment even if they will

ultimately be lost. So, these results also relate to the probability that an inversion es-1640

tablishes within the population, because inversion loss was not a result of Nei-style

degeneration. Overall, these results suggest that the difficulty inversions experience1642

establishing may be overestimated in the current literature.
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General Discussion1644

The importance of inversions in evolution was theorised from an early stage in the

short history of evolutionary biology, before falling out of favour and once again1646

emerging as a hot topic when wide-scale genome sequencing revealed their perva-

siveness (Kirkpatrick 2010). The act of suppressing recombination in a confined por-1648

tion of the genome sounds innocuous, but here we show that it can have far-reaching

consequences, influencing evolution at the genome level all the way up to the lo-1650

calised extinction of populations, as demonstrated in this thesis. Understanding the

impact of variation in genomic structure is crucial to understand how genomes and1652

individuals evolve. This thesis utilises theoretical population genetics and simulation

approaches to model the impacts of inversions on both evolution and ecology. This fi-1654

nal section reviews the results contained in this thesis and their importance in aiding

our understanding of inversion and inversion-enabled evolution.1656

Most of the supergene complexes for which we have knowledge of the internal ge-

netic architecture are meiotic drivers. Chapter 2 models the effects of a meiotic drive1658

system, often comprising multiple loci linked by at least one inversion, on X chromo-

somes. The resultant bias in sex chromosome carried by fertilising sperm causes an1660
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offspring sex ratio bias, which in the extreme can cause population extinction through

a lack of males (Hamilton 1967). While substantial theoretical work has since been1662

devoted to studying meiotic drive in the context of mating systems and suppres-

sion evolution, little attention has been paid to the demographic consequences of1664

X-linked meiotic drive at polymorphism, despite numerous real life examples of mei-

otic drivers being maintained at intermediate frequency (e.g. Gileva 1987; James and1666

Jaenike 1990; Fishman and Willis 2005). The key result is that a moderately female bi-

ased sex ratio maintained through selection against X-drive can increase the size and1668

persistence time of populations, especially when small. This is because the number of

juveniles in a population is limited by the number of reproducing females, and when1670

populations are small they are more susceptible to extinction through stochastic fluc-

tuations in size. This effect occurs within a plausible range of parameters based on1672

experimental data (Finnegan, White, et al. 2019; Meade et al. 2020). So, X-linked mei-

otic drivers can both increase and decrease population persistence times, depending1674

on the nature of selection against them.

A useful extension of this model would be to add population structure such that1676

patches undergo extinction and recolonisation, with variable patch quality. The hy-

pothesis is that selection will act on a population level such that patches, especially1678

poor quality ones, will tend to have drive populations because wild-type popula-

tions will often become extinct. However, X-drive individuals may face difficulties1680

recolonising patches because random sampling could lead to early all-female gener-

ations. So, the existence of drive populations may rely on the infiltration of patches1682

colonised by wild-types.
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When populations are differently adapted to their environments, dispersal between1684

them can introduce maladaptive alleles into the population, resulting in the produc-

tion of maladapted offspring. In Chapter 3, we extend the classic model of how inver-1686

sions can spread when the maintain locally adaptive allele combinations under gene

flow. Prior work had considered how this might happen in continent-island models1688

(Kirkpatrick and Barton 2006; Charlesworth and Barton 2018), in which a single pop-

ulation recieves homogenously maladapted migrants from another population, and a1690

two patch model with symmetric migration and selection (Proulx and Teotónio 2022).

We analyse a two patch model with the possibility of asymmetric migration and se-1692

lection, and the role of each model parameter in detail. In contrast to the continent-

island model, we found that inversions are most likely to spread in the two-deme1694

model when local adaptation alleles are strongly selected for. Furthermore, when one

considers that inversions both have to arise and also capture a locally adaptive haplo-1696

type, the establishment of locally adaptive inversions was highest when selection was

strong in both models.1698

Inversions evolve over two scales, because there is selection on both the inversion it-

self and on its allelic content. In particular, when inversions arise on a background of1700

relatively few deleterious mutations they are afforded a selective advantage over the

population mean. Early work examined this in infinite populations, showing that in-1702

versions capturing any deleterious variation will ultimately be lost (Nei, Kojima, and

Schaffer 1967). This is because the good background captured by the inversion even-1704

tually deteriorates to mutation-selection balance like the standard arrangement, but

with the addition of extra, fixed mutations. Building on this, (Kimura and Ohta 1970)1706
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showed that in a finite population, fixation can occur before the loss of the inversion’s

transient advantage. Nei’s work has also been used more recently (e.g. Connallon,1708

Olito, et al. 2018; Connallon and Olito 2021) In Chapter 4, we re-analyse Nei’s model

and show that its implicit assumptions give rise to misleading results. The process of1710

degradation to mutation-selection balance requires recombination to occur within

the inversion, which is permissible only when the inversion is at high frequency. Our1712

simulations suggest that the biggest determinant of the fate of an inversion is the

extent to which it accumulates mutations early on, in a process similar to Muller’s1714

ratchet.

Selection against meiotic drivers is sometimes ascribed to direct fitness costs associ-1716

ated with mutation accumulation within the inversions that maintain meiotic drive

gene complexes (Lindholm et al. 2016). We could consider the driver to be a positively1718

selected inversion in the context of the results of Chapter 4. The threshold frequency

at which deterministic increase begins is low, and the ascendancy is quick, so we pre-1720

dict that the effects of early stage mutation accumulation should have little effect on

strong meiotic drivers. This also suggests that it is unlikely enough degeneration will1722

occur afterwards to prevent fixation. So, unless the first inversion(s) happened to cap-

ture strongly deleterious recessive alleles, it is likely that the forces maintaining poly-1724

morphism are unrelated to mutation accumulation — at least, initially.

Inversions involved in local adaptation under gene flow are likely to be at some inter-1726

mediate frequency, either in distinct populations or in a clinal structure. As such, they

should reach mutation-selection balance similarly to Nei’s model of inversion evolu-1728

tion. From this, we could plausibly infer that selection for the local adaptation alleles
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is stronger than selection against both the deleterious mutations load captured by the1730

inversion, and its breakpoint effects (which may also be positive — see (e.g. Lamich-

haney et al. 2016; Lee et al. 2017; Li et al. 2016) for an example of breakpoint-induced1732

local adaptation). This imposes a further restriction on the alleles likely to be involved

in inversions. Not only must they be strongly selected so that they resist swamping by1734

migration, they must also outweigh any harmful effects of the inversion.

In conclusion, this thesis has investigated the impacts inversions can have at all levels1736

of evolution. Maintaining linkage between alleles can be a powerful force, allowing

for the evolution of some of nature’s most interesting and extravagant phenotypes.1738

In short, inversions offer a solution to Felsenstein’s dilemma. They provide a region

in which linkage between coadapted alleles is maintained, while allowing adaptive1740

evolution to proceed in the long term when recombination once again ensues.
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Appendix 1

Alternative form of density dependence2102

In the main text, we assumed that competition for resources among adults is a source

of density dependent selection by reducing the survival or fecundity of adult females.2104

The assumption is that the density dependence is generated by the population size

(αN ), but not by the birth rate (b). Here, we explore an alternative form of density2106

dependence in which competition for resources can cause the population size to be

depressed as population birth rate increases. For instance, if the density dependence2108

is defined by

(1−bαN ), (A1)

then increasing the birth rate does not always increase population size (Figure A1).2110

Without meiotic drive, the equilibrium population size is

N̂ |p=0 = b −2

b2α
, (A2)

which now includes a quadratic term in b not present in (Eq 8). Thus, when birth2112

rates are very high, the equilibrium population size decreases because competition

becomes more intense. For example, if competition is a function of the number of2114
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Figure A1: Equilibrium population size given density dependence is based on

the the intrinsic birth rate (b). As before, meiotic drive allows the population

to persist with lower birth rates (b < 2). But with higher values of the birth rate

(b > 3), meiotic drive reduces population size. Parameter values: sm = 0, c = 1,

h = 0.1, s f = 0.8, λ f = 1, α= 10−3.
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Appendix 1

juveniles J = bN , then high birth rates both increase the number of juveniles, J , and

increase the strength of competition among them.2116

As in our main results, we find that the intrinsic birth rate must be at least two for

wild-type populations to persist whereas populations with drive can persist with a2118

lower intrinsic birth rate (Figure A1). However, meiotic drive does not always increase

population size in this scenario because increasing the effective birth rate by biasing2120

the sex ratio towards females does not always lead to larger populations. Thus, some

forms of density dependence could mean that increased birth rates do not increase2122

population size, in which case the effect of meiotic drive on boosting the effective

birth rate may change. However, we expect that increased birth rates will increase2124

population size in most models of intraspecific competition.
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Mathematica notebook2126

This section contains a pdf version of a Mathematica notebook containing derivations

of results in Chapter 2.2128
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X-linked meiotic drive can boost 
population size and persistence
Carl Mackintosh, Andrew Pomiankowski, and Michael F Scott

Overview
This notebook analyses the eco-evolutionary dynamics of X-linked meiotic drive. 

In this file, we assume that the birth rate declines linearly with population size. This assumption 

means that increased birth rates will increase the population size, which we expect to be generally 

true. Different assumptions about density-dependence may mean that increases in birth rate can 

actually decrease population size. We explore one such possibility in another Supplementary 

notebook. Further supplementary material contains python code used to conduct stochastic 

simulations of population size and persistence when there is X-linked meiotic drive. 

Since the spread of meiotic drive alleles may be affected the degree of polyandry via sperm 

competition, we investigate cases where females mate once (λf = 1), twice (λf = 2), or many times 

(λf →∞), each of which is presented in a separate section. The first section (Common Notation and 

Substitutions), should be entered before evaluating any of these sections. 

Common Notation and Substitutions [ENTER FIRST] 
We track adult (diploid) genotypes at an X linked locus that experiences meiotic drive in males. 
There are therefore 5 genotypes: 3 female genotypes and 2 male genotypes. In this notebook we 

use upper case D for the wildtype allele (which could also be called St or X) and lower case d to give 

the meiotic drive allele (which could also be called Sr or Xd). The 5 adult genotypes are therefore
females:
StSt = XX= DDf
SrSt = XdX = Ddf
SrSr = XdXd = ddf
males:
StY = XY = Dm
SrY = XdY = dm
such that
ijf is the density of females with genotype ij 
im is the density of males with genotype i

We assume that the X-linked meiotic drive allele biases transmission in males, such that a 


(1+δ)

2 fraction of gametes produced by a meiotic drive male (dm) carry the drive allele (d). 

Appendix 1
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Furthermore, we assume that the ejaculate size of meiotic drive males, relative to wildtype males, 
is c. 

We  use the following substitutions to convert between these genotype densities and the total 
density of males (maleNum) and females (femaleNum), and the frequency of the drive allele among 

males (pm) and females (pf), and the inbreeding coefficient (F). These quantities are defined by 

substitutionEquations, subeq can be used to convert from the genotype densities into male/female 

densities and allele frequencies. 

������ substitutionEquations = 

femaleNum == DDf + Ddf + ddf,

maleNum ⩵ dm + Dm,

pm ==
dm

dm + Dm
,

1 - pf^2 1 - F + F 1 - pf ==
DDf

DDf + Ddf + ddf
,

2 pf 1 - pf 1 - F ==
Ddf

DDf + Ddf + ddf
,

pf^2 1 - F + F pf ==
ddf

DDf + Ddf + ddf
;

subeq = Simplify[Solve[substitutionEquations, {dm, Dm, DDf, Ddf, ddf}]]

������ dm → maleNum pm, Dm → maleNum - maleNum pm,

DDf → -femaleNum -1 + pf 1 + -1 + F pf,

Ddf → 2 -1 + F femaleNum -1 + pf pf, ddf → femaleNum pf F + pf - F pf

In the absence of any competition for resources, each female will survive to produce b surviving 

juveniles. Density dependence acts to reduce the survival of females to reproduction, survival of 
juveniles, and/or female fecundity (which are all modelled equivalently) by a factor of (1-α N) where
N is the total density of males and females (maleNum+femaleNum). That is α is the per adult 
competitive effect on reproductive rate. totAdults gives the total population density of males and 

females. 

������ totAdults = DDf + Ddf + ddf + Dm + dm;

Before juveniles reach adulthood, they experience selection according to their genotype. The 

relative fitness of different genotypes is given by
WXX = 1
WXd X = 1 - h sf
WXd Xd = 1 - sf
WXY = 1
WXd Y = 1 - sm
We use ijfprime and imprime to specify the densities of each genotype a�er one generation 

(recursion/difference equations for change in genotype densities). For example, DDfprime is the 

density of females with genotype DD a�er one generation. 

Allele Frequency and Population Size Dynamics - 
females mate with one male (λf = 1)

2 ���  Appendix 1.nb
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Recursion equations

We consider each pairwise combination of male and female genotypes and the probability that 
each mating type produces each offspring genotype. We assume random mating so that each 

mating combination happens in proportion to the frequency of males with each genotype (e.g., 
dm

Dm+dm
is the frequency of drive males among males). These equations track all mating 

combinations that produce each juvenile genotype. The rate of birth and density-dependence 

competition (b*(1-α totAdults)) is not directly dependent on genotype. 

������ DDfjuveniles = b * 1 - α totAdults DDf *
Dm

Dm + dm
*
1

2
+

Ddf

2
*

Dm

Dm + dm
*
1

2
;

Ddfjuveniles = b * 1 - α totAdults DDf *
dm

Dm + dm
*

(1 + δ)

2
+

Ddf

2

Dm

Dm + dm
*
1

2
+

dm

Dm + dm
*

(1 + δ)

2
+

ddf *
Dm

Dm + dm
*
1

2
;

ddfjuveniles = b * 1 - α totAdults
Ddf

2
*

dm

Dm + dm
*

(1 + δ)

2
+

ddf *
dm

Dm + dm
*

(1 + δ)

2
;

Dmjuveniles = b * 1 - α totAdults DDf *
Dm

Dm + dm
*
1

2
+

Ddf

2
*

Dm

Dm + dm
*
1

2
+

dm

Dm + dm
*

(1 - δ)

2
+

DDf *
dm

Dm + dm
*

(1 - δ)

2
;

dmjuveniles = b * 1 - α totAdults
Ddf

2
*

dm

Dm + dm
*

(1 - δ)

2
+

Dm

Dm + dm
*
1

2
+

ddf *
Dm

Dm + dm

1

2
+

dm

Dm + dm
*

(1 - δ)

2
;

Before the next generation of adults, viability selection acts according to genotype. 

������ DDfprime = DDfjuveniles * 1;

Ddfprime = Ddfjuveniles * 1 - h * sf;

ddfprime = ddfjuveniles * 1 - sf;

Dmprime = Dmjuveniles * 1;
dmprime = dmjuveniles * (1 - sm);
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Equilibrium allele frequency and population size

We first look at only the difference in allele frequency and inbreeding coefficient to calculate the
polymorphic allele frequency equilibrium (when changes in allele frequency and inbreeding 

coefficient are 0)

������ solveme =

Simplify
dmprime

Dmprime + dmprime
-

dm

dm + Dm
,

2 ddfprime + Ddfprime

2 ddfprime + Ddfprime + DDfprime
-

2 ddf + Ddf

2 ddf + Ddf + DDf
,

4 ddfprime DDfprime - Ddfprime2

2 ddfprime + Ddfprime Ddfprime + 2 DDfprime
-

4 ddf DDf - Ddf2

2 ddf + Ddf Ddf + 2 DDf
 /. subeq;

equilibrium = Solve[solveme[[1]] ⩵ {0, 0, 0}, {pm, pf, F}] // Simplify

������ pm →
(-1 + sm) δ - sm (1 + δ) + h sf -2 + sm - δ + sm δ

2 sf (-1 + sm) (1 + δ) + h sf -2 + sm -2 + sm - δ + sm δ - sm (sm - δ + sm δ)
,

pf →
δ - sm (1 + δ) + h sf -2 + sm - δ + sm δ

2 sf -(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ
,

F → --2 h sf2 (-1 + sm) (1 + δ) -2 + sm - δ + sm δ + h2 sf2 -2 + sm - δ + sm δ
2
+

(sm - δ + sm δ) δ + 2 sf (-1 + sm) (1 + δ) - sm (1 + δ) 

h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ)2 -

2 sf 2 (-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ
2


The full system is described by

������ solvemeFull =

{DDfprime - DDf, Ddfprime - Ddf, ddfprime - ddf, Dmprime - Dm, dmprime - dm} /.
subeq[[1]] // Simplify;

We can then solve for the population sizes. First we find population sizes when drive alleles are 

absent (pm=pf=0) or fixed (pm=pf=1):
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������ noDrivePopSizeSol = Solve

solvemeFull /. pm → 0 /. pf → 0 ⩵ {0, 0, 0, 0, 0}, {maleNum, femaleNum}[[2]]

fixedDrivePopSizeSol = SolvesolvemeFull /. pm → 1 /. pf → 1 ⩵ {0, 0, 0, 0, 0},

{maleNum, femaleNum}[[2]] // Simplify

NnoDrive = maleNum + femaleNum /. noDrivePopSizeSol // FullSimplify

Nfixed = maleNum + femaleNum /. fixedDrivePopSizeSol // FullSimplify

������ maleNum →
-2 + b

2 b α
, femaleNum →

-2 + b

2 b α


������ maleNum → -
(-1 + sm) (-1 + δ) 2 + b -1 + sf (1 + δ)

b -1 + sf α (1 + δ) -2 + sf + sm + sf δ - sm δ
,

femaleNum →
2 + b -1 + sf (1 + δ)

b α -2 + sf + sm + sf δ - sm δ


������
-2 + b

b α

������

1 +
2

b (-1+sf) (1+δ)

α

Now for the case where a polymorphic equilibrium has been reached

������ simpleSolvemeFull = SimplifysolvemeFull;

equilPopSizeSol =

SimplifySolveFlattenSimplifysimpleSolvemeFull /. equilibrium ⩵

{0, 0, 0, 0, 0}, {femaleNum, maleNum}

maleNum + femaleNum /. equilPopSizeSol // FullSimplify
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������ {femaleNum → 0, maleNum → 0},

femaleNum → sf -(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ

b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2
 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)2 + h2 sf3 -2 + sm - δ + sm δ
2

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ +

sf2 8 (-1 + sm)2 (1 + δ)2 + 2 h 8 - 11 sm + 3 sm2 (1 + δ) -2 + sm - δ + sm δ -

h2 -8 - sm -6 + δ + sm2 (-1 + δ) -2 + sm - δ + sm δ
2
 +

sf (sm - δ + sm δ) 2 h sm3 -1 + δ2 + δ 1 + δ - h 2 + δ +

sm2 -5 - 4 δ + δ2 + h 9 - 5 δ2 + sm 5 + 3 δ - 2 δ2 + 2 h -5 + δ + 2 δ2,

maleNum → -b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2


sm (sm (-1 + δ) - δ) (sm - δ + sm δ)2 + sf2 -4 (-1 + sm)2 (1 + δ)2 +

h2 -2 + sm 2 + sm (-1 + δ) - δ -2 + sm - δ + sm δ
2
+

2 h (-1 + sm) (1 + δ) -8 - 2 δ + δ2 + sm 8 + 3 δ - 2 δ2 + sm2 -2 - δ + δ2 -

2 sf (sm - δ + sm δ) h sm3 -1 + δ2 + δ 1 + δ - h 2 + δ -

sm2 2 + δ - δ2 + h -4 + δ + 3 δ2 + sm 2 - 2 δ2 + h -4 + 3 δ + 3 δ2 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)4 + h4 sf5 -2 + sm - δ + sm δ
4

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ -

h2 sf4 -2 + sm - δ + sm δ
2
-12 (-1 + sm)2 (1 + δ)2 +

h2 -2 + sm - δ + sm δ
2
sm2 (-1 + δ) - 2 6 + δ + sm 8 + δ - 2 h (-1 + sm)

(1 + δ) 24 + 14 δ + δ2 + sm2 4 + 5 δ + δ2 - sm 20 + 19 δ + 2 δ2 +

2 sf3 -16 (-1 + sm)3 (1 + δ)3 - h2 (-1 + sm) (1 + δ) -2 + sm - δ + sm δ
2

16 3 + δ + sm2 (11 + 7 δ) - sm 40 + 23 δ +

h3 -2 + sm - δ + sm δ
3
8 2 + δ + sm2 11 + 7 δ - 4 δ2 +

2 sm3 -1 + δ2 + sm -20 - 15 δ + 2 δ2 - 4 h (-1 + sm)2 (1 + δ)2

2 12 + 8 δ + δ2 + sm2 5 + 7 δ + 2 δ2 - sm 22 + 23 δ + 4 δ2 +

sf (sm - δ + sm δ)2 4 h sm4 (-1 + δ) (1 + δ)2 + sm δ2 3 - 13 h + 3 δ - 7 h δ +

δ2 -1 - δ + h 2 + δ + 3 sm2 (1 + δ) 3 - δ2 + h -6 + 3 δ + 5 δ2 -

sm3 (1 + δ) 9 - δ2 + h -17 + 4 δ + 13 δ2 - 2 sf2 (sm - δ + sm δ)

3 h2 sm5 (-1 + δ) (1 + δ)3 - h sm4 (1 + δ)2 12 + 3 δ - δ2 + h -24 + 3 δ + 13 δ2 +

δ 2 (1 + δ)2 - h2 -2 + δ 2 + δ
2
+ h -8 - 10 δ - δ2 + δ3 +

sm3 (1 + δ) -2 7 + 8 δ + δ2 + h 64 + 68 δ + 8 δ2 - 4 δ3 +

h2 -74 - 55 δ + 31 δ2 + 22 δ3 + sm2 2 (1 + δ)2 14 + 3 δ + h2 104 +

166 δ + 37 δ2 - 45 δ3 - 18 δ4 + 3 h -36 - 69 δ - 37 δ2 - 2 δ3 + 2 δ4 +

sm -2 (1 + δ)2 7 + 3 δ + h 56 + 110 δ + 62 δ2 + 4 δ3 - 4 δ4 +

h2 -56 - 84 δ - 22 δ2 + 17 δ3 + 7 δ4
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������ 0, b h2 sf2 -2 + sm + (-1 + sm) δ
2
+ (sm + (-1 + sm) δ) -4 + b sm + b (-1 + sm) δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm + (-1 + sm) δ + b h -2 + sm + (-1 + sm) δ
2
 

b α -4 sf (-1 + sm) (1 + δ) - 2 h sf -2 + sm + (-1 + sm) δ
2
+

h2 sf2 -2 + sm + (-1 + sm) δ
2
+ (sm + (-1 + sm) δ)2

Verify this is an equilibrium by seeing if the difference equations are 0 at this point

������ Simplify[solvemeFull /. subeq /. equilibrium /. equilPopSizeSol[[2]]]

������ {{{0, 0, 0, 0, 0}}}

Define the φ and ψ terms and show these can be used to express the within-sex allele frequencies.

������ ϕ = δ - sm + sm δ + h sf 2 + δ - sm (1 + δ);

φ = sm (1 + δ) - δ + 2 sf (-1 + sm) (1 + δ) + h sf 2 + δ - sm (1 + δ);

pfeq = ϕ / (ϕ + φ) // FullSimplify;
pfeq - pf /. equilibrium[[1]] // Factor
pmeq = (1 - sm) ϕ / ((1 - sm) ϕ + φ) // Simplify;
pmeq - pm /. equilibrium[[1]] // Factor

������ 0

������ 0

Then find the equilibrium population size and polymorphism and show it can be written with b = b* 

as in the manuscript

������ Neq = SimplifyfemaleNum + maleNum /. equilPopSizeSol[[2]] // Simplify

Factor
b 1 + ϕ pfeq  2 (1 - pmeq)  1 - pfeq - 2

α b 1 + ϕ pfeq  2 (1 - pmeq)  1 - pfeq
- Neq // Simplify

bstar = Factor b 1 +
ϕ pfeq

2

1 - pmeq

1 - pfeq
;

Factor
bstar - 2

bstar α
- Neq

������ b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2
 

b α h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ)2 -

2 sf 2 (-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ
2


������ 0

������ 0

Now, we show that b* is increased by a factor that is the mean fitness of females at the polymorphic 

equilibrium (pm, pf) relative to the female population size without drive ( b-22 b α
).
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������ meanF =

SimplifyDDfjuveniles * 1 + Ddfjuveniles * 1 - h * sf + ddfjuveniles * 1 - sf 

femaleNum /. subeq /. equilibrium /. noDrivePopSizeSol;

b meanF - bstar // Simplify

������ {{0}}

Finally, we also show that, when drive is fixed, the population size can be given by b~, as presented 

in the text. 

������ bTilde = b 1 - sf (1 + δ);

Factor
bTilde - 2

bTilde α
- Nfixed

������ 0

Stability

There are at least two immediately apparent equilibria: when drive is absent from the population 

and when drive is fixed in the population. 

We first find the Jacobian for the system:

������ recursions = {Dmprime, dmprime, DDfprime, Ddfprime, ddfprime};
jacob = Simplify[Transpose[{D[recursions, Dm], D[recursions, dm],

D[recursions, DDf], D[recursions, Ddf], D[recursions, ddf]}]];

And then we assess the conditions under which the drive-absent and drive-fixed equilibria are 

stable/instable. 

drive absent (pm=pf=0) equilibrium

To evaluate the stability of the equilibrium where drive is absent we consider the eigenvalues of the 

Jacobian at this point (substituting pf->0, pm->0, and the equilibrium population size without 
drive). The equilibrium is unstable whenever it has an eigenvalue with absolute value > 1.

������ Simplify[jacob /. subeq /. pf → 0 /. pm → 0 /. noDrivePopSizeSol][[1]];
charpolynomial0 = Factor[Det[% - λ * IdentityMatrix[5]]]

������ -
1

4
λ2 -4 + b + 2 λ -1 + h sf + sm - h sf sm - δ + h sf δ + sm δ - h sf sm δ - λ + h sf λ + 2 λ2

The factor - 1
4 λ2 (-4 + b + 2 λ) gives two 0 eigenvalues and and eigenvalue of 4-b2 , 

corresponding to the change in overall population size. Thus, we can see that the demographic 

dynamics are orthogonal to the evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 

8 ���  Appendix 1.nb

Appendix 1

2136

125



������ Collectcharpolynomial0  -
1

4
λ
2
-4 + b + 2 λ , λ, Simplify;

Coefficient[%, λ^2];
charpolySimpleACoef0 = %% / % (*simplify so that the a coefficient is 1*)
acoef0 = Coefficient[charpolySimpleACoef0, λ^2];
bcoef0 = Coefficient[charpolySimpleACoef0, λ];
ccoef0 = charpolySimpleACoef0 - bcoef0 * λ - acoef0 * λ^2 // Simplify;

������
1

2
--1 + h sf (-1 + sm) (1 + δ) + -1 + h sf λ + 2 λ2

The discriminant must be non-negative for the eigenvalues to be real

������ bcoef0^2 - 4 acoef0 ccoef0 // FullSimplify

������
1

4
-1 + h sf -1 + h sf + 8 (-1 + sm) (1 + δ)

We can see that this is always true as the two terms in the product are always ≤ 0.

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b < 2
When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 
Conditions 2 and 3 are always true:

������ FullSimplifycharpolySimpleACoef0 /. λ → -1  > 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

������ True

������ FullSimplify[-2 < bcoef0 < 2, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ True

But condition 1 fails when the following inequality is true, giving us the instability condition.

������ unstabConditions0 = FullSimplify

charpolySimpleACoef0 /. λ → 1  < 0, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

������ sm + sm δ + h sf 2 + δ - sm (1 + δ) < δ

which can be re-written using the w fitness notation

������ Simplify[unstabConditions0, {wXdY ⩵ 1 - sm, wXdX ⩵ 1 - h sf, wXdXd ⩵ 1 - sf}]

������ wXdX + wXdX wXdY (1 + δ) > 2

drive fixed (pm=pf=1) equilibrium

We proceed similarly to before, but now considering the other equilibrium:
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������ Simplify[jacob /. subeq /. pf → 1 /. pm → 1 /. fixedDrivePopSizeSol][[1]];
charpolynomial1 = Factor[Det[% - λ * IdentityMatrix[5]]]

������
1

4 -1 + sf (-1 + sm) (1 + δ)
4 - b + b sf - b δ + b sf δ - 2 λ λ2

-1 + h sf - λ + h sf λ + sm λ - h sf sm λ - δ λ + h sf δ λ + sm δ λ - h sf sm δ λ +

2 λ2 - 2 sf λ2 - 2 sm λ2 + 2 sf sm λ2 + 2 δ λ2 - 2 sf δ λ2 - 2 sm δ λ2 + 2 sf sm δ λ2

The factor 4-b+b sf-b δ+b sf δ-2 λ λ2

4 -1+sf (-1+sm) (1+δ)
 gives two 0 eigenvalues and and eigenvalue of 

2 +
1
2 b (-1 + sf) (1 + δ), corresponding to the stability of the ecological equilibrium 

population size. Thus, we can see that the demographic dynamics are orthogonal to the 

evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 

������ Simplifycharpolynomial1 
4 - b + b sf - b δ + b sf δ - 2 λ λ2

4 -1 + sf (-1 + sm) (1 + δ)



Collect[%, λ, Simplify]

������ -1 + (-1 + sm) (1 + δ) λ + 2 -1 + sf (-1 + sm) (1 + δ) λ2 + h sf - sf (-1 + sm) (1 + δ) λ

������ -1 + h sf + 1 - h sf (-1 + sm) (1 + δ) λ + 2 -1 + sf (-1 + sm) (1 + δ) λ2

������ Simplifycharpolynomial1 
4 - b + b sf - b δ + b sf δ - 2 λ λ2

4 -1 + sf (-1 + sm) (1 + δ)

;

Collect[%, λ, Simplify];
Coefficient[%, λ^2];
charpolySimpleACoef1 = Collect[%% / %, λ, Simplify]
acoef1 = Coefficient[charpolySimpleACoef1, λ^2];
bcoef1 = Coefficient[charpolySimpleACoef1, λ];
ccoef1 = charpolySimpleACoef1 - bcoef1 * λ - acoef1 * λ^2;

������
-1 + h sf

2 -1 + sf (-1 + sm) (1 + δ)
+
1 - h sf λ

2 -1 + sf
+ λ2

The discriminant is nonnegative and so the eigenvalues are real:

������ bcoef1^2 - 4 acoef1 ccoef1

������
1 - h sf2

4 -1 + sf2
-

2 -1 + h sf

-1 + sf (-1 + sm) (1 + δ)

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b
4.  b < 2
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When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 

Now checking these conditions for instability by reversing the inequalities required for stability

������ r1 = FullSimplifycharpolySimpleACoef1 /. λ → 1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r2 = FullSimplifycharpolySimpleACoef1 /. λ → -1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r3 = FullSimplify[bcoef1 < -2, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]
r4 = FullSimplify[bcoef1 > 2, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ δ + 2 sf (-1 + sm) (1 + δ) + h sf 2 + δ - sm (1 + δ) < sm (1 + δ)

������ 2 + 3 δ + sf -2 - 2 + h δ + 2 + h sm (1 + δ) < 3 sm (1 + δ)

������ 3 + h sf < 4 sf

������ False

Region r3 is independent of drive and relates only to female heterozygote and drive homozygote 

fitness (it can be rewritten as 1 - s_f < (1 - hs_f) /4).

The region defined by r1 is included in all the other regions, so we need only satisfy this inequality

������ Reduce[{! r1, r2, r3, 1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ False

Thus, the instability conditions are:

������ unstabConditions1 = r1

������ δ + 2 sf (-1 + sm) (1 + δ) + h sf 2 + δ - sm (1 + δ) < sm (1 + δ)

which can be re-written using the w fitness notation

������ FullSimplify[unstabConditions1, {wXdY ⩵ 1 - sm, wXdX ⩵ 1 - h sf, wXdXd ⩵ 1 - sf}]

������ 2 wXdXd wXdY (1 + δ) < wXdX 1 + wXdY + wXdY δ

Critical birth rate

The critical birth rate is the lowest birth rate for which a population still exists (equilibrium 

population size, N, bigger than 0). 

We first find the critical birth rate when drive is absent, polymorphic, or fixed. 
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������ bcritNoDrive =

b /. SolveSimplifymaleNum + femaleNum /. noDrivePopSizeSol ⩵ 0, b[[1]]

bcritEquil = b /. Solve[Neq ⩵ 0, b][[1]]
bcritFixed = b /. Solve[Nfixed ⩵ 0, b][[1]]

������ 2

������ -4 -2 sf + 4 h sf + 2 sf sm - 4 h sf sm - sm2 + h sf sm2 -

2 sf δ + 2 h sf δ + sm δ + 2 sf sm δ - 3 h sf sm δ - sm2 δ + h sf sm2 δ 

4 sf - 8 h sf + 4 h2 sf2 - 4 sf sm + 8 h sf sm - 4 h2 sf2 sm + sm2 - 2 h sf sm2 +

h2 sf2 sm2 + 4 sf δ - 8 h sf δ + 4 h2 sf2 δ - 2 sm δ - 4 sf sm δ + 12 h sf sm δ -

6 h2 sf2 sm δ + 2 sm2 δ - 4 h sf sm2 δ + 2 h2 sf2 sm2 δ + δ2 - 2 h sf δ2 + h2 sf2 δ2 -

2 sm δ2 + 4 h sf sm δ2 - 2 h2 sf2 sm δ2 + sm2 δ2 - 2 h sf sm2 δ2 + h2 sf2 sm2 δ2

������ -
2

-1 + sf (1 + δ)

Given that drive is polymorphic (ϕ>0,φ>0), the critical birth rate is always smaller than it would 

have been without drive
Given that drive reaches fixation (ϕ>0,φ<0), the critical birth rate is always smaller than it would 

have been without drive

������ Reduce[{bcritNoDrive < bcritEquil,
0 < sf < 1, 0 < h < 1, 0 < sm < 1, 0 < b, 0 < δ < 1, ϕ > 0, φ > 0}]

Reduce[{bcritNoDrive < bcritFixed, 0 < sf < 1, 0 < h < 1,
0 < sm < 1, 0 < b, 0 < δ < 1, ϕ > 0, φ < 0}]

������ False

������ False

The following functions define population sizes in these different cases for plotting (the same as the 

expressions derived above). 

������ func[{sf_, sm_, h_, δ_, α_, c_, b_}] :=

If

sf -(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ

b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2
 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
2
+ h2 sf3 -2 + sm - δ + sm δ

2

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ +

sf2 8 (-1 + sm)2 (1 + δ)
2
+ 2 h 8 - 11 sm + 3 sm2 (1 + δ) -2 + sm - δ + sm δ -

h2 -8 - sm -6 + δ + sm2 (-1 + δ) -2 + sm - δ + sm δ
2
 +

sf (sm - δ + sm δ) 2 h sm3 -1 + δ
2
 + δ 1 + δ - h 2 + δ +

sm2 -5 - 4 δ + δ
2
+ h 9 - 5 δ

2
 + sm 5 + 3 δ - 2 δ

2
+ 2 h -5 + δ + 2 δ

2
 -

b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2

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sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
2
+ sf2 -4 (-1 + sm)2 (1 + δ)

2
+

h2 -2 + sm 2 + sm (-1 + δ) - δ -2 + sm - δ + sm δ
2
+

2 h (-1 + sm) (1 + δ) -8 - 2 δ + δ
2
+ sm 8 + 3 δ - 2 δ

2
 + sm2 -2 - δ + δ

2
 -

2 sf (sm - δ + sm δ) h sm3 -1 + δ
2
 + δ 1 + δ - h 2 + δ -

sm2 2 + δ - δ
2
+ h -4 + δ + 3 δ

2
 + sm 2 - 2 δ

2
+ h -4 + 3 δ + 3 δ

2
 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
4
+ h4 sf5 -2 + sm - δ + sm δ

4

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ -

h2 sf4 -2 + sm - δ + sm δ
2
-12 (-1 + sm)2 (1 + δ)

2
+

h2 -2 + sm - δ + sm δ
2
sm2 (-1 + δ) - 2 6 + δ + sm 8 + δ -

2 h (-1 + sm) (1 + δ) 24 + 14 δ + δ
2
+ sm2 4 + 5 δ + δ

2
 - sm 20 + 19 δ + 2 δ

2
 +

2 sf3 -16 (-1 + sm)3 (1 + δ)
3
- h2 (-1 + sm) (1 + δ) -2 + sm - δ + sm δ

2

16 3 + δ + sm2 (11 + 7 δ) - sm 40 + 23 δ +

h3 -2 + sm - δ + sm δ
3
8 2 + δ + sm2 11 + 7 δ - 4 δ

2
 + 2 sm3

-1 + δ
2
 + sm -20 - 15 δ + 2 δ

2
 - 4 h (-1 + sm)2 (1 + δ)

2

2 12 + 8 δ + δ
2
 + sm2 5 + 7 δ + 2 δ

2
 - sm 22 + 23 δ + 4 δ

2
 +

sf (sm - δ + sm δ)
2
4 h sm4 (-1 + δ) (1 + δ)

2
+ sm δ

2
3 - 13 h + 3 δ - 7 h δ +

δ
2
-1 - δ + h 2 + δ + 3 sm2 (1 + δ) 3 - δ

2
+ h -6 + 3 δ + 5 δ

2
 -

sm3 (1 + δ) 9 - δ
2
+ h -17 + 4 δ + 13 δ

2
 - 2 sf2 (sm - δ + sm δ)

3 h2 sm5 (-1 + δ) (1 + δ)
3
- h sm4 (1 + δ)

2
12 + 3 δ - δ

2
+ h -24 + 3 δ + 13 δ

2
 +

δ 2 (1 + δ)
2
- h2 -2 + δ 2 + δ

2
+ h -8 - 10 δ - δ

2
+ δ

3
 + sm3 (1 + δ)

-2 7 + 8 δ + δ
2
 + h 64 + 68 δ + 8 δ

2
- 4 δ

3
 + h2 -74 - 55 δ + 31 δ

2
+ 22 δ

3
 +

sm2 2 (1 + δ)
2
14 + 3 δ + h2 104 + 166 δ + 37 δ

2
- 45 δ

3
- 18 δ

4
 + 3 h

-36 - 69 δ - 37 δ
2
- 2 δ

3
+ 2 δ

4
 + sm -2 (1 + δ)

2
7 + 3 δ + h 56 + 110

δ + 62 δ
2
+ 4 δ

3
- 4 δ

4
 + h2 -56 - 84 δ - 22 δ

2
+ 17 δ

3
+ 7 δ

4
 < 0,

Null, sf -(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ b h2 sf2 -2 + sm - δ + sm δ
2
+

(sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2
 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
2
+ h2 sf3 -2 + sm - δ + sm δ

2

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ +

sf2 8 (-1 + sm)2 (1 + δ)
2
+ 2 h 8 - 11 sm + 3 sm2 (1 + δ) -2 + sm - δ + sm δ -

h2 -8 - sm -6 + δ + sm2 (-1 + δ) -2 + sm - δ + sm δ
2
 +

sf (sm - δ + sm δ) 2 h sm3 -1 + δ
2
 + δ 1 + δ - h 2 + δ +

sm2 -5 - 4 δ + δ
2
+ h 9 - 5 δ

2
 + sm 5 + 3 δ - 2 δ

2
+ 2 h -5 + δ + 2 δ

2
 -

b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2


sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
2
+ sf2 -4 (-1 + sm)2 (1 + δ)

2
+

h2 -2 + sm 2 + sm (-1 + δ) - δ -2 + sm - δ + sm δ
2
+

2 h (-1 + sm) (1 + δ) -8 - 2 δ + δ
2
+ sm 8 + 3 δ - 2 δ

2
 + sm2 -2 - δ + δ

2
 -

2 sf (sm - δ + sm δ) h sm3 -1 + δ
2
 + δ 1 + δ - h 2 + δ -
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sm2 2 + δ - δ
2
+ h -4 + δ + 3 δ

2
 + sm 2 - 2 δ

2
+ h -4 + 3 δ + 3 δ

2
 

b α -sm (sm (-1 + δ) - δ) (sm - δ + sm δ)
4
+ h4 sf5 -2 + sm - δ + sm δ

4

-(-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ -

h2 sf4 -2 + sm - δ + sm δ
2
-12 (-1 + sm)2 (1 + δ)

2
+

h2 -2 + sm - δ + sm δ
2
sm2 (-1 + δ) - 2 6 + δ + sm 8 + δ -

2 h (-1 + sm) (1 + δ) 24 + 14 δ + δ
2
+ sm2 4 + 5 δ + δ

2
 - sm 20 + 19 δ + 2 δ

2
 +

2 sf3 -16 (-1 + sm)3 (1 + δ)
3
- h2 (-1 + sm) (1 + δ) -2 + sm - δ + sm δ

2

16 3 + δ + sm2 (11 + 7 δ) - sm 40 + 23 δ +

h3 -2 + sm - δ + sm δ
3
8 2 + δ + sm2 11 + 7 δ - 4 δ

2
 +

2 sm3 -1 + δ
2
 + sm -20 - 15 δ + 2 δ

2
 - 4 h (-1 + sm)2 (1 + δ)

2

2 12 + 8 δ + δ
2
 + sm2 5 + 7 δ + 2 δ

2
 - sm 22 + 23 δ + 4 δ

2
 +

sf (sm - δ + sm δ)
2
4 h sm4 (-1 + δ) (1 + δ)

2
+ sm δ

2
3 - 13 h + 3 δ - 7 h δ +

δ
2
-1 - δ + h 2 + δ + 3 sm2 (1 + δ) 3 - δ

2
+ h -6 + 3 δ + 5 δ

2
 -

sm3 (1 + δ) 9 - δ
2
+ h -17 + 4 δ + 13 δ

2
 - 2 sf2 (sm - δ + sm δ)

3 h2 sm5 (-1 + δ) (1 + δ)
3
- h sm4 (1 + δ)

2
12 + 3 δ - δ

2
+ h -24 + 3 δ + 13 δ

2
 +

δ 2 (1 + δ)
2
- h2 -2 + δ 2 + δ

2
+ h -8 - 10 δ - δ

2
+ δ

3
 + sm3 (1 + δ)

-2 7 + 8 δ + δ
2
 + h 64 + 68 δ + 8 δ

2
- 4 δ

3
 + h2 -74 - 55 δ + 31 δ

2
+ 22 δ

3
 +

sm2 2 (1 + δ)
2
14 + 3 δ + h2 104 + 166 δ + 37 δ

2
- 45 δ

3
- 18 δ

4
 +

3 h -36 - 69 δ - 37 δ
2
- 2 δ

3
+ 2 δ

4
 + sm -2 (1 + δ)

2
7 + 3 δ + h

56 + 110 δ + 62 δ
2
+ 4 δ

3
- 4 δ

4
 + h2 -56 - 84 δ - 22 δ

2
+ 17 δ

3
+ 7 δ

4


func2[{b_, α_}] := If
-2 + b

b α
> 0,

-2 + b

b α
, Null

func3[{sf_, sm_, h_, δ_, α_, c_, b_}] :=

If
2 + b -1 + sf (1 + δ)

b α -2 + sf + sm + sf δ - sm δ

-
(-1 + sm) (-1 + δ) 2 + b -1 + sf (1 + δ)

b -1 + sf α (1 + δ) -2 + sf + sm + sf δ - sm δ

> 0,

2 + b -1 + sf (1 + δ)

b α -2 + sf + sm + sf δ - sm δ

-
(-1 + sm) (-1 + δ) 2 + b -1 + sf (1 + δ)

b -1 + sf α (1 + δ) -2 + sf + sm + sf δ - sm δ

, Null

Produce plot
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������ testParameters = h → 0.1, α →
1

1000
, δ → 1, c → 1, sm → 0, sf → 0.8;

weakDriveParams = h → 0, α → 10^-3, δ → 0.25, c → 1, sm → 0, sf → 0;

Plotfunc{sf, sm, h, δ, α, c, b} /. testParameters,

func3{sf, sm, h, δ, α, c, b} /. weakDriveParams,

func2{b, α} /. testParameters, {b, 1, 5}, AxesLabel → {b, N}, PlotLegends →

{"strong drive at equilibrium", "weak drive at fixation", "wild-type"}

������

2 3 4 5
b

100

200

300

400

500

600

700

N

strong drive at equilibrium

weak drive at fixation

wild-type

Allele Frequency and Population Size Dynamics - 
females mate with two males (λf = 2)

Recursion equations

In this section, each female mates with two males. The probability of choosing each male genotype 

is assumed to be random such that it occurs in proportion to the proportion of males with each 

genotype. These recursion/difference equations track the mating combinations of female and two 

male genotypes that can produce offspring of each genotype. 
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������ DDfjuveniles2 =

b * 1 - α totAdults DDf
Dm^2

2 Dm + dm^2
+ 2

Dm dm

Dm + dm^2

1
2

(1 + c)
+

Ddf

2

Dm^2

Dm + dm^2

1

2
+

2 Dm dm

Dm + dm^2

1
2

(1 + c)
;

Ddfjuveniles2 =

b * 1 - α totAdults DDf
dm^2

Dm + dm^2

(1 + δ)

2
+

2 dm Dm

Dm + dm^2

c 
1+δ
2



(1 + c)
+

Ddf

2

Dm^2

Dm + dm^2

1

2
+

dm^2

Dm + dm^2

(1 + δ)

2
+

2 Dm dm

Dm + dm^2

1
2
+ c 

1+δ
2



(1 + c)
+

ddf
Dm^2

Dm + dm^2

1

2
+

2 Dm dm

Dm + dm^2

1
2

(1 + c)
;

ddfjuveniles2 =

b * 1 - α totAdults
Ddf

2

dm^2

Dm + dm^2

(1 + δ)

2
+

2 Dm dm

Dm + dm^2

c 
1+δ
2



(1 + c)
+

ddf
dm^2

Dm + dm^2

(1 + δ)

2
+

2 Dm dm

Dm + dm^2

c 
1+δ
2



(1 + c)
;

Dmjuveniles2 = b * 1 - α totAdults

DDf
Dm^2

Dm + dm^2

1

2
+

dm^2

Dm + dm^2

(1 - δ)

2
+

2 Dm dm

Dm + dm^2

1
2
+ c 

1-δ
2



(1 + c)
+

Ddf

2

Dm^2

Dm + dm^2

1

2
+

dm^2

Dm + dm^2

(1 - δ)

2
+

2 Dm dm

Dm + dm^2

1
2
+ c 

1-δ
2



(1 + c)
;

dmjuveniles2 = b * 1 - α totAdults

Ddf

2

Dm^2

Dm + dm^2

1

2
+

dm^2

Dm + dm^2

(1 - δ)

2
+

2 Dm dm

Dm + dm^2

1
2
+ c 

1-δ
2



(1 + c)
+

ddf
Dm^2

Dm + dm^2

1

2
+

dm^2

Dm + dm^2

(1 - δ)

2
+

2 Dm dm

Dm + dm^2

1
2
+ c 

1-δ
2



(1 + c)
;

Before the next generation of adults, viability selection acts according to genotype. 

������ DDfprime2 = DDfjuveniles2 * 1;

Ddfprime2 = Ddfjuveniles2 * 1 - h * sf;

ddfprime2 = ddfjuveniles2 * 1 - sf;

Dmprime2 = Dmjuveniles2 * 1;
dmprime2 = dmjuveniles2 * (1 - sm);

Equilibrium allele frequency and population size
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The eco-evolutionary dynamics are at equilibrium when the difference equations (solvemeFull) are 

equal to 0 (no change). We use subeq to convert the difference equations so that they track the 

genotype frequency in males (pm), females (pf), inbreeding coefficient (F), and the number of males 

(maleNum) and females (femaleNum). 

������ solvemeFull = {DDfprime2 - DDf, Ddfprime2 - Ddf, ddfprime2 - ddf,
Dmprime2 - Dm, dmprime2 - dm} /. subeq[[1]] // Simplify;

When drive is absent (pm=0, pf=0) or fixed (pm=1, pf=1), the allele frequencies cannot change. We 

can get the equilibrium population size (maleNum and femaleNum) for these evolutionary 

equilibria. 

������ noDrivePopSizeSol2 =

SolvesolvemeFull /. pm → 0 /. pf → 0 ⩵ {0, 0, 0, 0, 0}, {maleNum, femaleNum}

fixedDrivePopSizeSol2 =

SolvesolvemeFull /. pm → 1 /. pf → 1 ⩵ {0, 0, 0, 0, 0}, {maleNum, femaleNum}

������ {maleNum → 0, femaleNum → 0}, maleNum →
-2 + b

2 b α
, femaleNum →

-2 + b

2 b α


������ {maleNum → 0, femaleNum → 0}, maleNum →
(-1 + sm) (-1 + δ) 2 - b + b sf - b δ + b sf δ

b -1 + sf α (1 + δ) 2 - sf - sm - sf δ + sm δ
,

femaleNum →
2 - b + b sf - b δ + b sf δ

b α -2 + sf + sm + sf δ - sm δ


We also expect drive can reach an intermediate equilibrium allele frequency. We make it easier to 

solve for this equilibrium allele frequency by focussing on the difference in allele frequency and 

allele frequency between generations. 

������ solveme =

Simplify
dmprime2

Dmprime2 + dmprime2
- pm,

2 ddfprime2 + Ddfprime2

2 ddfprime2 + Ddfprime2 + DDfprime2
- pf,

4 ddfprime2 DDfprime2 - Ddfprime22

2 ddfprime2 + Ddfprime2 Ddfprime2 + 2 DDfprime2
- F /.

pm →
dm

dm + Dm
, pf →

2 ddf + Ddf

2 ddf + Ddf + DDf
, F →

-Ddf2 + 4 ddf DDf

2 ddf + Ddf Ddf + 2 DDf
 /. subeq;

However, we are only able to get a result for the polymorphic equilibrium when we further assume 

that there is no selection in adult males (sm=0). 

������ equilibrium = Solvesolveme[[1]] /. sm → 0 ⩵ {0, 0, 0}, {pm, pf, F} // Simplify

������ pm →

-
1

4 (-1 + c) sf -1 - δ + h 2 + δ
4 c sf - 8 c h sf - δ + c δ + 4 c sf δ + h sf δ - 5 c h sf δ +

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
, pf →

-
1

4 (-1 + c) sf -1 - δ + h 2 + δ
4 c sf - 8 c h sf - δ + c δ + 4 c sf δ + h sf δ - 5 c h sf δ +

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
,
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F → -2 sf + 4 c sf - 2 c2 sf + 4 h sf - 8 c h sf + 4 c2 h sf + 8 sf2 + 4 c sf2 + 4 c2 sf2 -

18 h sf2 - 36 c h sf2 - 10 c2 h sf2 + 8 h2 sf2 + 48 c h2 sf2 + 8 c2 h2 sf2 + 8 h sf3 +
24 c h sf3 - 14 h2 sf3 - 36 c h2 sf3 - 14 c2 h2 sf3 + 4 h3 sf3 - 8 c h3 sf3 + 4 c2 h3 sf3 +
4 c h2 sf4 + 12 c2 h2 sf4 + 2 h3 sf4 + 4 c h3 sf4 - 6 c2 h3 sf4 - 9 sf δ + 10 c sf δ -

c2 sf δ + 12 h sf δ - 8 c h sf δ - 4 c2 h sf δ + 8 sf2 δ - 4 c sf2 δ + 4 c2 sf2 δ - 13 h sf2 δ -

38 c h sf2 δ + 3 c2 h sf2 δ + 48 c h2 sf2 δ + 16 c2 h2 sf2 δ + 8 h sf3 δ + 32 c h sf3 δ -

8 c2 h sf3 δ - 11 h2 sf3 δ - 42 c h2 sf3 δ - 27 c2 h2 sf3 δ + 4 h3 sf3 δ - 8 c h3 sf3 δ +

4 c2 h3 sf3 δ + 4 c h2 sf4 δ + 20 c2 h2 sf4 δ + h3 sf4 δ + 6 c h3 sf4 δ - 7 c2 h3 sf4 δ + δ2 -

2 c δ2 + c2 δ2 - 2 sf δ2 + 10 c sf δ2 - h sf δ2 - 6 c h sf δ2 - 9 c2 h sf δ2 - 8 c sf2 δ2 +
4 h sf2 δ2 - 2 c h sf2 δ2 + 14 c2 h sf2 δ2 - h2 sf2 δ2 + 10 c h2 sf2 δ2 + 7 c2 h2 sf2 δ2 +
8 c h sf3 δ2 - 8 c2 h sf3 δ2 - 2 h2 sf3 δ2 - 10 c h2 sf3 δ2 - 12 c2 h2 sf3 δ2 + h3 sf3 δ2 -
2 c h3 sf3 δ2 + c2 h3 sf3 δ2 + 8 c2 h2 sf4 δ2 + 2 c h3 sf4 δ2 - 2 c2 h3 sf4 δ2 +

3 sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

c sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

4 h sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

4 c h sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

2 h sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

2 c h sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

4 h2 sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 4 c h2 sf2

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

h2 sf3 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 3 c h2 sf3

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

c δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

2 sf δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 4 c h sf δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

2 h sf2 δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +
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-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 2 c h sf2 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

h2 sf2 δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 3 c h2 sf2 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 2 c h2 sf3 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 

2 (-1 + c)2 δ2 + h3 sf4 1 + c 3 + 2 δ
2
+ sf 1 - 2 δ + h -2 + 2 δ - 3 δ2 +

2 c -1 + 2 δ2 + h 2 + 2 δ + δ2 + c2 1 + 2 δ - h 2 + 6 δ + 7 δ2 - h sf3

2 c -4 (1 + δ) + h 3 - 2 δ2 + h2 6 + 6 δ + δ2 + h -7 - 6 δ + h 10 + 6 δ + δ2 +

c2 -8 (1 + δ) + h2 10 + 14 δ + 5 δ2 + h 17 + 22 δ + 8 δ2 + sf2

8 (1 + δ) - 5 h (5 + 4 δ) + h2 20 + 12 δ + 3 δ2 + 2 c 4 (1 + δ) + h2 12 + 12 δ + δ2 -

h 15 + 18 δ + 4 δ2 + c2 h -9 - 8 δ + 4 δ2 + h 20 + 28 δ + 11 δ2,

pm →
1

4 (-1 + c) sf -1 - δ + h 2 + δ
-4 c sf + 8 c h sf + δ - c δ -

4 c sf δ - h sf δ + 5 c h sf δ +

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
,

pf →
1

4 (-1 + c) sf -1 - δ + h 2 + δ
-4 c sf + 8 c h sf + δ - c δ -

4 c sf δ - h sf δ + 5 c h sf δ +

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
,

F → -2 sf + 4 c sf - 2 c2 sf + 4 h sf - 8 c h sf + 4 c2 h sf + 8 sf2 + 4 c sf2 +

4 c2 sf2 - 18 h sf2 - 36 c h sf2 - 10 c2 h sf2 + 8 h2 sf2 + 48 c h2 sf2 +
8 c2 h2 sf2 + 8 h sf3 + 24 c h sf3 - 14 h2 sf3 - 36 c h2 sf3 -
14 c2 h2 sf3 + 4 h3 sf3 - 8 c h3 sf3 + 4 c2 h3 sf3 + 4 c h2 sf4 +
12 c2 h2 sf4 + 2 h3 sf4 + 4 c h3 sf4 - 6 c2 h3 sf4 - 9 sf δ + 10 c sf δ -

c2 sf δ + 12 h sf δ - 8 c h sf δ - 4 c2 h sf δ + 8 sf2 δ - 4 c sf2 δ +

4 c2 sf2 δ - 13 h sf2 δ - 38 c h sf2 δ + 3 c2 h sf2 δ + 48 c h2 sf2 δ +

16 c2 h2 sf2 δ + 8 h sf3 δ + 32 c h sf3 δ - 8 c2 h sf3 δ - 11 h2 sf3 δ -

42 c h2 sf3 δ - 27 c2 h2 sf3 δ + 4 h3 sf3 δ - 8 c h3 sf3 δ + 4 c2 h3 sf3 δ +

4 c h2 sf4 δ + 20 c2 h2 sf4 δ + h3 sf4 δ + 6 c h3 sf4 δ - 7 c2 h3 sf4 δ +

δ2 - 2 c δ2 + c2 δ2 - 2 sf δ2 + 10 c sf δ2 - h sf δ2 - 6 c h sf δ2 -

9 c2 h sf δ2 - 8 c sf2 δ2 + 4 h sf2 δ2 - 2 c h sf2 δ2 + 14 c2 h sf2 δ2 -
h2 sf2 δ2 + 10 c h2 sf2 δ2 + 7 c2 h2 sf2 δ2 + 8 c h sf3 δ2 - 8 c2 h sf3 δ2 -
2 h2 sf3 δ2 - 10 c h2 sf3 δ2 - 12 c2 h2 sf3 δ2 + h3 sf3 δ2 - 2 c h3 sf3 δ2 +
c2 h3 sf3 δ2 + 8 c2 h2 sf4 δ2 + 2 c h3 sf4 δ2 - 2 c2 h3 sf4 δ2 -

3 sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

c sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +
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-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

4 h sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

4 c h sf-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

2 h sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

2 c h sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

4 h2 sf2 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 4 c h2 sf2

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

h2 sf3 -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 3 c h2 sf3

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

c δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

2 sf δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 4 c h sf δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 +

2 h sf2 δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 2 c h sf2 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 -

h2 sf2 δ -8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 - 3 c h2 sf2 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 + 2 c h2 sf3 δ

-8 (-1 + c) sf -1 - δ + h 2 + δ 1 + h sf + c -1 - 2 δ + h sf 3 + 2 δ +

-1 + h sf δ + c δ + sf 4 - 8 h + 4 δ - 5 h δ
2
 

2 (-1 + c)2 δ2 + h3 sf4 1 + c 3 + 2 δ
2
+ sf 1 - 2 δ + h -2 + 2 δ - 3 δ2 +

2 c -1 + 2 δ2 + h 2 + 2 δ + δ2 + c2 1 + 2 δ - h 2 + 6 δ + 7 δ2 - h sf3

2 c -4 (1 + δ) + h 3 - 2 δ2 + h2 6 + 6 δ + δ2 + h -7 - 6 δ + h 10 + 6 δ + δ2 +

c2 -8 (1 + δ) + h2 10 + 14 δ + 5 δ2 + h 17 + 22 δ + 8 δ2 + sf2
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8 (1 + δ) - 5 h (5 + 4 δ) + h2 20 + 12 δ + 3 δ2 + 2 c 4 (1 + δ) + h2 12 + 12 δ + δ2 -

h 15 + 18 δ + 4 δ2 + c2 h -9 - 8 δ + 4 δ2 + h 20 + 28 δ + 11 δ2

Stability

There are at least two immediately apparent equilibria: when drive is absent from the population 

and when drive is fixed in the population. 

We first find the Jacobian for the system:

������ recursions2 = {Dmprime2, dmprime2, DDfprime2, Ddfprime2, ddfprime2};
jacob2 = Simplify[Transpose[{D[recursions2, Dm], D[recursions2, dm],

D[recursions2, DDf], D[recursions2, Ddf], D[recursions2, ddf]}]];

And then we assess the conditions under which the drive-absent and drive-fixed equilibria are 

stable/instable. 

drive absent (pm=pf=0) equilibrium

To evaluate the stability of the equilibrium where drive is absent we consider the eigenvalues of the 

Jacobian at this point (substituting pf->0, pm->0, and the equilibrium population size without 
drive). The equilibrium is unstable whenever it has an eigenvalue with absolute value > 1.

������ Simplify[jacob2 /. subeq[[1]] /. pf → 0 /. pm → 0 /. noDrivePopSizeSol2[[2]]];
charpolynomial02 = Factor[Det[% - λ * IdentityMatrix[5]]]

������ -
1

4 (1 + c)
λ2 -4 + b + 2 λ -2 c + 2 c h sf + 2 c sm - 2 c h sf sm - 2 c δ +

2 c h sf δ + 2 c sm δ - 2 c h sf sm δ - λ - c λ + h sf λ + c h sf λ + 2 λ2 + 2 c λ2

The factor - λ2 -4+b+2 λ

4 (1+c)  gives two 0 eigenvalues and and eigenvalue of 4-b2 , corresponding to the 

change in overall population size. Thus, we can see that the demographic dynamics are orthogonal 
to the evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 

������ Collectcharpolynomial02  -
λ2 -4 + b + 2 λ

4 (1 + c)
, λ, Simplify;

Coefficient[%, λ^2];
charpolySimpleACoef02 = Collect[%% / %, λ, Simplify]
acoef02 = Coefficient[charpolySimpleACoef02, λ^2];
bcoef02 = Coefficient[charpolySimpleACoef02, λ];
ccoef02 = charpolySimpleACoef02 - bcoef02 * λ - acoef02 * λ^2 // Simplify;

������ -
c -1 + h sf (-1 + sm) (1 + δ)

1 + c
+
1

2
-1 + h sf λ + λ2
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Now check the discriminant

������ bcoef02^2 - 4 acoef02 ccoef02 // FullSimplify

������
1

4
-1 + h sf -1 + h sf +

16 c (-1 + sm) (1 + δ)

1 + c

We can see that this is always positive as the two terms in the product are always ≤ 0.

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b < 2
When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 
Condition 3 is always true:

������ FullSimplifycharpolySimpleACoef02 /. λ → 1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

FullSimplifycharpolySimpleACoef02 /. λ → -1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

FullSimplify[-2 < bcoef02 < 2, {1 > δ >= 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������
1

2
1 + h sf -

2 c -1 + h sf (-1 + sm) (1 + δ)

1 + c
< 0

������
1

2
3 - h sf -

2 c -1 + h sf (-1 + sm) (1 + δ)

1 + c
< 0

������ True

The second of these inequalities implies the first and so we need only the first (only one condition is 

needed for instability).

������ unstabConditions02 = FullSimplify

charpolySimpleACoef02 /. λ → 1  < 0, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

������
1

2
1 + h sf -

2 c -1 + h sf (-1 + sm) (1 + δ)

1 + c
< 0

which can be re-written using the w fitness notation

������ Simplify[unstabConditions02, {wXdX ⩵ 1 - h sf, wXdXd ⩵ 1 - sf, wXdY ⩵ 1 - sm}]

������ (1 + c) -2 + wXdX + c -2 + wXdX + 2 wXdX wXdY (1 + δ) > 0

drive fixed (pm=pf=1) equilibrium

We proceed similarly to before, but now considering the other equilibrium:
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������ Simplify[jacob2 /. subeq[[1]] /. pf → 1 /. pm → 1 /. fixedDrivePopSizeSol2[[2]]];
charpolynomial12 = Factor[Det[% - λ * IdentityMatrix[5]]]

������
1

4 (1 + c) -1 + sf (-1 + sm) (1 + δ)
4 - b + b sf - b δ + b sf δ - 2 λ λ2

-2 + 2 h sf - λ - c λ + h sf λ + c h sf λ + sm λ + c sm λ - h sf sm λ - c h sf sm λ - δ λ -

c δ λ + h sf δ λ + c h sf δ λ + sm δ λ + c sm δ λ - h sf sm δ λ - c h sf sm δ λ + 2 λ2 +

2 c λ2 - 2 sf λ2 - 2 c sf λ2 - 2 sm λ2 - 2 c sm λ2 + 2 sf sm λ2 + 2 c sf sm λ2 + 2 δ λ2 +

2 c δ λ2 - 2 sf δ λ2 - 2 c sf δ λ2 - 2 sm δ λ2 - 2 c sm δ λ2 + 2 sf sm δ λ2 + 2 c sf sm δ λ2

The factor 4-b+b sf-b δ+b sf δ-2 λ λ2

4 (1+c) -1+sf (-1+sm) (1+δ)
 gives two 0 eigenvalues and and eigenvalue of 

2 +
1
2 b (-1 + sf) (1 + δ), corresponding to the stability of the ecological equilibrium 

population size. Thus, we can see that the demographic dynamics are orthogonal to the 

evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 

������ Collectcharpolynomial12 
4 - b + b sf - b δ + b sf δ - 2 λ λ2

4 (1 + c) -1 + sf (-1 + sm) (1 + δ)

, λ, Simplify;

Coefficient[%, λ^2];
charpolySimpleACoef12 = Collect[%% / %, λ, Simplify]
acoef12 = Coefficient[charpolySimpleACoef12, λ^2];
bcoef12 = Coefficient[charpolySimpleACoef12, λ];
ccoef12 = charpolySimpleACoef12 - bcoef12 * λ - acoef12 * λ^2;

������
-1 + h sf

(1 + c) -1 + sf (-1 + sm) (1 + δ)
+
1 - h sf λ

2 -1 + sf
+ λ2

The discriminant is nonnegative and so the eigenvalues are real:

������ bcoef12^2 - 4 acoef12 ccoef12

������
1 - h sf2

4 -1 + sf2
-

4 -1 + h sf

(1 + c) -1 + sf (-1 + sm) (1 + δ)

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b
4.  b < 2
When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 

Now checking these conditions for instability by reversing the inequalities required for stability
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������ r1 = FullSimplifycharpolySimpleACoef12 /. λ → 1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r2 = FullSimplifycharpolySimpleACoef12 /. λ → -1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r3 = FullSimplify[bcoef12 < -2, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]
r4 = FullSimplify[2 < bcoef12, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ 1 +
1 - h sf

2 -1 + sf
+

-1 + h sf

(1 + c) -1 + sf (-1 + sm) (1 + δ)
< 0

������ 1 +
1 - h sf

2 - 2 sf
+

-1 + h sf

(1 + c) -1 + sf (-1 + sm) (1 + δ)
< 0

������ 3 + h sf < 4 sf

������ False

The second inequality implies the first again. r3 only applies if δ or c is less than 1. Otherwise, it is 

covered by r1. 

������ Reduce[{! r1, r3, 1 == δ || 1 ⩵ c, 0 < δ ≤ 1, 0 < c ≤ 1, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ False

If δ<1 or c<1, r3 shows that the drive-fixed equilibrium is always unstable when heterozygous 

females have at least 4 times higher survival probability than homozygous drive females: re-writing 

r3 as  4 (1 - sf) < 1 - h sf. Even if r3 is not met, the drive-fixed equilibrium can still be unstable 

when the r1 condition is met. 

������ unstabConditions12 = r1 || r3

������ 1 +
1 - h sf

2 -1 + sf
+

-1 + h sf

(1 + c) -1 + sf (-1 + sm) (1 + δ)
< 0 || 3 + h sf < 4 sf

Allele Frequency and Population Size Dynamics - 
females mate with many males (λf →∞)

Recursion equations

Here we assume that each female mates many times. Therefore, females effectively sample alleles 

from the total sperm produced by the male population (S). In the following recursion/difference 

equations, 
Xm are sperm with the wildtype-X allele
Xdm are sperm with the drive-X allele
Ym are sperm with the Y allele
Xf are eggs with the wildtype-X allele
Xdf are eggs with the drive-X allele
These gametes then be combined to produce the juveniles of the next generation. 
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������ S = Dm + c dm;

Xm =
Dm

2 S
;

Ym = Dm  2 + dm
c (1 - δ)

2
 S;

Xdm = c
(1 + δ)

2
dm  S;

Xf = DDf + Ddf  2;

Xdf = Ddf  2 + ddf;

DDfjuvenilesi = b 1 - α totAdults Xm Xf;

Ddfjuvenilesi = b 1 - α totAdults Xdm Xf + Xm Xdf;

ddfjuvenilesi = b 1 - α totAdults Xdm Xdf;

Dmjuvenilesi = b 1 - α totAdults Ym Xf;

dmjuvenilesi = b 1 - α totAdults Ym Xdf;

Before the next generation of adults, viability selection acts according to genotype. 

������ DDfprimei = DDfjuvenilesi * 1;

Ddfprimei = Ddfjuvenilesi * 1 - h * sf;

ddfprimei = ddfjuvenilesi * 1 - sf;

Dmprimei = Dmjuvenilesi * 1;
dmprimei = dmjuvenilesi * (1 - sm);

Equilibrium allele frequency and population size

We first look at only the difference in allele frequency and inbreeding coefficient to calculate the
polymorphic allele frequency equilibrium (when changes in allele frequency and inbreeding 

coefficient are 0)

������ solvemei = Simplify


dmprimei

Dmprimei + dmprimei
-

dm

dm + Dm
,

2 ddfprimei + Ddfprimei

2 ddfprimei + Ddfprimei + DDfprimei
-

2 ddf + Ddf

2 ddf + Ddf + DDf
,

4 ddfprimei DDfprimei - Ddfprimei2

2 ddfprimei + Ddfprimei Ddfprimei + 2 DDfprimei
-

4 ddf DDf - Ddf2

2 ddf + Ddf Ddf + 2 DDf
 /. subeq;

equilibriumi = Solve[solvemei[[1]] ⩵ {0, 0, 0}, {pm, pf, F}] // Simplify

������ pm → -
(-1 + sm) -1 - h sf + c -1 + h sf (-1 + sm) (1 + δ)

h sf -2 + sm + sm - c sf 2 + h -2 + sm - sm (-1 + sm) (1 + δ)
,

pf →
-1 - h sf + c -1 + h sf (-1 + sm) (1 + δ)

2 sf -h + c -1 + h (-1 + sm) (1 + δ)
,

F → 1 - h2 sf2 + 2 c 1 - sf + -1 + h h sf2 (-1 + sm) (1 + δ) -

c2 -1 + 2 sf + -2 + h h sf2 (-1 + sm)2 (1 + δ)2  -1 + h sf2 - 2 c

-1 - 2 -1 + h sf + h2 sf2 (-1 + sm) (1 + δ) + c2 -1 + h sf2 (-1 + sm)2 (1 + δ)2

The full system is described by
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������ solvemeFulli = {DDfprimei - DDf, Ddfprimei - Ddf, ddfprimei - ddf,
Dmprimei - Dm, dmprimei - dm} /. subeq[[1]] // Simplify;

We can then solve for the population sizes. First we find population sizes when drive alleles are 

absent (pm=pf=0) or fixed (pm=pf=1):

������ noDrivePopSizeSoli =

SolvesolvemeFulli /. pm → 0 /. pf → 0 ⩵ {0, 0, 0, 0, 0}, {maleNum, femaleNum};

fixedDrivePopSizeSoli = SolvesolvemeFulli /. pm → 1 /. pf → 1 ⩵ {0, 0, 0, 0, 0},

{maleNum, femaleNum};

NnoDrivei = maleNum + femaleNum /. noDrivePopSizeSoli[[2]] // FullSimplify

Nfixedi = maleNum + femaleNum /. fixedDrivePopSizeSoli[[2]] // FullSimplify

������
-2 + b

b α

������

1 +
2

b (-1+sf) (1+δ)

α

Now for the case where a polymorphic equilibrium has been reached

������ equilPopSizeSoli =

SimplifySolveFlattenSimplifysolvemeFulli /. equilibriumi /. sm → 0 ⩵

{0, 0, 0, 0, 0}, {femaleNum, maleNum};

������ Neqi = femaleNum + maleNum /. equilPopSizeSol[[2]] // Simplify

������ b h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ) -b δ + sm -4 + b + b δ -

2 sf -4 (-1 + sm) (1 + δ) + 2 b (-1 + sm) (1 + δ) -

2 h -2 + sm -2 + sm - δ + sm δ + b h -2 + sm - δ + sm δ
2
 

b α h2 sf2 -2 + sm - δ + sm δ
2
+ (sm - δ + sm δ)2 -

2 sf 2 (-1 + sm) (1 + δ) + h -2 + sm - δ + sm δ
2


Stability

There are at least two immediately apparent equilibria: when drive is absent from the population 

and when drive is fixed in the population. 

We first find the Jacobian for the system:

������ recursionsi = {Dmprimei, dmprimei, DDfprimei, Ddfprimei, ddfprimei};
jacobi = Simplify[Transpose[{D[recursionsi, Dm], D[recursionsi, dm],

D[recursionsi, DDf], D[recursionsi, Ddf], D[recursionsi, ddf]}]];

And then we assess the conditions under which the drive-absent and drive-fixed equilibria are 

stable/instable. 

drive absent (pm=pf=0) equilibrium

Proceed as before:

26 ���  Appendix 1.nb

Appendix 1

2154

143



������ Simplify[jacobi /. subeq[[1]] /. pf → 0 /. pm → 0 /. noDrivePopSizeSoli[[2]]];
charpolynomial0i = Factor[Det[% - λ * IdentityMatrix[5]]]

������ -
1

4
λ2 -4 + b + 2 λ

-c + c h sf + c sm - c h sf sm - c δ + c h sf δ + c sm δ - c h sf sm δ - λ + h sf λ + 2 λ2

The factor - λ2 -4+b+2 λ

4  gives two 0 eigenvalues and and eigenvalue of 4-b2 , corresponding to the 

change in overall population size. Thus, we can see that the demographic dynamics are orthogonal 
to the evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 

������ Collectcharpolynomial0i  -
1

4
λ
2
-4 + b + 2 λ , λ, Simplify;

Coefficient[%, λ^2];
charpolySimpleACoef0i = Collect[%% / %, λ, Simplify]
acoef0i = Coefficient[charpolySimpleACoef0i, λ^2];
bcoef0i = Coefficient[charpolySimpleACoef0i, λ];
ccoef0i = charpolySimpleACoef0i - bcoef0i * λ - acoef0i * λ^2 // Simplify;

������ -
1

2
c -1 + h sf (-1 + sm) (1 + δ) +

1

2
-1 + h sf λ + λ2

Now check the discriminant

������ ccoef0i

������ -
1

2
c -1 + h sf (-1 + sm) (1 + δ)

������ bcoef0i^2 - 4 acoef0i ccoef0i // FullSimplify

������
1

4
-1 + h sf -1 + h sf + 8 c (-1 + sm) (1 + δ)

We can see that this is always positive as the two terms in the product are always ≤ 0.

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b < 2
When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 
Condition 3 is always true:
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������ FullSimplifycharpolySimpleACoef0i /. λ → 1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

FullSimplifycharpolySimpleACoef0i /. λ → -1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

FullSimplify[-2 < bcoef0i < 2, {1 > δ >= 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ 1 + h sf < c -1 + h sf (-1 + sm) (1 + δ)

������ h sf + c -1 + h sf (-1 + sm) (1 + δ) > 3

������ True

The second of these inequalities implies the first and so we need only the first (only one condition is 

needed for instability).

������ unstabConditions0i = FullSimplify

charpolySimpleACoef0i /. λ → 1  < 0, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

������ 1 + h sf < c -1 + h sf (-1 + sm) (1 + δ)

which can be re-written using the w fitness notation

������ Simplify[unstabConditions0i, {wXdX ⩵ 1 - h sf, wXdXd ⩵ 1 - sf, wXdY ⩵ 1 - sm}]

������ wXdX + c wXdX wXdY (1 + δ) > 2

drive fixed (pm=pf=1) equilibrium

We proceed similarly to before, but now considering the other equilibrium:

������ Simplify[jacobi /. subeq[[1]] /. pf → 1 /. pm → 1 /. fixedDrivePopSizeSoli[[2]]];
charpolynomial1i = Factor[Det[% - λ * IdentityMatrix[5]]]

������
1

4 c -1 + sf (-1 + sm) (1 + δ)

4 - b + b sf - b δ + b sf δ - 2 λ λ2 -1 + h sf - c λ + c h sf λ + c sm λ -

c h sf sm λ - c δ λ + c h sf δ λ + c sm δ λ - c h sf sm δ λ + 2 c λ2 - 2 c sf λ2 -

2 c sm λ2 + 2 c sf sm λ2 + 2 c δ λ2 - 2 c sf δ λ2 - 2 c sm δ λ2 + 2 c sf sm δ λ2

The factor 4-b+b sf-b δ+b sf δ-2 λ λ2

4 c -1+sf (-1+sm) (1+δ)
 gives two 0 eigenvalues and and eigenvalue of 

2 +
1
2 b (-1 + sf) (1 + δ), corresponding to the stability of the ecological equilibrium 

population size. Thus, we can see that the demographic dynamics are orthogonal to the 

evolutionary dynamics. 

Here,  we divide through by this factor to simplify the equation and evaluate the evolutionary 

dynamics. We then write the characteristic polynomial in the form
aλ2 + bλ + c 

finding the a, b, and c coefficients. 
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������ Collectcharpolynomial1i 
4 - b + b sf - b δ + b sf δ - 2 λ λ2

4 c -1 + sf (-1 + sm) (1 + δ)

, λ, Simplify;

Coefficient[%, λ^2];
charpolySimpleACoef1i = Collect[%% / %, λ, Simplify]
acoef1i = Coefficient[charpolySimpleACoef1i, λ^2];
bcoef1i = Coefficient[charpolySimpleACoef1i, λ];
ccoef1i = charpolySimpleACoef1i - bcoef1i * λ - acoef1i * λ^2;

������
-1 + h sf

2 c -1 + sf (-1 + sm) (1 + δ)
+
1 - h sf λ

2 -1 + sf
+ λ2

The discriminant is nonnegative and so the eigenvalues are real:

������ bcoef1i^2 - 4 acoef1i ccoef1i

������
1 - h sf2

4 -1 + sf2
-

2 -1 + h sf

c -1 + sf (-1 + sm) (1 + δ)

The conditions for the above characteristic polynomial p  to have roots between -1 and 1 are:
1. p(1) > 0
2. p(-1) > 0
3.  -2 < b
4.  b < 2
When any of these are false, the largest eigenvalue is > 1 ‚ and the equilibrium is unstable. 

Now checking these conditions for instability by reversing the inequalities required for stability

������ r1 = FullSimplifycharpolySimpleACoef1i /. λ → 1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r2 = FullSimplifycharpolySimpleACoef1i /. λ → -1  < 0,

{1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}

r3 = FullSimplify[bcoef1i < -2, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]
r4 = FullSimplify[2 < bcoef1i, {1 > δ > 0, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ c 1 - h sf + c 1 + -2 + h sf (-1 + sm) (1 + δ) > 0

������ c -1 + h sf + c -3 + 2 + h sf (-1 + sm) (1 + δ) < 0

������ 3 + h sf < 4 sf

������ False

The second inequality implies the first again. r3 only applies if δ or c is less than 1. Otherwise, it is 

covered by r1. 

������ Reduce[{! r1, r3, 1 == δ || 1 ⩵ c, 0 < δ ≤ 1, 0 < c ≤ 1, 1 > h > 0, 1 > sm > 0, 0 < sf < 1}]

������ False

If δ<1 or c<1, r3 shows that the drive-fixed equilibrium is always unstable when heterozygous 

females have at least 4 times higher survival probability than homozygous drive females: re-writing 

r3 as  4 (1 - sf) < 1 - h sf. Even if r3 is not met, the drive-fixed equilibrium can still be unstable 

when the r1 condition is met. 
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������ unstabConditions1i = r1 || r3

������ c 1 - h sf + c 1 + -2 + h sf (-1 + sm) (1 + δ) > 0 || 3 + h sf < 4 sf
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Appendix 2

This section contains a pdf version of a Mathematica notebook containing derivations2160

of results in Chapter 3.
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Enter me first
In[58]:= subeqns2 =

{p1g22  1 - p1g11 - p1g12 - p1g21, p1fA1  p1g11 + p1g12, p1fB1  p1g11 + p1g21,

p1D  p1g11 p1g22 - p1g12 p1g21, p2g22  1 - p2g11 - p2g12 - p2g21,

p2fA1  p2g11 + p2g12, p2fB1  p2g11 + p2g21, p2D  p2g11 p2g22 - p2g12 p2g21};

alleleSubs =

Flatten[Solve[subeqns2, {p1g11, p1g12, p1g21, p1g22, p2g11, p2g12, p2g21, p2g22}]];

symmetrySubs = {m12  m, m21  m, s1  s, s2  s};

linearise[exp_, args_] :=

With[{subs = Evaluate[Table[args〚i〛  args〚i〛 ϵ, {i, 1, Length[args]}]]},

Simplify[Normal[Series[exp /. subs, {ϵ, 0, 1}]] /. ϵ  1]]

secondOrder[exp_, args_] :=

With[{subs = Evaluate[Table[args〚i〛  args〚i〛 ϵ, {i, 1, Length[args]}]]},

Simplify[Normal[Series[exp /. subs, {ϵ, 0, 2}]] /. ϵ  1]]

symmMiSubs = {m12  m, m21  m};

symmSelSubs = {s1  s, s2  s};

equilSubs =

{p2g21  p2g12, p1g21  p1g12, p1g22  1 - 2 p1g12 - p1g11, p2g11  1 - 2 p2g12 - p2g22};

Continent-island model

Recursions

Prior to reproduction, adult frequencies are multiplied by their relative fitness...

In[ ]:= ClearAll[p1w11, p1w12, p1w21, p1w22]

p1w11 = (1 + s)^2;

p1w12 = (1 + s);

p1w21 = (1 + s);

p1w22 = 1 ;

Clear[p1Wm]

p1Wm = p1g11 p1w11 + p1g12 p1w12 + p1g21 p1w21 + p1g22 p1w22;

p1g11s = p1g11 p1w11 / p1Wm;

p1g12s = p1g12 p1w12 / p1Wm;

p1g21s = p1g21 p1w21 / p1Wm;

p1g22s = p1g22 p1w22 / p1Wm;

...so that their probability of reproduction can be incorporated into the reproduction phase.

In[ ]:= p1g11r = (1 - r) (p1g11s) + r (p1g11s^2 + p1g11s p1g12s + p1g11s p1g21s + p1g12s p1g21s);

p1g12r = (1 - r) p1g12s + r (p1g12s^2 + p1g12s p1g11s + p1g12s p1g22s + p1g11s p1g22s);

p1g21r = (1 - r) p1g21s + r (p1g21s^2 + p1g21s p1g11s + p1g21s p1g22s + p1g11s p1g22s);

p1g22r = (1 - r) p1g22s + r (p1g22s^2 + p1g22s p1g12s + p1g22s p1g21s + p1g12s p1g21s);
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All haplotype frequencies are reduced by migration, and then A2 B2 migrants are introduced.

In[ ]:= p1g11m = p1g11r (1 - m) ;

p1g12m = p1g12r (1 - m);

p1g21m = p1g21r (1 - m);

p1g22m = p1g22r (1 - m) + m;

p1g11m + p1g12m + p1g21m + p1g22m // Simplify

Out[ ]= 1

The change in frequency is given by the difference between frequencies at the beginning of the 
generation, and the end of it (beginning of the next)

In[ ]:= CIdelp1g11 = Simplify[p1g11m - p1g11];

CIdelp1g12 = Simplify[p1g12m - p1g12];

CIdelp1g21 = Simplify[p1g21m - p1g21];

CIdelp1g22 = Simplify[p1g22m - p1g22];

QLE 

In[ ]:= Dprime = p1g11m * p1g22m - p1g12m * p1g21m /. alleleSubs // Simplify;

delD = Dprime - p1D // Simplify;

Continuous time QLE

by assuming all rate parameters (m, s, r) are of the same order, we can derive a continuous time 
approximation to the discrete time system:

In[ ]:= dDdt = linearise[delD, {m, s, r}]

Out[ ]= m p1fA1 p1fB1 - p1D r - p1D (m + 2 (-1 + p1fA1 + p1fB1) s)

find the equilibrium LD value in terms of allele frequencies:

In[ ]:= DsubAF = Solve[dDdt  0, p1D]

Out[ ]= p1D 
m p1fA1 p1fB1

m + r - 2 s + 2 p1fA1 s + 2 p1fB1 s


now we repeat for the allele frequencies. since there is no difference between locus A and locus B, 
we can treat just one of them.

In[ ]:= dfA1dt = linearise[p1g11m + p1g12m - p1fA1 /. alleleSubs /. p1fB1  p1fA1, {m, s, r}]

Out[ ]= -m p1fA1 + p1D + p1fA1 - p1fA12 s

at QLE, m, s << r so that m/r, s/r << 1. therefore, we take 1/r as a small parameter in the 
approximation and solve to order 1/r, using the LD value we found earlier:

In[ ]:= Normal[Series[dfA1dt /. DsubAF /. p1fB1  p1fA1, {r, Infinity, 1}]];

Solve[%  0, p1fA1];

Collect[Simplify[Normal[Series[p1fA1 /. %〚2〛, {r, Infinity, 1}]], r > 0 && s > 0], r]

Out[ ]= -
m - s

s
-
m (m - s)

r s

now we can go back and find the equilibrium LD in terms of the model parameters
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In[ ]:= NormalSeriesp1D /. DsubAF /. p1fB1  p1fA1 /. p1fA1  -
m - s

s
-
m (m - s)

r s
,

{r, Infinity, 1} // Simplify

Out[ ]= 
m (m - s)2

r s2


Two deme model

Recursions

We proceed as in the continent-island model, but now include fitness and frequencies in deme 2:

In[1]:= ClearAll[p1w11, p1w12, p1w21, p1w22, p2w11, p2w12, p2w21, p2w22]

wSubs = {p1w11  (1 + s1)^2 ,

p1w12  (1 + s1),

p1w21  (1 + s1),

p1w22  1,

p2w11  1,

p2w12  (1 + s2),

p2w21  (1 + s2),

p2w22  (1 + s2)^2 };

ClearAll["p1Wm", "p2Wm"]

p1Wm = p1g11 p1w11 + p1g12 p1w12 + p1g21 p1w21 + p1g22 p1w22;

p2Wm = p2g11 p2w11 + p2g12 p2w12 + p2g21 p2w21 + p2g22 p2w22;

p1g11s = p1g11 p1w11 / p1Wm;

p1g12s = p1g12 p1w12 / p1Wm;

p1g21s = p1g21 p1w21 / p1Wm;

p1g22s = p1g22 p1w22 / p1Wm;

p2g11s = p2g11 p2w11 / p2Wm;

p2g12s = p2g12 p2w12 / p2Wm;

p2g21s = p2g21 p2w21 / p2Wm;

p2g22s = p2g22 p2w22 / p2Wm;

In[14]:= p1g11r = (1 - r) (p1g11s) + r (p1g11s^2 + p1g11s p1g12s + p1g11s p1g21s + p1g12s p1g21s);

p1g12r = (1 - r) p1g12s + r (p1g12s^2 + p1g12s p1g11s + p1g12s p1g22s + p1g11s p1g22s);

p1g21r = (1 - r) p1g21s + r (p1g21s^2 + p1g21s p1g11s + p1g21s p1g22s + p1g11s p1g22s);

p1g22r = (1 - r) p1g22s + r (p1g22s^2 + p1g22s p1g12s + p1g22s p1g21s + p1g12s p1g21s);

p2g11r = (1 - r) (p2g11s) + r (p2g11s^2 + p2g11s p2g12s + p2g11s p2g21s + p2g12s p2g21s);

p2g12r = (1 - r) p2g12s + r (p2g12s^2 + p2g12s p2g11s + p2g12s p2g22s + p2g11s p2g22s);

p2g21r = (1 - r) p2g21s + r (p2g21s^2 + p2g21s p2g11s + p2g21s p2g22s + p2g11s p2g22s);

p2g22r = (1 - r) p2g22s + r (p2g22s^2 + p2g22s p2g12s + p2g22s p2g21s + p2g12s p2g21s);
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In[22]:= p1g11m = (p1g11r * (1 - m21) + m21 p2g11r);

p1g12m = (p1g12r * (1 - m21) + m21 p2g12r);

p1g21m = (p1g21r * (1 - m21) + m21 p2g21r);

p1g22m = (p1g22r * (1 - m21) + m21 p2g22r);

p2g11m = (p2g11r * (1 - m12) + m12 p1g11r);

p2g12m = (p2g12r * (1 - m12) + m12 p1g12r);

p2g21m = (p2g21r * (1 - m12) + m12 p1g21r);

p2g22m = (p2g22r * (1 - m12) + m12 p1g22r);

In[30]:= delp1g11 = Simplify[p1g11m - p1g11];

delp1g12 = Simplify[p1g12m - p1g12];

delp1g21 = Simplify[p1g21m - p1g21];

delp1g22 = Simplify[p1g22m - p1g22];

delp2g11 = Simplify[p2g11m - p2g11];

delp2g12 = Simplify[p2g12m - p2g12];

delp2g21 = Simplify[p2g21m - p2g21];

delp2g22 = Simplify[p2g22m - p2g22];

In[38]:= postSelectionSubs = {D1s  (s1g11 s1g22 - s1g12 s1g21),

D2s  (s2g11 s2g22 - s2g12 s2g21), s1g11  p1g11 p1w11 / wbar1,

s1g12  p1g12 p1w12 / wbar1, s1g21  p1g21 p1w21 / wbar1, s1g22  p1g22 p1w22 / wbar1,

s2g11  p2g11 p2w11 / wbar2, s2g12  p2g12 p2w12 / wbar2,

s2g21  p2g21 p2w21 / wbar2, s2g22  p2g22 p2w22 / wbar2};

Verify that the final recursions can be written in the simplified form given in the main text:

In[39]:= p1X11 = ((1 - m21) (s1g11 - r D1s) + m21 (s2g11 - r D2s));

p1X12 = ((1 - m21) (s1g12 + r D1s) + m21 (s2g12 + r D2s));

p1X21 = ((1 - m21) (s1g21 + r D1s) + m21 (s2g21 + r D2s));

p1X22 = ((1 - m21) (s1g22 - r D1s) + m21 (s2g22 - r D2s));

p2X11 = ((1 - m12) (s2g11 - r D2s) + m12 (s1g11 - r D1s));

p2X12 = ((1 - m12) (s2g12 + r D2s) + m12 (s1g12 + r D1s));

p2X21 = ((1 - m12) (s2g21 + r D2s) + m12 (s1g21 + r D1s));

p2X22 = ((1 - m12) (s2g22 - r D2s) + m12 (s1g22 - r D1s));

recursions = {p1g11m, p1g12m, p1g21m, p1g22m, p2g11m, p2g12m, p2g21m, p2g22m};

simplifiedRecursions = {p1X11, p1X12, p1X21, p1X22, p2X11, p2X12, p2X21, p2X22};

(recursions - simplifiedRecursions ) /. postSelectionSubs /. postSelectionSubs /.

wbar1  p1Wm /. wbar2  p2Wm // Simplify

Out[49]= {0, 0, 0, 0, 0, 0, 0, 0}

The following matrices correspond to M11 andM22 as written in the main text :

In[50]:= mat = 

(1 - m21) (1 + s1)2

wbar1
,
m12 (1 + s1)2

wbar1
, 

m21

wbar2
,

(1 - m12)

wbar2
;

mat2 = 
(1 - m21)

wbar1
,

m12

wbar1
, 

m21 (1 + s2)2

wbar2
,

(1 + s2)2 (1 - m12)

wbar2
;

charpoly = Simplify[Det[mat - IdentityMatrix[2] * λ]];

charpoly2 = Simplify[Det[mat2 - IdentityMatrix[2] * λ]];
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QLE 

Continuous time

in the QLE approximation, we assume that r >> m, s, so that m/r, s/r << 1. so, we take 1/r as a small 
parameter in the model. 

so, the allele frequencies at QLE are of the form f1A1 = F0 + F1/r + O(1/r^2) etc.

first, we convert the model to continuous time

In[72]:= df1A1 = linearise[p1g11m + p1g12m - p1fA1 /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

df2A1 = linearise[p2g11m + p2g12m - p2fA1 /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

df1B1 = linearise[p1g11m + p1g21m - p1fB1 /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

df2B1 = linearise[p2g11m + p2g21m - p2fB1 /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

dD1 = linearise[

p1g11m p1g22m - p1g12m p1g21m - p1D /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

dD2 = linearise[

p2g11m p2g22m - p2g12m p2g21m - p2D /. alleleSubs /. wSubs, {m12, m21, s1, s2, r}];

rsubs = {p1fA1  f10 + f11 / r,

p2fA1  f20 + f21 / r, p1fB1  g10 + g11 / r , p2fB1  g20 + g21 / r}

Out[78]= p1fA1  f10 +
f11

r
, p2fA1  f20 +

f21

r
, p1fB1  g10 +

g11

r
, p2fB1  g20 +

g21

r


at QLE, close to D = 0, the rate of generation of LD due to selection is equal to the rate of decay 
caused by recombination: 

In[79]:= p1D /. Solve[(dD1 /. p1D  0 /. p2D  0)  r p1D, p1D] // Simplify;

p2D /. Solve[(dD2 /. p1D  0 /. p2D  0)  r p2D, p2D] // Simplify;

{%%, %} /. rsubs;

Coefficient[%, 1 / r] / r // Simplify;

{D1sub, D2sub} = % // Flatten

Out[83]= 
(f10 - f20) (g10 - g20) m21

r
,

(f10 - f20) (g10 - g20) m12

r


at equilibrium the following expressions are equal to 0

In[84]:= dAlleleFreq = {df1A1, df2A1 , df1B1, df2B1};

using this value of LD, determine the linear term in the allele frequencies, which are the allele 
frequencies when the system is in full linkage equilibrium (ie D = 0)
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In[85]:= dAlleleFreq /. rsubs /. p1D  D1sub /. p2D  D2sub // Simplify;

% /. r  1 / R // Simplify;

% /. R  0;

freqLinearTermSubs = Simplify[Solve[%  0, {f10, f20, g10, g20}]〚16〛]

Out[88]= f10 
1

2
1 -

2 m21

s1
+

4 m12 m21 + s1 s2

s1 s2
, f20 

2 m12 + s2 -
s2 4 m12 m21+s1 s2

s1

2 s2
,

g10 
1

2
1 -

2 m21

s1
+

4 m12 m21 + s1 s2

s1 s2
, g20 

2 m12 + s2 -
s2 4 m12 m21+s1 s2

s1

2 s2


now find the O(1/r) term

In[89]:= dAlleleFreq /. rsubs /. p1D  D1sub /. p2D  D2sub // Simplify;

% /. r  1 / R // Simplify;

D[%, R] /. R  0 // Simplify

freqFirstOrderTermSubs = Simplify[Solve[%  0, {f11, f21, g11, g21}]] // Flatten

Out[91]= {f11 (-m21 + s1 - 2 f10 s1) + m21 (f21 + (f10 - f20) (g10 - g20) s1),

f11 m12 - (f10 - f20) (g10 - g20) m12 s2 - f21 (m12 + s2 - 2 f20 s2),

g11 (-m21 + s1 - 2 g10 s1) + m21 (g21 + (f10 - f20) (g10 - g20) s1),

g11 m12 - (f10 - f20) (g10 - g20) m12 s2 - g21 (m12 + s2 - 2 g20 s2)}

Out[92]= f11 
(f10 - f20) (g10 - g20) m21 ((-1 + 2 f20) s1 s2 + m12 (-s1 + s2))

m12 (s1 - 2 f10 s1) + (-1 + 2 f20) (m21 + (-1 + 2 f10) s1) s2
,

f21 
(f10 - f20) (g10 - g20) m12 ((-1 + 2 f10) s1 s2 + m21 (-s1 + s2))

m12 (s1 - 2 f10 s1) + (-1 + 2 f20) (m21 + (-1 + 2 f10) s1) s2
,

g11 
(f10 - f20) (g10 - g20) m21 ((-1 + 2 g20) s1 s2 + m12 (-s1 + s2))

m12 (s1 - 2 g10 s1) + (-1 + 2 g20) (m21 + (-1 + 2 g10) s1) s2
,

g21 
(f10 - f20) (g10 - g20) m12 ((-1 + 2 g10) s1 s2 + m21 (-s1 + s2))

m12 (s1 - 2 g10 s1) + (-1 + 2 g20) (m21 + (-1 + 2 g10) s1) s2


In[129]:= qleAlleleFreqs = Simplify[rsubs /. freqFirstOrderTermSubs /. freqLinearTermSubs,

s1 > 0 && s2 > 0 && m12 > 0 && m21 > 0 && r > 0] // Flatten;

qleD = FullSimplify[

{p1D  D1sub, p2D  D2sub} /. freqLinearTermSubs, s1 > 0 && s2 > 0 && m12 > 0 && m21 > 0]

Out[130]= p1D 

m21 m12 s1 + m21 s2 - s1 s2 (4 m12 m21 + s1 s2) 
2

r s12 s22
,

p2D 

m12 m12 s1 + m21 s2 - s1 s2 (4 m12 m21 + s1 s2) 
2

r s12 s22


In[94]:= FullSimplify[D1sub /. freqLinearTermSubs, s1 > 0 && s2 > 0 && m12 > 0 && m21 > 0]

Out[94]=

m21 m12 s1 + m21 s2 - s1 s2 (4 m12 m21 + s1 s2) 
2

r s12 s22
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In[99]:= simpleLinearTerms = Simplify[

freqLinearTermSubs /. m12  s2 l2 /. m21  s1 l1, s1 > 0 && s2 > 0 && l1 > 0 && l2 > 0];

Simplify[freqFirstOrderTermSubs /. m12  s2 l2 /. m21  s1 l1,

s1 > 0 && s2 > 0 && l1 > 0 && l2 > 0];

{f11 / (g10 - g20) /. % /. simpleLinearTerms,

f21 / (g10 - g20) /. % /. simpleLinearTerms,

g11 / (f10 - f20) /. % /. simpleLinearTerms,

g21 / (f10 - f20) /. % /. simpleLinearTerms} // Simplify

Out[101]= l1 s1 -
l2 (s1 + s2)

1 + 4 l1 l2
, -l2 s2 +

l1 l2 (s1 + s2)

1 + 4 l1 l2
,

l1 s1 -
l2 (s1 + s2)

1 + 4 l1 l2
, -l2 s2 +

l1 l2 (s1 + s2)

1 + 4 l1 l2


Invasion probabilities

The QLE results don’t fully capture the dynamics, so to calculate the invasion probability we use 
numerically solved haplotypes frequencies:

In[243]:= secondOrderDels =

secondOrder[{delp1g11, delp1g12, delp2g22, delp2g12} /. wSubs /. equilSubs /.

equilSubs, {m12, m21, s1, s2, r}];

secondOrderFreqs[M12_, M21_, S1_, S2_, R_] :=

NSolve[(secondOrderDels /. m12  M12 /. m21  M21 /. s1  S1 /. s2  S2 /. r  R)  0 &&

0 ≤ p1g11 ≤ 1 && 0 ≤ p1g12 ≤ 1 && 0 ≤ p2g22 ≤ 1 && 0 ≤ p2g12 ≤ 1 && p1g11 * p2g22 > 0,

{p1g11, p1g12, p2g22, p2g12}, Reals, WorkingPrecision  7]

branchinginv1[M12_, M21_, S1_, S2_, R_] :=

With[{freqs = Flatten[secondOrderFreqs[M12, M21, S1, S2, R]]},

((1 - z1) + (1 - z2)) /.

FindRoot[({Exp[-(mat〚1, 1〛 (1 - z1) + mat〚1, 2〛 (1 - z2))], Exp[-(mat〚2, 1〛 (1 - z1) +

mat〚2, 2〛 (1 - z2))]} /. wbar1  p1Wm /. wbar2  p2Wm /. wSubs /.

m12  M12 /. m21  M21 /. s1  S1 /. s2  S2 /. r  R /. equilSubs /.

equilSubs /. freqs)  {z1, z2}, {{z1, 0}, {z2, 0}}]]

branchinginv1weighted[M12_, M21_, S1_, S2_, R_] :=

With[{freqs = Flatten[secondOrderFreqs[M12, M21, S1, S2, R]]},

((1 - z1) * p1g11 + (1 - z2) * p2g11) /.

FindRoot[({Exp[-(mat〚1, 1〛 (1 - z1) + mat〚1, 2〛 (1 - z2))],

Exp[-(mat〚2, 1〛 (1 - z1) + mat〚2, 2〛 (1 - z2))]} /. wbar1  p1Wm /.

wbar2  p2Wm /. wSubs /. m12  M12 /. m21  M21 /. s1  S1 /.

s2  S2 /. r  R /. equilSubs /. equilSubs /. freqs) 

{z1, z2}, {{z1, 0}, {z2, 0}}] /. equilSubs /. freqs]

appendix2.nb     7

Appendix 2

2168

155


	General Introduction
	Adaptation and coadaptation
	Thesis overview


	X-linked meiotic drive can boost population size and persistence
	Abstract
	Introduction
	Materials and Methods
	Analytical model
	Simulation model

	Results
	Invasion of a rare X chromosome
	Population size in the presence of drive
	Population persistence time

	Discussion

	Locally adaptive inversions in structured populations 
	Abstract
	Introduction
	Methods
	Model
	Analysis

	Results
	Invasion probability of a locally adaptive inversion
	Combined capture and invasion probability of locally adaptive inversions

	Discussion

	Mutation accumulation and the fixation of inversions
	Abstract
	Introduction
	Previous Models
	Time-dependence of inversion evolution

	Methods
	Results
	Proposed trajectory of directly selected inversions

	Discussion

	General Discussion
	Bibliography
	Appendix 1
	Alternative form of density dependence
	Mathematica notebook


	Appendix 2

