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ABSTRACT

In this paper, we propose a novel network structure to solve
the blind hyperspectral unmixing problem using a double
Deep Image Prior (DIP). In particular, the blind unmixing
problem involves two sub-problems: endmember estima-
tion and abundance estimation. We, therefore, propose two
sub-networks, endmember estimation DIP (EDIP) and abun-
dance estimation DIP (ADIP), to generate the estimation of
endmembers and estimation of corresponding abundances
respectively. The overall network is then constructed by as-
sembling these two sub-networks. The network is trained
in an end-to-end manner by minimizing a novel composite
loss function. The experiments on synthetic and real datasets
show the effectiveness of the proposed method over state-of-
art unmixing methods.

Index Terms— Hyperspectral unmixing, blind unmixing,
neural networks, deep image prior (DIP)

1. INTRODUCTION

The hyperspectral image (HSI) is a multivariate image that
captures spectral information over hundreds of spectral bands
of a certain scene. The blind unmixing problem aims, for
each pixel, to extract the spectra of the constituent materials
and the corresponding fractional proportions, also known as
endmembers and abundances, respectively. This type of prob-
lem often arises in areas where there is a need to understand
materials of a scene/sample such as remote sensing [1, 2], art
investigation [3], and others.

The blind unmixing problem involves performing two
tasks [2]: endmember estimation and abundance estimation.
Most endmember estimation methods are geometrical based
approaches by assuming the data is embedded in a simplex,
the vertices of which are the endmembers. Popular exam-
ples of such methods include vertex component analysis
(VCA) [4] and simplex volume maximization (SiVM) [5].
On the other hand, most abundance estimation methods in
the literature are based on linear mixture model (LMM) [6],
which assumes the observed spectrum is a linear combination
of the endmembers’ spectra weighted by the corresponding
abundance. When the endmembers are estimated by end-
member estimation methods, the blind unmixing problem re-

duces to a least square problem, which can be solved by fully
constrained least square (FCLS) [7] solver. When the end-
members are known in the form of a rich spectral library, the
abundance estimation problem becomes a sparse regression
(SR) problem [8], which has been solved by methods such
as sparse unmixing by variable splitting and augmented La-
grangian (SunSAL) [8] and collaborative SUnSAL (CLSun-
SAL) [9]. However, these approaches can be computationally
complex.

Many neural networks (NN) based approaches have also
been proposed to tackle the unmixing challenge. Generally,
these methods can be divided into supervised and unsuper-
vised methods. In supervised methods, such as unfolding
ADMM based abundance estimation network (U-ADMM-
AENet) [10], the networks are fed with a set of pairs of HSI
spectra and corresponding abundances. After learning, the
network can map the spectra to corresponding abundances.
However, such methods require access to the true abundance.

In unsupervised methods, such as MNN-BU [11] and
uDAS [12], the networks are based on autoencoder struc-
tures, which take only the HSI spectra as input and enforce
the output to reconstruct HSI spectra. After learning, the
bottleneck of the autoencoder gives the abundance estimation
and the weights of a linear decoder give the endmember esti-
mation. These methods can however fail to deliver accurate
endmembers and abundances [13].

Recently, UnDIP [14] has been proposed to overcome
some of these challenges by using deep image prior (DIP) [15].
However, this approach only yields abundance estimation, re-
lying on the availability of an estimation of the endmembers
using other existing methods. Therefore, this approach is not
suitable for blind unmixing purposes.

In this paper, we propose a novel blind unmixing network
using double DIP which delivers improved endmember and
abundance estimation. This paper is organized as follows: In
Section 2, we introduce the blind unmixing problem. In Sec-
tion 3, we present the proposed blind unmixing network using
double DIP. Section 4 illustrates that our proposed network
outperforms existing ones in unmixing tasks. Conclusions are
drawn in Section 5.



2. THE BLIND UNMIXING PROBLEM

We consider the linear mixing model (LMM) given by [6]

Y = EA+N (1)

where Y ∈ Rp×n is a HSI data cube corresponding to n
pixels across p spectral bands, E = [e1, ..., er] ∈ Rp×r

is the endmember matrix containing r endmembers across p
spectral bands, A = [a1, ...,an] ∈ Rr×n is the correspond-
ing fractional abundance matrix, and N ∈ Rp×n is the ad-
ditive noise. Note that the abundance is subjected to non-
negative constraint (ANC) and sum-to-one constraint (ASC),
i.e., A ≥ 0 and AT1r = 1n, where 1r is the all one vector
with size r× 1. Similarly, the endmember matrix is also sub-
jected to non-negative constraint (ENC), E ≥ 0, in order to
be physically meaningful.

The goal of blind unmixing is to estimate E and A given
only Y. A popular approach to solve this problem involves
solving [16]:

Ê, Â = argmin
E,A

1

2
‖Y −EA‖2F +R(A)

s.t.,E ≥ 0,A ≥ 0,AT1r = 1n

(2)

where, R is a regularizer depending on abundance matrix A,
such as total variation (TV) [16]. Generally, the choice of R
is heavily dependent on the prior knowledge about the task at
hand.

3. BLIND UNMIXING USING DOUBLE DEEP
IMAGE PRIOR

The blind unmixing problem (2) is usually solved by a two-
stage cyclic descent method [16]: fix A, update E; and fix E,
update A. We now propose an end-to-end network to solve
the problem (2) using DIP techniques. DIP [15] was origi-
nally proposed to solve inverse problems such as denoising,
given by:

x∗ = argmin
x

‖x− x0‖22 +R(x) (3)

where, x0 is a noisy image, and R is a regularizer explicitly
capturing the prior information about clean image x. DIP
however solves the optimization problem given by:

θ∗ = argmin
θ

‖fθ(z)− x0‖22 (4)

where, fθ(z) is a neural network parameterized by θ, with a
random input z. That is, DIP effectively replaces the regular-
izer in (3) with a neural network. After learning, the network
parameterization would implicitly capture the prior and out-
put the restored image given by x∗ = fθ∗(z). We next de-
scribe how to adapt this approach to solve our proposed blind
unmixing problem.

3.1. Network Structure

Our proposed network consists of two sub-networks: End-
member estimation DIP (EDIP) and Abundance estimation
DIP (ADIP). EDIP is responsible for endmember estimation
whereas ADIP is responsible for abundance estimation.

EDIP: Let us first assume that, at the endmember estima-
tion stage, we are given access to an estimate of the abun-
dance Ã, using some algorithm such as FCLS [7]. Then, the
optimization problem (2) would reduce to:

Ê = argmin
E

1

2
‖Y −EÃ‖2F s.t.,E ≥ 0 (5)

In this work, following the idea of DIP, we propose to use
a network fθE

with a random input zE to estimate the end-
members. This leads to the optimization problem given by:

θ̂E = argmin
θE

1

2
‖Y − fθE

(zE)Ã‖2F (6)

Similar to [15], we use ResNet [17] structure for the proposed
EDIP network fθE

. Note that, in order to meet the ENC,
we use a sigmoid activation as the last layer of EDIP. After
learning the parameter θ∗E , the network would estimate the
endmember, given by Ê = fθ∗

E
(zE). The EDIP sub-network

is illustrated in Fig.1.
ADIP: Let us now assume that, at the abundance estima-

tion stage, we are given access to an estimate of the endmem-
bers Ẽ, using some algorithm such as SiVM [5]. Then, the
optimization problem (2) would reduce to:

Â = argmin
A

1

2
‖Y − ẼA‖2F +R(A)

s.t.,A ≥ 0,AT1r = 1n

(7)

We also propose to use a network fθA
with a random input

zA to generate the estimation of abundance. This leads to the
optimization problem given by:

θ̂A = argmin
θA

1

2
‖Y − ẼfθA

(zA)‖2F (8)

We also adopt ResNet [17] structure for the proposed ADIP
network fθA

. In order to meet ASC and ANC, we use softmax
as the output layer of ADIP. After learning the parameter θ∗A,
the estimated abundance is given by Â = fθ∗

A
(zA). The

ADIP sub-network is illustrated in Fig.1.
Overall Structure: After obtaining an estimation of end-

member and abundance, Ê and Â, using EDIP and ADIP re-
spectively, we can immediately generate a reconstruction of
the HSI image, as follows:

Ŷ = ÊÂ (9)

Thus, the overall structure of the proposed network is ob-
tained by assembling the proposed EDIP, ADIP, as shown in
Fig.1. We name the proposed blind unmixing network using
double DIP as BUDDIP.
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Fig. 1. Blind Unmixing using Double DIP (BUDDIP)

3.2. Network Optimization

We train our overall network using various loss functions.
First, in line with optimization problem (6), we use the loss
function given by:

LEDIP =
1

2
‖Y − fθE

(zE)Ã‖2F (10)

Similarly, in line with optimization problem (8), we also
use the loss function given by:

LADIP =
1

2
‖Y − ẼfθA

(zA)‖2F (11)

Note that, Ẽ in LADIP and Ã in LEDIP are estimated by
SiVM [5] and FCLS respectively.

Moreover, we also impose an additional loss function –
the blind unmixing (BU) loss – given by:

LBU =
1

2
‖Y − Ŷ‖2F (12)

This additional loss is necessary because otherwise EDIP and
ADIP would yield endmember and abundance estimates close
to Ẽ and Ã, respectively.

The final loss function is a combination of the above
losses, as follows:

L = α1LEDIP + α2LADIP + α3LBU (13)

where, α1, α2, α3 are the loss weights that control the relative
importance of corresponding loss terms. LEDIP and LADIP

together can make sure the network outputs meaningful end-
members and abundances, that is, Ê, Â would be centered
around Ẽ, Ã. LBU , on the other hand, allow the network to
search for a better estimation than Ẽ, Ã.

Different from the two-stage-cyclic descent method [16],
the proposed network is trained in an end-to-end manner.
Given only the HSI image Y, the learnable parameters
{θE ,θA} are learned by minimizing the composite loss L,
using a variant of gradient descent optimizer, ADAM [18].

4. EXPERIMENTS

We now compare our proposed method BUDDIP, to other
state-of-the-art methods such as UnDIP [14] and SiVM [5]
+ FCLS [7]. Note that, in UnDIP, SiVM is also used to gen-
erate the fixed endmember estimation. For a fair comparison,
in this paper, we also use SiVM+FCLS to generate the Ẽ and
Ã used in the proposed loss function. However, we will show
later that the proposed network can yield better estimations.

We use averaged (over pixels) root mean square error
(aRMSE) to measure the quality of abundance estimation and
averaged (over endmembers) spectral angle distance (aSAD)
to measure the quality of endmember estimation, given by:

aRMSE(A, Â) =
1

n

n∑
i=1

√
1

r
‖ai − âi‖22 (14)

aSAD(E, Ê) =
1

r

r∑
i=1

arccos (ei, êi)
180

π
(15)

We also use both synthetic and real data to evaluate the
performance of the proposed approach.

4.1. Evaluation on Synthetic Data

The synthetic data is generated according to the procedure
in [10]. Six candidate endmember signatures are randomly
chosen from the USGS spectral library [19]. A synthetic im-
age of size a× a is divided into 100 disjoint patches, each of
which is assigned with a spectrum mixed from two randomly
selected endmembers from the six candidate signatures with
fractions [0.8, 0.2]. The abundance map is then convolved
with a Gaussian filter of size 11×11, followed by a pixel-wise
re-scaling to meet ASC. Finally, the data is polluted with ad-
ditive white gaussian noise (AWGN).

By default, the random input zA and abundance Â have
the same size Rr×n. Similarly, zE and Ê have the same size
Rp×r. The default value of a is 100, that is the training image
consists of 100×100 pixels, which is then contaminated with
AWGN leading to SNR = 30 dB. The network is trained
using ADAM optimizer [18] with learning rate set to 1e− 4,
and the number of epochs set to 4500. We set α1 = 0.1, α2 =
0.01, α3 = 1.0, respectively, via grid search techniques, as
the proposed method is unsupervised.

Performance vs. SNR We first evaluate the impact of
SNR, which is shown in Fig.2. It can be seen that when the
SNR is 15 dB, the proposed methods can achieve better aSAD
than the other algorithms. With the increase of SNR, all al-
gorithms can benefit from the decrease of noise. Overall, the
proposed methods achieve better unmixing performance than
the competitors.

Performance vs. Image Size We now evaluate the im-
pact of HSI image size on unmixing performance. The results
are shown in Fig.3. It can be seen that UnDIP basically can
not surpass SiVM+FCLS. On the other hand, as the image
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Fig. 2. Performance vs. SNR.

size becomes larger, the performance of SiVM+FCLS deteri-
orates. As a result, UnDIP and BUDDIP, which rely on SiVM
and/or FCLS to provide endmember and/or abundance esti-
mation as guidance, exhibit worse performance. But BUD-
DIP still achieves better aRMSE and aSAD than the competi-
tors.
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Fig. 3. Performance vs. image size.

4.2. Evaluation on Real Data

We also report performance comparison on real HSI dataset,
Jasper Ridge, which has four endmembers: Road, Soil, Wa-
ter and Tree. Due to complexity consideration, a sub-image
of size 100×100 pixels are used in this experiment. After re-
moving bands due to water vapour effects, 198 bands are used
in this paper.

In this experiment, we set the number of epochs to be
equal to 24000, and α1 = 1.0, α2 = 1.0, α3 = 1.0, respec-
tively, via grid search techniques, as the proposed method is
unsupervised. The performance metrics are summarised in
Table 1. As we showed before, UnDIP can not achieve bet-
ter performance than SiVM+FCLS. On the other hand, the
proposed BUDDIP can deliver both better endmember esti-
mation and abundance estimation than the competitors. The
visual comparisons are illustrated in Fig. 4 and Fig. 5, which
also shows the superiority of the proposed method.
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Fig. 4. Endmember estimation. From top to bottom: SiVM,
UnDIP and BUDDIP. From left to right: Tree, Water, Soil
and Road. Solid line is the true value, while dot line is the
estimated value.
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Fig. 5. Abundance estimation maps. From top to bottom:
Tree, Water, Soil and Road.

Table 1. Unmixing performance by Different Algorithms.
SiVM+FCLS UnDIP BUDDIP

aRMSE 0.1480 0.1748 0.1023
aSAD 11.3492 11.3493 6.8489

SAD of Tree 8.5545 8.5545 9.2215
SAD of Water 14.4876 14.4877 9.2517
SAD of Soil 6.5558 6.5558 5.4084
SAD of Road 15.7991 15.7991 3.5141

5. CONCLUSION

In this paper, we have proposed a novel blind unmixing net-
work using double DIP techniques (BUDDIP). In particular,
we build two DIP sub-networks to estimate the endmember
and abundance respectively, which are coined as EDIP and
ADIP. The final network is constructed by assembling EDIP
and ADIP based upon the linear mixture model. The exper-
iments both on a synthetic and real dataset demonstrate the
superiority of the proposed method over the state-of-the-art
including UnDIP [14] and SiVM [5] + FCLS [7].
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