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Abstract

There is a pressing need to understand the factors that predict prognosis in progres-

sive supranuclear palsy (PSP) and corticobasal syndrome (CBS), with high heterogene-

ity over the poor average survival. We test the hypothesis that the magnitude and

distribution of connectivity changes in PSP and CBS predict the rate of progression

and survival time, using datasets from the Cambridge Centre for Parkinson-plus and

the UK National PSP Research Network (PROSPECT-MR). Resting-state functional

MRI images were available from 146 participants with PSP, 82 participants with CBS,

and 90 healthy controls. Large-scale networks were identified through independent

component analyses, with correlations taken between component time series. Inde-

pendent component analysis was also used to select between-network connectivity

components to compare with baseline clinical severity, longitudinal rate of change in

severity, and survival. Transdiagnostic survival predictors were identified using partial

least squares regression for Cox models, with connectivity compared to patients'

demographics, structural imaging, and clinical scores using five-fold cross-validation.

Received: 10 January 2023 Revised: 27 April 2023 Accepted: 1 May 2023

DOI: 10.1002/hbm.26342

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2023;1–17. wileyonlinelibrary.com/journal/hbm 1

https://orcid.org/0000-0002-5890-9220
https://orcid.org/0000-0002-8553-2801
mailto:djw216@medschl.cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.26342&domain=pdf&date_stamp=2023-06-03


In PSP and CBS, between-network connectivity components were identified that dif-

fered from controls, were associated with disease severity, and were related to sur-

vival and rate of change in clinical severity. A transdiagnostic component predicted

survival beyond demographic and motion metrics but with lower accuracy than an

optimal model that included the clinical and structural imaging measures. Cortical

atrophy enhanced the connectivity changes that were most predictive of survival.

Between-network connectivity is associated with variability in prognosis in PSP and

CBS but does not improve predictive accuracy beyond clinical and structural imaging

metrics.
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1 | INTRODUCTION

Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS)

are characterised by short average survival, but with significant vari-

ability in individual outcome (Chiu et al., 2010; Coyle-Gilchrist

et al., 2016). There is a pressing need to accurately predict rate of pro-

gression and survival time, to aid clinical management, assist stratifica-

tion for clinical trials and to identify potential protective factors

associated with better prognosis (Eimeren et al., 2019). Functional

connectivity is a promising candidate to improve prognostication

given the close association between functional organisation and

changes in cognition with ageing and neurodegeneration (Chan

et al., 2014; Rittman et al., 2019; Tsvetanov et al., 2021).

PSP and CBS are distinct clinical disorders in their classical forms

but nonetheless overlap in their genetic risk factors, (Höglinger

et al., 2011; Kouri et al., 2015) pathologies, (Kovacs, 2015) clinical fea-

tures, (Armstrong et al., 2013; Höglinger, 2018; Höglinger et al., 2017;

Murley et al., 2020) prognostic indicators, (Lansdall et al., 2019;

Murley et al., 2021) and in current and potential therapeutic agents

(Bluett et al., 2021; Boxer et al., 2020; VandeVrede et al., 2020). We

make a distinction between the clinical syndromes of PSP and CBS,

and the clinicopathological four-repeat tauopathies of corticobasal

degeneration (CBD) and PSP pathology. While the initial description

of PSP, consisting of a supranuclear gaze palsy, axial predominant

rigidity, and early falls, (Steele et al., 1964) is strongly predictive of

PSP-pathology, (Litvan, 1997; Osaki et al., 2004) highly varied clinical

features are associated with the same proteinopathy (Dickson

et al., 2011; Kovacs et al., 2020). The pathological aetiology of corti-

cobasal syndrome is heterogeneous; PSP-pathology is common as

well as CBD (Koga et al., 2022). The presence of shared clinical fea-

tures is recognised in the current diagnostic criteria for the clinical

syndromes, (Armstrong et al., 2013; Höglinger et al., 2017) with oper-

ationalised definitions of PSP-CBS, (Höglinger et al., 2017) CBD-PSP,

(Armstrong et al., 2013) and likely 4-R tauopathy (Höglinger

et al., 2017). Many patients with a clinical diagnosis of either PSP or

CBS will have features of both diagnostic criteria (Murley et al., 2020).

PSP and CBS have also been previously shown to share clinical deter-

minants of survival, including apathy (Lansdall et al., 2019) and motor

impairment (Murley et al., 2021). The degree of clinical convergence

means that symptomatic therapeutic options are common between

the two conditions (Bluett et al., 2021). Moreover, there is both grow-

ing interest in and completed examples of ‘basket’ designs for novel

experimental agents, which recruit across the 4-R tauopathies (Boxer

et al., 2020; VandeVrede et al., 2020). Therefore, considering PSP and

CBS together can aid prognostication, to gain understanding of how

and when pathophysiological processes converge to determine out-

come, and to generate mechanistic biomarkers relevant to both

conditions.

Temporally correlated brain networks are consistently observed

in healthy adults, across the lifespan, and can be identified by func-

tional magnetic resonance imaging at rest (Beckmann et al., 2005;

Biswal et al., 1995; Damoiseaux et al., 2006; Yeo et al., 2011). Altered

functional organisation, representing dysfunctional neurons and net-

works, maybe a more sensitive measure of underlying disease state

than regional atrophy or cross-sectional performance on standardised

clinical tasks. In neurodegenerative conditions network segregation is

associated with maintained cognitive performance in the presence of

pathology, (Ewers et al., 2021; Tsvetanov et al., 2021) with loss of net-

work integrity and large-scale network change occurring at the point

of symptom onset (Rittman et al., 2019). It is therefore plausible that

greater network disruption would imply poor longitudinal outcome.

Resting state connectivity in neurodegeneration is influenced by

inflammation, (Passamonti et al., 2019) synaptic loss, (Zhang

et al., 2023) pathological proteins, (Cope et al., 2018; Franzmeier

et al., 2022) white matter disease, (McColgan et al., 2017) neurotrans-

mitter deficits, (Borchert et al., 2019; Klaassens et al., 2019) metabo-

lism, (Sheline & Raichle, 2013) and cell death (Hampton et al., 2020).

Identifying connectivity markers of survival would enable in vivo

mechanistic testing of the importance of different components of the

neurodegenerative cascade for outcome.

A challenge when assessing the impact of connectivity on survival

is that even in healthy controls, individual connections show poor
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reproducibility and vary on repeat scanning (Lynch et al., 2020; Noble

et al., 2019). However, multivariate data-driven approaches to identify

a small number of features, such as independent component analysis,

significantly improve robustness of connectivity estimates (Elliott

et al., 2018; Marek et al., 2022). This is important when considering

the clinical syndromes of PSP and CBS where connectivity changes

are diffuse, (Ballarini et al., 2020; Brown et al., 2017) in keeping with

brain-wide synaptic loss observed in vivo (Holland et al., 2020) and at

post-mortem (Bigio et al., 2001; Lipton et al., 2001). We, therefore,

investigated the utility of functional connectivity to predict outcomes

for individual diagnostic groups and transdiagnostically, adopting a

whole-brain approach rather than focusing on individual connections.

Data reduction techniques to identify common patterns of con-

nectivity change may not give the most sensitive survival predictors.

Machine learning approaches may be more successful in identifying

predictors, but standard machine learning tools need to be modified

when estimating time to death given the presence of censored data

resulting from including individuals alive at the end of a follow-up

period (Spooner et al., 2020). The simpler partial least squares (PLS)

regression for Cox models (Bastien, 2008; Bastien et al., 2005, 2015;

Bertrand & Maumy-Bertrand, 2021) provides a promising approach

that is adapted to explain maximal variance in survival, identifies pat-

terns using all features, and is suitable for high-dimensional data.

We, therefore, used these methods to test whether connectivity

changes are associated with poorer prognosis in PSP and CBS. We

quantify connectivity through resting-state functional MRI and com-

pare the predictive value of connectivity with clinical metrics and

structural imaging. To assess generalisation, we used k-fold cross-

validation for data from two cohorts of PSP, CBS, and controls: from

the Cambridge Centre for Parkinson-plus (CCPP) and the UK National

PSP Research Network (PROSPECT-MR). We tested the following

hypotheses: (i) between-network connectivity differs between partici-

pants with neurodegeneration and controls; (ii) more extensive

changes in connectivity predict faster clinical deterioration and

shorter survival; and (iii) changes in connectivity provide additive

information to predict prognosis beyond clinical and structural imag-

ing measures.

2 | METHODS

2.1 | Participants

We recruited 146 participants with MDS-PSP criteria probable or

possible PSP, (Höglinger et al., 2017) 82 participants with the clinical

phenotype of corticobasal syndrome, (Armstrong et al., 2013) and

90 age-matched healthy controls from the CCPP and the PSP-

Corticobasal Syndrome-Multiple System Atrophy-UK (PROSPECT-

MR) study (Jabbari et al., 2020). Clinical assessments for the two

cohorts included the PSP rating scale (PSPRS), (Golbe & Ohman-

Strickland, 2007) the Cambridge Behavioural Inventory-Revised

(CBIR) (Wear et al., 2008) and the Addenbrooke's Cognitive

Examination-Revised (ACER) (Mioshi et al., 2006). A total of 49 partici-

pants with PSP, 11 participants with CBS, and 9 healthy controls were

excluded following assessment for motion (see below). We recorded

survival and longitudinal neurocognitive assessments for participants

up to 12 years from baseline imaging. We recorded date of death

from participants’ NHS Summary Care Record. Demographic details

and summary scores for included participants are described in

Table 1.

Twenty-seven participants included with a clinical diagnosis of

PSP proceeded to autopsy, with a predominant neuropathological

diagnosis of PSP in 26, and 1 predominant argyrophilic grain disease.

Sixteen of the participants included with corticobasal syndrome

donated their brains. As expected in CBS, the underlying neuropathol-

ogy was heterogenous with a final pathological diagnosis of CBD

TABLE 1 Demographic details for participants at baseline scan.

Control (n = 81) PSP (n = 97) CBS (n = 71) F/t/χ2 p

Scans (n) 94 118 88 - -

Longitudinal imaging (n) 11 20 17

Age (years) 68.5 (6.4) 70.1 (7.2) 67.9 (6.4) 2.1 .12

Sex (F/M) 46/35 43/54 42/29 4.5 .11

Number deceased - 70 40 - -

Time to death (years) - 2.8 (1.8) 2.8 (2.0) 0.07 .95

3-year survival (from the scan) - 42/87 (48%) 28/53 (53%) 0.12 .73

PSPRS

n (%)

- 35.3 (14.9)

85 (88%)

33.2 (15.8)

50 (70%)

�0.74 .46

CBIR

n (%)

- 44.4 (33.2)

67 (69%)

42.9 (25.8)

62 (87%)

�0.30 .76

ACER

n (%)

- 80.5 (14.3)

84 (87%)

75.2 (17.2)

66 (93%)

�2.0 0.048

Note: Continuous values are mean (SD). Group comparison used F or t-test for groups with continuous data and chi-squared for binary variables.

Abbreviations: ACER, Addenbrooke's cognitive examination-revised, CBIR, Cambridge behavioural inventory revised; PSPRS, Progressive supranuclear

palsy rating scale.
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(n = 6), Alzheimer's disease (n = 5), mixed CBD/PSP (n = 1), PSP

(n = 2), Pick's disease (n = 1) and multiple system atrophy (n = 1).

2.2 | MRI acquisition and preprocessing

Participants at CCPP underwent fMRI imaging at 3T (TR 2–2.5 s, TE

30 ms, 3 � 3 � 3.5 mm/3 � 3 � 3.75 mm voxels, 140–305 volumes).

High-resolution T1-weighted Magnetization Prepared Rapid Gradient

Echo (MPRAGE) structural images (TR 2 s, TE 2.93 ms, flip angle 8�,

voxel size 1.1 mm isotropic) were acquired during the same session

for use in normalization. Participants from PROSPECT-MR underwent

a comparable fMRI imaging protocol at 3 T (TR 2.5 s, TE 30 ms, whole

brain acquisition, 3 � 3 � 3.5 mm voxels, 200 volumes) and matched

MPRAGE. A subset of 48 participants (20 PSP, 17 CBS, and 11 Con-

trols) also had repeat imaging during the disease course (Table 1), with

primary analysis from the baseline visit.

We adapted the FSL preprocessing pipeline (Smith et al., 2013)

with the addition of wavelet despiking (Patel et al., 2014) given higher

in-scanner movement in participants with neurodegenerative dis-

eases. For initial fMRI preprocessing the T1 structural images were

cropped to remove non-brain tissue followed by brain extraction

using FSL's Brain Extraction Tool. We then used FSL's FEAT with the

following steps: motion correction using MCFLIRT; spatial smoothing

using a Gaussian kernel of 5 mm FWHW; grand-mean intensity nor-

malisation of the 4D dataset by a single multiplicative factor; and

100 Hz high-pass temporal filtering. Structured artefacts were

removed using independent component analysis denoising using

FSL's MELODIC together with FIX, following hand-training. Registra-

tion to high-resolution structural and standard space images was car-

ried out using FLIRT. Registration from high-resolution structural to

MNI space was then further refined using FNIRT nonlinear registra-

tion. Normalized images were inspected to ensure adequate registra-

tion. We did not use global signal regression, given the potential to

remove neural signals and introduce anti-correlations. (Murphy &

Fox, 2017) Wavelet despiking was used for further removal of motion

artefact.

Since in-scanner participant motion in resting state fMRI has the

potential to bias connectivity estimates, (Power et al., 2012) we

excluded individuals above thresholds for metrics of in-scanner

motion (maximum spike percentage (Patel et al., 2014) of 40.8%, max-

imum framewise displacement (Power et al., 2012) of 5.7 mm, and

maximum spatial standard deviation of successive volume differences

(Smyser et al., 2010) of 10.3). Thresholds were derived from previ-

ously defined mean and standard deviation in a dataset of 408 fMRIs

from controls and participants with neurodegenerative diseases,

(Whiteside et al., 2021) taken as 1.2 standard deviations above the

whole sample mean. Given that motion has relevant neural correlates

(Geerligs et al., 2017) and likely relates to severity and survival in PSP

and CBS, we did not include it as a covariate of no interest in our pri-

mary analysis. However, we additionally report the effect of adding

mean framewise displacement, included it in our baseline model when

comparing predictors of survival in disease, and report the effect of

in-scanner motion on survival. Summary motion indices by group for

included participants are in Table S1.

2.3 | Structural parcellation

We derived subcortical volumes and cortical thickness for parcels of

the Brainnetome Atlas (Fan et al., 2016) using Freesurfer 7.1.0. (Dale

et al., 1999). Subcortical volumes were adjusted for total intracranial

volume by deriving residuals from linear regression between parcel

volume and total intracranial volume (Voevodskaya et al., 2014). Vol-

umes and thicknesses were averaged over the 48 larger regions and

gyri to reduce number of features for model fitting. We additionally

calculated volumes for four brainstem structures (medulla, pons, mid-

brain, and superior cerebellar peduncle) (Iglesias et al., 2015).

2.4 | Between-network connectivity

To identify between-network connectivity patterns we employed the

pipeline used by Elliot and colleagues (Elliott et al., 2018) (Figure 1).

We adopted this approach as it captures multivariate large-scale con-

nectome patterns with improved test–retest reliability, important in

these heterogenous conditions where widespread connectivity

change and synaptic loss (Holland et al., 2020) suggest that isolated

connections are unlikely to be reliably related to survival. Additionally,

connections between large-scale networks using group-independent

component analysis are more robust to spatial variability or differ-

ences between participants in alignment (Allen et al., 2012). We per-

formed independent component analysis with a model order of

30 using FSL's MELODIC on preprocessed fMRI from patients and

controls. These components were matched with their closest Yeo net-

work (Yeo et al., 2011) using cross-correlation against template maps

and subsequent inspection. Components were selected if they were

non-artefactual and were a constituent of a Yeo network or over-

lapped with the thalamus. We did not include the Yeo limbic network

given the influence of artefact and similarity to noise signal at 3-Tesla

fMRI, (Omidvarnia et al., 2021) and excluded inferior and ventral

visual cortical regions due to the challenges in this region of differenti-

ating BOLD signal from venous artefact (Boyd Taylor et al., 2019; Kay

et al., 2019; Tsvetanov et al., 2015; Winawer et al., 2010). We then

extracted component time series by regression of participant's prepro-

cessed fMRI against the component maps, with time series for the

chosen components taken forward for further analysis. Connectivity

between components was calculated by full Pearson correlation

between networks followed by Fisher r-to-Z normalization using

FSLNets (Smith, Vidaurre, et al., 2013). We adjusted for scanner and

site differences through an empirical Bayes framework using ComBat

(Johnson et al., 2007; Yu et al., 2018). We compared the adjusted

between-component connectivity between patient groups and

healthy controls in a linear model with age and sex as covariates of no

interest, using the Benjamini-Hochberg method (Benjamini &

Hochberg, 1995) to control the false discovery rate.

4 WHITESIDE ET AL.
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We then performed a further independent component analysis

(Hyvarinen, 1999) to identify a small number of components capturing

between-network connectivity patterns. We set a maximum model

order of four since even in a large dataset only four components could

be robustly inferred, (Elliott et al., 2018) using split-half reproducibility

of imaging component weights across subjects to determine the final

number of components (Elliott et al., 2018).

2.5 | Statistical approach—severity, progression,
and survival

We took baseline imaging component scores for further analysis to

compare between groups and correlate with severity, progression and

survival. Age and sex were included as covariates of no interest in all

models. Cross-sectional analyses were performed using assessments

at the earliest scanning date. p values were adjusted for multiple com-

parisons adjusted across components and neuropsychological tests

(false discovery rate p < .05), with the corrected p-value reported

unless stated otherwise. All statistical analyses and visualization were

performed in R (version 4.1.0) (Gu et al., 2014; Mowinckel, 2018; R

Core Team, 2018).

To compare component scores between groups we performed a

multivariate analysis of covariance. We compared clinical and neuro-

psychological markers of severity with scores for components of

interest within a linear model, and test whether the disease groups

differ in their component-neuropsychological measure relationship

through a refitted model including a group-by-component interaction.

A linear mixed-effect model was used to calculate annual rates of

changes in clinical and neuropsychological scores for participants with

longitudinal data using the R package lme4 (Bates et al., 2015). Neuro-

psychological score was the dependent variable with years from base-

line assessment as an independent variable. The model estimated a

random intercept and slope to account for individual variability. The

individual estimated slopes were included as a dependent variable in a

second model with baseline connectivity component scores as predic-

tors. Models were repeated with mean framewise displacement as a

covariate of no interest. To assess whether connectivity components

improve model fit for clinical progression (for PSPRS, CBIR, and ACER)

beyond baseline severity, we performed stepwise regression using the

Akaike information criteria. In the initial model, estimated slope was

the dependent variable, with the two connectivity components, base-

line clinical score, and total grey matter volume as independent vari-

ables. Age, sex, motion, and total intracranial volume were covariates

of no interest, and not stepped out of the model.

We used a Cox proportional hazards regression analysis to assess

the relationship between component score and time from scan until

death with age and sex as covariates, an approach that enabled us to

include participants alive at the end of the assessment period. Given

the importance of in-scanner motion as a potential confounder in

quantifying connectivity, we additionally report the relationship

between mean framewise displacement and time from scan until

death.

2.6 | Partial least squares for cox models

We proceeded to compare different potential predictors of survival in

PSP and CBS. An independent component analysis finds statistically

independent connectivity changes, but these may not be the best sur-

vival predictors. We, therefore, used PLS for Cox models (Bastien

et al., 2005, 2015; Bertrand & Maumy-Bertrand, 2021) to maximize

covariance of the predictor to censored survival data. This finds broad

connectomic patterns most predictive of survival and likely to improve

reliability beyond focusing on individual connections.

We used a transdiagnostic approach with PLS regression for Cox

models performed with all baseline patient scans as a single group.

We derived models with different predictors to determine indicators

F IGURE 1 Pipeline for assessment of
relationship between large-scale network
connectivity and severity, progression and
survival Schematic representation of
pipeline to derive independent
components of between-network
connectivity to compare with outcome
measures in PSP and CBS (ACER:
Addenbrooke's cognitive examination-

revised, CBIR, Cambridge behavioural
inventory revised; CBS, corticobasal
syndrome; fMRI, functional magnetic
resonance imaging; ICA, independent
component analysis; PSP, progressive
supranuclear palsy; PSPRS: progressive
supranuclear palsy rating scale).
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of survival: connectivity patterns; structural imaging measures; and

clinical scores. The PLS for Cox models approach also allow compo-

nent scores to be calculated where there are missing data for clinical

assessments, based on a modified non-linear PLS algorithm where

iterative regressions are performed with the available data (Bastien

et al., 2005; Bertrand & Maumy-Bertrand, 2021).

To determine the best survival predictors, we used 20 repeats of

five-fold cross-validation comparing: a baseline model (age, sex, and

mean framewise displacement); the baseline model combined with

connectivity; the baseline model with structural measures of atrophy;

the baseline model together with clinical scores (PSPRS, CBIR, and

ACER); the baseline model with clinical scores and structural mea-

sures; the baseline model with clinical scores and connectivity; and a

full model with all predictors. For each model, the number of compo-

nents was chosen which maximised cross-validation performance. We

compared models using (i) concordance index, (Harrell, 1982) the pro-

portion of pairs of participants where the hazards predicted by the

model accord with observed survival, and (ii) area under the curve for

survival data (Heagerty et al., 2000).

While partial least squares regression as a data reduction tech-

nique is designed to handle high-dimensional data with multicollinear-

ity, where collinearity is very high there is a risk of model

misspecification and overfitting, (Bastien et al., 2015) particularly with

a large number of predictors (Chun & Keleş, 2010). Since structural

measures were found to have be strongly collinear, we compared the

predictive accuracy and coefficients from the PLS regression with reg-

ularized regression for Cox models. We used an elastic net penalty

with the glmnet function from the glmnet package (Friedman

et al., 2010; Simon et al., 2011) in R. We performed 100 repeats of

five-fold cross-validation, comparing mean concordance at the regu-

larization term with highest cross-validation performance with mean

concordance from the PLS regression model.

On a post-hoc basis, we repeated model comparison with PSP and

CBS individually. We compared the same models as in our transdiag-

nostic assessment, with the addition of a combination of the baseline

model with clinical scores and a composite of thalamic, pontine, and

midbrain volume, given the risk of overfitting with higher feature

number to participant ratio in these subgroups.

2.7 | Baseline atrophy and longitudinal
connectivity change

We tested whether baseline focal atrophy influenced the longitudinal

change in connectomic predictors of survival for the subset of

patients with repeat imaging. We first derived PLS connectivity com-

ponent scores for scans after the baseline visit. We tested the rela-

tionship between connectivity and time from baseline imaging session

in a linear mixed-effect model with PLS connectivity component score

as the dependent variable, time from baseline scan as a fixed effect,

and a random intercept for each participant. We then refitted the

model including an interaction term with time from baseline imaging

and focal atrophy (mean cortical thickness or subcortical volume).

We proceeded to perform mediation analysis using the mediation

(Tingley et al., 2014) package in R using bootstrapping with 100,000

draws, with the PLS connectivity component as a mediator, mean cor-

tical thickness or subcortical volume as predictors and age, sex and

the remaining atrophy marker as a covariate of no interest.

2.8 | Data sharing

The PROSPECT-MR dataset reported here may be available subject

to a PROSPECT data-sharing agreement, after review by the PROS-

PECT data access committee. For details on how to apply, please con-

tact the senior authors. Data from the CCPP is available on

reasonable request to the senior authors but may be subject to

restrictions that protect confidentiality, and a data transfer agreement

may be required according to the nature of the request.

3 | RESULTS

3.1 | Participants

We report results from the analysis from 97 participants with PSP,

71 participants with CBS, and 81 healthy controls, after data quality

control. Demographic details at the baseline scan are in Table 1. There

were no significant differences in age or sex, with a mean time to

death under 3 years from baseline imaging in both diseases.

3.2 | Between-network connectivity

Between-network connectivity differences between patient groups

and healthy controls are presented in Figure 2a, b. Comparing all

patients to controls, connectivity was lower in patients for most

between-network connections, with significant reductions in connec-

tivity in patients between sensorimotor and dorsal attention network

regions and between default mode network and frontoparietal net-

work components after correction for multiple comparisons. In the

combined group with all patients, connectivity was significantly

increased from the ventral attention network to dorsal attention and

sensorimotor components.

Broadly similar connectivity differences from controls were

observed in CBS (Figure 2c, d) and PSP (Figure 2e, f). In CBS we found

reductions in connectivity between components of the dorsal atten-

tion network, the default mode network, and the frontoparietal net-

work. Uncorrected increases in connectivity were found from the

ventral attention network to dorsal attention and sensorimotor com-

ponents, which were also observed when comparing PSP to controls.

The largest reduction in connectivity in PSP was between the visual

network and a component of the sensorimotor network. Comparing

the disease groups, we found uncorrected greater reductions in con-

nectivity in CBS predominantly in posterior components (including to

regions of the dorsal attention network), with lower connectivity in

6 WHITESIDE ET AL.
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PSP between the thalamus and a dorsal attention network component

and between sensorimotor and visual regions (Figure S1). There were

no significant differences between PSP and CBS after correction for

multiple comparisons.

3.3 | Structural metrics

Differences between groups in cortical thicknesses and subcortical

volumes are presented in Figure S2. In PSP the greatest atrophy,

when compared to controls, was found in subcortical regions and the

frontal lobe. The largest effect sizes in CBS (vs. control participants)

were in the frontal and parietal lobes, thalamus, and basal ganglia.

Comparing PSP and CBS, atrophy was greater across cortical regions

in CBS, with larger reductions in thalamic and brainstem volumes

in PSP.

3.4 | Connectivity relates to clinical severity

We took the between-network connections to an independent com-

ponent analysis to capture broad patterns of connectivity to compare

with clinical severity and progression. We found that using four

components maximised split-half reproducibility of component

weights. Scores for the first component were decreased in both par-

ticipants with PSP and CBS versus controls (Figure 3a F = 12.9,

p = 2 � 10�5; PSP versus Control Tukey-adjusted p = 2 � 10�5; CBS

V Control Tukey-adjusted p = .0002). Scores for the second compo-

nent were decreased in CBS compared to controls, with no significant

difference between either PSP and controls or between disease

groups (F = 8.1, p = .01; PSP versus Control Tukey-adjusted p = .2;

CBS versus Control Tukey-adjusted p = .014). The same components

differed by group with mean framewise displacement included in the

model (Component 1 F = 12.6, p = 3 � 10�5; Component 2 F = 4.9,

p = .044). In Component 1 the disease state was associated with pre-

dominantly decreased connectivity but with increased connectivity

between task-positive, motor, and subcortical regions (Figure 3b).

Lower scores in Component 2, as observed in CBS, were associated

with relatively increased connectivity between the default mode, dor-

sal attention, and motor networks and decreased connectivity within

these networks.

We considered the components that differed from controls in

either disease group in subsequent analysis. Component 1 scores

were associated with the PSPRS (Figure 3c Std Beta = �.31,

p = .0007) and the CBIR (Std Beta = �.29, p = 0.002), with similar

but weaker associations found with Component 2 (PSPRS Std

F IGURE 2 Between network connectivity in PSP and CBS. Differences in between-network connectivity between all patients and controls
(a) and (b), CBS and controls (c) and (d) and PSP and controls (e) and (f). Red links represent lower connectivity in patient groups, and blue links
relatively increased connectivity versus controls. The bottom figures show only connections that show uncorrected significant differences
(p < .05) between-group differences beyond age and sex, with connections that remain significant after correction for multiple comparisons
outlined in black.
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Beta = �.19, p = .031; CBIR Std Beta = �.22 p = .020). The relation-

ship between ACER and component scores differed between disease

groups, with a significant interaction (Component 1 � diagnosis Inter-

action Std Beta = .49, p = .003, PSP Std Beta = .36, CBS Std

Beta = �.14, Component 2 � diagnosis Interaction Std Beta = .55,

p = .0025, PSP Std Beta = �.21 CBS Std Beta = 0.33), demonstrating

the cognitive profile associated with greater posterior network

involvement in CBS. With motion included in the model, these rela-

tionships remained significant, except for a marginal effect of the rela-

tionship between Component 2 and the PSPRS (Std Beta = �.17,

p = .051) and the CBIR (Std Beta = �.19, p = .051).

3.5 | Connectivity and disease progression

We tested whether baseline component scores were associated with

a subsequent decline in neuropsychological assessments. Linear

mixed-effect models indicated an effect of time for all measures

(Table S2). We found that baseline Component 1 score was associated

with rate of progression in the PSPRS (Figure 4a Std Beta = �.36,

p = 0.0006) and that baseline Component 2 score was associated

with a greater rate of decline in the ACER (Std Beta = .26, p = .015).

The implications of lower baseline Component 1 score on ACER var-

ied by disease, with lower scores associated with a faster decline only

in PSP (Component � diagnosis interaction Std Beta = .57, p = .008,

PSP Std Beta = .36, CBS Std Beta = �.23). The relationships with

Component 1 remained significant when mean framewise displace-

ment was included in the model (PSPRS-Component 1 Std

Beta = �.36 p = .003; ACER-Component 2 Std Beta = .22, FDR-

corrected p = .060, uncorrected p = .030; ACER-Component

1 � diagnosis interaction p = .014). Lower Component 2 scores were

also associated with an uncorrected increase in the rate of change of

CBIR, including with adjustment for motion (Std Beta = �.21, uncor-

rected p = .044, FDR corrected p = .067).

F IGURE 3 Between network connectivity and clinical severity in PSP and CBS. (a) Components were identified in PSP and CBS which differ
between patients and controls, shown in (b). Connections represent the correlation between component score and edge so that for higher scoring
subjects red indicates stronger connections and blue weaker. (c) Component scores correlate with clinical severity (ACER: Addenbrooke's
cognitive examination-revised; CBIR, Cambridge behavioural inventory revised; DAN, dorsal attention network; DMN, default mode network;
FPN: frontoparietal network; PSPRS: progressive supranuclear palsy rating scale; TN: thalamic network; VAN, ventral attention network; Vis,
visual).
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We used stepwise regression to investigate if connectivity com-

ponents were included in the best model of progression when incor-

porating baseline severity and total grey matter volume. For the

PSPRS, Component 1 was included in the final model (Table S3), with

Component 2 in the final model for ACER (Table S4), and both compo-

nents for the CBIR (Table S5). Between-network connectivity differ-

ences were associated with a more rapid decline in severity beyond

baseline clinical scores and global atrophy.

3.6 | Connectivity and survival

We found that a lower Component 1 score was a significant pre-

dictor of survival using Cox proportional hazards regression

(Figure 4b Component 1 hazard ratio 0.72 CI 0.59–0.88 p = .001;

Component 2 hazard ratio 0.83 CI 0.68–1.0 p = 0.052) in a model

including age and sex as covariates. Component 1 remained a sig-

nificant predictor with mean framewise displacement included in

the model (Component 1 hazard ratio 0.73 CI 0.59–0.89 p = .002;

Component 2 hazard ratio 0.87 CI 0.71–1.1 p = .19), an important

consideration given that increased mean framewise displacement

was associated with poorer survival in the whole cohort prior to

exclusion for data quality (Figure S3). Significance remained with

further addition of total grey matter volume and total intracranial

volume to the model (Component 1 hazard ratio 0.74 CI 0.60–0.91

p = .005; Component 2 hazard ratio 0.89 CI 0.72–1.1 p = .26). The

diagnosis by component interaction was not significant for either

component.

3.7 | Comparing transdiagnostic models to predict
survival

We proceeded to investigate the optimal predictors of survival in

patients with PSP and CBS. Since the most important connectivity

changes for determining outcome may differ from the patterns of

changes most common in disease, we used PLS for Cox models to

maximise covariance between predictor and survival.

F IGURE 4 Connectivity predicts longitudinal survival in PSP and CBS. Component scores at baseline scan are associated with rate of change
of severity (a) and are significantly associated with survival in a Cox proportional hazards model (b). For illustration, survival curves are shown by
component scores divided into high, medium, and low-scoring tertiles.
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We identified a connectivity component with covariance maxi-

mised to predict survival (Figure 5a), with worse survival related to rel-

atively increased connectivity between task-positive regions, from the

thalamus to sensorimotor regions and from the default mode network

to visual regions, representing a loss of segregation between these

large-scale networks, with decreased connectivity elsewhere. We

found component scores differed between patient groups and con-

trols (PSP versus Controls t = 3.8 Tukey-adjusted p = .0005; CBS ver-

sus Control t = 3.6, p = .001), with no difference between PSP and

CBS (Figure 5c t = 0.1, p = .99). We also identified two structural

components predictive of survival (Figure S4). The highest absolute

weights for the first component were for the thalamus, pons, and mid-

brain, with significant contributions from limbic and frontotemporal

cortical regions. Lower scores in the second component, associated

with worse survival, were for participants with thalamic and brainstem

atrophy but relatively preserved cortical thickness. The highest com-

ponent weight in a clinical component was for the PSPRS (Table S6).

We compared transdiagnostic predictive models of survival using

repeat five-fold cross-validation to a baseline model consisting of age,

sex, and mean framewise displacement from the fMRI scanning ses-

sion since the latter is predictive of survival (Figure S2). We found that

combining connectivity with the baseline model showed moderate

improvement in predictive power, but that this was outperformed by

both the combined baseline and structural model and the baseline and

clinical models (Figures 5d, e Baseline: mean concordance 0.59, mean

iAUC 0.58; Baseline + Connectivity: mean concordance 0.61, mean

iAUC 0.59; Baseline + Structure mean concordance 0.67, mean iAUC

0.67; Baseline + Clinical mean concordance 0.68, mean iAUC 0.64).

The best-performing model combined baseline, structural and clinical

metrics, while including all predictors in a single model worsened con-

cordance (Baseline + Structural + Clinical mean concordance 0.68,

mean iAUC 0.69; Baseline + Connectivity + Clinical mean concor-

dance 0.65, mean iAUC 0.63; Full model mean concordance 0.68,

mean iAUC 0.68). In all models including structural features best

F IGURE 5 Identifying a transdiagnostic component predictive of outcome. We used partial least squares regression for Cox models to find a
component (a) that maximised the covariance between connectivity and censored time to death. Connections represent PLSR weights, so that for
higher scoring subjects red indicates stronger connections and blue weaker. This component did not differ between participants with PSP and
those with CBS (c). Using five-fold cross-validation with outcome assessed using concordance analysis and integrated area under the curve, we
found that connectivity provided additional information above patient's demographic information and inpatient motion, but with a combination of
structural, clinical and baseline metrics providing the best predictive accuracy (d-e). (DMN, default mode network; DAN, dorsal attention network;
FPN, frontoparietal network; SM, sensorimotor; TN, thalamic network; VAN, ventral attention network).
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performance was with two PLS components, with one component for

all other models.

We assessed the impact of collinearity on the PLS regression

models, since high collinearity in regression may cause model misspe-

cification or overfitting. Collinearity was low-moderate between clini-

cal, demographic, and connectivity measures (mean absolute

Pearson's R 0.09, interquartile range 0.093, and maximum 0.52), and

between structural and other measures (mean absolute Pearson's R

0.086, interquartile range 0.087, and maximum 0.48). Collinearity was

greater between structural measures (mean absolute Pearson's R

0.40, interquartile range 0.32, and maximum 0.84). We, therefore,

assessed whether regularised regression for Cox models for structural

measures would improve predictive accuracy and specify different

regional survival predictors. Predictive accuracy was unchanged

between the PLS model and regularised regression with optimal regu-

larisation term (PLSR mean concordance 0.67; regularised regression

concordance 0.67). Regularised regression identified a highly similar

anatomical distribution of structural survival predictors as in the PLS

regression model, with largest coefficients in the pons and thalamus

and non-zero contributions from frontal and temporal regions.

To consider the potential impact of multiple collinear structural

features we tested a further model with baseline and clinical mea-

sures, and the sum of volumes from the thalamus, pons, and midbrain.

This post-hoc model showed a modest improvement in performance

over other models (mean concordance 0.7; mean iAUC 0.69).

We further tested survival predictors in each diagnostic group

individually. In PSP, for a component derived using PLS regression

with all predictors, highest weights were for the PSPRS, pons, mid-

brain, and thalamic volumes and bilateral superior temporal gyri thick-

nesses (Table S7). In CBS largest component weights were for the

PSPRS, right thalamus, pons, and midbrain, with hippocampal atrophy

also predictive of poor survival (Table S8). In addition, in CBS connec-

tivity between posterior networks (posterior default mode network,

dorsal attention, and visual) were also weighted highly. In both PSP

and CBS best model performance was with baseline and clinical pre-

dictors, together with the composite thalamic, pons, and midbrain vol-

ume (PSP mean concordance 0.68, mean iAUC 0.68; CBS mean

concordance 0.72 mean iAUC 0.69).

3.8 | Focal atrophy and its relationship to
connectivity

Since connectivity was only a moderate survival predictor, we investi-

gated whether connectivity change may be driven by focal pathology.

We considered the relationship between connectivity and cortical and

subcortical atrophy, given that subcortical parcels had high loadings in

the best survival model.

For individuals with longitudinal scanning, we found PLS compo-

nent connectivity score increased over time (t = 2.7, p = .01), with

higher component scores indicating worse survival. The rate of

increase was greater in those with low cortical thickness (Figure 6a

Cortical � years interaction t = �4.9, p = .0002), but not in those

with reduced subcortical volume (Figure 6b interaction t = 1.3,

F IGURE 6 Connectome predictors of survival and regional atrophy. Baseline cortical atrophy (a) and not subcortical volume (b) is associated
with longitudinal changes in connectivity predictive of survival. (c) Connectivity may mediate a significant proportion of the survival effect of
cortical atrophy, while subcortical atrophy has a significant direct effect not mediated by connectivity. (*p < .05, **p < .01).
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p = .20). We then considered whether connectivity changes as identi-

fied in the PLSs regression may mediate the effect of atrophy on sur-

vival. We found that the connectivity component was a significant

mediator of the effect of cortical atrophy on survival (average direct

effect �0.15 years p = 0.51, average mediated effect �0.30 years

p = 0.012, proportion mediated 67%), in contrast to the significant

average direct effect of subcortical atrophy (average direct effect

�0.84 years p = 0.0007, average mediated effect �0.26 years

p = 0.057, proportion mediated 24%).

In summary, we have found that cortical rather than subcortical

atrophy modulates the connectivity changes that are more strongly

predictive of survival. However, the effects of subcortical atrophy on

survival (primarily thalamic, pontine, and midbrain) are predominantly

not mediated by changes in between-network connectivity.

4 | DISCUSSION

In this study of two independent cohorts, we have found that func-

tional connectivity and focal atrophy predict disease trajectory for

people with PSP and CBS, including their rate of progression and sur-

vival. There are connectivity changes associated with shorter time to

death that are shared between the diseases, but these provide less

robust predictions than simple clinical and structural imaging metrics.

In the most accurate model for survival prediction, the greatest

weights were for the PSPRS and thalamic, midbrain, and pontine vol-

ume. Cortical rather than subcortical volume at baseline was associ-

ated with subsequent progressive change in the functional

connectivity that was predictive of survival. In contrast, the prognostic

value of subcortical atrophy on survival is largely independent of the

changes in network connectivity.

We found patterns of connectivity and structural change associ-

ated with poor survival that were shared between PSP and CBS. This

is in keeping with the clinical, molecular, and pathological overlap

between the diseases, (Höglinger, 2018; Murley et al., 2020) and

implies the existence of common pathways important in determining

survival. Commonality in survival predictors across diagnoses may

arise through convergence in pathological involvement of structures

important for survival. In our study, thalamic, pontine, and midbrain

atrophy were key transdiagnostic survival predictors. Shared survival

predictors may also occur at a network level, (Seeley, 2017) with simi-

lar patterns of network connectivity relevant to survival occurring in

PSP and CBS despite differences in distribution of pathology. The

accumulation of connectivity differences associated with poor survival

over longitudinal imaging suggests active network change in the pres-

ence of pathology, rather than the identified patterns solely repre-

senting pre-existing cognitive reserve (Stern et al., 2020).

The relationship between network connectivity and clinical sever-

ity is in keeping with findings that connectivity changes are closely

associated with cognitive status in ageing (Chan et al., 2014) and in

presymptomatic carriers of dementia-causing mutations (Rittman

et al., 2019; Tsvetanov et al., 2021). Our whole brain approach shows

that connectivity changes that predict survival similarly represent a

disruption to functional organisation rather than simply connectivity

loss. Between-network connectivity was predominantly decreased in

participants with CBS and PSP, with increased connectivity also

occurring across network hierarchies (Gotts et al., 2020; Margulies

et al., 2016). Greater connectivity increased scores of a component

with covariance maximised to predict survival, notably between task-

positive multimodal networks, from the thalamus to sensorimotor

regions and from the default mode network to visual regions. The

finding that relative regional increases in connectivity contribute to

poor survival supports studies demonstrating an association between

increased connectivity of higher cognitive networks in health and

poor cognitive function, (Chan et al., 2014; Geerligs et al., 2017) and

suggests that these connectivity differences indicate network ineffi-

ciency rather than compensatory changes. Cell death and the wide-

spread cortical synaptic loss in PSP and CBS (Holland et al., 2020) may

cause loss of segregation between distinct networks, such as the dor-

sal and ventral attention networks, with network segregation impor-

tant in maintaining performance on cognitive tasks despite

pathological change (Ewers et al., 2021; Tsvetanov et al., 2021). Func-

tional brain organisation at rest relates to task-based network changes

(Cole et al., 2014, 2016). Altered connectivity between multimodal

networks at rest in PSP and CBS may indicate task-based network

dysfunction, with behavioural and cognitive consequences relevant

for disease progression (Lansdall et al., 2019; Murley et al., 2021).

Cortical atrophy and cortical network connectivity are intercon-

nected, demonstrated by the finding that ‘epicenter’ regions of maxi-

mal atrophy can be used as seeds to select functional networks

associated with neurodegenerative disease (Seeley et al., 2009; Zhou

et al., 2012). Our findings support this observation, suggesting that

connectivity change potentially mediates the survival effects of corti-

cal atrophy. However, the largest effects on connectivity for structural

measures were for the thalamus, pons, and midbrain. The importance

of thalamic atrophy may be surprising given that in PSP cortical

pathology defines the later stage of PSP tauopathy (Kovacs

et al., 2020) while in CBS cortical rather than thalamic atrophy is a

major imaging correlate (Boxer et al., 2006; Whitwell et al., 2010). The

thalamus, pons, and midbrain contain fibres and nuclei important in

diverse neuronal systems, (Roy et al., 2022) including in core motor

functions that have been linked to survival in PSP and CBS

(Glasmacher et al., 2017; Murley et al., 2021). While thalamocortical

connections have been shown to be disrupted in primary tauopathies

(Whitwell et al., 2011) our data suggest that the majority of the effect

of subcortical atrophy on survival is not mediated by disruption to

between-network connectivity. Instead, the contribution of subcorti-

cal atrophy to survival is relatively independent of cortical atrophy or

connectivity.

Our work highlights some of the barriers that limit between-

network connectivity from resting-state functional MRI as a dementia

biomarker. Network connectivity satisfies criteria for a biomarker of

progression, anticipating clinical deterioration with a mechanistic

rationale for a causal relationship (Eimeren et al., 2019). Yet even

when adopting a methodology designed to increase reliability, the fail-

ure of connections to appear repeatedly in imaging means that results

are insufficiently robust to provide accurate single-subject survival

predictions or to operate as an intermediate endpoint for clinical trials
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(D'Esposito, 2019). We selected a small number of independent com-

ponents to assess between-network connectivity, but this approach

may fail to identify important functional connectivity or activation

patterns relevant for survival. There is a range of alternative

approaches to analysing functional data, including graph metric,

dynamic connectivity, voxel-wise, and gradient-based analyses which

may also capture characteristic differences predictive of survival. Fur-

ther work is needed to determine whether these methods are more

robust and with better test–retest reliability in neurodegenerative

conditions with diffuse connectivity change and synaptic loss. One

important consideration is the relevance of brainstem and thalamic

structures in survival in PSP and CBS. Estimates of functional connec-

tivity in these regions are affected by high physiological noise and

other analytic approaches may be considered (Beissner et al., 2014).

There are other limitations to our study. We found that in-

scanner motion itself predicts survival in PSP and CBS. Despite adopt-

ing a principled preprocessing pipeline and not including motion con-

founds as a regressor in higher-order regressions, (Geerligs

et al., 2017) there is an inevitable compromise between over-zealous

preprocessing removing connectivity indicative of poor survival, and

the failure to remove spurious connectivity deriving from motion

(Power et al., 2012). To reduce the risk of motion biasing our assess-

ments of connectivity we excluded significant numbers of partici-

pants, so it is possible that our conclusions do not apply to the

excluded members of the cohort. We have used cross-validation to

assess the accuracy of our survival predictions across sites but have

not tested results in a third, out-of-sample, cohort that varies by scan-

ner and protocol (Yu et al., 2018). Although we present data from a

sizeable cohort of participants, increasing study power would allow

for model fine-tuning and to compare machine learning approaches.

We found only uncorrected differences between PSP and CBS and

differential effects of connectivity on cognitive performance. We

adopted an approach to analysis designed to detect diffuse changes in

connectivity that might be associated with poor survival. Alternative

methodological choices, such as completing analysis only with patient

groups, may better capture between-group differences and be useful

to test if these differences are important in predicting survival. Recent

developments (Horie et al., 2022) in fluid biomarkers may help

improve in vivo prediction of pathological aetiology in tauopathies,

which has the potential to assist prognostication.

In conclusion, between-network functional brain connectivity

predicts clinical deterioration and survival in PSP and CBS, with pre-

diction in terms of cross-validation and in terms of future changes

after baseline scanning. However, functional connectivity provides

less accurate predictions of survival than simpler measures of focal

subcortical atrophy and baseline clinical severity.
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