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ABSTRACT
Linear inverse problems appear in many applications, which
was commonly addressed by designing a specific algorithm
for each problem. Innumerable attempts have been carried
out to solve different variants of the linear inverse problem in
different applications. Nowadays, the rapid development of
deep learning (DL) provides a fresh perspective for solving
the linear inverse problem, which has various well-designed
network architectures results in state-of-the-art performance
in many applications. In this overview paper, we present the
combination of the DL and the Plug-and-Play priors (PPP)
framework, which allows solving various inverse problems by
leveraging the impressive capabilities of existing DL based
denoising algorithms. Open challenges and potential future
directions along this line of research are discussed in this pa-
per.

Index Terms— Deep learning, linear inverse problems,
plug-and-play priors

1. INTRODUCTION

The linear inverse problem is fundamental to the development
of various scientific areas such as astronomy, remote sensing,
medical imaging, and telecommunications to name a few. In
recent years, innumerable attempts have been carried out to
solve different variants of the linear inverse problem in differ-
ent applications.

Mathematically, the linear inverse problem can be de-
scribed as the estimation of a finite number of hidden param-
eters x ∈ RN from the observed data y ∈ RM with some
forward linear mapping A:

y = Ax. (1)

We have M < N in many applications, e.g., compressive
sensing and super-resolution, which makes the problem un-
determined. In this case, the observed data does not contain
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Fig. 1. The decomposition of the error in the solution of linear
inverse problems [1].

enough information and additional information is required.
Furthermore, the observed data is often corrupted by some
noise n ∈ RM :

y = Ax+ n, (2)

which makes finding the original solution more difficult.
As a long-standing problem, a number of algorithms have

been proposed in literature to solve linear inverse problems.
There are two broad classes of approaches to tackle inverse
problems, i.e., model based approaches and learning based
approaches. Traditional model based approaches have a few
drawbacks: i) imperfect modeling of the real-world problem
leads to the model error; ii) the approximation (e.g., using
convex relaxation) of the original objective function leads to
the structure error; and iii) the convergence to sub-optimal so-
lutions leads to the convergence error, as illustrated in Fig. 1.
Nowadays, the rapid development of deep learning (DL) pro-
vides a fresh perspective for solving the linear inverse prob-
lem. For example, by unfolding an iterative algorithm into a
neural network, we can learn the parameters of iterative algo-
rithms from training data, which differs from traditional al-
gorithms that employ predetermined parameters. Using DL
to solve linear inverse problems has several advantages. In-
stead of dealing with the imperfect mathematical models and
approximated optimization problems, the DL based method
learns the mapping from the input to the output directly and
has the potential to overcome or relieve challenges brought
by the model error, the structure error and the convergence
error in traditional model based approaches. Furthermore, in



comparison to traditional iterative algorithms, DL can signif-
icantly increase the speed of convergence.

DL has reached outstanding performance for solving var-
ious ill-posed linear inverse problems. However, in compar-
ison to classical optimization based methods, drawbacks of
end-to-end learning approaches require expensive retraining
whenever the specific problem, the noise level, noise type, or
desired measure of fidelity changes. In addition, in some ap-
plications, it is difficult to acquire sufficient amount of train-
ing data in the same form as the test data. Some recent works
tackle these problems by using neural networks trained for de-
noising as generic plug-and-play regularizers in optimization
algorithms.

This overview paper focuses on the plug-and-play priors
(PPP) framework, which has attracted significant attentions
owing to its flexibility and effectiveness in handling various
inverse problems. Different from the traditional optimization
procedure that directly deals with a hand-crafted regulariza-
tion term incorporating prior information, the PPP framework
unrolls the cost function by variable splitting techniques and
replaces the subproblem related to the regularization term by
some off-the-shelf powerful operators that are not in the ex-
plicit form of the original optimization problem.

2. PLUG-AND-PLAY PRIORS FRAMEWORK

The standard approach for solving x in (2) is by formulating
an optimization problem

min
x

D(x) + τR(x), (3)

where D is the data-fidelity term that penalizes the mismatch
to the measurements y, R is the regularizer that imposes pri-
or knowledge of x, and τ > 0 is the regularization parame-
ter. For example, for image reconstruction in the presence of
Gaussian noise, least squares, i.e., ∥y −Ax∥22, is often used
as the data-fidelity term, and total variation (TV) penalty, i.e.,
∥Dx∥1, is a popular regularizer, where D denotes the discrete
gradient operator.

Different variable splitting algorithms, e.g., the iterative
shrinkage/thresholding algorithm (ISTA) and the alternating
direction method of multipliers (ADMM) algorithm, can be
applied to solve the optimization problem in (3). For example,
the ISTA has two key steps

zt = xt−1 − γ∇D(xt−1) (4a)

xt = proxγτR(zt), (4b)

where γ > 0 is the step size. Note that (4a) only depends on
the forward model via the gradient of the data-fidelity term,
while (4b) depends on the prior via the proximal operator,
which is given by

proxγτR(z) := argmin
x

1

2
∥x− z∥22 + γτR(x). (5)

Instead of directly solving (4b) with an explicit hand-
crafted regularization term, the PPP framework considers to
replace the proximal operator by some off-the-shelf and high-
ly engineered denoiser. For example, many image denoisers
such as BM3D [2], WNNM [3] and TNRD [4], do not have
a regularization objective. Therefore, the PPP is a flexible
framework that enables applying various denoising operators
without explicitly defining prior models.

The PPP approach was firstly introduced in [5] and has
shown to be effective in various tasks, such as image super-
resolution [6, 7], deblurring [8], tensor completion [9] and
Poisson-noisy inverse problems [10]. Recent work has also
analysed the theoretical convergence guarantees of PPP algo-
rithms [11, 7, 12, 13, 14, 15, 16, 17]. For example, Sreehari
et al. present sufficient mathematical conditions that ensure
convergence of the PPP approach [11]. In specific, they show
that the denoiser is a proximal mapping if and only if it is
non-expansive and is the sub-gradient of a convex function.

3. DEEP PLUG-AND-PLAY PRIORS

Deep neural networks exhibit state-of-the-art results in var-
ious linear inverse problems with a fixed known acquisition
process. However, they experience a huge performance loss
when whenever the specific problem, the noise level, noise
type, or desired measure of fidelity changes. The PPP frame-
work exploits modern denoising priors to handle the regular-
ization term in model-based optimization schemes, and does
not require the prior to be expressible in the form of a regu-
larization function. Therefore, by leveraging a powerful DL
based denoiser, one could achieve superior performance in d-
ifferent linear inverse problems without retraining. This is es-
pecially useful when it is difficult to acquire sufficient amount
of training data in the same form as the test data.

3.1. Deep Plug-and-Play Priors: Theory

The ideal DL based denoiser should be trained by the current
noise level in each iteration. However, the noise level varies
and is usually unknown in iterations of the PPP framework.
Sommerhoff et al. show an example (as shown in Fig. 2) for
a diverging PPP algorithmic scheme that uses a pre-trained
DnCNN [19] as the denoiser in the PPP framework [18]. In
comparison to the general PPP framework, there is even less
progress on the theoretical aspects of deep PPP approaches.
The global convergence of PPP is proved in [11] for a de-
noiser that has a symmetric gradient and is non-expansive.
However, it is difficult to be proved, and empirical success
of counter example suggests this assumption is too strong.
In [15], Ryu et al. theoretically establish convergence of the
PPP approach under a certain Lipschitz condition on the de-
noisers, and use spectral normalization to improve deep de-
noising networks to satisfy the Lipschitz constraint.



Fig. 2. Example for a diverging PPP algorithmic scheme that uses a pre-trained DnCNN. [18].
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Fig. 3. The architecture of the end-to-end PPP framework [20].

3.2. Deep Plug-and-Play Priors: Architectures

Various DL based denoisers can been applied in the PPP
framework, while a standing issue is how to adjust the de-
noiser to adapt to the varying noise levels in each iteration.
In [21], Zhang et al. train a set of neural networks with dif-
ferent noise levels, and apply them to handle various image
restoration problems. This method is also used in [22], where
a denoiser trained with a suitable noise level is used. It is
worthy that the number of the denoisers is much less than
that of learning different models for different degradations.
However, it is still costly to train and store a number of DL
based denoisers.

In [23, 20], the deep PPP framework is trained in an end-
to-end fashion as shown in Fig 3. By fixing the number of
iterations, the PPP approach is unfolded into a deep neural
network composed of multiple denoising networks with the
same parameters across iterations. Rather than applying d-
ifferent networks that are trained for decreasing noise vari-
ances, a same denoising network learns to deal with vari-
ous noise/alias patterns with several different statistics, which
cannot be fully captured by Gaussian noise process. The end-
to-end training approach do not require a recipe for choosing
the noise variance at each iteration or regularization parame-
ter. The drawback of the unfolded end-to-end network is that
the denoising network is not generic, and can only be applied
to the specific problem in the training.

Sommerhoff et al. found that enforcing non-expansiveness
of a network as suggested in [11] would drastically decrease
the denoising performance [18]. Thus, they propose to guar-
antee convergence by forcing the neural network to predict a
descent direction to a given model-based energy, such that it

can be used within a line search algorithm. Intuitively, the de-
scent direction proposed by the network pushes the iteration
closer towards the distribution of the training data than a usu-
al gradient descent step. In specific, to avoid divergence, they
project the update directions onto the half-space of descent
directions. Under weak additional conditions, it guarantees
the convergence of the proposed scheme to the minimizer of
the original cost function.

In addition to the PPP architecture, there are other DL
based approaches that exploit neural networks as the regular-
ization of inverse problems. One such contribution is Reg-
ularization by Denoising (RED) [24], which uses the (non-
convex) regularizer xT (x − H(x)) given a denoiser H(x),
and uses denoiser evaluations in its iterations. Another re-
lated contribution is the deep image prior (DIP) proposed by
Ulyanov, Vedaldi, and Lempitsky [25]. As an unsupervised
method, DIP uses a neural network as the regularizer to the
inverse image problem. In specific, it replaces the explicit reg-
ularization by the assumption that the unknown image should
be generated from a neural network, and then learn the net-
works parameters for the corrupted image. The success of the
DIP demonstrates that the structure of the network is natural
to capture the image statistics prior with a deep image pri-
or. To enhance the DIP, some modifications are proposed in
literature. Van Veen et al. propose to regularize the weights
of the network during the optimization process for compres-
sive sensing problems [26]. Ren et al. further consider the
case that the sparse dictionary in compressive sensing is un-
certain [27]. In [28], Mataev et al. suggest an extra boost to
the DIP by returning the explicit regularization, i.e., merge the
DIP with the RED. It brings an extra force that does not exist



in DIP. The non-locality flavor in the RED complements the
DIP architecture regularization effect. There are more works
that incorporate model-based optimization with DL method-
s [1].

3.3. Deep Plug-and-Play Priors: Applications

In the form of the deep PPP, there is a number of inverse
problems that can be handled by sequentially applying de-
noising steps. Empirical results show the success of deep PPP
methods in a large variety of imaging applications including
demosaicking [29], image deconvolution [29], image super-
resolution [21, 30, 31], subsampled Fourier inversion [32],
CT scan [33], magnetic resonance imaging (MRI) [23, 34],
deblurring [30, 18], compressed sensing MRI [15], single
photon imaging [15], image/video/multi-spectral image (M-
SI) completion [35].

4. CHALLENGES

While the deep PPP scheme looks like a perfect way to lever-
age the impressive achievement in DL to solve model-based
linear inverse problems, there are still some challenges. It has
been noticed that the PPP often requires delicate parameter
tuning in order to obtain high quality results. For sophisticat-
ed denoising methods without provable convergence, param-
eter tuning becomes a burdensome work. Moreover, as the
deep PPP is an iterative method, sometimes a large number
of iterations is required. Each iteration involves a denoising
DL operation, which could be time-consuming if conducting
many iterations and/or using a large neural network. Third,
the deep PPP does not have a clear definition of the objective
function, which makes theoretical analysis much more chal-
lenging.

5. CONCLUSIONS

This overview paper of a Special Session of ICASSP presents
the recent achievements in using DL and the PPP framework
to solve linear inverse problems. While end-to-end learning
approaches require expensive retraining whenever the specific
problem, the noise level, noise type, or desired measure of fi-
delity changes, the deep PPP provides a flexible and effective
way in handling various inverse problems with only one neu-
ral network learned for denoising. There are still many open
challenges in the aspects of theory, algorithm and application,
which requires further investigation.
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