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ABSTRACT

Recently, unfolding techniques have been widely utilized
to solve the inverse problems in various applications. In
this paper, we study optimization guarantees for two popu-
lar unfolded networks, i.e., unfolded networks derived from
iterative soft thresholding algorithms (ISTA) and derived
from Alternating Direction Method of Multipliers (ADMM).
Our guarantees – leveraging the Polyak-Lojasiewicz* (PL*)
condition – state that the training (empirical) loss decreases
to zero with the increase in the number of gradient descent
epochs provided that the number of training samples is less
than some threshold that depends on various quantities under-
lying the desired information processing task. Our guarantees
also show that this threshold is larger for unfolded ISTA in
comparison to unfolded ADMM, suggesting that there are
certain regimes of number of training samples where the
training error of unfolded ADMM does not converge to zero
whereas the training error of unfolded ISTA does. A number
of numerical results are provided backing up our theoretical
findings.

Index Terms— Algorithm unfolding, optimization guar-
antee, Polyak-Lojasiewicz* (PL*) condition

1. INTRODUCTION

To deal with inverse problems [1–3], there have been mainly
three classes of approaches: 1) model-based, 2) data-driven
and more recently 3) model-aware data-driven approaches.
Algorithm unfolding or unrolling [4–8] is a popular model-
aware data-driven approach for inverse problems. Algorith-
m unfolding techniques connect model-based iterative algo-
rithms such as iterative soft thresholding algorithms (ISTA)
to neural network architectures, wherein a diagram represen-
tation of one iteration step reveals its resemblance to a single
network layer [5].

Generally speaking, for both purely data-driven and un-
folding approaches, the more training data we have, the better
the performance on unseen (testing) data. However, focus-
ing on the training dataset, the authors in [9, 10] suggest-
ed an opposite view from the perspective of optimization.
They argued that when using gradient-based methods to train
deep neural networks, it is more difficult to make the training

loss converge to zero with more training samples. Specif-
ically, leveraging the Polyak-Lojasiewicz* (PL*) condition,
they have established an optimization guarantee stating that
the training error of a deep neural network optimized using
gradient descent can only converge to zero provided that the
number of training samples is smaller than a threshold.

In this paper, motivated by [9, 10], we offer optimization
guarantees for two popular unfolded networks, i.e., unfold-
ed ISTA [4] and unfolded Alternating Direction Method of
Multipliers (ADMM) [6]. We show that the training losses
both for ISTA and ADMM based networks converge to zero
provided that number of training samples is below a certain
threshold depending on various parameters associated with
the problem. We also show this threshold is lower for ADMM
based networks compared to ISTA based networks, which im-
plies that there are certain regimes where an ADMM network
training error does not converge to zero whereas the ISTA net-
work training error does.

Note that our work differs from [11, 12] as the authors
in [11, 12] studied the convergence of the error of the output
after several layers if the weights in unfolded ISTA are well-
learnt, while we focus on the convergence of training loss.
Our work also differs from [9, 10] as we study the optimiza-
tion guarantees of the unfolded networks in inverse problems,
analyze the relationship between optimization guarantees and
various parameters associated with the inverse problem, and
compare the guarantees of different unfolded networks.

The remainder of the paper is organized as follows: Sec-
tion 2 formulates the optimization problem of training the un-
folded networks. Section 3 describes optimization guarantees
of unfolded ISTA and ADMM. Sections 4 presents experi-
mental results to support the theoretical findings. Finally, in
section 5, we draw conclusions.

2. PROBLEM FORMULATION

Consider a linear inverse problem given by:

y = Ax+ e, (1)

where y ∈ Rn is the observation vector, x ∈ Rm is the tar-
get vector to be recovered, A ∈ Rn×m describes the forward
model with m > n and e ∈ Rn is the noise. The goal is to
reconstruct x from y.



Fig. 1. Structure of the l-th layer of unfolded ISTA.

Fig. 2. Structure of the l-th layer of unfolded ADMM net-
work.

This class of problems can often be solved by assuming
that the vector of interest is sparse. This involves posing an
optimization problem such as least absolute shrinkage and s-
election operator (Lasso) [13] that can in turn be solved using
well-known methods such as ISTA [14] or ADMM [15].

Alternatively, these problems can also be solved using al-
gorithm unfolding or unrolling techniques whereby solvers
such as ISTA or ADMM are mapped onto a neural network
architecture, whose parameters can then be further tuned us-
ing gradient descent or some other variant based on the avail-
ability of a series of examples (xp, yp), p = 1, ..., P .

In particular, for a L-layer unfolded ISTA network, the
output of the l-th layer as shown in Fig. 1 is

xl = Sλ(W l
1y +W l

2x
l−1) (2)

where l = 1, 2, · · · , L denotes the layer number, W l
1 and

W l
2 are the weights at the l-th layer, and Sλ(·) is the soft-

thresholding function defined as

Sλ{x} = sign(x)max(|x| − λ, 0). (3)

In (2), W l
1, W l

2 and λ are learnable parameters.
In turn, for a L-layer unfolded ADMM network, the out-

put of the l-th layer as shown in Fig. 2 is

xl =W l
1y +W l

2(z
l−1 + ul−1)

zl = Sλ(xl − ul−1)

ul = ul−1 − γ(xl − zl) (4)

where γ ≥ 0 is the step size. In an unfolded ADMM network,
W l

1, W l
2, λ and γ are learnable parameters.

Given a training dataset (xp, yp), p = 1, . . . , P , the pa-
rameters of these networks are then learnt by optimizing the
squared loss function given by

L(w) =
1

2

P∑
p=1

‖xLp (yp)− xp‖2, (5)

where xLp denotes network output given network input yp, xp
is the corresponding ground truth, w denotes the learnable
parameters w = vec(W), and 1

W =


W

(1)
1 W

(1)
2

...
...

W
(L)
1 W

(L)
2

 . (6)

We focus on gradient descent procedures to optimize the
loss function in (5) whereby the parameters estimate at epoch
t depends on its estimate at epoch t− 1 as follows:

wt = wt−1 − η∇L(wt−1), (7)

where η is the step size, t denotes the epoch number and w0

is the initialized parameters.
Our goal is to understand whether the training loss in (5)

converges to zero as the number of gradient descent epochs
increases to infinity, both for unfolded ISTA and ADMM net-
works.

3. OPTIMIZATION GUARANTEES

Our guarantees are based on the PL* condition. In particu-
lar, it has been shown in [10] that gradient descent converges
for neural networks that fulfill this condition. It has also been
shown in [10] that the PL* condition is satisfied provided that
the number of training samples is smaller than a constant re-
lated to the spectral norm of the Hessian of a deep neural net-
work.

In line with the work in [10], we provide optimization
guarantees of the unfolded ISTA and ADMM by the follow-
ing two steps: 1) we provide a bound on the spectral norm
of the Hessian matrix of the unfolded networks and 2) we
provide a threshold on the number of training samples below
which gradient descent is guaranteed to converge. 2

3.1. Convergence guarantees of unfolded network

We now offer our main results. For any learning parameter set
w in parameter space {S : ‖w −w0‖F ≤ R}, where R > 0
is a constant independent on the size of the network, i.e., m
(dimension of target vector x), n (dimension of observation
vector y), and L (number of network layers), we have

‖H(w)‖ ≤ cH , (8)

1Note that in this paper, the activation functions in both unfolded ISTA
and ADMM networks are assumed to be twice differentiable activation func-
tion like tanh or sigmoid instead of soft-thresholding, and γ in (4) is assumed
to be a constant rather than learnable parameter in the unfolded ADMM net-
work.

2To simplify our analysis, we also make some assumptions on the initial-
ization of the unfolded networks, which are described in [16].



where ‖H(w)‖ is the spectral norm of the Hessian matrix of
unfolded ISTA or ADMM, and cH is a constant depending
on the size of the unfolded network. Note that cH differs for
unfolded ISTA and ADMM.

Theorem 1: For the unfolded ISTA or ADMM, if the
number of training samples P satisfies

P ≤
(
c

cH

)2

, (9)

where c is a constant independent on the size of the unfolded
network and cH is the threshold of the spectral norm of the
Hessian matrix of unfolded ISTA or ADMM depending on
the type of network, i.e., ADMM or ISTA, then we can state
that:

• Existence of a solution: There exists a solution w∗ ∈
S such that xLp = xp for p = 1, 2, · · · , P .

• Convergence: If we use gradient descent method to
train the unfolded network, and the step size η is s-
maller than a certain value, which is of the order of
O(1/L(w0)) and independent on the size of the unfold-
ed network, then the training loss behaves as follows:

L(wt) ≤ (1− ηµ)tL(w0), (10)

where µ is a constant independent of the network size.

The proof of Theorem 1 is omitted here due to space lim-
itations, but it can be shown that whereas cH differs for un-
folded ISTA and ADMM, we have cH = O(

√
m), cH =

O(1/
√
n) and cH = O((c1)

L) both for unfolded ISTA and
ADMM, where c1 > 0 is a constant. We conclude the follow-
ing.

Firstly, the number of training samples should be smaller
than some threshold in order for the training loss to decrease
to zero as the number of gradient descent epochs increases to
infinity. This threshold decreases with the increase in dimen-
sionality of the target vector, m. We attribute this to the fact
that a higher target vector dimensionality is associated with
a higher task complexity, resulting in a more complex opti-
mization problem.

Secondly, this threshold increases with the increase in di-
mensionality of the measurement vector, n. We in turn at-
tribute this to the fact that a higher measurement vector di-
mensionality is associated with a lower task complexity, re-
sulting in a simpler optimization problem. The size of the
network is also additionally larger, allowing one to deal with
larger training sets.

3.2. Convergence guarantees comparison

In order to compare unfolded ISTA to unfolded ADMM net-
works, it can be shown that

cH,ista ≤ cH,admm, (11)

where cH,ista and cH,admm denote the bounds of Hessian
spectral norms of unfolded ISTA and ADMM, respectively.
We also note equality holds provided that γ = 0 and u0 = 0.

This indicates that the threshold on the number of train-
ing samples guaranteeting gradient descent convergence of
the unfolded ISTA is larger than that of the unfolded AD-
MM, implying that the unfolded ISTA is capable of dealing
with a larger amount of training samples than unfolded AD-
MM in terms of the convergence of training loss. We explain
this by contrasting the structures of unfolded ISTA and AD-
MM networks shown in Figs. 1 and 2. We think that whereas
the more complex structure associated with ADMM network-
s in relation to ISTA based ones – exhibiting more shortcuts
and skip connections – can help with generalization (as doc-
umented in [8]), it also results nonetheless in a more complex
optimization procedure, that manifests itself in a more strin-
gent requirement in number of training samples for gradient
descent to converge.

4. EXPERIMENTS

We now perform various experiments to support the intuitions
in the previous section:

• We show how the training loss behaves as a function of
the number of training samples. See Fig. 3.

• We show how the training loss behaves as a function
of the number of training epochs, with the number of
training sample satisfying the optimization guarantee
both for the ISTA based network and the ADMM one.
See Fig. 4.

• We also show how the training loss behaves as a func-
tion of the number of training epochs, with the number
of training sample satisfying the optimization guaran-
tee for the ISTA based network but not the ADMM one.
See Fig. 5.

Our experimental set-up involves the generation of syn-
thetic data, where x ∈ R200 is a vector with sparsity equal
to four with the non-zero elements randomly chosen within
the interval (0, 1], and e ∈ R25 is a Gaussian vector with ze-
ro mean and variance 0.03. The measurement matrix A ∈
R25×200 is Gaussian with ‖A‖F = 10, and y ∈ R25 is gen-
erated via the model in (1). We generate P different sample
pairs (x, y) where the matrix A remains fixed. We use sig-
moid function as activation function in each layer for both
unfolded ISTA and ADMM networks, and set L = 3. Addi-
tionally, in unfolded ADMM, γ = 1. During training, we use
gradient descent with step size η = 10−6.

We carried out the experiments over a number of trials
associated with different number of training samples P . Fig.
3 depicts the evolution of the average MSE of the training
samples as a function of the sample number. Here, average



MSE is calculated by

1

RP

P∑
p=1

R∑
r=1

‖xp,r(yp,r)− x̂p,r‖ (12)

where yp,r is the input of the p-th sample on the r-th trial,
xp,r is the output of the p-th sample on the r-th trial, and
x̂p,r is the corresponding ground truth. We set the number
of trials R to be equal to 100 in our experiments. During
training the network, the stop condition is that the changing
rate of loss, i.e., (L(wt) − L(wt−1)/L(wt), is smaller than
a pre-determined threshold 10−3. In line with Theorem 1, it
could be observed that for both unfolded ISTA and ADMM
networks, the average MSE increases rapidly once the num-
ber of training samples exceeds some threshold. Additionally,
the threshold is approximately 2000 for unfolded ADMM and
3000 for unfolded ISTA. The threshold of unfolded ISTA is
larger than that of unfolded ADMM.

Fig. 3. Average MSE versus sample number.

Fig. 4 depicts the evolution of training loss as a function
of the number of epochs with P = 1000 training samples.
Here P = 1000 is smaller than the thresholds of both unfold-
ed ISTA and ADMM networks, and therefore, the optimiza-
tion guarantees of both unfolded ISTA and ADMM networks
in Theorem 1 are satisfied. It can be seen that the losses for
both unfolded ISTA and ADMM networks converge rapidly
to zero with an approximate exponential linear convergence
rate.

Fig. 5 depicts the evolution of training loss as a function
of the number of epochs with P = 2500 training samples.
Note that P = 2500 is smaller than the threshold of unfolded
ISTA, and larger than the threshold of unfolded ADMM. The
training loss of unfolded ISTA converges with an approximate
exponential linear convergence rate. However, the training
loss of unfolded ADMM decreases in the first 1200 epochs
while it does not appear to change significantly in the last 800
epochs.

Fig. 4. Loss versus number of epochs with 1000 training sam-
ples.

Fig. 5. Loss versus number of epochs with 2500 training sam-
ples.

5. CONCLUSION

Unfolding techniques have achieved significant success in
solving inverse problems. In this paper, we study optimiza-
tion guarantees for popular unfolded networks. We demon-
strate that to guarantee that the training loss of unfolded ISTA
or ADMM converges to zero using gradient descent tech-
niques, the number of training samples should be smaller
than a threshold that depends on various parameters asso-
ciated with the underlying task. We also demonstrate that
this threshold for unfolded ISTA is larger than that of the
unfolded ADMM indicating there are certain regimes where
the training loss of unfolded ADMM does not converge to
zero whereas the training loss of unfolded ISTA does.

This perhaps surprising result contrasts with other results
indicating that ADMM networks generalize better than ISTA
based ones given access to sufficiently large training sets [8].
This motivates studying further the interplay between opti-
mization and generalization of unfolded networks.
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