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Worrying trends of increased cardiovascular disease (CVD) risk in children,
adolescents and young people in the Modern Era have channelled research and
public health strategies to tackle this growing epidemic. However, there are still
controversies related to the dynamic of the impact of sex, age and puberty on
this risk and on cardiovascular health outcomes later in life. In this
comprehensive review of current literature, we examine the relationship
between puberty, sex determinants and various traditional CVD-risk factors, as
well as subclinical atherosclerosis in young people in general population. In
addition, we evaluate the role of chronic inflammation, sex hormone therapy
and health-risk behaviours on augmenting traditional CVD-risk factors and
health outcomes, ultimately aiming to determine whether tailored management
strategies for this age group are justified.
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Introduction

Cardiovascular disease (CVD) is the most common cause of death worldwide (1).

Atherosclerosis is one of the earliest signs of CVD. It is characterised by progressive

accumulation of cholesterol-laden macrophages in the subendothelial layers of larger

arteries which progress to more complex fibrous plaques. Acute plaque rupture or erosion

can result in the formation of a thrombus, culminating in the clinical manifestation of

myocardial infarction or ischaemic stroke (2). Although more prevalent with increased

age, atherosclerotic vascular changes have been documented in young people in multiple

post-mortem studies at the end of the past century (3–6). Most notably, asymptomatic

microscopic lesions have been described in the coronary arteries of infants in the first 5

years of life, which are thought to precede the more invasive fatty streak lesions

associated with atherosclerosis (4, 5). Future studies, built on these findings, established

associations between the extent of arterial fatty streaks and fibrotic lesions in young

people and traditional CVD-risk factors, such as increasing age and body mass index

(BMI), hypertension (HP), dyslipidaemia, aberrant glucose tolerance and smoking, as well
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as chronic inflammation (3, 7, 8). The presence of CVD-risk factors

between the ages of 18–30 can strongly predict the development of

subclinical atherosclerosis in later adulthood (9). Interestingly, the

sexual dimorphism characterising the CVD prevalence in

adulthood is also observed in the prevalence of subclinical

atherosclerotic lesions in young people, which were detected in

2% vs. 0% of young men vs. women aged 15–19 years,

respectively, and 20% vs. 8% in men vs. women aged 30–34

years, respectively (10). One of the main drivers of this sex

difference in prevalence is the higher incidence of traditional

CVD risk factors in young males compared to females (6). This

is reflected in the sex-disaggregated rate of progression of carotid

intima-media thickness (CIMT), which is used as a validated

marker of subclinical atherosclerosis, where CIMT progression

begins in boys around age 6, and in girls around age 9, and

increases gradually with age (11).

Adolescence is a key period of profound physiological changes

with significant impact for preservation or deterioration of

cardiovascular health, often associated with abnormal

cardiovascular health metrics, or significant behavioural changes

which impact on diet and other health-related outcomes (12). In

addition, sex hormones and genes present on sex chromosomes

differentially influence the regulation of the immune system (13),

which is also reflected in the sex-bias observed in the

predisposition to various autoimmune disorders as well as

differential risk for chronic inflammation, which subsequently

increases the risk for CVD.

In this review, we aim to assess the impact of sex determinants

and puberty in driving metabolic abnormalities leading to

atherosclerosis progression in young people and CVD-risk later

in life, as well as the impact of chronic inflammation and health-

risk on augmenting this risk. Identifying CVD-risk factors earlier

in life and tailoring management strategies for prevention of

CVD is likely to have significant societal implications. We

summarised in Table 1 and Figure 1, the main factors

contributing to CVD-risk in young people as well as the main

effects of puberty and sex determinants which will be discussed

in detail in this review.
Sex-biased trends in cardiovascular risk
factors in young people in general population

Various traditional CVD-risk factors have been studied in

young people and have been included in clinical scores/tools

aiming at assessing an individual’s risk and tailor public health

interventions to minimise the risk for CVD over time. We will

focus on the main traditional CVD-risk factors from the

perspective of the impact of sex-determinants and puberty on

their prevalence, features and trends over time.
Obesity

Between 1975 and 2016, the global prevalence of obesity has

nearly tripled (14). As of 2021, WHO estimates an annual
Frontiers in Cardiovascular Medicine 02
mortality of 2.8 million people across all age groups as a direct

result of the ongoing obesity epidemic. Targeting excessive

weight during childhood and adolescence has been identified as

the key intervention in reducing obesity-associated CVD- risk

later in life. A higher BMI percentile and central adiposity

correlate to a higher risk of obesity and metabolic syndrome in

adolescence and adulthood (15, 16). The association between

obesity in youth and later life was found to increase with age

and is stronger in females (17).

The mechanism by which obesity causes increased CVD- risk

is multifactorial. Obesity is associated with chronic mild

inflammation, largely mediated by the secretion of inflammatory

adipokines by excessive adipose tissue. Higher adiposity

throughout puberty was associated with a more atherogenic

metabolic profile and greater aortic stiffness (independent of

metabolic factors), while reverting to a healthy weight during

adolescence prevents this association and results in no difference

in arterial stiffness compared to a normal weight control cohort

(18). Not all obese individuals are at increased CVD-risk. A high

body fat percentage in both adults and children (without

additional features of metabolic syndrome—i.e., high blood

glucose, insulin resistance, dyslipidaemia) is considered a

metabolically healthy obese (MHO) state, and is not associated

with increased CVD-risk (19, 20). However, children with

prepubertal obesity are at a greater risk of metabolic syndrome,

and the pronounced changes to their metabolic parameters

during puberty often cause the shift to a metabolically unhealthy

status (21, 22).

We summarise below the main effects of obesity on CVD-risk

in young populations by sex, including its timing and its

bidirectional relationship with puberty.

Obesity in childhood increases the risk of obesity in adulthood

and CVD-risk factors in a sex biased way (15). A higher BMI

percentile during childhood and adolescence correlates with a

high risk of being overweight or obese in adulthood, and the

association becomes stronger as age increases. The link observed

is stronger in females than in males (17). During all stages of

puberty, there is a positive link between trunk fat and systolic

and diastolic blood pressure (BP). This association is seen in

males only (23).

Obesity is associated with a pro-inflammatory state from an

early age. Obesity associated with chronic mild inflammation led

to elevated inflammatory markers, including C-reactive protein

(CRP), Tumour Necrosis Factor-α (TNF-α), interleukin (IL)-6,

IL-18, haptoglobin, macrophage inhibitory factor (MIF) and

plasminogen activator inhibitor-1 (24). White adipose tissue has

been noted to play an endocrine role, secreting leptin and

adiponectin (25, 26). Obesity (particularly visceral fat) in

childhood and adolescence increased the risk of metabolic

syndrome in adulthood and adolescence, independent of baseline

insulin level (16), suggesting that lifestyle factors may contribute

more to the development of metabolic syndrome in young

people than hereditary factors (27).

Obesity affects the timing of puberty. Obesity causes early and

shorter puberty in girls (28–30), which can be explained by the

“weight hypothesis”, which suggests that adipokines increase
frontiersin.org
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TABLE 1 Main effects of puberty and sex determinants on traditional CVD-risk factors and subclinical atherosclerosis in young populations.

Risk factors Impact of puberty Sex differences

Traditional CVD-risk factors
Obesity Increases with puberty. Both sexes, but stronger effect in

girls

Causes early and shorter puberty. Stronger effect in girls

Early puberty is associated with increased obesity risk. Both sexes, but stronger effect in
girls

In all puberty stages, obesity correlates with increased BP. Stronger effect in boys

Increased subcutaneous fat post-menarche. In girls

Visceral fat distribution post-puberty. Stronger effect in boys

Obesity related biomarkers:

IL-6 decreased during puberty. Both sexes

Adiponectin decreased during puberty. Stronger effect in boys

Leptin increased during puberty Stronger effect in girls

Metabolic syndrome Puberty is associated with instability in metabolic syndrome parameters. In both sexes

Puberty and adolescents are associated with increased metabolic risk. Stronger effect in boys

Adulthood is associated with increased metabolic risk. Stronger effect in women

Insulin resistance/diabetes Tanner stages 1–3 increase the risk Independent of sex or obesity

Risk increases at the onset of puberty, peaking at Tanner stage 3, but returns to pre-pubertal levels by
the end of puberty.

Stronger effect in girls

Early menarche is associated with increased insulin levels and increased risk of type 2 diabetes
mellitus.

In girls

Obesity increases the risk of insulin resistance post-puberty. Stronger effect in boys

Dyslipidaemia Prepuberty, no correlations with atherosclerosis. In both sexes

Puberty onset altered lipid profiles In both sexes

Post-puberty, there is an increase in pro-atherogenic lipid profile In young men

Post-puberty, there is an increase in athero-protective lipid profile In young women

After puberty blockers, cross-sex hormone therapy with testosterone drove a pro-atherogenic lipid
profile

In young trans-men

Hypertension Systolic BP increases in children entering puberty. In both sexes

BP reaches adult values at the end of puberty In both sexes

Puberty timing associated with transitory changes in the BP trajectories. In both sexes

In young adulthood, significant increased prevalence of systolic HP which started prepuberty. In boys and young men

Endogenous oestrogen exposure starting from puberty decreases the risk In girls/women

Risk increases with age, from post-puberty into early adulthood In boys and young men

Subclinical atherosclerosis
Carotid artery subclinical
atherosclerosis

Puberty increases the prevalence of subclinical atherosclerosis. In both sexes

Coronary artery atherosclerotic
lesions

From age 6–30 (including puberty) More prevalent in boys/young
men

Increased progression of
atherosclerosis

Associated with low testosterone and positively correlated with serum oestrogen levels (post-puberty/
early adulthood)

In men
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androgen conversion to oestrogen, therefore influencing the timing

of puberty. Earlier puberty in obese children is determined by an

interplay between molecular factors such as leptin, insulin and

oestrogen. There is evidence that serum leptin levels are inversely

correlated with age at menarche in girls (31, 32), while there was a

close positive correlation between body fat and serum leptin levels

in girls throughout puberty (31–35). Children with obesity have

lower sex hormone-binding globulin than normal weight children

(36), while obese adolescent boys have lower serum testosterone

and higher oestradiol than normal weight adolescent males (36,

37). Overweight girls have reduced sleep-associated luteinising

hormone (LH) synthesis, the first hormonal change observed at

the onset of puberty (38).Puberty timing affects the obesity risk..

Early puberty in girls may be related to obesity due to the effect of

oestradiol in increasing the body fat, while early menarche was

associated with increased CVD-risk and mortality (39, 40). Early
Frontiers in Cardiovascular Medicine 03
menarche was also related to reduced sex hormone binding

globulin and higher oestrogen levels throughout adolescence and

into adulthood (41–43), as well as increased risk of metabolic

syndrome in adulthood, independent of BMI (44–50). Early

puberty is associated with higher accumulation of subcutaneous fat

on lower trunk in both males and females (49). The large AVENA

study (50) assessed more than 500 children and adolescents and

found that the waist circumference and BMI increased in girls as

puberty continued, while in boys there were no correlations with

the pubertal stage. An increase in total body fat was observed in

both females and males throughout puberty, and BMI increased

through the 8–18 years interval of observation (51). This was

largely driven by the increase in the lean component of BMI,

particularly in boys (52). Pubertal stage also affects the adipokine

profile (53), and inflammation caused by obesity was somewhat

affected by pubertal changes in sex hormones (54).
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FIGURE 1

CVD-risk factors yin young populations. Legend: CVD—cardiovascular disease.

Allalou et al. 10.3389/fcvm.2023.1191119
Obesity related biomarkers are also influenced by puberty and

sex hormones. Although no significant difference between

prepubertal and pubertal levels of leptin were found independent

of body fat content (35), circulating IL-6 levels correlated

positively with testosterone and oestradiol levels, and leptin:

receptor ratio correlated positively with BMI in both sexes. In

addition, IL-6 decreased throughout puberty in both boys and

girls but was only found to be correlated to oestradiol and not

testosterone. Adiponectin decreases in males from mid-puberty

to levels below the ones found in females (53) and levels of

circulating androgens were found to decrease plasma adiponectin

and may be the cause for increased risk of insulin resistance and

atherosclerosis in men (55). Higher serum leptin levels were

observed in girls than males pre-, during and post-puberty, even

after correcting for increased female adiposity. It is proposed that

this may be due to oestradiol stimulating leptin synthesis and

testosterone suppressing it (56). At the onset of puberty, leptin

increases in girls and decreases in boys, potentially reflecting the

increase in fat mass in girls (34), in addition to the potential role

of testosterone in suppressing the leptin production (57). By the

age of 15, there is an increase in IL-6, IL-8, IL-10 serum

concentrations in obese and overweight girls compared to normal

weight females even after adjustment for pubertal status, but no

significant difference was observed in boys (58).

However, the relationship between early and shorter puberty

on CVD-risk later in life is less certain. Data from the Avon

Longitudinal Study of Parents and Children (ALSPAC) which

recruited children born between April 1, 1991, and December 31,

1992 who were followed-up for 25 years, concluded that earlier

puberty was unlikely to have a major impact on pre-clinical
Frontiers in Cardiovascular Medicine 04
CVD-risk in early adulthood, appreciated using a variety of CVD

validated outcome measures (59).

There are significant sex differences in adipose tissue distribution

around puberty. Over the course of puberty, the prevalence of

obesity or excess weight status (measured by BMI) doubles in

girls (60). Post menarche, girls have greater subcutaneous fat

deposits than pre-menarcheal girls, particularly in the gluteo-

femoral region, therefore the sexual dimorphism in fat

distribution begins in or is triggered by early puberty (61, 62).

Higher oestrogen correlated with gynoid fat distribution in

pubertal females (63). Age at menarche negatively correlated to

hip and thigh circumference and negatively correlated to waist

circumference (61), while early menarche associated with

increased adiposity in childhood and increased risk for metabolic

syndrome in adulthood (64). In boys, higher serum testosterone

was associated with increase in subcutaneous abdominal fat

deposition during puberty (63).

Sexual dimorphism in storage of adipose tissue (fat distribution)

may underlie the increased CVD-risk in men. Visceral fat and fat

deposition around abdomen are favoured in men (central

android fat distribution), while subcutaneous fatty deposition in

women is largely observed around hips, thighs, and buttocks

(gynoid/ gluteal-femoral fat distribution) until menopause, after

which there is a shift towards increased deposition of visceral fat

(65, 66). Lipoprotein lipase is one of the key enzymes that

facilitates the accumulation of adipose tissue. Testosterone

inhibits lipoprotein lipase activity in subcutaneous fat in men

(67). Lipoprotein activity in women is greater in gluteal

subcutaneous fat than in abdominal visceral fat, and higher in

abdominal fat in men (68). Distribution of receptors that
frontiersin.org
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modulate lipolysis in subcutaneous and intraabdominal fat depots

account in part for the sexual dimorphism in body fat deposition.

Oestradiol upregulates expression of anti-lipolytic α2-adrenergic

receptors in subcutaneous adipocytes but not in abdominal

depots (69). The ratio of α2 receptors to lipolytic β1–2

adrenergic receptors is higher in subcutaneous adipose tissue in

young women than in men, promoting lower rates of lipolysis in

these depots and a reduced lipolytic response to adrenaline and

noradrenaline (70).

Increased visceral fat is associated with decreased insulin

resistance, increased risk of glucose intolerance and metabolic

syndrome (71, 72). Visceral fats have a higher lipolytic rate (65).

Higher rate of lipolysis of visceral fat, as observed in males,

releases more free fatty acids into the circulation, which in turn

causes increased gluconeogenesis and hyperinsulinaemia (73).

Subcutaneous fat on the other hand is associated with a lower

CVD-risk and do not have the same diabetes-associated risk (74).

Despite good evidence that puberty and sex determinants

influence obesity in young people, there is evidence of obesity

risks that precede puberty. Children with one obese parent are

more than twice as likely to be obese (75), and increased

maternal pre-pregnancy weight and gestational weight gain

increases the child’s adverse CVD-risk. Children of mothers with

higher gestation weight gain had higher BMI, waist

circumference, fat mass, leptin, CRP and IL6 levels, as well as

high density lipoprotein (HDL)-cholesterol and Apolipoprotein

(Apo) A1) (76).

In conclusion, obesity in childhood is associated with increased

traditional CVD-risk factors overall, as well as increased risk of

obesity in adulthood. Obesity triggers early and shorter puberty,

while early puberty also predisposes to obesity. There is also

evidence of sex dimorphism in fat distribution and obesity-

related biomarkers underpinning sex-differencs in CVD-risk

from adolescence and young adulthood.
Metabolic syndrome

Metabolic syndrome is defined as a combination of risk factors

for CVD, such as diabetes, HP, dyslipidaemia and obesity. The

diagnosis of metabolic syndrome in children and adolescents is

slightly controversial as only 50% of adolescents diagnosed with

metabolic syndrome maintained a stable diagnosis over 3 years

(77) and only 30% of obese children and adolescents diagnosed

with metabolic syndrome at baseline were found to still maintain

the required characteristics at a 60-day follow up (78). This

instability may be a result of the dynamic changes observed

throughout puberty. Metabolic syndrome in adolescence is higher

in males than females by ∼10% (79), but this trend reverses with

age as it becomes more prevalent in adult women (80). There is

no correlation between any circulating metabolites and measures

of atherosclerosis in children, but an inverse correlation between

HDL-cholesterol levels and measures of atherosclerosis

independent of BMI and BP are present in adulthood (81).

However, CVD-risk is nine times higher in children with

metabolic syndrome (82). Children with one parent with
Frontiers in Cardiovascular Medicine 05
metabolic syndrome were also at greater risk of obesity and

insulin resistance (75). In conclusion, puberty may promote

metabolic instability, with a reversal of the sex-bias from male to

female from adolescence into adulthood.

Insulin resistance is measured as impaired fasting glucose or

impaired glucose tolerance. Hyperglycaemia measured indirectly

through levels of glycohemoglobin in post-mortem studies was

found to be associated with increases fatty streaks and raised

coronary atherosclerotic lesions in young people who died in

road traffic accidents from the age of 25, and aortic lesions from

the age of 30 (83). In adolescence, obese males have a higher risk

for insulin resistance and impaired fasting glucose than obese

females (84). Insulin resistance increases at the onset of puberty,

peaking at Tanner stage 3, but returns to baseline pre-pubertal

levels by the end of puberty (85) and girls are more insulin

resistant than boys at all pubertal stages. Serum insulin is highest

at Tanner stage 2 in both sexes, independent of body mass and

retains a consistent level throughout puberty (86). Between

Tanner stages 1–3, there is an increase in fasting glucose, insulin

and acute insulin response and an associated reduction in insulin

sensitivity independent of sex or obesity status. The reduction in

insulin sensitivity was not associated with androgen, oestradiol,

visceral fat, or IGF-1 (87) and high levels of insulin in childhood

were associated with early menarche (64).

Earlier menarche associated with increased risk of type 2

diabetes mellitus (T2DM) in adulthood independent of BMI at

18 years of age (45). This implies a potential role for sex

hormones in the pathophysiology of T2DM (46).

Hyperandrogenic profiles in women (e.g., polycystic ovary

syndrome) are associated with insulin resistance and glucose

intolerance (47, 48), while high oestradiol, high testosterone and

low sex hormone binding globulin associated with increased risk

of T2DM in women, independent of BMI (46, 88, 89).

In conclusion, puberty onset and early timing of puberty, as

well as hyperandrogenic profiles in women increase the insulin

resistance and diabetes risk, while early phases of puberty are

associated with increased risk in both sexes, independent of obesity.
Dyslipidaemia

Prevalence of dyslipidaemia in children and adolescents across

the world is increasing, being four-times more common in children

and adolescents with obesity (90). The relationship between lipid

abnormalities and atherosclerosis or vascular dysfunction in

young people is currently debated (81) as no correlation between

lipids and CIMT or pulse wave velocity has been found in

children aged 11–12, independent of their BMI or BP. However,

associations between these vascular markers and HDL-cholesterol

and glucose levels were found in adulthood, suggesting that

perhaps these associations arise during/post- puberty. Changes in

lipid profiles that occur in puberty however are relevant, as they

predispose to increased CVD-risk in adulthood (91). Overall,

higher concentrations of triglycerides, low density lipoproteins

(LDL) and very low-density lipoproteins (VLDL) cholesterol and

ApoB were found in men, with corresponding higher
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concentrations of HDL-cholesterol, ApoA1, polyunsaturated fatty

acids (PUFA) and docosahexaenoic acid (DHA) in women

(92, 93). Interestingly, cross-sex hormone therapy in young

trans-sexual individuals undergoing gender-reassigning treatment

partially reversed the sex bias observed post-puberty in healthy

controls (93).
Sex differences in dyslipidaemia
Although no sex difference has been observed in the mean total

cholesterol concentration in the Framingham Offspring Study (92),

there were sex differences in HDL, LDL and VLDL particles size,

which are potentially influenced by sex hormones. Oestrogens

have a role in promoting an atheroprotective lipid profile. High

serum oestrogen promoted VLDL and LDL clearance as well as

increased synthesis of HDL in mouse models through mediation

of the hepatic oestrogen receptor α (Erα), the actions of which

have been proposed to be modulated by an interaction with Liver

X receptor α (LXRα) (94). Contrastingly, cellular study analysing

HDL efflux in macrophages in trans-gender women undergoing

hormone therapy found reduction in HDL efflux, with a specific

decrease in ATP-binding cassette transporter A1 mediated HDL

efflux (95).

No sex difference between total HDL concentrations have been

reported in the large Framingham Offspring Study either (92).

However, young men had a greater concentration of small and

intermediate HDL particle subclasses, while women had almost

double the concentration of large HDL particles (92). Although

women have larger HDL particles than men, this difference is

less prominent with increasing age (92). There is some evidence

for a stronger inverse correlation between CVD-risk and HDL-

cholesterol levels in women than men (96), and this could be

attributable to the size of HDL particles (92). This trend seems

to be related to the presence of female sex hormones as increased

oestradiol serum concentrations correlated with increased HDL-

cholesterol in young trans women too (93). ApoA1 is a

metabolite for HDL cholesterol which is also affected by sex bias.

Women have higher HDL-associated ApoA1 than men while

ApoA1 levels were positively corelated with the length of

oestradiol therapy and oestradiol serum concentrations in young

trans women on cross-sex hormone therapy. However, there was

no correlation with testosterone levels in young trans men (93).

Men have a greater total LDL-cholesterol serum concentration

than women (92) and smaller LDL particles than women (92,

97–99). This is likely due to a greater concentration of small and

intermediate LDL particle subclasses in men, and a greater

concentration of large LDL subclasses in women (92). It has

been suggested that the sex difference in total LDL particle

concentration may be responsible for the sex bias observed in

CVD-risk, as the sex difference in LDL concentrations also

decreases with age, similar to the trend in CVD risk. There is an

increase in small LDL in men before 50 that might underlie the

increased CVD risk in middle aged men compared to younger

men (92).

Men also have a higher VLDL-cholesterol serum concentration

(92), and in particular this affects the larger and intermediate
Frontiers in Cardiovascular Medicine 06
VLDL subclasses as men overall have larger mean VLDL particle

sizes (92).

Puberty affects the lipid profiles
Although, no significant difference in lipid profiles were

detected between prepubertal girls and boys (93), the onset of

puberty altered lipid profiles (100), although these changes

normalised post-puberty, raising awareness that changes observed

during this puberty should be considered in clinical guidelines

for CVD-risk-assessment in adolescents and young people (101).

In conclusion, post-puberty, there is evidence for a trend

towards a pro-atherogenic lipid profile in young men or trans-

men undergoing cross-sex hormone gender re-assignment

therapy with testosterone, while young women have higher

concentrations of athero-protective HDL-associated ApoA1.
Hypertension (HP)

It is widely recognised that arterial BP increases with age (102),

although has been also gradually increasing in prevalence in

younger populations in the recent years Primary HP has been

found to be more prevalent in children over age of 6, with

associated increased BMI and positive family history (103). The

most common causes for secondary HP in children and

adolescents are congenital malformations, renal diseases,

medications (such as corticosteroids, albuterol and

pseudoephedrine), and endocrine causes, while in adolescents,

additional factors are related to substance abuse and teen

pregnancy (104).

Impact of puberty on HP
Despite less research available overall in younger populations

compared to adults, there is evidence that the hormonal and

metabolic changes associated with puberty impact BP. The

overall prevalence of confirmed HP in children is 2%–5%, with

many more being diagnosed with pre-hypertensive states (15.3%)

(105). While initial research identified low birth weight as a risk

factor for HP in childhood (106, 107), more recent studies found

evidence that infants born with appropriate for gestational age or

excessive birth weight are both at higher risk for primary HP

compared to children with small weight for gestational age (odds

ratio = 1.31 and 1.19 respectively) (107). Systolic BP increases in

children entering puberty, reaching adult values at the end of

puberty, process considered to be significantly influenced by the

increased production of sex hormones, growth hormone, insulin-

like growth factor-1 and insulin during puberty (108).

Puberty timing also influences the risk of HP. In a large

prospective cohort study, which evaluated more than 4,000

children over time, males had significantly increased prevalence

of systolic HP compared with females in early adulthood, but

this was accrued before puberty, while puberty timing was

associated only with small transient differences in systolic BP

trajectories post-puberty in both sexes, suggesting that

interventions targeting puberty timing are unlikely to influence

systolic BP in early adulthood (109–114).
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Sex differences in HP are underpinned by various
mechanisms

The inhibition of the renin-angiotensin-aldosterone system

(RAAS) is a recognised therapeutic option for HP; however,

there is evidence that suggests responses to treatment is different

in men and in women (115). Endogenous oestrogen is associated

with a lower BP in women (116), while there is no consensus

from literature data on the effect of exogenous oestrogen, which

has been found to decrease (117–119), increase (120–122) or not

affect BP measurements (123, 124). These differences may have

arisen due to the administration of different oestrogenic

compounds at different doses through different routes of

administration, and different methods used to measure BP (125).

The protective effect of female sex hormones could be explained

by the role of oestrogen in promoting vasodilation and exerting

cardioprotective effects on the RAAS system. In animal models,

oestrogen has been found to upregulate synthesis of

angiotensinogen and downregulate synthesis of renin and

angiotensin enzyme (ACE) (124, 126, 127), leading protective

effects. In rats, oestrogen has been found to reduce calcium

efflux in vascular, renal and cardiac cells (128) as well as reduce

BP by inhibiting synthesis of angiotensin II (AT II), endothelin 1

(ET1) and catecholamines that all have vasoconstrictive effects

(124, 129, 130). One of the mechanisms of oestrogen’s effect on

BP is mediated through its modulation of expression of ET1,

which is a potent vasoconstrictor and its receptors (131). The

administration of exogenous 17β-oestradiol to ovariectomised

rats decreased the circulating ET1 levels (132, 133) and reduced

the expression and activity of endothelin-converting enzyme

(133, 134). In vitro studies also find that 17β-oestradiol inhibits

ET1 synthesis by increasing nitric oxide synthase (135) +/-

decreasing AT II synthesis (136, 137).

Testosterone is pro-hypertensive, through potential modulation

of the plasma ET1 levels, resulting in ET1 levels that are 40% higher

in men and 90% higher in trans men treated with testosterone

therapy than in premenopausal women (138, 139). Testosterone

also promotes vasoconstriction and renal sodium reabsorption

through the stimulation of AT1 receptor (AT1R) (140–142). In

animal studies, it has been noted that males have a higher

vascular AT1R:AT2R ratio than females (127, 143, 144).
Sex differences in Hp prevalence in adolescents
and young adults

Sex differences in HP in adulthood are well-recognised, with

males being more at risk; however, sex differences are

particularly pronounced in early adulthood, with one study

reporting both sex and ethnic differences in HP among 18- to

29-year-old adults (1.5% in White women vs. 5% White men

and 4% and 10% for Black women and men, respectively) (145).

In a large American study of a large representative sample of

adolescents followed up to age 24–34, young women were far

less likely to be hypertensive compared to men (12% vs. 27%),

and there were also sex differences in HP awareness among

young people (32% and 25% of hypertensive women and men,

respectively were aware of their status) (146).
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In conclusion, the prevalence of HP is increased overall from

the onset of puberty in both sexes, reaching adult values at the

end of puberty, and is significantly influenced by molecular

mechanisms subjected to sex hormones and metabolic factors

regulation driving the overall increased risk in young males.
Subclinical atherosclerosis in young people in general
population
As a consequence of various CVD-risk factors encountered in young

population, there is also evidence of presence of subclinical

atherosclerosis, usually evaluated on vascular scans or post-

mortem studies. Subclinical atherosclerosis is one of the best

predictors of CVD later in life. Coronary artery atherosclerotic

lesions measured post-mortem in individuals aged 6–30 were

more prevalent in men than women (6) All the traditional CVD-

risk factors influence the prevalence of subclinical atherosclerosis.

Puberty was associated with increased subclinical atherosclerosis

in children with a benign obesity phenotype (147). In young

people, HP contributes to atherosclerosis by accelerating

development of raised lesions rather than fatty streaks. A post-

mortem study in people aged 15–34 found that HP, causing

increased intimal thickness of small renal arteries, was associated

with more extensive raised atherosclerotic lesions in the

abdominal aorta and in the right coronary artery (148). A post-

mortem histological study of coronary arteries from American

young people aged 15–34 found a higher prevalence of advanced

atherosclerotic lesions in young men compared to young women

(10). Positive correlation between serum oestrogen and

progression of carotid atherosclerosis was found in men with

intact oestradiol synthesis independent of BMI and other risk

factors (149), while low testosterone in men associated with

increased progression of atherosclerosis (measured by CIMT) (149).

In conclusion, there is a significant male sex bias in prevalence

of subclinical atherosclerosis from early childhood into adulthood.
Effect of chronic inflammation on the cardiovascular risk
of young people
Chronic inflammation is one of the known drivers of CVD-risk in

patients of all ages. In addition to inflammation, some of the

treatments that are used in young people with chronic

inflammatory conditions (in particular, corticosteroids or small

molecule immunosuppressants, such as Janus Kinase inhibitors

and biologic treatments, such as IL6 blockers, etc) have significant

metabolic effects (150), which indirectly impact the CVD-risk of a

certain individual. Assessment of disease activity in young people

with chronic inflammation usually pertain to composite scores

aiming to combine objective and subjective assessment of disease

manifestations, as well as laboratory parameters which are

relevant for systemic inflammation or immune system

abnormalities contributing to chronic inflammation (151–153).

Despite improvement in quantifying inflammation and improved

guidelines to ensure tighter control of disease activity in young

people with chronic inflammatory and autoimmune conditions

(154–156), there is still evidence of increased CVD-risk in

children and young people which is not adequately captured by
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the CVD-risk assessment tools routinely used for primary care

prevention strategies in general population(157, 158).

Long-term inflammation as well as glucocorticoid treatment

used in the treatment of many childhood onset diseases, such as

juvenile idiopathic arthritis (JIA), juvenile systemic lupus

erythematosus (JSLE), juvenile dermatomyositis (JDM),

inflammatory bowel disease (IBD), etc, influence the body

composition by increasing body fat mass and reducing skeletal

muscle mass (159). Obesity is more common in patients with

JIA than in the healthy population (160, 161) and is associated

with insulin resistance, HP, higher serum triglycerides and early

atherosclerosis (162). Obesity and excess weight in JIA

population is caused, in part, by glucocorticoid treatment, and

functional limitation that causes a less active lifestyle (163)

Children with systemic JIA and enthesitis-related arthritis (ERA)

had the highest rates of overweight and obesity compared to

other JIA subtypes (163). Several studies explored the association

between obesity and disease activity or number of active and

reported both no association (164, 165), and a positive

correlation between obesity and disease activity (particularly on

lower limb joints), number of affected joints and higher levels of

CRP and ESR compared to the healthy population (166).

Children with JIA and a BMI lower than 23 kg/m2 had lower

serum leptin than healthy subjects, while children who were

overweight or obese had higher prevalence of insulin resistance,

lower insulin sensitivity and higher insulin secretion than age

matched overweight or obese healthy children. In lean children

with systemic JIA, insulin sensitivity was not different to lean

age-matched controls (167).

In JDM, a condition associated with muscle and skin

inflammation, a unique adipokine profile was found,

characterised by higher serum adiponectin and resistin, and

lower leptin levels in young women (168). A study of 17 patients

with severe JDM, found a very high prevalence of obesity and

excess weight, as well as insulin resistance and

hypertriglyceridaemia (169). The increased CVD-risk observed in

JDM is very likely multifactorial, largely accounted for by

chronic inflammation, steroid treatment and poor functional

levels leading to increased weight in some patients (170).

No significant difference in the prevalence of obesity in

children and adolescents with JSLE compared to healthy controls

has been reported (171), although there was a positive

correlation between obesity (BMI) in JSLE patients and higher

serum levels of TNF-α than in healthy controls. TNF-α is a pro-

inflammatory adipokine, associated with a decreased activity of

lipoprotein lipase in adipose tissue. It also has a role in the early

inflammatory response that contributes to atherosclerosis.

Furthermore, it is associated with hyperglycaemia, insulin

resistance and dyslipidaemia, mediated by inhibition of insulin

receptor autophosphorylation and signal transduction (172, 173).

In a small study, it has been found that the prevalence of

metabolic syndrome in patients with JSLE was higher than in the

healthy population (174).

Children and adolescents with T1DM also had more severe

periodontal inflammation (175), which was also associated with

increased BMI in young people (176). Periodontal disease is also
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associated with atherosclerosis risk, potentially from early in life

(177). In addition, chronic conditions, such as type II DM

(T2DM), RA and SLE which are recognised risk factors for CVD

are also associated with periodontal disease, although the

majority of studies are derived from adult populations,

characterised by a higher prevalence of gum disease (178–180).

Higher prevalence of dyslipidaemia was also observed in young

people with T1DM characterised by increased triglycerides and

LDL-cholesterol levels, with female adolescents having lower

levels of HDL-cholesterol than healthy controls (181). Children

with T1DM have higher triglyceride levels, independent of

pubertal stage (unlike in healthy controls where TC decreased

throughout puberty) which also correlated strongly with ApoB

levels (182).

Impact of sex determinants on chronic
inflammation and other cardiovascular risk factors
relevant to young people’s health

There is a recognised female sex bias in autoimmune rheumatic

diseases associated with chronic inflammation, although this is less

pronounced in diseases with paediatric onset (183). This sex-bias is

due to a combination of genetic and epigenetic mechanisms (184),

as well as due to impact of sex determinants at the time of puberty

on the disease mechanisms and risk overall (185, 186). Many of the

autoimmune conditions in young people are rare diseases overall.

Therefore, it is not always easy to tease apart sex differences in

CVD-risk due to chronic inflammation as many cohort studies

are underpowered to detect this. Although, this sex bias is less

evident in T1DM (187) and has inverse trends in IBD, where

there is evidence of females have a lower risk of Crohn’s disease

compared with males until puberty, at which point there is a

reversal, with females developing higher risk over time (188), the

long-term impact of increased CVD-risk in patients with chronic

inflammation is less defined by sex differences, suggesting that

chronic inflammation is the main driver of this risk (189).

However, there is evidence that younger age is an independent

factor from increased CVD-risk in patients with RA, which is

one of the most prevalent and better studied inflammatory

rheumatic conditions (190), suggesting that chronic inflammation

rather than increase in prevalence of traditional CVD-risk factor

are likely to impact cardiovascular health overall.

No post-pubertal sex differences in serum lipid levels were

found between adult men and women with JSLE (93), although

in female adolescents with JSLE, dyslipidaemia was more than

two times more prevalent than in healthy controls, and these

differences were characterised by a lower serum HDL and a

higher homocysteine in JSLE cohort (191). Dyslipidaemia in

JSLE was also associated with decreased smaller HDL particle

subsets than in healthy controls. Active disease accentuated this

difference and was further associated with higher VLDL particles

when compared to JSLE patients with lower disease activity, and

it was related to B- and T-cell lipid rafts, inflammation, and

disturbed liver function (192). JSLE patients with active disease

also had increase in ApoB:ApoA1 ratio which is a pro-

atherosclerotic biomarker (192). In addition, JSLE patients with a

high ApoB:ApoA1 ratio (baseline levels correlated positively to
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SLE disease activity index) had increased cardiometabolic risk

conferred by greater number of CD8+ T-lymphocytes and CD8+

T-lymphocyte transcriptomic profile which expressed a higher

number of genes associated with interferon signalling and other

processes that contribute to atherosclerosis (193).

In conclusion, while chronic inflammatory conditions in

adolescents and young people are associated with an increased

CVD-risk overall, this is likely driven by both traditional and

non-traditional CVD-risk factors, and it is less influenced by

puberty or other sex-determinants as the effect of underlying

chronic inflammatory disease and treatment seem to override

their impact.

Other cardiovascular risk factors relevant for young people
Role of (cross-) sex hormones,
hormonal contraception, and
hormone replacement therapy (HRT)
on cardiovascular risk

The role of sex hormones in the development of atherosclerosis

has been a point of contention. It has been suggested that sex-

hormones have differential effects in either sex, although there

are less published data in young people (194).

Low endogenous testosterone has been linked to increased

CVD and mortality in men, suggesting an atheroprotective role

in men, albeit through an unclear mechanism (195). It has also

been argued however, that causation is uncertain, and low

testosterone may be reflective of reduced general health status in

men and thus indicative of other factors that may be directly

linked to CVD-risk rather than the causative factor itself (196).

There is evidence of increased CVD-risk with oestrogen-

combined oral contraceptives in women of reproductive age, in

particularly the risk of venous thrombosis (2–7-fold), as well as

arterial thrombosis and HP (197, 198). As a consequence, despite

benefits in preventing unwanted pregnancies, as well as

addressing other medical conditions common in adolescent and

young females, such as menstrual irregularities, heavy menstrual

bleeding, menstrual discomfort, or required to treat

endometriosis, polycystic ovary syndrome, acne and ovarian

cysts, combined oral contraceptives are not recommended

(WHO-MEC 3) or even contraindicated (WHO-MEC4) in

women with cardiac disease, increased thrombotic risk, either

venous or arterial, ischaemic heart disease or HP (199).

Emergency contraception (Levonogestrel) has a small effect on

blood clotting parameters and increases fibrinogen at 24 and 48 h

post-dose, while being associated with a reduction in anti-thrombin

III lasting from 2 to 12 h post treatment (200). However, despite

these changes in laboratory parameters, there was no evidence of

an increased risk of thrombosis in users of emergency

contraception (201).

Large-scale studies thus far have been unable to establish a

benefit of HRT for cardioprotective purposes. There is however

some evidence for a benefit if treatment started immediately

post-menopause, leading to the “timing hypothesis”, which
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suggests that the type of oestrogen used and the time between

the start of menopause and initiation of HRT can lead to

differential cardiovascular outcomes (202). However, no data are

available in younger populations as this as sex hormone therapy

is very rarely warranted. The impact of cross-sex hormone

therapy in young trans-sex populations is insufficiently studied

(203) as there are unmet needs to involve gender-diverse people

in research in medicine overall (204).

In conclusion, while associated with a small CVD-risk overall,

sex hormone therapies containing oestrogen have to be used

cautiously in young female populations at risk, especially as

alternatives are available (progesterone only contraceptive

preparations or intrauterine devices and barrier protection).
Sex differences in health-risk
behaviours contributing to
cardiovascular risk in young people

According to the WHO, 10% of mortality due to CVD can be

attributed to cigarette smoking (205) Smoking was associated with

more extensive fatty streaks and raised atherosclerotic lesions in the

abdominal aorta of young people in post-mortem study (206).

Inhalation of cigarette smoke, both passively and actively,

increases CVD-risk, as 10% of smoking-related mortality can be

attributed to passive cigarette smoking (207). Smoking increases

the risk of myocardial infarction and stroke (208) and exposure

to cigarette smoke affects the regulation of mechanisms

responsible for the formation of intravascular thrombi, inducing

a hypercoagulable state and contributing to increased risked of

acute thrombotic events (208). There is a higher mortality rate in

female smokers than male smokers, with female smokers being

25% more likely to develop coronary heart disease (209).

A study conducted on healthy young men and women found

that CVD-risk factors occur earlier in young female smokers

than male cigarette smokers (210). In women only, exposure to

cigarette smoke increased monocyte and lymphocyte counts,

whereas in men, neutrophils and eosinophils were significantly

increased. Global DNA methylation was reduced more in women

than men who smoked, while smoking increased the number of

platelets in women, and decreased the number of platelets

in men. Smoking also seemed to affect endothelial function in

women more than in men by causing a significant increase in

asymmetric dimethyl arginine (ADMA), an endogenous inhibitor

of nitric oxide synthesis, and L-arginine, a precursor of nitric

oxide synthesis in women only. These are both surrogate

measures of endothelial dysfunction. The trans-sulphuration

pathway involves interconversion of cysteine and homocysteine.

The forward reaction in this pathway produces homocysteine, a

recognised marker of CVD-risk (211). In the non-smoking

control group, homocysteine was found to be lower in females

than in males, while exposure to cigarette smoke increased

homocysteine levels in women only. Smoking also eradicated the

sexual dimorphism in TNF-α release from human monocyte-

derived macrophages (hMDMs) as even if in non-smokers, there

is a higher basal TNF-α release from hMDMs in men than in
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women, the smoking increased TNF-α release in women only.

Early onset of puberty associated with increased risk of smoking

throughout adolescence (212).

Cigarette smoking intensity (acute smoking measured as

number of cigarettes smoked per day) has been associated with

increased serum concentration of biomarkers of CVD,

particularly, markers of systemic inflammation, with hsCRP,

being the most sensitive (213).

A large meta-analysis found a dose-dependent relationship

between the number of cigarettes smoked per day, with pooled

relative risk for coronary heart disease in men of 1.48 for

smoking one cigarette per day and 2.04 for 20 cigarettes, while in

women, the risk was 1.57 and 2.84, respectively (214).

Long-term exposure (chronic cigarette smoking), commonly

assessed using smoking duration (years), or cumulative exposure

(pack-years) was also associated with measures of either

inflammation or subclinical atherosclerosis (215), which is

relevant to adolescents, especially as cigarette smoking initiation

rates during early adolescence (11–15 years) showed a marked

increase after 1990 especially in West Europe, while smoking

initiation during late adolescence (16–20 years) declined, with

the exception of South Europe (216).

Recent research has been directed towards understanding the

cardiovascular health effects of electronic vaping cigarettes (EVC)

and heat-not-burn cigarettes, which are popular alternatives to

traditional combustion cigarettes. An analysis of 7 systematic

reviews found that acute EVC use was associated with several

toxic effects, including detrimental impact on BP management,

tachycardia, worsened arterial stiffness, as well as increased

prevalence of atrial fibrillation and myocardial infarction, even if

the causal link is still debated (217).

Adolescence is also associated with increased use of illicit

substances (218), with potential devastating impact on

cardiovascular health (219). Many studies investigated sex and

gender differences as well as contextual factors and relationships

associated with substance use and academic and health-related

outcomes (220–224), highlighting the complexity of this

phenomenon which cannot be simply disaggregated by sex.

Significant atherosclerosis has been particularly linked to cocaine

use compared to opioid use and other poor-health related factors

(225). Illicit substance use is one of the main drivers of CVD in

young people overall (226).
Is there any need for tailored CVD-risk
strategies in young people?

There is ample evidence in the literature that puberty and

adolescence are very dynamic periods in the life of young people

associated with various metabolic changes and CVD-risk trends,

some of which are reversable. Correct phenotyping of an

individual, as well as assessment of risk over time are important

strategies for managing the potential health consequences of having

increased CVD-risk or subclinical atherosclerosis later in life. We

would argue that certain groups of young people, especially in the

context of genetic predisposition, concomitant chronic
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inflammatory conditions or at the time of intense vulnerability

driven by physiological, socio-economic or psychological factors

would benefit from tailored management strategies, irrespective of

being aimed at addressing chronic inflammation, improving

physical exercise or diet, or tackling health-risk associated

behaviours. In addition, early identification of increased CVD-risk

through improved detection strategies as well as dynamic

assessment of this risk over time are likely to lead to improved

outcomes. Although, there is evidence of a male bias in increased

CVD-risk in young people, especially post-puberty, future research

is needed to establish whether this can be addressed by sex-biased

therapeutic and management strategies from early life.
Conclusions

There is an unmet need for better CVD-risk assessment and

management strategies in young people overall, as although the

traditional risk factors are clearly linked to subclinical

atherosclerosis, there are other contributing determinants, related

to pubertal changes, chronic inflammation and treatment

addressing inflammation, as well as health-risk behaviours that are

particularly relevant in this population. There are well

documented sex differences in CVD-risk and subclinical

atherosclerosis which maintain the male-biased predominance

observed in the older populations; however, in the context of

chronic inflammatory conditions, the upregulation of the pro-

inflammatory pathways or the use of various treatments associated

with metabolic effects with role in CVD-risk modulation seem to

override the sex and puberty driven differences observed in the

general population. Further research is needed to capture the

long-term outcomes of young people with chronic inflammatory

diseases and contrast them with the impact of traditional CVD-

risk factors in the general population, disaggregated by sex, to give

us the possibility to properly investigate whether sex and gender-

tailored CVD-risk management strategies are warranted.
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