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Abstract

The establishment of Central Counterparty Clearing houses (CCPs) is a way to re-

duce the impact of counterparty risk, therefore strengthening the whole financial

system. In this thesis, I focus on liquidity shortfalls arising from the failure to meet

variation margin calls with the presence of a CCP. I generate several random net-

work models as hypothetical interbank networks, then use numerical simulation to

reach the results.

• Using the Erdős-Rényi network with independent exposures, I find that the

shortfall is not necessarily minimum when all contracts are centrally cleared.

Instead, the optimal value of shortfall exists with a combination of centrally

and bilaterally clear. In this point of view, increasing the percentage of cen-

trally cleared contracts is not always optimal.

• When using the Erdős-Rényi network with perfectly correlated exposures, I

prove stronger results using mathematical derivation that the aggregate short-

fall is decreasing with the fraction of centrally cleared contracts, indicating

that the second-step netting provided by the CCP betters off payment effi-

ciency. In this set-up, shortfall can never increase as percentage increases,

and it only starts to decrease after a certain fraction of centrally cleared con-

tracts is achieved.

• For power-law degree distributed networks and networks with non-neutral

assortativity, I find similar relationships but higher value of shortfalls for both

scale-free networks and disassortative networks. These properties provide a

closer match to real interbank networks, therefore further enhanced my result.



Impact Statement

This thesis contributes both to academia and industry. From the academic point

of view, it extends existing literature on liquidity shortfalls, payment efficiency as-

sociated with the introductions of central clearing, and interbank payment network

topologies. First of all, it extends the Eisenberg-Noe clearing vector algorithm to the

case of central clearing. Despite the algorithm has been extended in several direc-

tions, it is by my knowledge the first time it is incorporated with the CCP. Inspired

by the updated version of EN-algorithm, I am able to further investigate effects af-

ter introducing a CCP into interbank networks. This thesis is innovative because

it provides new findings on the effect of central clering on payment efficiency. It

is commonly believed that the central clearing typically benefits interbank payment

systems as increasing opportunities in multi-lateral netting reducing total exposures.

It has been proved in this thesis that this is not always the case in some particular

network structures. This provides a potential future direction to identify optimal

levels of central clearing.

The findings of this thesis are also of importance for regulators and policy-

makers, as they provide a better understanding of the effects of central clearing on

payment systems, and of its relationship with the network structure of such systems.

The existence of an optimal value of central clearing may for instance inform future

regulation on clearing of derivatives. My analyses of the impact of network prop-

erties on payment systems efficiency may also inform regulators on which policies

and incentives may be put in place to drive the system towards a re-organisation of

the interbank network to improve its robustness when facing shocks.
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Chapter 1

Introduction

1.1 Background and Motivation

In finance, systemic risk refers to the risk that the whole financial system breaks

down. Rather than focusing on the risk of individual institutions, systemic risk

studies the aggregate properties of the systems.

Systemic risk arises because of interconnections between banks. Banks are

for instance connected with each other through bilateral exposures, for example,

loans. One can imagine that bank A owes money to bank B, and bank B owes

money to bank C. If bank A defaults on its loans, bank B would suffer a loss, hence

it may default on its loans to C. It can be seen that the default of bank A at the

beginning leads to default of the others. Bank A is therefore called basic default

and bank B and C are called contagious default, which means that their defaults

are the result of the default of bank A. The interbank system can be modeled as a

network, where financial institutions are represented by nodes and their exposures,

or i.e. connections, by edges. Such a financial network is directed (because an

exposure goes from a borrower to a lender) and weighted (because exposures have

different sizes).

Since the financial crisis in 2008, central banks around the world have estab-

lished a number of measures to mitigate systemic risk, especially after seeing the

impact of the failure of large institutions in the US. For instance, after the fall of

Lehman Brothers, regulators realised that the default of large institutions could lead
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to contagion defaults across the system, which made them understand that some in-

stitutions are ”too big to fail”. Therefore authorities finally decided to support large

institutions from failing to avoid further impact to the industry.

Regulators have implemented many improvements towards financial system,

among which two major changes are closely related to this thesis (Duffie, 2018).

The first is collateralisation in derivatives contract, where counterparties in a deriva-

tive contract exchange collateral to initiate the contract (initial margin) and to cover

risk of mark-to-market losses (variation margin). In this way, there are two sources

of risk, the one is counterparty risk associated with these two institutions, i.e. the

risk that either party defaults on its contractual obligations, the other is liquidity

risk, i.e. the risk that either party is not able to source the collateral required to

fulfil payment obligations arising from margins. The second is the widely usage of

Central Counterparty Clearinghouses (CCPs) to clear payment obligations (Powell,

2015). According to Bank for International Settlements (2021), in notional amounts

and as of June 2021, almost 78% of interest rate derivatives, more than 60% of credit

derivatives, and around 4% of foreign exchange derivatives are centrally cleared.

A CCP is a financial institution formed to facilitate trades between banks. It

performs two main functions as an intermediary in a transaction: clearing and settle-

ments. Rather than having banks settle their bilateral obligations, the CCP collects

from each bank the net obligations and distributes them to the counterparties. An

illustrative figure can be seen in Fig.1.1. Consider a simple example where the ex-

posures of node 1 to 2, 2 to 3 and 3 to 1 are 10,10 and 8 respectively. If no CCP is

present, all transactions go through as normal. When a CCP is introduced, because

of the netting effect it brings, node 1 only pays 2 units of cash to the CCP, which are

then routed to node 3, while node 2 remains passive as its net obligations are zero.

The CCP stands between two clearing firms to reduce the risk of a member

firm failing to honor its trade settlement obligation. The purpose of establishing a

CCP is to reduce systemic risk through a regulated payment system. CCPs became

widely used after the financial crisis in 2008, especially for over-the-counter (OTC)

derivatives. For instance, in the EU specific classes of OTC interest rate derivatives
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must be cleared though a CCP (Alfranseder et al., 2018). In practice, the payment

to a CCP is netted, hence reducing the total amount of exposures in the system.

However, on the other hand, regulators require all clearing members to clear the

payments to the CCP before any other transactions can take place. Let us consider

a simple scenario on a daily basis: without the CCP, all transactions are cleared si-

multaneously without any seniority structure at the end of the day. After introducing

the CCP, payments to the CCP must be settled first, for instance, at the beginning of

the trading day. However, some institutions might need to receive payments from

other counterparties to be able to pay the CCP, but such payments will only be re-

ceived at the end of the day. Therefore, to fulfill their obligation to the CCP, these

institutions need to borrow additional funds, thus introducing an inefficiency in the

system. Hence, there are two opposite effects due to the CCP, and their aggregate

effect depends on their interplay.

(a) payment without CCP (b) payment with CCP

Figure 1.1: Simple illustration of how bilateral clearing are reformed to central clearing,
where node 0 acts as the CCP.

In this thesis, I model the payment flows as demand for liquid assets from vari-

ation margin (VM) calls, i.e. rise in the margin requirement as a result of large fluc-

tuation on the IM collateral, then investigate how the demand for liquid assets from

variation margin payments1 changes with the fraction of notional that is centrally

cleared. I calculate the demand for liquid assets of one institution with its liquidity
1Variation margins are typically settled in cash, see e.g. International Swaps and Derivatives

Association (2017).
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shortfall, i.e. the amount of cash that it has to source to make payments both on

centrally cleared and bilateral contracts and that it is not able to cover either with

their cash buffers or with incoming VM payments. In order to quantify liquidity

shortfalls I build a network model for clearing payments on both centrally cleared

and bilateral obligations, similarly to Amini et al. (2016) and Cui et al. (2018).

1.2 Objectives
In this thesis, I am trying to find out the effects of central clearing on liquidity

shortfall. To the best of my knowledge, most previous studies focused on difference

between fully bilaterally clear and fully centrally clear (Amini et al., 2020; Ahn

et al., 2011) systems, or partially centrally clear and fully centrally clear (Amini

et al., 2016) systems. In my thesis, I will investigate the behaviour over the whole

range between fully bilaterally clear and fully centrally clear. On top of this, I will

provide results including decomposition of the liquidity shortfall, the critical value

of centrally cleared threshold where the CCP becomes effective, and the relationship

between connectivity and payment efficiency. At the end, I will provide relevant

implications and suggestions to policy-makers according to results I derived.

In order to keep the comparison as fair as possible, I eliminate as many ineffi-

ciency aspects as possible, thus only left with the most critical properties in studying

the effect of the CCP. For instance, since multiple CCPs can increase risk exposures

(Duffie and Zhu, 2011), I only include one CCP; as the CCP itself can also be-

come a source of risk (Hull, 2012), I assume the CCP can never default and record

a shortfall; there is no bankruptcy cost (Rogers and Veraart, 2013) or devaluation

in liquidating their assets, i.e. overlapping portfolio and fire sale (Caccioli et al.,

2014; Shleifer and Vishny, 2011), both of which act as significant factors in weaken

the system. Hence, the key objective falls into comparing different level of central

clearing without other negative effects.

1.3 Results and Contributions
The main results of the thesis are as follows: First, I find that, in certain cases, the

dependence of the aggregate shortfall on centrally cleared percentage is U-shaped.
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In those cases there exists an optimal value of such percentage between 0 and 1 for

which the aggregate shortfall is at its minimum, meaning that it is neither optimal

to centrally clear all contracts nor to centrally clear no contract. The emergence

of a U-shaped relationship can be understood in terms of the tradeoff between two

competing effects. On the one hand, as the percentage increases, VM payment

obligations decrease due to the multilateral netting performed by the CCP. On the

other hand, driven by the reduction in realised payments on bilateral contracts, also

total realised payments decline. When the aggregate shortfall has a minimum, for

small values of centrally cleared percentage, VM payment obligations decrease at

a faster pace than payments, while, for large values of the percentage, the opposite

happens. When the network of counterparties is too densely interconnected the U-

shaped relationship disappears as VM payment obligations decrease at a faster pace

than payments for all values of the percentage, suggesting that gains from multi-

lateral netting always dominate the reduction in realised bilateral payments. Amini

et al. (2016) found instead that it is always optimal to centrally clear all contracts.

Albeit they considered a more complex model, they also made the restrictive as-

sumption that all institutions have exactly the same underlying counterparties on

centrally cleared and bilateral contracts.2 In this special case, I prove a stronger

result: that the aggregate shortfall is weakly decreasing with the fraction of notional

that is centrally cleared. This means that, in this case, increasing the fraction of

centrally cleared notional is always (weakly) beneficial.

Second, I prove that, when all institutions have centrally cleared and bilateral

contracts with exactly the same underlying counterparties, there is a critical thresh-

old of percentage of payments that are cleared through the CCP that discriminates

between two regions: If the percentage is smaller than the threshold, efficiency is

constant. If the percentage is larger than the threshold, efficiency increases. The

threshold is the smallest liquidity ratio across all institutions, defined as cash buffer

divided by net obligations when no contract is centrally cleared. As a consequence,

central clearing becomes beneficial when smaller percent of transactions are cen-

2For each centrally cleared contract the CCP interposes itself between two institutions. We call
those institutions the underlying counterparties of the contract.
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trally cleared and when cash buffers are smaller, or when net obligations are larger,

i.e. in the cases in which liquidity shortfalls are likely to be larger.

Third, I find that the critical threshold increases as the average degree of the

network increases. This implies that increasing the connectivity of the network has

an effect similar to introducing a CCP. This is because increasing the number of

connections in the network effectively reduces the size of interbank exposures.

Finally, I study how different network topologies react to introducing a CCP.

In previous studies, the model I consider is the Erdős-Rényi network and treat

as benchmark. However, as mostly observed in real world, interbank payment

networks tend to exhibit power-law degree distribution and negative assortativity.

Study on these properties provides further extensions and act as a supplementary

to previous chapters. The main finding is that for these types of networks shortfall

becomes larger than before, indicating that the system becomes less efficient. The

main reason behind should be inefficiency on low degree nodes.

1.4 Thesis Structure
This thesis is organised as follows: Chapter 2 contains the literature review to ex-

plain the background knowledge used and previous research related to the current

work. Chapter 3 explains the methodology used. Chapter 4 describes the payment

algorithm with the presence of a CCP using EN clearing vector. In chapter 5, I

present and discuss results related to independent exposures where total amount

of obligation related to bilateral and CCP is different. Chapter 6 provides another

particular set-up where obligations in chapter 5 are same. Chapter 7 extends the re-

sult in chapter 6 with different network models which are closer to empirical study.

Concluding remarks will be given in Chapter 8.



Chapter 2

Literature Review

2.1 Network Model

In general, networks are a mathematical tool to model systems with pairwise inter-

actions, and they have a variety of applications in the natural and social sciences.

Examples of applications in biology include the modeling of predator-prey interac-

tions in food webs (Pascual and Dunne, 2006) and the ingredient-flavour network

(Ahn et al., 2011). In computer science, the internet is a network of physical con-

nections between computers, mobile phones and other devices, where devices are

nodes and connections are edges (Newman, 2018). As for data science, one of the

most important application is community structure detection (Newman, 2006; Gir-

van and Newman, 2002) in complex systems. In this thesis, I will focus on the

application of networks in finance, in particular, to the study of systemic risk.

In this thesis, I use random networks to carry out simulations on hypothetical

banking system. The first random network I will look at is the Erdős-Rényi network

(Erdos and Renyi, 1959), where each pair of nodes is connected with a fixed proba-

bility. The Erdős-Rényi network is one of the simplest random network model and

will be used as the benchmark case throughout this thesis. By definition, the bino-

mial distribution measures the number of succeed trails under fixed success rate p,

therefore the degree distribution should be characterised as such distribution where

the probability of connecting two particular nodes is fixed with constant (Newman

et al., 2001).
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Because the degree distribution decays exponentially fast, the Erdős-Rényi net-

work is considered a prototype of systems with homogeneous connectivity. How-

ever, it has been shown that real networks have heavy-tailed degree distribution (Al-

bert and Barabási, 2002), where the degree of nodes spans several orders of magni-

tude. In Albert et al. (1999) and Huberman and Adamic (1999), the authors studied

the example of world-wide web, then found that the heavy-tail index ranges between

2 and 3. In order to model this type of connectivity patterns, Barabási and Albert

(1999) introduced the scale-free network, which captures the power-law property

on degree distribution. From empirical study, the Austrian interbank network fol-

lows power law degree distribution 2 (Boss et al., 2004a). The monetary transaction

data in Japan also indicated that the network is described as power-law degree dis-

tribution and therefore statistical self-similarity (Inaoka et al., 2004). Moreover,

Soramäki et al. (2007) studied the data from US commercial banks and determined

the degree distribution follows scale-free property with coefficient slightly above

2.1. Therefore, I will generalise networks with power-law degree distribution in the

second experiment.

In addition, most networks in reality exhibit non-neutral assortativity. For

example, social network are positive assortative because highly connected people

tend to connect with other highly connected people (Capocci et al., 2003; Newman,

2002). Plenty of literature indicated that interbank networks exhibits disassortativ-

ity. For instance, Bech and Atalay (2010) analysed data from federal fund market

and found that small banks are more likely to lend to larger banks that borrow from

many institutions. In Iori et al. (2008), the authors found that the Italian overnight

money market exhibits disassortative mixing, of which there clearly existed a few

hubs connected to a large number of peripheral banks with only a few links.

Several researches exist to study effects of different network structures on fi-

nancial contagion. Lenzu and Tedeschi (2012) developed network structures where

links are formed based on agents’ performance via a fitness mechanism. The authors

therefore were able to generate networks with different topology. Their main finding

is that scale-free networks are more vulnerable and less resilient than random net-
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works when facing random attacks. In Grilli et al. (2015), the authors analysed the

relationship between interbank connectivity and contagion. One key contribution is

that it considers different components in the economy, including goods, credit and

interbank market. Their major finding is that increasing connectivity can worsen the

system and increasing the chance of financial contagion. When looking into effects

on goods markets, especially business cycle, they found that interbank connectivity

does not have positive effects on economic growth. Another study worth to mention

is Caccioli et al. (2012). In that paper, the authors studied the behaviour of conta-

gion probability given the failure of a random bank. They considered heterogeneous

degree distributions, heterogeneous distribution of assets and interbank degree cor-

relations. They found that power-law degree distributed networks are more resilient

to the failure of a random bank but more fragile to the failure of a high-degree

bank. A power-law distribution of assets leads to inefficiency in diversification thus

make the system more prone to contagion event. Disassortativity also enhances the

stability of the system.

2.2 Systemic Risk and Financial Contagion

Systemic risk is the risk that the financial systems collapses. After 2008 it be-

came clear that this risk is endogenous to the system, meaning that it emerges from

the interactions between different financial institutions. The financial system can

be modeled using networks to represent interactions between financial institutions

(Haldane and May, 2011; Langsam and Fouque, 2013). In particular, networks are

used to study financial contagion, which refers to the situation in which the default

of an institution is triggered by the default of another institution.

Upper (2011) summarised a detailed list of different contagion channels, from

asset side to liability side, such as counterparty default, overlapping portfolios and

funding contagion. Counterparty default contagion describes the direct impact of

the default an institution on its counterparties. For instance in interbank lending net-

works, the default of a bank causes losses to its creditors, who may in turn default

and cause losses to their creditors and so on. Upper (2011) suggested that direct
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bank exposures do not contribute significantly to contagion risk, however Cacci-

oli et al. (2015) argued that the consequence of bank failure can be amplified by

overlapping portfolio contagion.

Overlapping portfolio contagion occurs because banks hold common assets.

If bank A and bank B invest in the same asset and bank A liquidates its portfolio,

the assets will be devalued because of market impact, which will cause bank B

to suffer a loss. Bank B may then be forced to liquidate its assets, causing their

further devaluation, and so on. Huang et al. (2013) considered this type of contagion

dynamic as a bipartite network. By using data collected during the Financial Crisis

2008-2011, their model successfully identified a significant portion of fail banks

during that period. In Caccioli et al. (2014), a similar bipartite network was used to

test the effect of different parameters, for instance leverage, diversification (shocks

on asset value) and types of shocks (shocks on asset value or a particular bank), on

stabilities.

The presence of an asset common to all banks is also considered in Cifuentes

et al. (2005), who argued that, in volatile market conditions, significant impact on

asset prices can severely disrupt institutions holding the same asset. In this sce-

nario, even large capital buffers may be insufficient to cover sudden losses, so liq-

uidity buffer becomes more efficient to preserve the financial stability. In Caccioli

et al. (2015) the authors pointed out that counterparty default together with overlap-

ping portfolios trigger financial contagion. Later, Banwo et al. (2016) extended the

model in Caccioli et al. (2014) to allow for power-law distributed degrees and asset

sizes.

Funding refers to the ability to raise funds in the market. Funds can be origi-

nated in two ways: liquidating asset or borrowing from the market. If a bank cannot

raise enough cash to make its payments, it would default, disturbing the whole sys-

tem. In fact, fire sale can be triggered by a funding need. Tressel (2010) considered

a complete funding shock scenario, where the funding cost is increased by 500bps.

As a result, banks have to cut their foreign claims to maintain the leverage level

(capital asset ratio). Deleveraging can be amplified together with fire sale triggered
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by funding shocks. If the banks cannot access to substitute funding sources when

the interbank market becomes impaired, losses accumulated in the system, and be-

come a channel of contagion.

To quantify losses caused by direct contagion, the most widely used methods

are the Furfine default algorithm (Furfine, 2003) and DebtRank (Battiston et al.,

2012). Furfine (2003) presented a study of the US system and showed that, although

the impact of contagion on the whole banking system is limited, the initial default

of one of the largest banks leads to the default of other banks. He also showed that

illiquidity contagion – which refers to the situation in which a bank stops lending

to other banks, who in turn will stop lending to their counterparties, and so on – is

greater than default contagion. Similar result has also been found in Wells (2004)

using UK banking data. An extensive review can be found in Upper (2011), where

the author summarised the algorithm, assessed its assumptions and discussed its

applications.

DebtRank is a quantity that measures the systemic importance of the nodes in

the system. Battiston et al. (2012) analysed data from US financial institutions and

proved that each node in a group of institutions became systemically important at

the peak of the crisis. They argued that apart from ‘too big to fail’, regulators should

also pay attention to ’too central to fail’. Then the dynamics was further generalised

by allowing for shock propagation and amplification, meaning that after the initial

shock, such distress can be transmitted throughout the system (Bardoscia et al.,

2015). One of the important finding illustrated that the capability to amplify the

shock depends only on the largest eigenvalue of the interbank leverage matrix. To

validate the algorithm, Bardoscia et al. (2015) applied the model to European banks.

The results showed that the most dangerous banks are also the most vulnerable ones,

therefore should be paid more attention from regulators.

2.3 Eisenberg-Noe Clearing Vector

In this thesis I will focus on clearing of interbank payments. Let us consider an

interbank network where each bank has to make payments to other banks. In a
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network context, the amount of money a bank is able to pay depends on the amount

of cash it receives from others as payments. Eisenberg and Noe (2001) introduced

an algorithm to compute clearing vectors in a self-consistent way (a clearing vector

is a vector that in entry i contains the total payment carried out by bank i once

taking into account the amount of cash received by other banks). Eisenberg and

Noe (2001) proved that clearing vectors exist, and that they are unique under mild

market and regulatory conditions.

Since established, the model has been extended several times. Elsinger (2009)

introduced cross shareholding and outside borrowing in his study, incorporating

these properties with debt seniority. By adjusting the EN-algorithm, the author

proposed a new method to determine the debt and equity value of the financial insti-

tutions. Furthermore, injecting money from outside investor can increase the value

of claims by more than the money supplied. The author assumed no bankruptcy

cost, which was thereafter studied by Rogers and Veraart (2013). Rogers and Ver-

aart (2013) gave a more realistic set-up as the bank cannot call in all its loans in face

value at default. Clearing vectors still exist but are no longer unique. The greatest

clearing vector can be found by allowing all banks to fail in succession until only

one solvent bank remains. Then the authors also analysed the effect of rescue con-

sortia. In contrast to Elsinger (2009), under non-zero bankruptcy cost, there are

situations where consortia have the incentive and means to rescue failing banks.

A recent research by Kusnetsov and Veraart (2019) introduced multiple maturities

in the liabilities. The authors introduced two approaches to clearing at first matu-

rity date: the functional approach which is similar to EN-algorithm and algorithm

approach which extends the functional approach.

The empirical study on EN-algorithm also attracts attention of researchers.

Boss et al. (2004b) carried out empirical analysis on the Austrian interbank mar-

ket. They concluded that the domestic banking system is relatively stable as the

default of a bank is unlikely to spread over the network. Only a small percentage of

default can be classified as contagious, while a vast majority of default comes from

macroeconomics shocks. In the international point of view, Kanno (2015) provided
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an empirical study based on global banking data. The author proved that in theory,

there are a few contagious default triggered by fundamental default before and after

the financial crisis. Stress tests indicated that major banks in the system can theo-

retically cause 1-6 contagious defaults. Another notable contribution comes from

that the author provides a real example to estimate the bilateral interbank exposures

using RAS algorithm (Censor et al., 1997).

2.4 Central Clearing

In this thesis, I will mainly study the effect of incorporating CCPs into the EN-

algorithm. By definition and regulatory requirement, CCPs collect collateral to

cover both the current (variation margin) and potential (initial margin) payments.

The purpose of introducing CCPs into the system is to reduce the risk that one

institution cannot fulfill its payment. The rationale has been justified in many re-

searches. According to Duffie and Zhu (2011), within one particular asset class,

adding multiple CCPs will always reduce netting efficiency, hence increasing risk

exposures. When clearing several products, it is more efficient to clear everything

in aggregate rather than having different CCPs. However, the reduction can only

be achieved if the number of participants is sufficiently large. Similarly, Cont and

Kokholm (2014) showed that the highest exposure reduction is reached if one CCP

clears all asset classes as in Duffie and Zhu (2011). On the other hand, this situation

would make the CCP faces high concentration of systemic risk and operational risk.

In contrast to Duffie and Zhu (2011), Cont and Kokholm (2014) found the

opposite conclusion if the model parameters are more realistic, taking into account

differences in riskiness and correlation across asset classes. Despite the positive

aspects, as the size of the CCP gets larger and more institutions are exposed to the

CCP, economists are worried that CCPs may become a source of systemic risk and

instability. In Heath et al. (2016), a series of extreme scenarios was modeled, and

the results demonstrated that there would be circumstances in which CCPs would

exhaust their collateral fund. Such situation is extremely rare and the systemic

risk can be well managed as long as the CCP maintains its financial resources in
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line with regulatory standards. Other studies related to this issue include Bank of

International Settlement (2018) and Alfranseder et al. (2018).

2.5 Liquidity Shortfall with Central Clearing

There are several studies directly related to liquidity shortfall in the central clearing

context and closely related to my work. To the best of my knowledge, Cui et al.

(2018) is the only study that considers sequencing of payments. Their model is

similar to mine where payments to the CCP are settled at beginning with bilateral

payments afterwards. The major difference is that they allowed the CCP to record a

shortfall while I assume the CCP always meets its obligation. They found that under

the partial clearance with the CCP, shortfalls of all institutions are smaller than fully

bilateral clearing. Another study related to this is Amini et al. (2016), with some

notable differences. They assumed that institutions were required to sell illiquid

assets when facing liquidity shortfalls, whereas I do not make specific assumptions

on remedial actions that institutions might take and only record shortfalls; they ac-

counted for default fund contributions; they allowed for heterogeneous values of

the central clearing percentage that depend on the pair of counterparties, whereas

I only consider the case of such percentage equals for all pairs of counterparties;

they did not consider the sequencing of payments. They concluded that full central

clearing always leads to weakly smaller shortfalls than the situation in which con-

tracts are only partially centrally cleared. Amini et al. (2020) extended the model of

Amini et al. (2016) to the case in which institutions also have liabilities to end users,

whereas Ahn (2020) derived conditions that make central clearing beneficial for all

institutions. I notice that these two papers (Amini et al., 2020; Ahn, 2020) only

compared the case of fully centrally cleared framework to fully bilaterally cleared

framework, while Amini et al. (2016) considered the difference between partial cen-

trally cleared to full centrally cleared. In contrast, in this thesis, I also look into the

effect within partial centrally cleared, where I increase (decrease) the proportion of

centrally cleared transactions.

So far I have reviewed definitions and properties of random network models
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and EN clearing vector, I will then use equations and algorithm to illustrate how to

incorporate these in my research. I will explain properties of different random net-

work models and show how to generate them using algorithm. For the EN clearing

payment, I will show how to calculate it analytically in special case, and use fixed

point algorithm in a general set-up.



Chapter 3

Methodology

In this chapter, I explain in detail several properties and models used throughout

this thesis. More specifically, I start from properties and quantities of networks,

then introduce the random network models I use in my analysis, and the Eisenberg-

Noe clearing payment algorithm. I also cover step-by-step algorithms to generate

different random networks and to compute clearing payment vectors.

3.1 Network Theory and Network Properties
Banking systems can be modeled as networks. Networks are a way to represent

how the individual components of a complex system interact. They represent sys-

tems composed by a discrete set of objects (e.g. financial institutions) and links

connecting pairs of these objects (e.g. interactions, or exposures between institu-

tions). In this thesis I use hypothetical banking systems to model the interbank

network. Such hypothetical banking systems are generated from random networks.

I first introduce a few simple definitions and quantities that can be used to

characterise the topology of a network. Many other quantities have been introduced

in the literature. Here I focus only on those that will be used in this thesis.

Let us denote by N the number of nodes and M the average degree of the

network. Let us also define the adjacency matrix as the matrix with elements Ai j

equal to 1 if there is a link pointing i and j and 0 otherwise.

Types of network: There are mainly two types of networks that are observed:

directed and undirected networks. In directed networks, links have direction point-
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ing one node to the other, while for undirected networks, edges do not have direction

so they are treated as bi-directional. This means that, in directed network, A con-

nects to B does not necessarily mean B connects to A, but in undirected networks,

A and B are both connected to each other. In this thesis, I only consider directed

networks, as the direction indicates payment obligation from one bank to the other.

In some networks, not all edges are created equal. Links are often assigned

with weights that make them different in strength, intensity or capacity. One simple

example is the amount of traffic flows between two points. In this thesis, I use

weighted networks to illustrate the amount of payments between nodes. Once I

generate Ai j, I assign different values on links to get Li j, which is the liability matrix.

Degree: The degree ki of node i is the number of links of that node. For

directed networks, it can be further split to in-degree and out-degree. Obviously,

in-degree measures how many incoming links, and out-degree measures how many

out-going links. In this thesis, I treat in-coming links as assets and out-going links

as liabilities. Furthermore, the degree distribution measures the probability distribu-

tion of network degrees. Newman et al. (2001) reviewed three types of degree dis-

tribution: Poisson-distributed, exponentially distributed and power-law distributed.

The Erdős-Rényi network follows a binomial distributed degree distribution, which

can be approximated to Poisson distribution for large number of nodes by central

limit theorem. In this thesis, I will mainly look at the Erdős-Rényi network and the

scale-free network, which exhibits pow-law degree distribution.

The literature shows that the degree distribution strongly affects the properties

of networks, such as their robustness to attacks or the outcome of dynamical pro-

cesses taking place on them. In Albert et al. (2000) and Crucitti et al. (2004), they

all found that scale-free networks are robust to random attacks but vulnerable to tar-

get attacks. Reason behind is that because of the power-law property, the majority

of nodes is only connected with a few nodes, but those small-degree nodes are more

likely to be selected in random attacks. Therefore, the consequence is regarded as

manageable. However, for targeted attacks, it is more likely to damage the most

connected nodes. Hence, it becomes more vulnerable in this case.
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Assortativity: Assortativity measures the tendency of nodes to be connected

with nodes with similar degree. Positive assortativity means that high degree nodes

tend to connect with high degree nodes and vice versa, while negative assortativity

means that high degree nodes tend to connect with low degree nodes. For exam-

ple, social networks are assortative because highly connected people tend to con-

nect with other highly connected people (Newman, 2002; Capocci et al., 2003). In

contrast, empirical studies have shown that interbank networks are disassortative,

where banks with few connections tend to form links with highly connected banks

(Silva et al., 2016; Hurd, 2016). Assortativity can be measured using the Pearson

coefficient of the degree of neighboring nodes:

r =
∑i j(Ai j− 1

2E kik j)kik j

∑i j(Ai jδi j−
kik j
2E )kik j

, (3.1)

δi j =

1 i = j

0 i 6= j,

where E represents the total number of edges. The coefficient ranges from −1 to 1.

A negative value of r means that there is a negative correlation between the degree

of a node and that of its neighbors, hence the network is disassortative. In contrast, a

positive value of r implies a positive correlation between the degrees of neighboring

nodes, signaling that the network is assortative.

Clustering: While assortativity looks at pairs of nodes, clustering describes

the neighbourhood of a node by looking at triangles. If i is connected with both

j and l, how likely is j to be connected with l? The clustering coefficient can

be used to measure this effect. The clustering of node i can be measured as the

ratio between the number of links exiting between the neighbors of node i (i.e. the

number of triangles node i belongs to) and the maximum number of links that could
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possibly exist between the neighbors of i:

Ci =
ai

ki(ki−1)/2
(3.2)

where ai is the number of actual links between neighbors of i, and ki is the degree

of i.

Both assortativity and clustering are defined for undirected networks, but that

can still be used to analyse directed networks by ignoring the direction of links in

the network. In the case of assortativity, this means considering the total degree of

nodes rather than in or out-degree of nodes. In the case of clustering, this means

considering all triadic motifs.

3.2 The Erdős-Rényi Network

The random network that is considered first in this thesis is the Erdős-Rényi net-

work (Erdos and Renyi, 1959). It is a random network where any pair of nodes are

connected with equal probability p, independently of other edges. I will use in the

following the G(N, p) ensemble, which consists of networks with N nodes and link-

ing probability p. If M is the average degree of the network, it follows that p = M
N−1

(Newman et al., 2001). Thus the degree distribution follows binominal and can be

expressed as (Bollobás, 1981):

P(k) =
(

N−1
k

)
pk(1− p)N−1−k ' Mke−M

k!
, (3.3)

where the last expression is valid for large values of N, and it shows that in this

regime the degree distribution can be approximated as a Poisson distribution with

parameter M. In order to ensure the system is well-connected, I only consider the

case where the giant component exists. According to Erdos and Renyi (1959), the

giant component for the Erdős-Rényi model exists only for average degree greater

or equal to 1, otherwise the network may consist of several tree-typed sub-graphs.

The situation is similar for directed networks, see Dorogovtsev et al. (2001) for

example. Payment networks have been shown in literature (e.g. Soramäki et al.
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(2007)) to display a giant component.

The Erdős-Rényi network is neutral in terms of assortativity, since any pair

of nodes is connected with the same probability independently of their degree. The

expected number of links between neighbors of node i is pki(ki−1)
2 , while the number

of possible links between them is ki(ki−1)
2 . Therefore the average clustering is p.

Since p = M/(N−1), for a sparse network in which the average degree is fixed the

clustering coefficient tends to zero as N→ ∞.

Algorithm 1: Generating the Erdős-Rényi random network
input : N, M

output: A (N×N adjacency matrix)

p← M
N−1

r← rand()

for i, j← 1 to N do

if i = j then

A(i, j)← 0

else
A(i, j)←Logic Value(r < d)

From the properties discussed above, it turns out that the Erdős-Rényi network

provides a poor approximation to real interbank networks. In fact, the latter usually

display heavy tails in the degree distribution, are disassortative and have a higher

clustering coefficient (Boss et al., 2004a; Soramäki et al., 2007).

In the following, I will then extend the analysis to random networks that share

these properties of real networks. In particular, I will consider the scale-free net-

work as an example of a network with a heavy-tailed degree distribution, and I will

consider Erdős-Rényi networks with non-neutral assortativity.

Before discussing the scale-free model, I briefly mention the configuration

model, which is a natural generalization of the Erdős-Rényi network. In the Erdős-

Rényi network the average degree M is fixed while leaving all other variables ran-

dom. In general, other quantities apart from M can also be fixed. This is the idea

of the configuration model, where, rather than fixing only the average degree, the

degree of each node can be fixed. In order to generate networks from the config-
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uration model, each node is assigned a number of half-edges corresponding to its

degree. Half-edges are then randomly matched between nodes. Using the config-

uration model, one can generate networks with any given degree distribution by

drawing the number of half-edges from the target distribution, while leaving all the

rest random.

3.3 The Scale-free Network
Empirical studies (Albert et al., 1999; Huberman and Adamic, 1999) have shown

that the degree distribution of many real-world networks is right skewed and heavy-

tailed, in particular for interbank payment networks (see Chapter 2 for details).

Therefore the Erdős-Rényi model is a poor approximation to real networks. A sim-

ple network to capture heavy-tailed degree distribution is using power-law distribu-

tion, where the degree distribution function should be characterised as:

P(k)∼ k−γ with k > kmin (3.4)

Networks with power-law degree distributions are called scale-free. kmin is the

lower bound of the degree, and γ is the tail index controlling the heavy-tailness,

where higher γ indicates the heavy-tail effect is less pronounced. In this thesis,

the scale free network is generated using the fitness model (Caldarelli et al., 2002),

where two vertices are linked with some probability function f (hi,h j) under some

‘fitness’ parameter h. One key advantage of this model is that it considers the fitness

of both vertices. I assign equal weights on the fitness of two vertices and normalise

it. Therefore, f (hi,h j) should be expressed as:

f (hi,h j) =
hih j

∑k hk
(3.5)

Clearly, since hi are drawn from power-law distribution, the degree distribution

of the network is also power law with the same exponent γ (Caldarelli et al., 2002).

In fact, the Erdős-Rényi model is a particular example of above algorithm where

the probability function f is taken as a constant. In order to achieve this, I consider
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the following algorithm.

Algorithm 2: Generate the Erdős-Rényi random network
input : N, kmin, γ

output: A (N×N adjacency matrix)

h← ~N +1 // N×1(N +1) vector

for i← 1 to N do

while h(i)>
√

kminN do

h(i) = kmin× (1− rand())
1

1−γ

for i, j← 1 to N do

if rand()< h(i)×h( j)
sum(h) AND i 6= j then

A(i, j)← 1

In Fig.3.1, I present two plots to illustrate how the fitness model works and can

produce power-law degree distributed networks. I select a large sample size where

the network consists of 10000 nodes, with γ = 2.5 and kmin = 200 as heavy-tail

is more pronounced for large sample. On the left panel, I show the histogram on

values of K. It seems that power law property exists after K = 500. Then on the

right panel, I plot the log-log graph on the density function of K, together with the

theoretical line for same parameters. I observe in the middle part between 500 and

2800 where the power-law property is most significantly pronounced, the theoretical

line is nearly parallel to the empirical line. The parallelity implies that these two

lines have same gradient, therefore same γ . The only difference in the position

occurs because of the constant term in front of the empirical pdf to ensure it has

probability 1 over the whole range.

As an example given in empirical study, Garlaschelli and Loffredo (2004) pro-

vided a test on world trade web, which models the trade relationship between coun-

tries. The authors implemented a fitness model of which the fitness of each vertex

(country) depends on its current relative GDP. The probability function f is inspired

from Maslov et al. (2004) to preserve the degree sequence with real networks. Gar-

laschelli and Loffredo (2004) concluded that the fitness model could be used to

generate random networks to fit real observations.
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Figure 3.1: Example to verify the fitness model works to produce power-law distributed
degree distribution

3.4 Assortativity
I generate networks with assortativity between−1 and 1 using the Monte-Carlo link

rewiring process developed by Noh (2007). In particular, consider the cost function

(or network Hamiltonian) defined as:

H(G) =−J
2

N

∑
i, j=1

Ai jkik j, (3.6)

where Ai j are the elements of the adjacency matrix, k is the degree and J is a control

parameter that allows to determine the level of assortativity in the network (positive

assortativity corresponds to positive values of J and vice versa).

Starting from the Erdős-Rényi network, one can randomly pick two links be-

tween node pairs and propose to swap them, if the selected link has not been

selected. The networks before and after the swapping are denoted by G and

G′. The swap is accepted with probability 1 if H(G′) < H(G), or with proba-

bility eH(G)−H(G′) if H(G′) > H(G). The key idea here is to maintain the objec-

tive function H(G) at a stable level. Notice that the edge rewiring process pre-

serves the degree distribution of the network but adjusts the degree correlation.

Therefore, using such algorithm, I can generate networks with any value of as-

sortativity but the same degree distribution of Erdős-Rényi networks. The fol-

lowing algorithm gives an example of applying Noh’s algorithm using Matlab.
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Algorithm 3: Generate random networks with different assortativity
input : A, J, T (number of MC simulations)

output: assortA

assortA← A

while T 6= 0 do

A← assortA

K← sum(assortA)T + sum(assortA,2)

[i,j]← find(assortA) // all nodes with link connected

link← [i j] // combine it into a single matrix

link′← link

check← 0

while check=0 do
r← randperm(length(link)) // randomise all combinations

pick← link(r(1:2),:) // pick first two random links

check← 1

if pick(1,1)=pick(2,2) OR pick(2,1)=pick(1,2) then
check← 0 // exclude self-link

if ismember([pick(1,1) pick(2,2)],link,’rows’)=1 OR

ismember([pick(2,1) pick(1,2)],link,’rows’)=1 then
check← 0 // exclude already existed link

pick([34])← pick([43]) // rewire the selected edge

link′(r(1 : 2), :)← pick

G← digraph(link′(:,1),link′(:,2)) // fit new edge into network

A′← adjacency(G)

K′← sum(A′)T +sum(A′,2)

H←− J
2× sum(assortA ×K.×K)

H ′←− J
2× sum(A′×K′.×K′)

p←min
(

1,e−H ′+H
)

if rand()< p then
assortA=A′

else
assortA=A

T ← T −1
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One important property to test is the number of Monte-Carlo simulations,

which should be determined at an appropriate level. If I run the algorithm too many

times it would be unnecessarily time-consuming; if the simulation is far more than

enough, I cannot achieve required results. Clearly, this number depends on size of

the network and degree. I therefore perform the analysis in Fig.3.2, which plots the

relationship between assortativity (r) and number of link rewiring steps (T). It can

be seen that assortativity becomes stable at around 10000, where coefficients reach

stationary state at around±0.85 for J =±1, indicating that this will be a reasonable

number for analysis in the following chapters. Therefore, I will choose 10000 as

desired number of simulations.

Figure 3.2: Analysis on assortativity against number of MC steps. Starting from the Erdős-
Rényi network with N = 100 and M = 5. J =±1 controls the level of assorta-
tivity.

In Fig.3.3, I give a simple illustration on how Noh (2007)’s algorithm works.

Algorithm to calculate assortativity coefficient is constructed using steps in New-

man (2002). I generate an Erdős-Rényi network first with N = 100 and M = 5,

then I perform the link rewiring process for 10000 times. Fig.3.3 clearly shows that

r is monotonic increasing with J, indicating that the edge rewiring process works

successfully in constructing networks with different assortativity, and J controls the
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parameter of level of assortativity.

Figure 3.3: Plot of assortativity (r) against control parameter (J) to illustrate the link
rewiring process works with N = 100 and M = 5.

So far, I have explained all random network models I will use in the follow-

ing chapters. In Table 3.1 I summarise the properties of the different random net-

works described before, together with their advantages and disadvantages. Since

the Erdős-Rényi model is one of the simplest ones without any special properties,

I use it as a benchmark in Chapters 5 and 6. On the other hand, because it hardly

preserves observed features of real interbank networks, I further generalise my anal-

ysis to other two models in Chapter 7. Both the scale-free network and networks

with non-neutral assortativity are widely observed in interbank payment networks

through empirical studies. However, they do have limitations to consider. For the

scale-free network, I have to ensure the sample size (number of nodes) is large

enough for heavy-tailness to exist. Moreover, this type of networks also tends to ex-

hibit negative assortativity for small networks (see detailed explanations in Sec.7.3).

As for Noh’s assortativity network, the most noticeable drawback is the time com-

plexity in executing the algorithm, because it requires more than 10000 iterations

of MC simulation, especially when the network gets large as in Sec.7.3.
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Degree distri-
bution

Assortativity Advantage Disadvantage

Erdős-Rényi
network Binomial Neutral Simple and

straightfor-
ward

Poorly match
real networks

Scale-free
network Heavy-tail Neutral or

disassortative
Match empir-
ical study

Can be dis-
assortative
for small
network

Assortativity
network Same as the

original
Any assorta-
tivity level

Match empir-
ical study

Time ineffi-
ciency

Table 3.1: Summarty of different random network models

3.5 Eisenberg-Noe Algorithm

This thesis will follow the algorithm proposed by Eisenberg and Noe (Eisenberg and

Noe, 2001) and extend it to a more general framework that accounts for the presence

of a CCP. In the EN-algorithm, the system consists of N banks, and each bank has

exposures to the others, as well as operating cashflow which is given exogenously.

The model relies on three fundamental assumptions, which will be used throughout

this thesis: (i) limited liability–the bank never pays more than it has; (ii) proportion-

ality of payment–in case of default, a bank pays each counterparty according to the

proportion of total exposure associated with it; (iii) priority of payments–interbank

exposures have the highest priority and should be paid first.

This section starts reviewing the idea of clearing payment vectors and intro-

ducing relevant parameters. Let Li j be the exposure of node i to j. p̄i represents the

total nominal obligation of i to all other nodes in the network, and is defined as

p̄i = ∑
j

Li j (3.7)

The relative liability matrix Πi j is then defined as the obligation of i to j relative
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to the total obligation of i:

Πi j =


Li j
p̄i

p̄i > 0

0 otherwise
(3.8)

Therefore, according to the assumption of proportional payments, the total

amount received by node i from its counterparties equals:

∑
j

Π ji p∗j , (3.9)

where I denote by p∗j the amount of money actually paid by j (this will be equal to

p̄ j if j can fulfill its obligations, or smaller if j defaults on its payments).

This implies that the total cash flow to node i is equal to

∑
j

Π ji p∗j + ei (3.10)

where ei is an exogenous income from the operating activity of i and is given ex-

ogenously.

Considering now the assumption of limited liability, I can express the payment

of node i as:

p∗i = min

(
p̄i,∑

j
Π ji p∗j + ei

)
(3.11)

Eisenberg and Noe (2001) proved that there exist a largest and a smallest clear-

ing vector and that they are equal to each other under mild regularity conditions. In

particular, a sufficient condition for the solution of Eq.3.11 to be unique is that all

nodes have positive cashflows. One way to solve this problem is using numerical

simulation when the network is large and complex. In general, a solution of the

clearing equations can be found by iterating the following map until a fix point is

reached:

p(n)i = min

{
p̄i,∑

j
Π ji p

(n−1)
j + ei

}
∀ i = 1, . . . ,N, (3.12)

where p(n)i denotes the value of pi at iteration n. A common starting guess is to set



36

p0
i = p̄i, which would find the greatest clearing vector as fixed point. The following

algorithm provides an illustration on how to find the clearing vector using Matlab.

Algorithm 4: Eisenberg-Noe clearing vector
input : N, L, e

output: p∗

ε ← 0.001

p̄← sum(L,2) // sum over columns of each row

Π← L./ p̄[i]

p← p̄

for i← 1 to N do

p∗[i]←min(p̄[i],sum(Π[:][i].× p̄[i])+ e[i])

while p[i]− p∗[i]> ε do

p← p∗

for i← 1 to N do
p∗[i]←min(p̄[i],sum(Π[:][i].× p[i])+ e[i])

In the following, I provide a simple example to present how to calculate the

clearing vector. The clearing vector will be found in two ways: one in analytical

form, followed by the numerical solution.

Example 1. Consider a system consisting of 4 nodes and defined by the following

liability matrix and vector of external cashflows

L =


0 7 1 1

3 0 3 3

1 1 0 1

1 1 1 0

 ,e =


1

2

2

2


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Figure 3.4: Network illustration of this example

The sketch plot in Fig.3.4 presents a weighted directed network to give readers idea

about how the network looks like. By Eq.3.7, total obligation of each node should

be found by summing up each rows:

p̄ =


7+1+1 = 9

3+3+3 = 9

1+1+1 = 3

1+1+1 = 3


Then according to Eq.3.8, the relative liability matrix Πi j should be expressed as:

Π =


0 L12

p̄1

L13
p̄1

L14
p̄1

L21
p̄2

0 L23
p̄2

L24
p̄2

L31
p̄3

L32
p̄3

0 L34
p̄3

L41
p̄4

L42
p̄4

L43
p̄4

0

=


0 7

9
1
9

1
9

1
3 0 1

3
1
3

1
3

1
3 0 1

3
1
3

1
3

1
3 0


I start noticing that node 3 and node 4 never default. This is because their states do

not depend on payments from nodes 1 and 2. For instance, regarding node 3, it has

obligation p̄3 = 3 and e3 = 2. If it receives $1 from node 4, then it is sufficient to

pay its $3 obligation, and vice versa for node 4.

Then I turn my attention to nodes 1 and 2. Since the clearing payments can

never exceed payment obligations (Eq.3.11) I have that:

p∗1 = min(p̄1,Π21 p∗2 +Π31 p∗3 +Π41 p∗4 + e1)
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≤Π21 p̄2 +Π31 p̄3 +Π41 p̄4 + e1

=
1
3
×9+

1
3
×9+1+1+1 = 6,

where the inequality follows because the latter expression is computed considering

the highest amount node 1 can receive from its counterparties. Clearly node 1 will

default under this set-up as it can pay out at most $6. Then as a result, the payment

of node 2 should follow:

p∗2 = min(p̄2,Π12 p∗1 +Π32 p∗3 +Π42 p∗4 + e2)

≤Π12 p∗1 +Π32 p̄3 +Π42 p̄4 + e2

=
7
9
×6+1+1+2 =

26
3

Node 2 also defaults as a result of the default of node 1, financial contagion hap-

pens. Since I have discussed that node 3 and 4 always pay out full obligations, the

remaining work will become determine appropriate values of p∗1 and p∗2. From Π I

can see node 1 receives 1
3 of node 2’s payment, and node 2 receives 7

9 of node 1’s

payment, I can summarise the relationship in following equations:

p∗1 =
1
3 p∗2 +3

p∗2 =
7
9 p∗1 +4

By solving this linear system, I eventually get p∗1 = 5.85 and p∗2 = 8.55. Therefore,

the full clearing vector should be:

p∗ =


5.85

8.55

3

3



In the following I will present how Eq.3.12 works. In the first iteration I assume
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that there is no default in the system and everyone pay out p̄.



p(1)1 = min
(

p̄1,∑ j Π j1 p̄ j + e1
)
= min

(
9, 1

3 ×9+ 1
3 ×3+ 1

3 ×3+1
)
= 6

p(1)2 = min
(

p̄2,∑ j Π j2 p̄ j + e2
)
= min

(
9, 7

9 ×9+ 1
3 ×3+ 1

3 ×3+2
)
= 9

p(1)3 = min
(

p̄3,∑ j Π j3 p̄ j + e3
)
= min

(
3, 1

9 ×9+ 1
3 ×9+ 1

3 ×3+2
)
= 3

p(1)4 = min
(

p̄4,∑ j Π j4 p̄ j + e4
)
= min

(
3, 1

9 ×9+ 1
3 ×9+ 1

3 ×3+2
)
= 3

Notice that node 1 defaults as it pays out smaller than its obligation. As a con-

sequence, other nodes can only receive the updated amount ($6) rather than the

original amount ($9) from node 1. Therefore, I should implement Eq.3.12 again:



p(2)1 = min
(

p̄1,∑ j Π j1 p(1)j + e1

)
= min

(
9, 1

3 ×9+ 1
3 ×3+ 1

3 ×3+1
)
= 6

p(2)2 = min
(

p̄2,∑ j Π j2 p(1)j + e2

)
= min

(
9, 7

9 ×6+ 1
3 ×3+ 1

3 ×3+2
)
= 26

3

p(2)3 = min
(

p̄3,∑ j Π j3 p(1)j + e3

)
= min

(
3, 1

9 ×6+ 1
3 ×9+ 1

3 ×3+2
)
= 3

p(2)4 = min
(

p̄4,∑ j Π j4 p(1)j + e4

)
= min

(
3, 1

9 ×6+ 1
3 ×9+ 1

3 ×3+2
)
= 3

Notice that node 2 defaults as a consequence of node 1’s default. This is primarily

because it receives few incoming payment from node 1. This is what I called finan-

cial contagion, where the default of one institution is triggered by the default of the

other institution. Therefore, the fixed point is not reached as there is new default

agent in the system. I will implement Eq.3.12 further:



p(3)1 = min
(

p̄1,∑ j Π j1 p(2)j + e1

)
= min

(
9, 1

3 ×
26
3 + 1

3 ×3+ 1
3 ×3+1

)
= 53

9

p(3)2 = min
(

p̄2,∑ j Π j2 p(2)j + e2

)
= min

(
9, 7

9 ×6+ 1
3 ×3+ 1

3 ×3+2
)
= 26

3

p(3)3 = min
(

p̄3,∑ j Π j3 p(2)j + e3

)
= min

(
3, 1

9 ×6+ 1
3 ×

26
3 + 1

3 ×3+2
)
= 3

p(3)4 = min
(

p̄4,∑ j Π j4 p(2)j + e4

)
= min

(
3, 1

9 ×6+ 1
3 ×

26
3 + 1

3 ×3+2
)
= 3

One good thing to point out that at this time step, there is no new defaults.

However, because payment of node 1 changes again, I need to further iterate the

algorithm. By proceeding with further iterations, the changes between two itera-
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tions become smaller. It seems that the value is converging. When calculating the

payment using recursion, I eventually find that the clearing vector should be:

p∗ =


5.85

8.55

3

3


Clearly the numerical method provides a more general approach to find the

clearing vector, especially when the network is large and an analytical solution is

difficult to find. In the following of this thesis, I will perform all analysis using this

fixed point algorithm.

In this chapter, I have described all fundamental models and methods I will be

using in the following of this thesis. In the next chapter, I will further explain the

clearing mechanism on how to apply the EN algorithm in the presence of a CCP.



Chapter 4

Clearing Mechanism

I consider a system of N financial institutions, which I henceforth refer to banks

for simplicity. Between bank i and j, there are several derivative contracts. I then

assume that, following a shock, the value of some contracts between i and j changes

and that, as a consequence, VM calls must be posted. In this thesis, I do not inves-

tigate the specific nature of the shock, I only focus on the effect in terms of margin

calls. The liability matrix Lij is similar to what Eisenberg and Noe (2001) did where

i is the borrower and j is the lender, and in this thesis, it represents the system after

the shock. Here I do not consider IMs, which is often referred to margin require-

ments prior to the contract is settled. It is usually calculated using risk models,

among which the most popular and widely-used ones are described as procyclical:

margin requirements are lower at bull market and higher at bear market (Murphy

et al., 2014). In this thesis, because I assume the CCP always pays out its full obli-

gation, it is therefore equivalent to say that IMs are always sufficient for the CCP to

fill the gap in case any clearing member records a shortfall.

VM obligations are settled following a specific sequencing of payments that

follows market protocols (Bardoscia et al., 2021). First, banks pay their VM obli-

gations to the CCP. Next, the CCP pays its VM obligations to banks. Finally,

banks settle the bilateral VM obligations. At the end of each of these three pay-

ment rounds, the institutions that are not able to pay their VM obligations in full

record a shortfall, which is the central quantity of this analysis.

In practice institutions might take a mix of remedial actions to source the cash
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needed to cover their shortfalls, such as borrowing on the repo market or selling

illiquid assets. Here I do not make specific assumptions on which remedial actions

are taken by institutions, and therefore I do not quantify the downstream impact on

interest rates in funding markets or on asset prices, for instance fire sales. To that

effect one could use the demand for cash, which is the input of my model. However,

I do assume that institutions take some remedial actions if they do not have enough

cash to cover their payment obligations.

There are in summary three types of clearing markets according to my frame-

work: fully bilaterally cleared market, fully centrally cleared market and mixed

market.

4.1 Fully Bilaterally Cleared Market
This is the most common-seen mechanism before implementing CCPs. I denote

with Lb the matrix of gross bilateral VM obligations, prior to any netting. Both

Lb
i j and Lb

ji can be strictly larger than zero. Banks do not have VM obligations to

themselves, i.e. Lb
ii = 0, for all i.

In this case VM obligations are netted independently for each pair of institu-

tions. By denoting with Li j the net VM obligation that i owes to j, I have:

Li j = (Lb
i j−Lb

ji)
+ , (4.1)

where (. . .)+ is the positive part. Clearly, if Li j > 0, then L ji = 0, and vice versa,

i.e. when i owes to j, j does not owe to i, and vice versa.

4.2 Fully Centrally Cleared Market
For each centrally cleared contract, the CCP interposes itself between two banks,

say i and j. I denote with Lc the matrix of gross centrally cleared VM obliga-

tions between underlying counterparties, i.e. Lc
i j is the VM obligation that i owes to

the CCP arising from centrally cleared contracts for which the CCP has interposed

between i and j, prior to any netting. Even though all VM payment obligations on

centrally cleared contracts are to be paid to the CCP, or to be received from the CCP,
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for brevity I often refer to Lc
i j as to the gross VM payment obligation on centrally

cleared contracts that i owes to j. In general, since some contracts are “in-the-

money” for i and some for j, I have that both Lc
i j and Lc

ji can be strictly larger than

zero. I assume that banks do not have VM obligations to themselves, meaning that

Lc
ii = 0, for all i.

The CCP performs multilateral netting. This means that, for each bank, the

CCP offsets VM obligations due to be paid to and received from all other banks.

If bank i’s net VM obligations ∑ j(Lc
i j−Lc

ji) are positive, i has a VM obligation to

the CCP. Otherwise, the CCP has a VM obligation to bank i. By denoting with

p̄i→CCP the net VM obligation that i owes to the CCP and with p̄CCP→i the net VM

obligation that the CCP owes to i, I have:

p̄i→CCP =

(
∑

j
Lc

i j−Lc
ji

)+

(4.2a)

p̄CCP→i =

(
∑

j
Lc

ji−Lc
i j

)+

, (4.2b)

If p̄i→CCP > 0, then p̄CCP→i = 0, and vice versa, i.e. when i owes to the CCP, the

CCP does not owe to i, and vice versa.

4.3 Mixed market
My main objective is to compare financial systems in which the amount of contracts

that are centrally cleared varies. To this end I assume that the gross VM obligations

Ltot
i j that i owes to j equal to the convex combination:

Ltot
i j = αLc

i j +(1−α)Lb
i j , (4.3)

with 0≤ α ≤ 1. α = 0 corresponds to the case of the fully bilateral market, whereas

α = 1 to the case of the fully centrally cleared market. Eq. 4.3 allows to interpolate

between these two cases with a single and easily interpretable parameter. When

0 < α < 1, the gross centrally cleared VM obligations of i to j equal to αLc
i j, while

the gross bilateral VM obligations of i to j equal to (1−α)Lb
i j.
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Net VM obligations are obtained from Eq.4.2 and Eq.4.1 by performing the

substitutions Lc
i j→ αLc

i j and Lb
i j→ (1−α)Lb

i j:

p̄i→CCP = α

(
∑

j
Lc

i j−Lc
ji

)+

(4.4a)

p̄CCP→i = α

(
∑

j
Lc

ji−Lc
i j

)+

(4.4b)

p̄i j = (1−α)(Lb
i j−Lb

ji)
+ . (4.4c)

To summarise, this scenario can be defined as:

Definition 1 (Mixed clearing system). Let N (the number of banks) be a strictly

positive integer and let:

• Lb (the matrix of gross VM bilateral obligations) and Lc (the matrix of gross

VM centrally cleared obligations) be two n× n matrices such that Lb
i j ≥ 0,

Lc
ii ≥ 0, and Lb

ii = Lc
ii = 0, for all i and j.

• e(1) (the cash endowments at the beginning of the first stage) be a vector of

length N, such that ei ≥ 0, for all i.

• α ∈ [0,1] (the parameter interpolating between centrally cleared and bilat-

eral gross VM obligations).

Then the tuple S(Lb,Lc,e(1),α) is a mixed clearing system.

The mixed clearing system defined above has total obligation as in Eq.4.3 and

net CCP obligations as in Eq.4.2. However, I restrict the model to financial systems

in which, for each bank i, total gross VM obligations Ltot
i are independent of α . This

allows me to avoid any bias due to the difference in levels of bilateral and centrally

cleared VM obligations and to focus on their relative importance. From Eq. (4.3) I
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have:

Ltot
i = ∑

j
Ltot

i j = α ∑
j

Lc
i j +(1−α)∑

j
Lb

i j

= ∑
j

Lb
i j +α

(
∑

j
Lc

i j−∑
j

Lb
i j

)
,

(4.5)

which shows that this is possible if and only if ∑ j Lc
i j = ∑ j Lb

i j, for all i. In this case,

the total gross VM obligations of bank i that are centrally cleared equal to αLtot
i ,

whereas the bilateral ones equal to (1−α)Ltot
i . Therefore, another clearing system

is introduced:

Definition 2 (Balanced clearing system). Let S(Lb,Lc,e(1),α) be a mixed clearing

system such that:

∑
j

Lb
i j = ∑

j
Lc

i j ,

for all i. Then the tuple S(Lb,Lc,e(1),α) is a balanced clearing system.

In this thesis, I am trying to understand how α affects the clearing efficiency.

In the following of this thesis, I will explore two situations: the general case of

independent exposures where Lc 6= Lb and the special case of perfectly correlated

exposures where Lb = Lc = L. One way to justify perfectly correlated exposures is

the following. I start from an initial state in which all contracts are bilateral (α = 0)

and the matrix of gross bilateral VM obligations is Lb = L, and I further assume

that all banks novate contracts by replacing new contracts to the updated fraction

with all their counterparties corresponding to a fraction α of their notional at the

same time. At the end of this process the matrix of gross centrally cleared VM

obligations would be αL and the matrix of gross bilateral VM obligations would

be (1−α)L, resulting in perfectly correlated exposures. Moreover, if one wants

to compare results at α with results at α ′ = α +∆α , one has to assume again that

all banks novate a fraction ∆α of notional of contracts with all their counterparties

at the same time. Therefore, it is convenient to introduce the following shorthand

notation.
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Definition 3 (Clearing system with perfectly correlated exposures). Let S(Lb,Lc,e(1),α)

be a mixed clearing system such that:

Lb = Lc = L .

Then the tuple S(L,e(1),α) is a clearing system with perfectly correlated exposures.

4.4 Payments
I assume that each bank i is initially endowed with e(1)i units of cash. In the first

payment round banks pay the CCP. Since they have not received any other payment,

banks can only rely on their initial cash endowment. If this is larger than their VM

obligation to the CCP, banks immediately pay the CCP in full. Otherwise, without

taking any further action, they can pay only up to their initial cash endowment:

pi→CCP = min(e(1)i , p̄i→CCP) . (4.6)

The shortfall of bank i at the end of the first round, i.e. the shortfall recorded

by i on its centrally cleared VM obligations, is denoted with sc
i and is defined as the

difference between the VM obligation and payment that i can make without taking

further actions:

sc
i = p̄i→CCP− pi→CCP

= (p̄i→CCP− e(1)i )+ .
(4.7)

Importantly, I assume that banks that record a shortfall in the first round do

take some actions to source the corresponding amount of cash. This means that,

after taking action, they are able to pay the CCP in full. By doing so they use both

their initial endowment and the additional amount of cash sourced. Hence, their

cash at the beginning of the second round is equal to zero. Banks that do not record

a shortfall in the first round do not take further actions. As a consequence, their

cash at the beginning of the second round is their initial cash endowment minus the

payment made in the first round, i.e. their VM obligation to the CCP. Putting both
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cases together I have:

e(2)i = e(1)i − pi→CCP . (4.8)

In the second payment round the CCP pays the banks. Notice that the CCP

has a perfectly matched trading book, meaning that for each incoming VM obli-

gation from a bank there is a matching outgoing VM obligation to another bank.

Therefore, the CCP’s total outgoing VM obligation is equal to its total incoming

VM obligations:

∑
i

p̄i→CCP = ∑
i

p̄CCP→i . (4.9)

Since all banks have paid the CCP in full (after taking actions), at the end of

the first round the CCP has received a total amount of cash equal to ∑i p̄i→CCP. This

means that the CCP always has enough cash to pay all banks in full, regardless of its

initial cash endowment and without taking further actions. Therefore, no shortfalls

are recorded in the second round. Banks’ cash at the beginning of the third round is

equal to their cash at the beginning of the second round plus the payments received

from the CCP:

e(3)i = e(2)i + p̄CCP→i

= e(1)i − pi→CCP + p̄CCP→i .
(4.10)

In the third payment round banks settle their bilateral VM obligations by using

the Eisenberg and Noe model as in Eq.3.11, which allows me to compute clearing

payments under the assumptions of i) limited liabilities, ii) proportionality of pay-

ments and iii) priority of debt over equity. I denote the total bilateral VM obligations

of bank i with p̄i:

p̄i = ∑
j

Li j = (1−α)∑
j
(Lb

i j−Lb
ji)

+ (4.11)

and the relative liability matrix should follow as in Eq.3.8:

Πi j =


Li j
p̄i

=
(1−α)(Lb

i j−Lb
ji)

+

(1−α)∑k(Lb
ik−Lb

ki)
+ =

(Lb
i j−Lb

ji)
+

∑k(Lb
ik−Lb

ki)
+ if p̄i > 0

0 otherwise
, (4.12)
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According to the EN model in Eq.3.11, the clearing payment of bank i is de-

termined by the equilibrium condition:

p∗i = min

(
p̄i,e

(3)
i +∑

j
Π ji p∗j

)
, (4.13)

while individual payments are L = Πi j pi. Also in this round pi is the payment

that bank i can make without taking any further actions. It is worth to point out

that in Eisenberg and Noe (2001), Eq.4.13 has unique solution only if e(3)i > 0,∀i.

However, because after first two sequences of payments, the value of e(3)i cannot

be guaranteed to be larger than 0. Here I focus on the greatest solution using the

algorithm presented in Algo.4. The idea is that the sequence of payments is mono-

tonic non-increasing so can be used to track following payment rounds. Start from

assuming all firms are able to make full payments in the first iteration, their might

exist some firms record liquidity shortfalls even though all other counterparties pay

out in full. In this case, firms that are able to make full payments previously might

not be able to do so in the following iterations, while firms record shortfalls at be-

ginning still cannot make higher payments compare to before.

The shortfall of bank i at the end of the third round, i.e. the shortfall recorded by

i on its bilateral VM obligations, is denoted with sb
i and is defined as the difference

between its bilateral VM obligations and its clearing payment without taking any

further actions:

sb
i = p̄i− p∗i . (4.14)

The shortfall of bank i is simply defined as the sum of shortfalls recorded in

the first and third payment round, i.e. on both centrally cleared and bilateral VM

obligations:

si = sc
i + sb

i . (4.15)

When I will compare quantities for different values of α I explicitly indicate

their dependence on α , e.g. si(α). Since the shortfall measures how much external

cash required to fulfil payment obligations, I would conclude that for lower value
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of shortfall, the payment system is more efficient.

Lb
i j Lc

i j Πi j α

Bilateral liability matrix Central liability matrix Relative liability Percentage of central clearing
ei p̄i p̄i→CCP p∗i
Exogenous cashflow Bilateral total obligation Central clearing obligation Bilateral clearing payment
pi→CCP sb

i sc
i si

Payment to the CCP Shortfall bilateral Shortfall central payment Total shortfall

Table 4.1: Summary of key variables

The table above summarises all essential variables I will use in the following

chapters. In this chapter, I have explained three different clearing mechanism and

introduced the liquidity shortfall. In the following I will focus on the mixed system

in which payments are partially centrally cleared and partially bilateral cleared. I

will study the behaviour of the liquidity shortfall as a function of different parame-

ters, and compare results related to different interbank payment topologies.



Chapter 5

Independent Exposures

I present results in the following three chapters under three frameworks: Erdős-

Rényi networks with independent exposures, Erdős-Rényi networks with perfectly

correlated exposures, and scale-free and/or non-neutral assortativity networks with

perfectly correlated exposures. One may argue that, after introducing the CCP, the

network structure would be different from the original one. Here, I only consider

the netting effect imposed by the CCP and its further impact on bilateral payments.

Hence, the remaining network on bilateral payments still follows the original one.

In this chapter I discuss the general case of independent exposures where Lb 6= Lc,

i.e. exposures are not necessarily correlated and indeed no further assumption is

made on the correlation between Lc and Lb. I generate two independent liability

matrices with same parameters to ensure they do not interplay with each other.

While some results on liquidity shortfalls from centrally cleared obligations can be

proved, liquidity shortfalls from bilateral (and therefore also from total) obligations

need to be investigated numerically in the general case.

5.1 General Result
I start by noting that, for all banks, net centrally cleared VM obligations are increas-

ing in α (see Eq.4.4a). From Eq.4.6:

pi→CCP =


α

(
∑ j Lc

i j−Lc
ji

)+
for α ≤ e(1)i

(∑ j Lc
i j−Lc

ji)
+

e(1)i for α >
e(1)i

(∑ j Lc
i j−Lc

ji)
+

(5.1)
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meaning that payments of all banks to the CCP increase linearly in α up to α =

e(1)i /
(

∑ j Lc
i j−Lc

ji

)+
and that they saturate to e(1)i for larger values of α . As a

consequence, the shortfall towards the CCP should be expressed as:

sc
i =


0 for α ≤ e(1)i

(∑ j Lc
i j−Lc

ji)
+

α

(
∑ j Lc

i j−Lc
ji

)+
− e(1)i for α >

e(1)i

(∑ j Lc
i j−Lc

ji)
+ .

(5.2)

Those observations are summarised in the following proposition.

Proposition 1. Let S(Lc,Lb,e(1)) be a mixed clearing system. For all banks, net

centrally cleared VM obligations, (sequenced) payments to the CCP, and shortfalls

on centrally cleared VM obligations are non-decreasing functions of α , the fraction

of centrally cleared notional.

From Eq.4.11 it shows that for all banks total bilateral VM obligations are

decreasing in α . However, from Eq.4.10, Eq.4.4a, and Eq.4.6 I have:

e(3)i = e(1)i −min

(
e(1)i ,α

(
∑

j
Lc

i j−Lc
ji

)+)
+α

(
∑

j
Lc

i j−Lc
ji

)−

=


e(1)i −min

(
e(1)i ,α

(
∑ j Lc

i j−Lc
ji

)+)
for ∑ j Lc

i j−Lc
ji ≥ 0

e(1)i +α

(
∑ j Lc

i j−Lc
ji

)−
for ∑ j Lc

i j−Lc
ji < 0 .

(5.3)

If bank i has positive net centrally cleared VM obligations, i.e. ∑ j Lc
i j−Lc

ji≥ 0,

it will not have any incoming payments from the CCP. Therefore, the cash left is:

e(3)i =


e(1)i −α

(
∑ j Lc

i j−Lc
ji

)
for α ≤ e(1)i

(∑ j Lc
i j−Lc

ji)

0 for α >
e(1)i

(∑ j Lc
i j−Lc

ji)
,

(5.4)

meaning that e(3)i is non-increasing with α . Instead, if bank i has negative net
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centrally cleared VM obligations, i.e. ∑ j Lc
i j−Lc

ji < 0 I have:

e(3)i = e(1)i −α

(
∑

j
Lc

i j−Lc
ji

)
= e(1)i +α

∣∣∣∑
j

Lc
i j−Lc

ji

∣∣∣ , (5.5)

meaning that e(3)i is increasing with α . The fact that e(3)i , the cash available to pay

VM bilateral obligations, is non-increasing with α for some banks and increasing

with α for others prevents from applying results on comparative statics of payments

in the EN model (Eisenberg and Noe, 2001). Therefore, it is not straightforward to

derive the behaviour of bilateral payments and shortfalls.

In the following example, I construct a framework to present how I clear in-

terbank system with independent exposures, where Lb 6= Lc are given randomly.

Different from Example 1, I introduce two step netting as described before, where

the bilateral liability is netted first, then the CCP performs multi-lateral netting on

aggregate exposures. In addition, I also consider the payment sequencing where

payments towards the CCP have highest priority thus should be cleared first. After

that, bilateral obligations are settled using remaining cashflows.

Example 2. Consider the following set-up with liability matrices and cashflow are

given by:

Lb =


0 1 1 1

0 0 3
2

3
2

3 3 0 3

0 0 0 0

 ,L
c =


0 1

3
1
3

1
3

4
3 0 1

3
1
3

2 2 0 0

5 5 0 0

 ,e =


3

5

1

4


Then liability matrices after netting should be found as:

Lb−Lb′ =




0 1 1 1

0 0 3
2

3
2

3 3 0 3

0 0 0 0

−


0 0 3 0

1 0 3 0

1 3
2 0 0

1 3
2 3 0





+

=


0 1 0 1

0 0 0 3
2

2 3
2 0 3

0 0 0 0


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Lc−Lc′ =




0 1

3
1
3

1
3

4
3 0 1

3
1
3

2 2 0 0

5 5 0 0

−


0 4
3 2 5

1
3 0 2 5
1
3

1
3 0 0

1
3

1
3 0 0





+

=


0 0 0 0

1 0 0 0
5
3

5
3 0 0

14
3

14
3 0 0


Consider the case of α = 0.1 first. It means that I clearer 10% transactions centrally

and 90% transactions bilaterally. The liabiliy matrices should follow:

0.9
(

Lb−Lb′
)
= 0.9


0 1 0 1

0 0 0 3
2

2 3
2 0 3

0 0 0 0

=


0 9

10 0 9
10

0 0 0 27
20

9
5

27
20 0 27

10

0 0 0 0



0.1
(
Lc−Lc′)= 0.1


0 0 0 0

1 0 0 0
5
3

5
3 0 0

14
3

14
3 0 0

=


0 0 0 0
1

10 0 0 0
1
6

1
6 0 0

7
15

7
15 0 0


Referring to Eq.4.4a, the CCP performs second step netting, where aggregate expo-

sures on Lc are netted. Then obligations towards the CCP should be:



p̄1→CCP = α

(
∑ j Lc

1 j−Lc
j1

)+
= 0.1

(
0− ( 1

10 +
1
6 +

7
15)
)+

= 0

p̄2→CCP = α

(
∑ j Lc

2 j−Lc
j2

)+
= 0.1

( 1
10 − (1

6 +
7

15)
)+

= 0

p̄3→CCP = α

(
∑ j Lc

3 j−Lc
j3

)+
= 0.1

(1
6 +

1
6 −0

)+
= 1

3

p̄4→CCP = α

(
∑ j Lc

4 j−Lc
j4

)+
= 0.1

( 7
15 +

7
15 −0

)+
= 14

15

Using Eq.4.11, the bilateral obligations between banks can be found as p̄i =

∑ j 0.9
(

Lb
i j−Lb

ji

)
:

p̄i =


9
10 +

9
10

27
20

9
5 +

27
20 +

27
10

0

=


9
5

27
20
117
25

0


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Referring to Eq.4.6, payments towards the CCP should be found as:

pi→CCP =


min(e(1)1 , p̄1→CCP)

min(e(1)2 , p̄2→CCP)

min(e(1)3 , p̄3→CCP)

min(e(1)4 , p̄4→CCP)

=


min(3,0)

min(5,0)

min
(
1, 1

3

)
min

(
4, 14

15

)

=


0

0
1
3

14
15


In the above round, all banks are able to pay the CCP in full. Therefore I record

0 shortfall towards the CCP. In the next payment step, I pay attention to money

received from the CCP. Notice that because nodes 3 and 4 are net payer towards the

CCP, so they do not receive anything. According to Eq.4.4b, such quantity should

be calculated as:

pCCP→1 = α

(
∑ j Lc

j1−Lc
1 j

)+
= 1

10 +
1
6 +

7
15 −0 = 11

15

pCCP→2 = α

(
∑ j Lc

j2−Lc
2 j

)+
= 1

6 +
7

15 −
1
10 = 8

15

pCCP→3 = 0

pCCP→4 = 0

Fig.5.1 below shows how the networks looks like with the presence of a CCP at

middle. All weights have undertaken two-step netting.

Figure 5.1: Network illustration of this example
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So far, I have already derived all payments associated with the CCP. After the pre-

vious two steps, the cash left for each bank should follow Eq.4.10 thus given by:

e(3)i =


3−0+ 11

15

5−0+ 8
15

1− 1
3 +0

4− 14
15 +0

=


56
15
83
15
2
3

46
15


The remaining of the calculation process becomes exactly the same as in Example

1 with liability matrix 0.9
(
Lc−Lc′) and e(3)i . At the end, the clearing vector and

the corresponding bilateral shortfall are given by:

p∗i =


1.8

1.35

0.67

0

 ,s
b
i (0.1) =


0

0

5.18

0

= si(0.1)

The calculation process for other values of α is the same as the case presented so

is omitted here. In this way, I only present results of several essential quantities in

tables below. Quantities include obligations, actual payments and shortfalls related

to the CCP (Table 5.1), bilateral obligations, bilateral clearing vectors and corre-

sponding shortfalls (Table 5.2) and aggregate shortfall (Table 5.3).

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p̄1→CCP 0 0 0 0 0 0 0 0 0
p̄2→CCP 0 0 0 0 0 0 0 0 0
p̄3→CCP 0.67 1 1.33 1.67 2 2.33 2.67 3 3.33
p̄4→CCP 1.87 2.8 3.73 4.67 5.6 6.53 7.47 8.4 9.33
∑i p̄i→CCP 2.54 3.8 5.06 6.34 7.6 8.86 10.14 11.4 12.66
p1→CCP 0 0 0 0 0 0 0 0 0
p2→CCP 0 0 0 0 0 0 0 0 0
p3→CCP 0.67 1 1 1 1 1 1 1 1
p4→CCP 1.87 2.8 3.73 4 4 4 4 4 4
∑i pi→CCP 2.54 3.8 4.73 5 5 5 5 5 5
∑i sc

i (α) 0 0 0.33 1.34 2.6 3.86 5.14 6.4 7.66

Table 5.1: Payments associated with the CCP for different values of α
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Table 5.1 presents all payments related to the CCP, starting from α = 0.2 to α = 1

with increment 0.1. It is worth to point out that at α = 0.4, node 3 begins to record

shortfalls towards the CCP. Then as α getting larger, both node 3 and 4 are cannot

make full payments to the CCP thus exhaust their cash at α = 0.5. The total value

∑i sc
i (α) corresponds to Prop.1 that it is a non-decreasing function of α .

α 0.2 0.3 0.3 0.5 0.6 0.7 0.8 0.9 1
p̄1 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0
p̄2 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0
p̄3 5.2 4.55 3.9 3.25 2.6 1.95 1.3 0.65 0
p̄4 0 0 0 0 0 0 0 0 0
∑i p̄i 8 7 6 5 4 3 2 1 0
p∗1 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0
p∗2 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0
p∗3 0.33 0 0 0 0 0 0 0 0
p∗4 0 0 0 0 0 0 0 0 0
∑i p∗i 3.13 2.45 2.1 1.75 1.4 1.05 0.7 0.35 0
sb

i (1−α) 4.87 4.55 3.9 3.25 2.6 1.95 1.3 0.65 0

Table 5.2: Payments related to bilateral exposures at different level of α

In Table 5.2, I summarise results related to bilateral payments. Together with Table

5.1, I can see nodes 1 and 2 never record shortfalls neither bilaterally nor centrally.

Not surprisingly, bilateral obligation, clearing payment and bilateral shortfall are

non-increasing w.r.t. α .

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
si(α) 4.87 4.55 4.23 4.59 5.2 5.81 6.44 7.05 7.66

Table 5.3: Aggregate shortfall at different α

As it can be seen, the aggregate shortfall is non-monotonic in terms of α . It achieves

smallest value at around 0.4. In the following sections, I will present deep analysis

into the behaviour.

5.2 Simulation Study
In order to overcome the difficulty of characterising bilateral shortfalls analytically,

in this section I perform numerical experiments. In a nutshell: I generate networks
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of random VM obligations, simulate the three stages of the payment algorithm as

described in Section 4.4, and compute liquidity shortfalls. I first focus on the case

in which Lc and Lb are independent, which refer to as the case of independent ex-

posures. The main result is that increasing the fraction of centrally cleared notional

α is not always beneficial, in the sense that it does not necessarily lead to smaller

aggregate liquidity shortfalls.

Conceptually the generation of random VM obligations consists of two steps.

First, generating the network of counterparties, i.e. for each bank i generating the

set of banks j owes to. Second, generating the amounts of the individual VM obli-

gations. In the language of network theory, in the first step I generate the topology

of the network of VM obligations, while in the second step I generate its weights.

Formally, I write centrally and bilateral VM obligations as follows:

Lc
i j = Ac

i jw
c
i j (5.6a)

Lb
i j = Ab

i jw
b
i j , (5.6b)

where Ac
i j ∈ {0,1} and wc

i j > 0, for all i and j. If Ac
i j = 1, i has a centrally cleared

VM obligation to j of amount wc
i j. The same applies to bilateral VM obligations.

Ac and Ab are the adjacency matrices for centrally cleared and bilaterally cleared

VM obligations. Moreover, within both centrally and bilaterally cleared networks,

I assume that all counterparty relationships exist independently of each other with

probability p as given in Sec. 3.2. The larger M and the larger p, therefore the

denser the network.

As regards the weights, for all banks i I generate total obligations Ltot
i =

∑ j Lc
i j = ∑ j Lb

i j and partition those uniformly across its counterparties:

wc
i j =

Ltot
i

∑ j Ac
i j

(5.7a)

wb
i j =

Ltot
i

∑ j Ab
i j
, (5.7b)
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so that

Lc
i j =


Ltot

i
∑ j Ac

i j
for Ac

i j = 1

0 for Ac
i j = 0

(5.8a)

Lb
i j =


Ltot

i
∑ j Ab

i j
for Ab

i j = 1

0 for Ab
i j = 0 .

(5.8b)

Notice that, since the two adjacency matrices Ac and Ab are different, also

the two VM obligation matrices Lc and Lb are different. This simplified set-up

allows to express the variability of VM obligations in terms of the density M and

the parameters of the distribution of total obligations.

5.2.1 Homogeneous VM Obligations

I start from the case in which VM obligations are the same for all banks, i.e. Ltot
i =

L, for all i. In Fig.5.2 I show the aggregate shortfall ∑i si over average of 100

realizations of Lc and Lb. In this specific set-up, N = 100 and M changes from 5

to 8, meaning that each bank has, on average, centrally cleared VM obligations and

bilateral obligations towards those number of banks. Moreover, e = 15, meaning

that the initial cash endowment of each bank is equal to 15. For all values of M

the aggregate shortfall starts to decrease as α increases, but after having reached

a minimum at αmin, it starts to increase again. This means that there is an optimal

value of α at which the aggregate liquidity shortfall is minimal. Both the position of

the minimum and its value are variable and depend on the individual realisation of

VM obligations. For example, for the realisations in Figure 5.2, αmin ranges from

about 0.4 to about 0.5, while the aggregate shortfall at the minimum ranges from

about 600 to about 1100.

In Figure 5.3 I focus on one individual realisation of VM obligations. In the top

panel I show not only the aggregate shortfall, but also the aggregate centrally cleared

and bilateral shortfalls. The minimum in the aggregate shortfall emerges as the

result of two competing trends: the aggregate centrally cleared shortfall increases

with α while the aggregate normalised bilateral shortfall decreases with it.
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Figure 5.2: Aggregate shortfall for averaging over 100 realisations with errorbar over 1
standard deviation of VM obligations at different levels of M. N = 100, e(1) =
15, and Ltot

i = 100, for all i.

Figure 5.3: Decomposition of aggregate shortfall (top panel), net VM obligation (bottom
left panel), and aggregate payments (bottom right panel) for one realisation of
VM obligations. N = 100, M = 5, Ltot

i = 100 and e(1)i = 15.
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From the bottom left panel of Figure 5.3, it can be seen that net centrally

cleared VM obligations increase with α (as expected from Proposition 1) and net

bilateral VM obligations decrease with α (from Eq.4.11). Overall, total net VM

obligations decrease with α . Since total gross VM obligations do not depend on

α , this means that netting is more and more efficient as α increases, indicating

that multilateral netting (on centrally cleared VM obligations) dominates bilateral

netting more and more. From the bottom right panel of Figure 5.3, the aggregate

payment on centrally cleared contracts increases with α (as expected from Propo-

sition 1). However, the aggregate payment on bilateral contracts decreases with α

more, resulting in an overall trend of the aggregate payment on all contracts that is

decreasing with α . Therefore, I conclude that the U-shaped behaviour of aggregate

shortfall is the result of the tradeoff between the increased netting opportunities pro-

vided by central clearing, as α increases, and the reduction in bilateral payments.

The trends of both VM obligations and payments displayed in Fig.5.3 for an

individual realisation are confirmed for all realisations in our sample. In particular,

total net VM obligations decrease strictly with α . Again, since net centrally cleared

VM obligations ∑i p̄i→CCP increase with α (see Proposition 1), this means that net

bilateral VM obligations ∑i p̄i decrease more. In other words, as α increases, net

bilateral VM obligations are replaced by smaller centrally cleared VM obligations

due to the multilateral netting performed by the CCP. Similarly, total payments

∑i pi→CCP +∑i pi decrease strictly with α and, since payments on centrally cleared

obligations ∑i pi→CCP increase with α (see Proposition 1), this means that payments

on bilateral VM obligations ∑i pi decrease more. Remember that

∑
i

si = ∑
i

sc
i + sb

i

= ∑
i

p̄i→CCP +∑
i

p̄i−∑
i

pi→CCP−∑
i

pi

(5.9)

For values of α to the left of the minimum the aggregate shortfall decreases be-

cause VM obligations (the first two terms) decrease faster than payments (the last

two terms). For values of α to the right of the minimum, the opposite is true. In this
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region the aggregate shortfall increases because even though VM payment obliga-

tions decrease, they decrease at a slower pace than payments. In turn, as discussed

above, payments decrease because bilateral payments decrease at a faster pace than

the increase in payments to the CCP. Therefore, the increased efficiency of multi-

lateral netting is more than compensated by the reduction in bilateral payments.

Figure 5.4: Fraction of realisations in the which aggregate shortfall achieves a minimum
with respect to α (top panel), is monotonic with respect to α (bottom left) or
in which is equal to zero for all values of α (bottom right). N = 100, 1000
realisations, e(1)i = e and Ltot

i = 100 for all i.

Does this minimum always exists for different parameters? Intuitively from

Fig.5.2 the answer is no, as it can be noticed that theses 4 lines get flatter for higher

M. I then look at the statistical properties of a large sample of 1000 realisations.

Fig.5.4 studies the behaviour of the system as M is varied over a wider range than

the values considered previously. More specifically, M is varied between 5 and 80.

First, I check how frequently the aggregate shortfall has one minimum with respect

to α . From top panel of Fig.5.4 I can see that, for a given value of total gross VM

obligation L, the fraction of realisations with a minimum is equal to one for smaller
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values of the connectivity M, that it decreases with M, and that for sufficiently large

values of the density it is equal to zero. Similarly, for a fixed value of density

M, the fraction of realisations with a minimum is decreasing with total exogenous

cashflow e. Therefore, I find that, in the region of the parameter space in which the

connectivity and exogenous cashflow are sufficiently low, the aggregate liquidity

shortfall has a minimum with respect to the fraction of centrally cleared notional.

What about the realisations in which the aggregate shortfall has no minimum

with α? From Fig.5.4 it can be seen that, by increasing the connectivity of the

network, realisations with one minimum decrease and monotonic (non-increasing)

realisations start to increase. In these realisations, VM obligations decrease faster

than payments for all values of α (see Eq.5.9), suggesting that gains from multilat-

eral netting dominate the reduction in bilateral payments. By further increasing the

connectivity of the network, also monotonic (non-increasing) realisations decrease

and realisations in which the aggregate shortfall is zero for all values of α start to

appear. Eventually, for even larger connectivity, in most realisations the aggregate

shortfall is zero for all values of α .

In the left panel of Fig.5.5 I show the mean value of αmin across network real-

isations, in order to understand how it depends on the parameters. When minimum

shortfall is achieved in a continuous region of α , the median of that interval is

taken. In order to provide meaningful result, only parameter combinations provide

reasonable fraction (more than 5%) of non-zero shortfalls are included. αmin is

broadly around 50%, and largely does not depend either on the density M or on the

exogenous cashflow e. I stress that the variability of αmin is substantial, pointing

to a strong dependence of αmin on the specific realisation of the network of VM

obligations.

Next, I look at the shortfall at αmin. From the right panel of Fig.5.5 it can be

seen that it is decreasing with M and increasing with e. Intuitively, as M increases

the average number of counterparties increases, which leads to more opportunities

for bilateral netting. Hence, one can expect shortfalls to be generally smaller for

larger value of M. As the total exogenous cashflow e increases, shortfalls become
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smaller when the total liability is constant.

Figure 5.5: Mean value of αmin (left panel) and mean aggregate shortfall at αmin (right
panel) for several values of M and e with errorbar. N = 100, 1000 realisations,
and e(1)i = e, for all i.

Looking at Fig.5.2, 5.4 and 5.5, it is also worth to point out that increasing

connectivity can stabilise the system. For instance, in Fig.5.2, the shortfall is getting

smaller for higher M. Then in the bottom right panel of Fig.5.4, there exist more

realisations with zero shortfall when M increases. Moreover, in Fig.5.5, s(αmin)

keeps decreasing as M increases. All the above figures confirm that the payment

efficiency is improved with higher connectivity in this framework. In the literature,

this is called risk-sharing (Cabrales et al., 2017). In my research, I show that, at

least if M is larger than 5, risk sharing always benefits the system as it increases

interconnections between banks. In this point of view, more linkage of one bank to

others can disperse exposure and eventually reduce the exposure toward the shock.

Finally, in Figure 5.6 I show the relative improvement of being at αmin com-

pared to the fully centrally cleared setting (α = 1) or to the fully bilateral setting

(α = 0), i.e. ∑i si(1)−∑i si(αmin)
∑i si(1)

and ∑i si(0)−∑i si(αmin)
∑i si(0)

. I use relative value in this anal-

ysis because absolute values of improvements are obviously decreasing as shortfall

get smaller for higher M, while it can never drop below 0. I can see that the relative

improvement compared to both α = 1 and α = 0 increases with the total exogenous

cashflow e and increases with the density M. Mean relative improvements with re-

spect to α = 1 are economically significant, ranging from around 20% to almost

100%. Similarly, mean relative improvements compared to α = 0, ranging from
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around 50% to almost 100%.

Figure 5.6: Relative improvements of being at αmin compared to the fully bilateral cleared
setting (left panel) or to the fully centrally cleared setting (right panel). 1 000
realisations, and Ltot

i = 100.

5.2.2 Heterogeneous VM Obligations

I now turn my attention towards the case in which total gross VM obligations Ltot
i

are not equal for all banks. The purpose of this analysis is to figure out how my

model performs and subsequent consequences under different scenarios. I draw

Ltot
i from exponential random variables. To maintain the study as fair as possible, I

set it has 100 mean:

Ltot
i ∼ exp

(
1

100

)
. (5.10)

While the exponential distribution is not representative of real systems (Boss et al.,

2004a), it is the simplest extension to the previous set-up that allows me to check

the robustness of previous results with respect to the relaxation of the homogeneity

of the system.

In Fig.5.7, I plot the relationship between shortfall and α under this scenario.

Comparing to Fig.5.2, it is obvious that values in shortfall become larger. In the

case of heterogeneous VM obligations, all banks are not uniformly exposed to the

failure of their counterparties. If one counterparty with particularly large liability

exposures failed, its creditors would suffer higher loss with respect to the case of

uniform exposures (Caccioli et al., 2012). Such explanations are further justified in

Fig.5.8, as it can be seen in the left panel net obligations do not change too much
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Figure 5.7: Aggregate shortfall for averaging over 100 realisations with errorbar over 1
standard deviation for heterogeneous liabilities. N = 100, e(1) = 15, and Ltot

i =
100, i.i.d. exponentially distributed for all i

Figure 5.8: Decomposition of net VM obligation (left panel), and aggregate payments
(right panel) for one realisation of VM obligations. N = 100, M = 5, e(1)i = 15,
and Ltot

i = 100, i.i.d.exponentially distributed for all i.

compare to the bottom left panel in Fig.5.3, but in the right panel total payments be-

come significantly smaller. Also in the case of heterogeneous VM obligations, both

total net VM obligations and total payments decrease strictly with α , confirming

that the existence of the minimum in aggregate shortfall is due to the tradeoff be-

tween the increasing efficiency of multilateral netting and the reduction in bilateral

payments with α .
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In Fig.5.9 I check the fraction of realisations where the aggregate shortfall has

one minimum w.r.t. α . Surprisingly, in contrast to homogeneous case, this variable

mainly maintain at 1 with only a few variations, regardless of the values of M and

e. Realisations without a minimum appear to be outlier cases. I can conclude from

this that an optimal value of α always exists. Therefore, it is more possible for the

CCP to be effective in reducing aggregate shorfall of the system.

In summarise, shortfalls of heterogeneous VM obligations increase compare to

the homogeneous case. This is mainly driven by different exposures of banks. On

the other hand, the presence of the CCP becomes more effective than homogeneous

case in terms of the optimal value of αmin exists in almost all realisations.

Figure 5.9: Fraction of realisations in which the aggregate shortfall has one minimum with
respect to α . N = 100, 1000 realisations, and Ltot

i = 100, i.i.d.exponentially
distributed for all i.

5.3 The Role of Payment Sequencing
As I explained in Chapter 4, payments associated with the CCP follow a partic-

ular sequencing — banks pay the CCP first, then the CCP pays banks, and only

afterwards banks settle bilateral obligations among themselves. Such sequencing

brings some frictions into the system, thus one may wonder whether it increases
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inefficiency of the payment system, as banks have a smaller cashflow after the first

round of payments. For example, imagine that one bank is a net payer to the CCP

and a net receiver from bilateral counterparties. If payments were not sequenced,

that bank could redirect the payments received from bilateral counterparties to the

CCP. Instead, if payments are sequenced and its cash buffer is not sufficient to cover

the payment obligation due to the CCP, that bank has to source the gap in order to

be able to pay the CCP. I have already discussed how increasing the fraction of

notional that is centrally cleared generates two competing forces — VM payment

obligations decrease, but (bilateral) payments also decrease — and how the mini-

mum in aggregate shortfall results from the tradeoff between those. Increasing the

fraction of notional that is centrally cleared would also increase the payments sub-

ject to the temporal constraints, and that would be why bilateral payments would

decrease. In the following, I will relax the assumption on payment sequencing and

investigate whether it is a source of payment inefficiency.

In this section I show that, in most cases, this is not the case and that in prac-

tice payment sequencing plays only a limited role in the existence of an optimal

fraction of centrally cleared notional. To this end I compare the results of the sim-

ulations above, in which payments are sequenced, with analogous simulations in

which payments are not sequenced and take place in a single round. This means

that all payments occur in the third round of the payment algorithm described in

Section 4.4, i.e. by using the Eisenberg and Noe model for all payment obligations,

in which case CCP is treated as a normal node with only multi-lateral netting. In

the version of the model with payment sequencing the CCP is always able to pay

its obligations to banks in full. Therefore, in order to keep the comparison as fair

as possible, in the section I assign a very large cash buffer to the CCP, say 1000, so

that also in this case it is always able to pay its obligations in full.

When VM obligations are homogeneous, I find in Fig.5.10 that the non-

monotonicity still exists with one minimum, using same parameters as in Fig.5.2.

In Fig.5.11 the fraction of realisations with one minimum is almost the same com-

pare to the original model. As an initial conclusion, payment sequencing appears to
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Figure 5.10: Aggregate shortfall without payment sequencing at different levels of M. N =

100, 100 realisations, and Ltot
i = 100, and e(1)i = 15.

have no impact on existing the minimum. However, it could impact the value of the

aggregate shortfall at the minimum. In Fig.5.12 I show the cumulative distribution

(across all realisations and specific parameters) of the difference between aggregate

shortfalls at αmin with and without payment sequencing. Positive (negative) values

indicate that shortfalls are larger with payment sequencing. I find that, on the left

panel of homogeneous VM obligations, more than 99% of the realisations leads to

larger aggregate shortfalls at αmin when introducing the sequence. However, con-

sidering the magnitude of total exposures (NLtot) is of 104, the mean and median of

such difference under 20, and the 95th percentile less than 40, such difference can

be treated as small and insignificant.

For heterogeneous VM obligations, I find that the fraction of realisations with a

minimum is exactly the same with and without payment sequencing. In both cases,

such minimum always exists. When I checking the difference at minimum, as in

the right panel of Fig.5.12, it gets difficult to compare which one is larger, as the

value on x-axis ranges from large negative to large positive, and the probability of

negative values goes beyond 0.6.
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Figure 5.11: Fraction of realisations without payment sequencing. N = 100, 1000 realisa-
tions, and Ltot

i = 100 for all i.

Figure 5.12: Cumulative distribution of the difference between shortfalls with and without
payment sequencing for homogeneous VM obligations (left panel) and hetero-
geneous VM obligations (right panel). N = 100, 1000 realisations, Ltot

i = 100,
and e(1)i = 15 for all i, and M = 5 .

Overall, those results show that payment sequencing plays a minor role in the

existence of an optimal value of centrally cleared notional, while for heterogeneous

VM obligations such difference becomes slightly more significant. The relationship

between α and shortfall, together with the fraction of realisations with a minimum,

do not have significant difference in terms of payment sequencing. The only differ-

ence exists when I look at the difference at α∗. This suggests that the reduction in
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bilateral payments that is responsible for the existence of the minimum in aggregate

shortfall might be due to the change in the topology of the network of obligations

that occurs when the fraction of centrally cleared notional increases.



Chapter 6

Perfectly Correlated Exposures

In the following I discuss results under perfectly correlated exposures Lc = Lb = L,

when moving from α to α ′ = α + ∆α . This corresponds to all banks novating

with a fraction ∆α of their notional simultaneously with all their counterparties.

This case is interesting because its behaviour is different from the case considered

in chapter 5, and it allows me to prove some statements of liquidity shortfalls of

individual banks and the behaviour of liquidity shortfalls is very different from the

case Lc 6= Lb. In this chapter I often refer to quantities at a certain value of α . For

example, with si(α) I denote the total shortfall of bank i at α , and sb
i (α) denote

the shortfall of bank i on bilateral VM obligations at α (but the fraction of VM

obligations that are bilaterally cleared at α is 1−α). To begin with, I start from a

simple example to illustrate how this payment framework works.

Example 3. Consider the network used in Example 1 again. L, Π and e are the

same. The case of α = 0 are exactly the same, so I start from considering α = 0.1

and novating the percentage with step 10%. I introduce bilateral netting to L first

and record all variables in the following are based on bilateral netting:

(L−L′)+ =




0 7 1 1

3 0 3 3

1 1 0 1

1 1 1 0

−


0 3 1 1

7 0 1 1

1 3 0 1

1 3 1 0





+

=


0 4 0 0

0 0 2 2

0 0 0 0

0 0 0 0


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Figure 6.1: Network illustration of this example

After bilateral netting, only net payers between banks have positive obligations.

Under perfectly correlated exposures, Lc = Lb = L. I split the liability matrix to

bilateral and central, which account for 90% and 10% of L respectively:

0.9
(

Lb−Lb′
)
= 0.9×


0 4 0 0

0 0 2 2

0 0 0 0

0 0 0 0

=


0 3.6 0 0

0 0 1.8 1.8

0 0 0 0

0 0 0 0



0.1
(
Lc−Lc′)= 0.1×


0 4 0 0

0 0 2 2

0 0 0 0

0 0 0 0

=


0 0.4 0 0

0 0 0.2 0.2

0 0 0 0

0 0 0 0


The majority of calculation process follows the same as in Example 2 so I only

present the most important parts. Refer to Eq.4.4a and Eq.4.11, bilateral and central

olibations are:

p̄i→CCP =


0.4

0

0

0

 , p̄i =


3.6

3.6

0

0


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respectively. The sketch map of this example is presented in Fig.6.1. According to

Eq.4.6, payments from banks to the CCP are:

pi→CCP =


min(1,0.4)

min(2,0)

min(2,0)

min(2,0)

=


0.4

0

0

0


There is no default towards the CCP at this stage, so sc

i (0.1) = 0,∀i. In the second

payment round, I consider payments from the CCP to each bank. Since node 1 is a

net payer towards the CCP, it does not receive any money. Node 2 nets all aggregate

obligations so it does not have any exposures with the CCP. Eventually, pCCP→i

becomes:

pCCP→i =


0

0

0.2

0.2


Following Eq.5.3 the money left by each bank, e(3)i , equals to:

e(3)i =


0.6

2

2.2

2.2


To compute clearing payments and bilateral shortfall, it follows the same procedure

as in Example 1 and 2 with liability matrix 0.9
(

Lb−Lb′
)

and external cash e(3)i .

Hence, the clearing vector p∗ and bilateral shortfall sb(0.1) are:

p∗ =


0.6

2.6

0

0

 ,s
b
i (0.1) =


3

1

0

0


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The remaining calculation process should be the same as the case of α = 0.1. I

then summarise remaining results to table below. Different from tables in Example

2, here for simplicity, I only present results related to shortfalls, which is the key

quantity I want to study.

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
sc

i (α) 0 0.2 0.6 1 1.4 1.8 2.2 2.6 3
sb

i (α) 4 3.6 2.8 2 1.6 1.2 0.8 0.4 0
si(α) 4 3.8 3.4 3 3 3 3 3 3

Table 6.1: Summary of shortfall values

If I take into consideration of α = 0 and α = 0.1, one of the most noticeable result

is that the aggregate shortfall is constant until α = 0.2, after which point it starts

to decrease. This potentially provides evidence on the fact of when the CCP starts

to become effective in reducing shortfalls. I will take a further look into relevant

properties.

In the following sections, I will present main results of this chapter, starting

from theoretical proofs, follow by numerical solutions.

6.1 Theoretical Result
The first result I present compares shortfalls in a fully bilateral setting with shortfalls

in a fully centrally cleared setting.

Theorem 1. Let the tuple (L,e(1)) be a family of clearing systems with perfectly

correlated exposures. For all banks, the shortfall in the fully bilateral setting is

larger than or equal to the shortfall in the fully centrally cleared setting:

si(0)≥ si(1) ∀i . (6.1)

Proof. By dividing banks into two groups, banks i with net obligations smaller

than or equal to zero (∑ j Li j−L ji ≤ 0) and banks i with net obligations larger than

zero (∑ j Li j − L ji > 0). This property clearly does not depend on α . For banks

such that ∑ j Li j−L ji ≤ 0, from Eq.4.4a and Eq.4.7 it gives that: si(1) = [(∑ j Li j−
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L ji)
+− e(1)i ]+ = [−e(1)i ]+ = 0 ≤ si(0). So, for all banks i that have net obligations

smaller than or equal to zero the shortfall for α = 0 is larger than or equal to the

shortfall for α = 1. For banks i with net obligations larger than zero I have: si(1) =

[(∑ j Li j−L ji)
+−e(1)i ]+ = [(∑ j Li j−L ji)−e(1)i ]+. For α = 0 the shortfall is only on

bilateral contracts. Moreover, as no payment has been made in the first two rounds,

e(3)i = e(1)i . If si(0)> 0, i.e. if p̄i > p∗i , I have that p∗i = e(1)i +∑ j Π ji p∗j . If si(0)≤ 0,

i.e. if p∗i = p̄i, I have that p̄i ≤ e(1)i +∑ j Π ji p∗j . Therefore, I can write:

si(0) = p̄i− p∗i =

[
p̄i− e(1)i −∑

j
Π ji p∗j

]+

=

[
∑

j

(
Li j−L ji

)+− e(1)i −∑
j

Π ji p̄ j

]+
(6.2)

≥

[
∑

j

(
Li j−L ji

)+− e(1)i −∑
j

(
L ji−Li j

)+]+

=

[
∑

j

(
Li j−L ji

)+− e(1)i −∑
j

(
Li j−L ji

)−]+

=

[
∑

j

(
Li j−L ji

)
− e(1)i

]+
= si(1) .

Therefore, also for all banks i that have net obligations larger than zero the shortfall

for α = 0 is larger than or equal to the shortfall for α = 1.

Theorem 1 formalises the intuition according to which a system in which all

VM obligations are centrally cleared is more efficient (in the sense that liquidity

shortfalls are smaller) than a system in which all VM obligations are bilateral.

It is worth to point out that under my framework, total shortfall and payment

can be split into several stages and the aggregate values equal to the summation of

values in each stage. For simplicity, I present a proof on two-stage version so the

multi-stage will follow by further divide the stage into two.

Lemma 1 (Splitting of central clearing in two sub-stages). Let p̄i→CCP and p̄CCP→i,

for all i, be two vectors of net obligations to and from the CCP, defined as in Eq.4.2,
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e ≥ 0 a vector of cash endowments, and β ∈ [0,1]. Let us introduce quantities in

the first sub-stage:

p̄(1)i→CCP = β p̄i→CCP (6.3a)

p̄(1)CCP→i = β p̄CCP→i (6.3b)

e(1)i = ei , (6.3c)

with payments p(1)i→CCP and shortfalls s(1)i defined as in Eq.4.6 and Eq.4.7, for all i.

Let us introduce quantities in the second sub-stage:

p̄(2)i→CCP = (1−β )p̄i→CCP (6.4a)

p̄(2)CCP→i = (1−β )p̄CCP→i (6.4b)

e(2)i = e(1)i − p(1)i→CCP + p̄(1)CCP→i , (6.4c)

with payments p(2)i→CCP and shortfalls s(2)i defined as in Eq.4.6 and Eq.4.7, for all i.

Finally, let us introduce cash endowment at the end of the second sub-stage:

e(3)i = e(2)i − p(2)i→CCP + p̄(2)CCP→i , (6.5)

for all i. Then I have that:

pi→CCP = p(1)i→CCP + p(2)i→CCP (6.6)

sc
i = sc(1)

i + sc(2)
i (6.7)

e(3)i = ei− pi→CCP + p̄CCP→i , (6.8)

for all i.

Proof. Let us focus on bank i, as central clearing proceeds independently for each

bank. First, I consider the case ∑ j Li j− L ji > 0, which implies that p̄i→CCP > 0,

p̄(1)i→CCP > 0, p̄(2)i→CCP > 0, and p̄CCP→i = p̄(1)CCP→i = p̄(2)CCP→i = 0. Therefore, from by

adding p(1)i→CCP on both sides of Eq.4.6 for p(2)i→CCP I have:
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p(1)i→CCP + p(2)i→CCP = min
[
e(2)i + p(1)i→CCP, p̄(2)i→CCP + p(1)i→CCP

]
= min

[
e(1)i − p(1)i→CCP + p̄(1)CCP→i + p(1)i→CCP, p̄(2)i→CCP + p(1)i→CCP

]
= min

[
e(1)i , p̄(2)i→CCP + p(1)i→CCP

]
. (6.9)

In the sub-case in which e(1)i ≥ p̄(1)i→CCP I have that p(1)i→CCP = p̄(1)i→CCP and Eq.6.9

reads:

p(1)i→CCP + p(2)i→CCP = min
[
e(1)i , p̄(1)i→CCP + p̄(2)i→CCP

]
. (6.10)

In the sub-case in which e(1)i < p̄(1)i→CCP, I have that p(1)i→CCP = e(1)i and Eq.6.9 reads:

p(1)i→CCP + p(2)i→CCP = min
[
e(1)i ,e(1)i + p̄(2)i→CCP

]
= min

[
e(1)i , p̄(1)i→CCP + p̄(2)i→CCP

]
.

(6.11)

Second, I consider the case ∑ j Li j−L ji≤ 0, which implies that p̄i→CCP = p̄(1)i→CCP =

p̄(2)i→CCP = 0. Since there are no obligations to the CCP, also all payments to the CCP

are equal to zero: pi→CCP = p(1)i→CCP = p(2)i→CCP = 0. This concludes the proof that

pi→CCP = p(1)i→CCP + p(2)i→CCP in all cases.

For shortfalls I have that:

sc
i = p̄i→CCP− pi→CCP

= p̄(1)i→CCP + p̄(2)i→CCP− p(1)i→CCP− p(1)i→CCP (6.12)

= sc(1)
i + sc(2)

i .

Finally, I have:

e(3)i = e(2)i − p(2)i→CCP + p̄(2)CCP→i

= e(1)i − p(1)i→CCP + p̄(1)CCP→i− p(2)i→CCP + p̄(2)CCP→i

= ei− pi→CCP + p̄CCP→i .

(6.13)
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The next result generalises Theorem 1 by showing that a system in which all

VM obligations are centrally cleared is more efficient, in the sense that liquidity

shortfalls are smaller, than a system in which only a fraction of all VM obligations

are centrally cleared. Amini et al. (2020) and Ahn (2020) proved similar results

in richer models. Amini et al. (2020) introduced liquidation costs, end users, and

default fund contributions. In Ahn (2020) there are bankruptcy costs and institutions

can have external liabilities.

Theorem 2. Let the tuple (L,e(1)) be a family of clearing systems with perfectly

correlated exposures and let α ∈ [0,1). For all banks, the shortfall at α < 1 is

larger than or equal to the shortfall in the fully centrally cleared setting:

si(α)≥ si(1) ∀i . (6.14)

Proof. At α = 1 shortfalls from bilateral obligations are equal to zero, hence:

si(1) = sc
i (1). At α = 1 centrally cleared obligations are cleared in two sub-stages.

Since α ∈ [0,1) is an arbitrary number, I can always find such value which the sys-

tem clears centrally obligations corresponding to a fraction α of notional in the first

stage, while it clears centrally cleared obligations corresponding to a fraction 1−α

of notional in the second stage (see Chapter 4.4). I denote the shortfalls that bank i

records in those two sub-stages with sc
i (1|α) and sc

i (1|1−α). Therefore, by using

Lemma 1 it gives:

si(α) = sc
i (α)+ sb

i (1−α) (6.15a)

si(1) = sc
i (1|α)+ sc

i (1|1−α) . (6.15b)

The first observation is that sc
i (α) = sc

i (1|α), for all i. This descends from

Eq.4.7 because the cash endowment is equal to e(1)i in both cases and net VM obli-

gations are equal to p̄i→CCP = α(∑Li j−L ji)
+ in both cases (as the same fraction

of notional α is centrally cleared). From Eq.4.10 it descends that also the cash

endowment after this stage is the same.
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The second observation is that sb
i (1−α) ≥ sc

i (1|1−α), for all i. Cash en-

dowments are the same in both cases because they are the cash endowments at the

end of the previous stage. The matrix of gross VM obligations is (1−α)L in both

cases, but at α those cleared fully bilaterally, while at α = 1 those are fully centrally

cleared. Therefore, by using Theorem 1 I have that sb
i (1−α)≥ sc

i (1|1−α), which

implies si(α)≥ si(1).

Notice that the EN clearing vector found in Eq.3.11 can also be split into two

stages as the case on centrally cleared obligations. The relationship between total

value and partial value also follows summation relationship.

Lemma 2 (Splitting of Eisenberg and Noe in two sub-stages). Let Li j, for all i and j

be a matrix of obligations defined as in Eq.4.1, e≥ 0 a vector of cash endowments,

and β ∈ [0,1]. Quantities in the first sub-stage as following:

L(1)
i j = βLi j (6.16a)

e(1)i = ei , (6.16b)

with total obligations p̄(1)i defined as in Eq.4.11, relative liability matrix Π
(1)
i j de-

fined as in Eq.4.12, payments p(1)∗i defined as in Eq.4.13 and shortfalls sb(1)
i defined

as in Eq.4.14, for all i and j. Quantities in the second sub-stage as following:

p̄(2)i = p̄i− p(1)∗i (6.17a)

Π
(2)
i j = Π

(1)
i j (6.17b)

L(2)
i j = Π

(2)
i j p̄(2)i (6.17c)

e(2)i = e(1)i − p(1)∗i +∑
j

Π
(1)
ji p(1)∗j , (6.17d)

with payments p(2)∗i defined as in Eq.4.13, and shortfalls sb(2)
i defined as in Eq.4.14,

for all i and j. Then I have that:

L(2)
i j ≥ (1−β )Li j (6.18)
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p∗i = p(1)∗i + p(2)∗i (6.19)

sb
i = sb(1)

i + sb(2)
i , (6.20)

for all i and j.

Proof. In order to prove Eq.6.18 I note that in the case β = 0, Li j = L(2)
i j , as the

clearing reduces to the second sub-stage. In the case β > 0 I have:

L(2)
i j = Π

(2)
i j p̄(2)i

= Π
(2)
i j

(
p̄i− p(1)∗i

)
≥Π

(2)
i j

(
p̄i− p̄(1)i

)
= Π

(2)
i j (p̄i−β p̄i)

= (1−β )Πi j p̄i

= (1−β )Li j ,

(6.21)

for all i and j.

From Eq.6.17 I note that Li j = L(1)
i j +L(2)

i j , for all i. Using Eq.4.14, this means

that it is sufficient to prove p∗i = p(1)∗i + p(2)∗i , for all i. The case β = 0 is easy to

prove, as the clearing reduces to the second sub-stage. Let us then focus on the case

in which β > 0. I start by observing that p̄i = 0⇔ p̄(1)i = 0, meaning that the zero

entries of the matrix Π coincide with the zero entries of the matrix Π(1). As regards

non-zero entries, I have:

Π
(1)
i j =

L(1)
i j

p̄(1)i

=
βLi j

β p̄i
=

Li j

p̄i
= Πi j , (6.22)

so that Π = Π(1). From the definition of p(2)∗i I have:

p(2)∗i = min

(
p̄(2)i ,e(2)i +∑

j
Π

(2)
ji p(2)∗j

)

= min

(
p̄i− p(1)∗i ,e(1)i − p(1)∗i +∑

j
Π

(1)
ji p(1)∗j +∑

j
Π

(2)
ji p(2)∗j

)
(6.23)
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= min

(
p̄i− p(1)∗i ,e(1)i − p(1)∗i +∑

j
Π ji(p(1)∗j + p(2)∗j )

)
,

for all i, or:

p(1)∗i + p(2)∗i = min

(
p̄i,ei +∑

j
Π ji(p(1)∗j + p(2)∗j )

)
, (6.24)

for all i. Since:

p∗i = min

(
p̄i,ei +∑

j
Π ji p∗j

)
, (6.25)

for all i, by taking the least solution of both the previous equations, I have that

p∗i = p(1)∗i + p(2)∗i , for all i.

To the best of my knowledge, previous studies compared fully centrally cleared

markets either with fully bilateral markets (Amini et al., 2020; Ahn, 2020) (as in

Theorem 1) or with mixed markets (Amini et al., 2016) (as in Theorem 2). While

those results allow to gauge what happens when I move to a fully centrally cleared

market, they do not tell anything about the case in which the fraction of notional that

is centrally cleared increases (or decreases). To this end I now compare two different

mixed markets corresponding to two fractions of centrally cleared notional, e.g. α1

and α2.

In the following theorems and proofs, I will split centrally and bilaterally

cleared obligations in the mixed markets. Regardless how payments are split, re-

member that the bilateral clearing never begins before the central clearing com-

pletes.

Theorem 3. Let the tuple (L,e(1)) be a family of clearing systems with perfectly

correlated exposures and let α1,α2 ∈ [0,1], with α1 ≤ α2. The aggregate shortfall

is a decreasing function of α:

∑
i

si(α1)≥∑
i

si(α2) . (6.26)

Proof. Let α1 ≤ α2. The strategy I follow here is based on a specific decomposition
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of shortfalls at α1 and α2. Both at α1 and α2 I have

si(α1) = sc
i (α1)+ sb

i (α1) (6.27a)

si(α2) = sc
i (α2)+ sb

i (α2) . (6.27b)

At α1, a fraction 1−α1 of notional is in bilateral obligations, which yield the short-

fall sb
i (α1). I further split the stage in which bilateral obligations are cleared in two

sub-stages. In the first sub-stage I clear bilateral obligations corresponding to a frac-

tion α2−α1 of notional, while in the second sub-stage I clear the residual bilateral

obligations (see Lemma 2). In the second sub-stage, obligations will be larger than

or equal to obligations corresponding to a fraction 1−α2 of notional, which are the

bilateral obligations cleared at α2. I denote the shortfalls that bank i records in those

two sub-stages with sb
i (α1|α2−α1) and sb

i (α1| ≥ 1−α2). Similarly, at α2 a fraction

α2 of notional is in centrally cleared obligations, which yields the shortfall sc
i (α2).

Here I clear centrally cleared obligations in two sub-stages. In the first sub-stage I

clear centrally cleared obligations corresponding to a fraction α1 of notional, while

in the second sub-stage I clear centrally cleared obligations corresponding to a frac-

tion α2−α1 of notional (see Lemma 1). I denote the shortfalls that bank i records

in those two sub-stages with sc
i (α2|α1) and sc

i (α2|α2−α1). By using Lemmas 1

and 2 I can rewrite Eq.6.27 as:

si(α1) = sc
i (α1)+ sb

i (α1|α2−α1)+ sb
i (α1| ≥ 1−α2) (6.28a)

si(α2) = sc
i (α2|α1)+ sc

i (α2|α2−α1)+ sb
i (α2) . (6.28b)

The first observation is that sc
i (α1) = sc

i (α2|α1), for all i. This descends from

Eq.4.7 because the cash endowment is equal to e(1)i in both cases and net VM obli-

gations are equal to p̄i→CCP = α1(∑Li j−L ji)
+ in both cases (as I centrally clear

the same fraction of notional α1). From Eq.4.10 it descends that also the cash en-

dowment after this stage is the same, let us denote it with ẽ.

The second observation is that sb
i (α1|α2−α1)≥ sc

i (α2|α2−α1), for all i. Cash
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endowments are the same in both cases because are the cash endowments at the end

of the previous stage. The matrix of gross VM obligations is (α2−α1)L in both

cases, but at α1 those cleared fully bilaterally, while at α2 those are fully centrally

cleared. Therefore, by using Theorem 1 I have that sb
i (α1|α2−α1) ≥ sc

i (α2|α2−

α1).

The final step is to compare ∑i sb
i (α1| ≥ 1−α2) with ∑i sb

i (α2). Both at α1

and α2 obligations are cleared bilaterally. At α2 I clear bilaterally the matrix of

gross VM obligations L′′ = (1−α2)L, corresponding to net VM obligations L′′i j =

(1−α2)Li j, for all i and j. At α2 the cash available is the cash after the second

sub-stage of central clearing (see Lemma 1), which I denote with e′′. At α1 I clear

bilaterally net VM obligations L′i j ≥ (1−α2)Li j. To see this, it is sufficient to use

Eq.6.18 in Lemma 2 and noting that at α1 I clear bilaterally a fraction of notional

1−α1. At α1 the cash available is the cash after the first sub-stage of bilateral

clearing (see Lemma 2), which I denote with e′. I now show that e′′i ≥ e′i, for all i.

In order to see this, let us remind that:

e′′i =

[
ẽi− (α2−α1)

(
∑

j
Li j−L ji

)+]+
+(α2−α1)

(
∑

j
Li j−L ji

)−
. (6.29)

If ∑ j Li j−L ji ≥ 0, then
(

∑ j Li j−L ji

)+
= ∑ j Li j−L ji and

(
∑ j Li j−L ji

)−
= 0, so

that:

e′′i =

[
ẽi− (α2−α1)

(
∑

j
Li j−L ji

)]+
. (6.30)

If ∑ j Li j− L ji < 0, then
(

∑ j Li j− L ji

)+
= 0 and

(
∑ j Li j− L ji

)−
= −

(
∑ j Li j−

L ji

)
> 0, meaning that

e′′i = ẽi− (α2−α1)
(
∑

j
Li j−L ji

)
=

[
ẽi− (α2−α1)∑

j

(
Li j−L ji

)]+
,

(6.31)
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which then holds in all cases. Instead:

e′i = ẽi− p∗i (α1|α2−α1)+∑
j

Π ji p∗j(α1|α2−α1) , (6.32)

where with p∗i (α1|α2−α1) I denote the payment made by bank i in the first sub-

stage of bilateral clearing at α1. Now, payments in the first sub-stage at α1 are:

p∗i (α1|α2−α1) = min

[
p̄i(α1|α2−α1), ẽi +∑

j
Π ji p∗j(α1|α2−α1)

]
, (6.33)

where with p̄i(α1|α2−α1) I denote the net VM obligation of bank i in the first sub-

stage of bilateral clearing at α1. This leaves us with two cases. Either: p∗i (α1|α2−

α1) = ẽi +∑ j Π ji p∗j(α1|α2−α1), and therefore e′i = 0, which immediately implies

e′i ≤ e′′i . Or: p∗i (α1|α2−α1) = p̄i(α1|α2−α1), and therefore:

e′i = ẽi− p∗i (α1|α2−α1)+∑
j

Π ji p∗j(α1|α2−α1)

≤ ẽi− p̄i(α1|α2−α1)+∑
j

Π ji p̄ j(α1|α2−α1)

≤ ẽi− (α2−α1)∑
j

(
Li j−L ji

)+
+(α2−α1)∑

j

(
L ji−Li j

)+ (6.34)

= ẽi− (α2−α1)∑
j

(
Li j−L ji

)+
+(α2−α1)∑

j

(
Li j−L ji

)−
= ẽi− (α2−α1)∑

j

(
Li j−L ji

)
≤ e′′i .

To summarise, ∑i sb
i (α1| ≥ 1−α2) is the aggregate shortfall resulting from the least

solution of the Eisenberg and Noe algorithm with obligations L′ and cash e′, while

∑i sb
i (α2) is the aggregate shortfall resulting from the least solution of the Eisenberg

and Noe algorithm with obligations L′′ and cash e′′. In both case the matrix of

relative liabilities is Π. Moreover, L′ ≥ L′′ and e′ ≤ e′′. Since the least solution of

the Eisenberg and Noe algorithm (and payments therefore shortfalls) depend only

on obligations and cash (as the matrix of relative liabilities is Π in all cases), for the
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remainder of the proof I will denote with pi(e,L) the payment of bank i when cash

is e and obligations are L, and analogously for shortfalls. I have: sb
i (α1| ≥ 1−α2) =

sb
i (e
′,L′), and sb

i (α2) = sb
i (e
′′,L′′), for all i. By using Lemma 5 in Eisenberg and

Noe (2001) I have that:

∑
i

∣∣p̄′i− p̄′′i
∣∣≥∑

i

∣∣pi(e′,L′)− pi(e′,L′′)
∣∣ (6.35)

but from Lemma 5 in Eisenberg and Noe (2001) I also have that pi(e′,L′) ≥

pi(e′,L′′), for all i. Since L′ ≥ L′′, I have:

∑
i

p̄′i− p̄′′i ≥∑
i

pi(e′,L′)− pi(e′,L′′) (6.36)

or, by re-arranging terms:

∑
i

p̄′i− pi(e′,L′)≥∑
i

p̄′′i − pi(e′,L′′)

∑
i

sb
i (e
′,L′)≥∑

i
sb

i (e
′,L′′) .

(6.37)

Moreover, using again Lemma 5 in Eisenberg and Noe (2001), since e′′ ≥ e′, I have

that pi(e′′,L′′)≥ pi(e′,L′′), for all i, or:

sb
i (e
′′,L′′) = p̄′′i − pi(e′′,L′′)≤ p̄′′i − pi(e′,L′′) = sb

i (e
′,L′′) , (6.38)

for all i. Therefore, from Eq.6.37 I have:

∑
i

sb
i (e
′,L′)≥∑

i
sb

i (e
′,L′′)≥∑

i
sb

i (e
′′,L′′) (6.39)

or, by remembering the definitions:

∑
i

sb
i (α1| ≥ 1−α2)≥∑

i
sb

i (α2) , (6.40)

which concludes the proof.

Theorem 3 shows that, for perfectly correlated exposures, increasing the frac-
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tion of centrally cleared notional from α to α ′ = α +∆α , is always (weakly) ben-

eficial in aggregate, independently of the starting fraction of notional α that is cen-

trally cleared and of the additional fraction of notional ∆α that becomes centrally

cleared. In other words, for perfectly correlated exposures, in aggregate there are

no unintended consequences of increasing the fraction of notional that is centrally

cleared.

Theorem 3 indicates that increasing the fraction of centrally cleared notional is

weakly beneficial in aggregate. But it does not exclude that, at least in some interval,

increasing the fraction of centrally cleared notional is not strictly beneficial. That is,

it does not exclude that, in some interval, the aggregate shortfall does not decrease

as the fraction of centrally cleared notional increases. I find that this is indeed the

case. More precisely, shortfalls of all banks do not decrease in the interval [0,α∗),

where α∗ is a critical value that depends of cash buffers and net obligations of

individual banks.

Theorem 4. Let S (L,e(1)) be a family of clearing systems with perfectly correlated

exposures and let:

α
∗ = min

i

e(1)i(
∑ j Li j−L ji

)+ . (6.41)

Then, for all α < α∗, si(α) is independent of α , i.e. si(0) = si(α), for all i.

Proof. Let us start by observing that:

e(3)i =

[
e(1)i −α

(
∑

j
Li j−L ji

)+]+
+α

(
∑

j
Li j−L ji

)−
. (6.42)

If ∑ j Li j−L ji ≥ 0, then
(

∑ j Li j−L ji

)+
= ∑ j Li j−L ji and

(
∑ j Li j−L ji

)−
= 0.

Therefore, for α ≤ α∗:

e(3)i = e(1)i −α ∑
j

(
Li j−L ji

)
. (6.43)

If ∑ j Li j− L ji < 0, then
(

∑ j Li j− L ji

)+
= 0 and

(
∑ j Li j− L ji

)−
= −

(
∑ j Li j−
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L ji

)
> 0, meaning that:

e(3)i = e(1)i −α ∑
j

(
Li j−L ji

)
. (6.44)

which then holds for all i and for α ≤ α∗.

For the remainder of the proof, in order to make our notation more compact I

introduce:

bi j = Li j−L ji (6.45)

and I briefly note that bi j = b+i j − b−i j and that b+i j = b−ji . In order to prove that

shortfalls do not depend on α I will check that all the terms that multiply α (which

I refer to as the α terms) are equal to zero. I use the symbol
α' to indicate that I are

keeping only the α terms or the terms that may contain α .

Let us denote with S the set of banks that do not default in the bilateral round

and with D the set of banks that default in the bilateral round. All banks in S pay

in full and have zero shortfall. The realized payments of banks in D are:

p∗i = e(3)i +∑
j

Π ji p∗j

= e(1)i −α ∑
j

bi j + ∑
j∈S

Π ji p̄ j + ∑
j∈D

Π ji p∗j (6.46)

= e(1)i −α ∑
j∈S

bi j−α ∑
j∈D

bi j +(1−α) ∑
j∈S

b+ji + ∑
j∈D

Π ji p∗j ,

while their shortfall is:

si = (1−α)∑
j

b+i j − p∗i

= (1−α) ∑
j∈S

b+i j +(1−α) ∑
j∈D

b+i j − p∗i

α'−α ∑
j∈S

b+i j −α ∑
j∈D

b+i j +α ∑
j∈S

bi j +α ∑
j∈D

bi j +α ∑
j∈S

b+ji− ∑
j∈D

Π ji p∗j (6.47)

= α ∑
j∈S

(
−b+i j +bi j +b+ji

)
+α ∑

j∈D

(
bi j−b+i j

)
− ∑

j∈D
Π ji p∗j
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= α ∑
j∈S

(
bi j− (b+i j −b−i j)

)
−α ∑

j∈D
b−i j − ∑

j∈D
Π ji p∗j

=−α ∑
j∈D

b−i j − ∑
j∈D

Π ji p∗j .

As a consequence, I are left to prove that all the α terms in:

− si
α'α ∑

j∈D
b−i j + ∑

j∈D
Π ji p∗j (6.48)

sum to zero. To this effect let us re-write Eq.6.48 as:

−si
α'α ∑

j∈D
b−i j + ∑

j∈D
Π ji p∗j

= α ∑
j∈D

b−i j + ∑
j∈D

b+ji
∑k b+jk

p∗j (6.49)

= α ∑
j∈D

b−i j + ∑
j∈D

b−i j

∑k b+jk
p∗j

= ∑
j∈D

b−i j

(
α +

p∗j
∑k b+jk

)

Since all js in the summation above are in D , I can use Eq.6.46 and keep only the

α terms:

p∗j
α'−α ∑

k∈S
b jk−α ∑

k∈D
b jk−α ∑

k∈S
b+k j + ∑

k∈D
Πk j p∗k

=−α ∑
k∈S

(
b jk +b−jk

)
−α ∑

k∈D
b jk + ∑

k∈D
Πk j p∗k (6.50)

=−α ∑
k∈S

b+jk−α ∑
k∈D

b jk + ∑
k∈D

Πk j p∗k

=−α ∑
k∈S

b+jk−α ∑
k∈D

b+jk +α ∑
k∈D

b−jk + ∑
k∈D

Πk j p∗k

=−α ∑
k

b+jk +α ∑
k∈D

b−jk + ∑
k∈D

Πk j p∗k ,
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which I can now plug into Eq.6.49:

−si
α' ∑

j∈D
b−i j

[
α +

1
∑k b+jk

(
−α ∑

k
b+jk +α ∑

k∈D
b−jk + ∑

k∈D
Πk j p∗k

)]

= ∑
j∈D

b−i j

∑k b+jk

(
α ∑

k∈D
b−jk + ∑

k∈D
Πk j p∗k

)

= ∑
j∈D

b+ji
∑k b+jk

(
α ∑

k∈D
b−jk + ∑

k∈D
Πk j p∗k

)

= ∑
j∈D

Π ji

(
α ∑

k∈D
b−jk + ∑

k∈D
Πk j p∗k

)
,

(6.51)

where the coefficients
b−i j

∑k b+jk
do not depend on α , while the terms in parentheses have

the same form of Eq.6.48. The important observation here is that, when computing

the α terms for the shortfall of banks in D , I are left with only with summations over

banks in D . If I proceed iteratively by plugging in the analogous of Eq.6.50 for p∗k I

arrive at an analogous expression where ∑ j∈D Π ji is replaced by ∑ j,k∈D Πk jΠ ji and

the terms in parentheses correspond to the neighbors of k that are in D . Eventually,

if I keep iterating this procedure, the only terms left correspond to cycles of banks in

D . (This immediately implies that, if I only have two defaulted banks, shortfalls do

not depend on α , as bilateral netting means that I cannot have 2-cycles.) Therefore,

if I denote with Ci the set of cycles of i and with `c the length of the cycle c, I have:

− si
α' ∑

c∈Ci

Πi j`c . . .Π j2 j1Π j1i

(
α ∑

j1∈D
b−i j1 + ∑

j1∈D
Π j1i p∗j1

)
. (6.52)

I can now go through each cycle an arbitrary number of times, say nc for cycle c:

− si
α' ∑

c∈Ci

(
Πi j`c . . .Π j2 j1Π j1i

)nc

(
α ∑

j1∈D
b−i j1 + ∑

j1∈D
Π j1i p∗j1

)
. (6.53)

The term in parentheses does not depend on nc and is finite (realized payments)

cannot exceed the payment obligations. On the other hand, as long as one of the

Π jm, jm+1 is strictly smaller than one, in the limit nc→ ∞ I are left with no α terms.

If all Π jm, jm+1 are equal to zero, it means that i is part of an isolated cycle (i.e.
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a closed chain in which all banks do not have obligations to any other bank) in

which all banks are in D , which is the only case that is left to prove. However, in

the Eisenberg and Noe algorithm, as long as e(3)i is strictly larger than zero for all

i, there cannot be a closed cycle of banks in D . In fact, banks will make partial

payments and at least the link with the smallest payment obligation will disappear.

This means that I are only requiring that e(3)i > 0, for all i, which is true as long as

α < α∗.

6.2 Homogeneous VM obligations
So far I have been able to derive some general qualitative properties of how short-

falls depend on α in the case of perfectly correlated exposures. That said, under-

standing whether α∗ is a tight bound (i.e. whether aggregate shortfalls start de-

creasing at α∗ or for α strictly larger than α∗) and characterising the dependence

of α∗ on the model parameters still requires me to perform numerical experiments.

Hence, I generate a random ensemble of networks of VM obligations and, on each

network of the ensemble, I simulate the payment algorithm in Section 4.4. I fix the

number of institutions N = 100 and Ltot
i = 100, and the total VM exposure is evenly

distributed to its counterparties. I further assume that all counterparty relationships

exist independently with probability p (i.e. that networks have a Erdős-Rényi topol-

ogy). I explore the effect of different level of connectivity by varying p, which is

equivalent to varying average degree M. The exogenous cashflow e(1)i is another

variable I am interested in, so its relationship with the shortfall is also examined.

Fig.6.2 shows the behavior of the aggregate shortfall as a function of α for

different values of the network density and exogenous cashflow. From the figure,

it can clearly be seen the functional behavior discussed in Sec.6.1, i.e. the facts

that the shortfall is non-increasing in α and that it is constant until a critical value.

The figure also shows that increasing the density of the network leads to an overall

reduction of the shortfall. This is due to the fact that increasing connectivity while

keeping other variables constant leads to an increased level of bilateral netting. The

explanation is further verified in Fig.6.3, where the blue area (bilateral netting) is
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larger in the right panel than the left. Finally, the shortfall increases if total cashflow

is increased.

Figure 6.2: Average over 100 realisations of shortfall against α at e(1) = 15 with errorbar.

Figure 6.3: Decomposition of total obligations in netting, payments, and shortfalls with
e(1)i = 15 at M = 5 (left panel) and M = 8 (right panel) over 100 realisation

In Figure 6.4 I show the behavior of α∗ (left panel) and of the shortfall s(α∗)

recorded at α = α∗ (right panel) as a function the average degree M for different

values of the exogenous cashflow. Those small fluctuations that can be seen in the

curves because I round α∗ to the nearest percentage. It can be seen that, regard-

less of the value of e(1), α∗ increases with the network connectivity, while s(α∗)
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decreases. This means that, the denser the network is, the larger the fraction of no-

tional that should be centrally cleared before central clearing becomes beneficial,

and the smaller the shortfall at α∗. This is not surprising as the larger number of

counterparty relationships in a denser network yield more bilateral netting oppor-

tunities. Therefore, all else equal, a larger fraction of notional must be centrally

cleared before I can see any benefit of central clearing.

Figure 6.4: Critical fraction α∗ of centrally cleared notional after which the aggregate
shortfall starts start to decline (left panel) and aggregate shortfall at α∗ (right
panel). All points are averaged over 100 realisation of the network of obliga-
tions. All institutions have the same obligations that are distributed uniformly
across their counterparties.

6.3 Heterogeneous VM obligations
I now relax the assumption of homogeneous total gross VM obligations across

banks. More specifically, I consider the total gross VM obligations of each bank to

be drawn from an exponential distribution with mean Ltot
i = 100, but I still consider

the obligations of an institution to be uniformly distributed across its counterparties.

Results are reported in Fig.6.5 and 6.6. On the LHS of Fig.6.6 the variation

occurs because I round the result to the nearest percentage. The most noticeable

difference with respect to the homogeneous case is a much weaker dependency of

α∗ on the network density. Refer to Fig.6.5, the shortfall appears overall larger with

respect to the homogeneous case, but α∗ is now smaller. This suggest that, while a

system with heterogeneous total gross VM obligations is less efficient (in the sense

that shortfalls are larger), it is easier for central clearing to be beneficial, as the
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critical fraction of obligations that should be centrally cleared for the shortfall to

start decreasing is lower with respect to the benchmark of a system in which total

gross VM obligations are homogeneous.

Figure 6.5: Shortfall of heterogeneous exposures against α at different level of M at e(1) =
15 with errorbar. All points are averaged over 100 realisation of the network of
obligations.

Figure 6.6: Critical fraction α∗ of centrally cleared notional after which the aggregate
shortfall starts start to decline (left panel) and aggregate shortfall at α∗ (right
panel). All points are averaged over 100 realisation with errorbar of the network
of obligations. All institutions have the same obligations that are distributed
uniformly across their counterparties.

Overall, in this chapter, I have analysed both analytically and numerically on

the behaviour of central clearing to the liquidity shortfalls. The most noticeable
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result is that the non-increasing relationship between shortfall and α . On top of

this, the CCP only becomes effective after a certain threshold of α . These findings

will have implications for regulators to understand the impact of central clearing

and thereby design the optimal clearing mechanism.



Chapter 7

Networks with Different Topology

In previous chapters, I have generalised the EN algorithm to account for the pres-

ence of a CCP and study the effect of central clearing. I proved general statements

that are valid for generic networks and carried out analysis on hypothetical bank-

ing systems for which the clearing vectors are found by solving numerical the EN

algorithm. However, the the Erdős-Rényi network is based on assumptions which

are rarely observed in real financial networks. Therefore, in this chapter I will study

networks with more realistic features to understand how they affect the efficiency

of central clearing.

Previous studies (see Chapter 2) have proved that interbank networks mainly

follow a heavy-tailed degree distribution, which means they are characterised by

the presence of highly connected nodes (hubs) (Boss et al., 2004a; Inaoka et al.,

2004; Soramäki et al., 2007). A typical example of heavy-tailed degree distribution

is a power-law. Therefore, in the following I consider the networks with power law

degree distribution as described in Eq.3.4 with appropriate level of γ and kmin.

The second generalisation relates to network assortativity, which measures the

degree correlation. Positive assortativity means that high degree nodes tend to con-

nect with high degree nodes and vice versa, while negative assortativity means that

high degree nodes tend to connect with low degree nodes. It has been widely ob-

served in reality (see Chapter 2) that interbank networks tend to be disassortative

(Bech and Atalay, 2010; Iori et al., 2008). Such phenomenon can also be explained

as small institutions are more likely to carry out business with large institutions
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instead of other small market players.

In the following I will present results related to above-mentioned two proper-

ties. In particular, the first experiment will be generating scale-free networks with

similar average degree to the benchmark case. In the second experiment, I will keep

the degree distribution the same as Erdős-Rényi ones then use the link rewiring pro-

cess provided by Noh (2007) to generate networks with different assortativity. I

consider a network structure similar to that of Chapter 6, i.e. with perfectly corre-

lated exposures, as I proved stronger results analytically under this framework, and

this is the case that is typically considered in the literature (Amini et al., 2016). In

both experiments, I will investigate relationships between shortfall and α , and com-

pare the different behaviour between those extended frameworks to the benchmark

framework.

7.1 Scale-free Network
I am interested in understanding how the efficiency of scale-free networks compares

to that of Erdős-Rényi networks, and whether it is easier or harder for a CCP to be

effective. The rationale behind this question is the fact that scale-free networks are

characterized by a hub-and-spoke structure that is more centralized with respect to

Erdős-Rényi networks. In this section I carry out extensive numerical simulations

to study the behaviour of liquidity shortfall under the scale-free network. Recall

that the power-law degree distribution as I explained in Section 3.3 is the following:

P(k)∼ k−γ with k > kmin. (7.1)

Different from all other sections where I generate networks using N = 100, in

this section I generate scale-free networks with N = 1000. The reason falls behind

that I need large sample to make heavy-tail exists. Accordingly, the average degree

M now becomes 10× as before, to ensure the probability of a link exists stays as

close as the benchmark. The first step is to determine appropriate values for kmin and

γ . It has been shown in literature that γ varies between 2.1 and 3 (De Masi and Gal-

legati, 2012; Soramäki et al., 2007) across different interbank networks, therefore
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the initial value used in the following simulation is γ = 2.5. To match the average

degree of the Erdős-Rényi network, I run simulations on different values of kmin to

infer the mapping between kmin and the average degree M. The appropriate value

of kmin can then be selected as the one for which the average degree is the closest

to the desired one. In detail, for each selected kmin, I generate 100 random scale-

free networks and record the average degree. Then I select the one which produces

closest level of desired average degree appropriate kmin. The corresponding kmin of

values that are used in the following analysis is summarised in the following table:

γ 2.5 2.5 2.5 2.5 2.8 3 3.1 3.4 3.5 3.7 4
M 50 60 70 80 50 50 50 50 50 50 50
kmin 26 32 38 45 28 29 30 32 32 33 34

Table 7.1: Summarise all values of kmin that are used in the following analysis

Figure 7.1: Shortfall against α for scale-free network at different level of M with e(1) = 15
with errorbar. All points are averaged over 100 realisation of the network of
obligations.

I run numerical simulations similar to those carry out in Chapter 6 and I com-

pare results for those two sets of simulations. I consider perfectly correlated ex-

posures and homogeneous VM obligations, i.e. Ltot
i = L = 100, for all i. Similarly
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to Sec.6.1 and observed in Sec.6.2, Fig.7.1 shows the relationship between short-

fall and fraction of notions centrally cleared for different values of M and e. As

for the case of Erdős-Rényi network I observe shortfall is decreasing against α and

there is a threshold effect where the shortfall is constant for α < α∗, and increasing

connectivity and cashflow improve the efficiency of the system.

The left panel in Fig.7.2 shows the performance of the scale free network com-

pares to that of the Erdős-Rényi case. The relationship between shortfall and α is

the same across these four experiments. However, the figure makes it clear that the

scale-free network is less efficient than the Erdős-Rényi network and that increasing

γ reduces the shortfall. As γ controls the level of heavy-tailness in the degree distri-

bution, I conclude a more centralised system is adverse to the payment efficiency.

In contrast, the system should be more robust if exposures are spreaded across more

institutions.

Figure 7.2: Compare scale-free networks with Erdős-Rényi network (left panel) and short-
fall at different level of γ (right panel). Averaging over 100 realisations with
N = 1000, M = 5, e(1)i = 15 and Ltot

i = 100.

An intuitive explanation of this phenomenon is the following: low-degree

nodes are poorly connected, but in my experimental setting they have the same

liabilities as the high-connected nodes. High-degree nodes have incoming links

from several different counterparties. In contrast, low-degree nodes only have a

few counterparites that provide interbank assets to them. Therefore, high-degree

nodes have higher interbank assets than low-degree nodes do. The shortfall of a

high-degree node is therefore lower than that of low-degree node. From Fig.7.3, I
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can see that CCP netting gets smaller for smaller γ , from which I conclude that the

CCP is less effective in reducing shortfalls for scale-free networks. Recall Eq.4.4a

that the CCP nets all transactions in aggregate level. Because interbank assets of

low-degree nodes are smaller, the CCP nets less transactions, pushing total shortfall

up.

In order to further verify this, I now focus on quantities of individual nodes

instead of aggregate level. First, one should remember that all results and rela-

tionships in Sec.6.1 hold for both aggregate and individual level. After checking

interbank assets of individual banks and comparing them with their degree, I do

recognise that low-degree nodes exhibit lower interbank assets. Further, it seems

that these nodes also experience higher shortfalls.

Figure 7.3: Decomposition of total obligations as six components at different level of γ .
N = 1000, e(1)i = 15, Ltot

i = 100, M = 50 and corresponding kmin can be found
in Table 7.1.

I use a regression model where the dependent variable is the shortfall of each

node i and the exogenous variables are degree of each node ‘deg’ and a dummy

variable ‘ER’, which takes 1 if node i is the Erdős-Rényi network or 0 if it is the
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scale-free network. The equation should be specified as:

SFi = β0 +β1degi +β2ERi + εi (7.2)

In Eq.7.2, β0 is the intercept, β1 is the coefficient associated with the degree,

and β2 is the coefficient of the dummy variable, which should be interpreted as the

relationship to reference category (scale free network in this case). εi is simply the

residual term. Table 7.2 shows that β2 is significantly negative, indicating the Erdős-

Rényi network has a lower shortfall compared to the scale-free network. β1 is also

significantly negative, confirming that lower degree nodes have higher shortfalls.

This is because, as previously explained, low-degree nodes tend to have smaller

interbank assets, with constant cash and interbank liabilities, and they are therefore

more likely to record a higher shortfall. This, together with the fact that there are

many nodes with low-degree in the scale-free network (see left panel Fig.3.1 for

example), make the aggregate shortfall higher than that of the benchmark.

Estimate SE t-stat p-value
(Intercept) 53.5665 0.35184 152.2454 0
degree −2.7682 0.028928 −95.6936 0
ER −9.9124 0.28165 −35.1936 2.58×10−263

Table 7.2: Regression results of Eq.7.2

As it can be seen in the left panel of Fig.7.2, the plateau also exists for small

values of α , indicating that there also exists a threshold α∗ after which the CCP

begins to be effective. In Thm.4, I have already proved that α∗ only depends on e

and p̄i as long as Lc = Lb. Therefore, properties related to α∗ still holds and the

effectiveness of the CCP remains the same compare to the Erdős-Rényi case.

7.2 Network Assortativity
In this section, I study the effect of assortativity on payment efficiency. To this end,

I start from the Erdős-Rényi network and construct networks with different level

of assortativity by rewiring edges following the algorithm in Noh (2007). The link

rewiring process can generate networks with different assortativity, at the same time
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Figure 7.4: Compare Erdős-Rényi with (dis)assortative networks over 100 resolutions. N =
100, M = 5, e = 15 and Ltot

i = 100.

maintaining the degree of each node. It therefore allows me to study the effect at

different degree correlation within a given degree distribution.

Figure 7.5: Relationship of J against shortfall at α = 0.5. The network consists of N = 100
nodes and has average degree M = 5. Each node has initial cashflow e(1)i = 15.

In Fig.7.4, three series of shortfall values are calculated with Erdős-Rényi net-
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works, assortative networks (J = 1) and disassortative networks (J = −1). It can

be seen that the disassortative network has the highest value of shortfall, while the

assortative network has the smallest. The behaviour of the shortfall as a function of

α is similar across all models, and all properties found and proved in Chapter 6 are

preserved.

In Fig.7.5, the value of shortfall is measured as a function of assortativity level

at α = 0.5, which is chosen to ensure it is greater than the threshold α∗. The key

finding is that the shortfall is a decreasing function of assortativity. In this thesis,

such observed phenomenon can be explained using the network structure. Because

I have already proved in Table 7.2 that the degree has negative relationship with

the shortfall, the most critical components lie with low-degree nodes. Assortativity

only takes into account the degree correlation. Let us consider the case that the

network is disassortative, and recall that by assumption all liabilities are fixed at

100 and distributed evenly across counterparties. Since low-degree nodes are con-

nected with high-degree nodes, the liabilities of high-degree nodes are spread to

many counterparites, therefore the amount of incoming assets of a low-degree node

becomes smaller. On the other hand, for assortative networks, low-degree nodes

are connected with low-degree nodes, total liabilities are concentrated to only a few

counterparties.

7.3 Scale-Free Networks and Assortativity

What will happen if I combine scale-free with assortativity? In the first place, I

should point out that these two properties are not independent and sometimes incor-

porating with each other. The scale-free network is assortative neutral only if the

number of nodes getting large (Newman, 2002), and a small tail parameter (γ < 3)

makes the scale free network disassortative (Fricke et al., 2013). That is the reason

why I choose larger network with N = 1000 in Sec.7.1. When initially checking

the assortativity of random scale-free networks, I find it has magnitude of −10−3.

This value is considered to be negligible in terms of assortativity. In the following,

I consider networks with both scale-free and assortative properties to study how the
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model performs under this scenario.

I use a network with N = 1000 and M = 50, so kmin = 26 refer to Table7.1. To

produce networks with different assortativity, I use Noh (2007)’s algorithm again

with J = ±1. Because total degree has increased, I choose T = 150000. The re-

gression model I use is characterised as:

SFi = β0 +β1degi +β2SFi +β3disassortativei + εi (7.3)

In Eq.7.3, the dependent variable is the shortfall of each node i and the exoge-

nous variables are degree of each node ‘deg’, a dummy variable ‘SF’, which takes

1 if node i is the scale-free network or 0 if it is the Erdős-Rényi network, and a

dummy variable ‘disassortative’ which takes 1 if node i is disassortative or 0 if it is

assortative. In this case, I only need to produce 4 combinations: scale-free & assor-

tative, scale-free & disassortative, Erdős-Rényi & assortative, and Erdős-Rényi &

disassortative. β0 is the intercept, β1 is the coefficient associated with the degree,

β2 is the coefficient of the SF dummy variable, which should be interpreted as the

relationship to reference category (Erdős-Rényi network in this case), and β3 is the

coefficient of the disassortativity dummy variable, which should be interpreted as

the relationship to the reference category (assortative network in this case). εi is

simply the residual term.

Estimate SE t-stat p-value
(Intercept) 12.329 0.18186 67.7923 0
degree -0.17853 0.001496 -119.3398 0
SF 13.9113 0.11913 116.7738 0
disassortative 13.542 0.11913 113.67 0

Table 7.3: Regression result of Eq.7.3. All coefficients are statistically significant and con-
sistent with previous results.

As it can be seen in Table7.3, β1 is still significantly negative, verifying the fact

that low-degree nodes contribute more to the shortfall. Both β2 and β3 are signifi-

cantly positive, which is consistent with previous sections. The inefficiency related

to these two properties mainly comes from the above-average number of low-degree



104

nodes which are shortage in interbank assets as explained before. Hence, scale-free

and disassortative together can further drive up the shortfall, meaning that in reality,

the interbank network might be more fragile than the benchmark of the Erdős-Rényi

network in terms of payment shortfalls. The R2 of the regression is 0.506, indicating

that the regression provides a good fit, so the result is considered to be reliable.

In this chapter, I have studied the effect of heavy-tail in the degree distribution

and network (dis)assortativity on liquidity shortfalls in payment networks. Both

properties have been empirically observed in real interbank networks, and I showed

that they both contribute to increasing liquidity shortfalls, thereby making the sys-

tem less efficient w.r.t the case of homogeneous networks with positive assortativity.

As a result, a suggestion for regulators would be encouraging interbank connections

to avoid the existence of a large number of peripheral banks which only carry out

business with a small number of counterparties.



Chapter 8

Conclusions

This thesis studies clearing in presence of CCPs. To this end, it generalises the

Eisenberg-Noe algorithm for the computation of clearing vectors. Central clearing

is one of the pillars of the approach undertaken by regulators after the Global Finan-

cial Crisis to improve financial stability. However, in both academia and industry,

researchers are still debating whether there exist any unintended consequences when

introducing CCPs and extending their scope.

In this thesis I focus on liquidity shortfalls from the failure of variation margin

calls. I consider only one CCP and that all asset classes are cleared within it to

remove potential inefficiency related to multiple CCPs (Duffie and Zhu, 2011). I

also assume the CCP always pays its obligations in full without any delays. In

short, I find that increasing the fraction of central clearing (α) does not necessarily

lead to smaller liquidity shortfalls.

Introducing the CCP has two main effects. First, all payments that occur

through the CCP are netted. This reduces the amount of money that needs to be

exchanged in the system, thus increasing its efficiency through lower liquidity short-

fall. Second, the presence of a CCP introduces a sequencing of payments: Each in-

stitution needs first to pay the CCP (e.g. at the beginning of the day), then bilateral

transactions can be settled (e.g. at the end of the day). Such sequencing can bring

some inefficiency, as some institutions who would be able to pay the CCP only af-

ter receiving bilateral payments, will need to borrow from the outside to meet their

commitment to the CCP. I have studied both of these two effects to figure out how
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the other overcome the other in aggregate level.

To study the effect of central clearing, I generalise the EN algorithm to allow

for the computation of clearing vectors in presence of a CCP. The algorithm takes

into consideration both the sequencing constraint and the netting effect induced by

the CCP. After that, I carry out a numerical analysis with hypothetical interbanking

systems.

I find that, at least when the underlying counterparties on centrally cleared and

bilateral contracts are not exactly the same (more precisely when centrally cleared

and bilateral exposures are independent), the aggregate shortfall is not minimal

when all contracts are centrally cleared (or when all contracts are bilateral). Indeed,

unless the network of counterparties is too interconnected or unless the exogenous

cashflows are sufficiently large, there exists a non-trivial optimal fraction of cen-

trally cleared notional for which the aggregate liquidity shortfall is minimal. This

suggests that increasing the scope for central clearing might not necessarily reduce

the aggregate demand for collateral. In fact, it is true that increasing the fraction

of centrally cleared notional leads to a reduction in net VM payment obligations

due to the multilateral netting performed by the CCP. However, it also leads to the

reduction in realised bilateral payments. When the fraction of centrally cleared no-

tional is small the first effect prevails, but when it is large the second effect becomes

dominant. Furthermore, the reduction in realised bilateral payments does not appear

to be driven by the temporal constraints due to the sequencing of centrally cleared

and bilateral payments, suggesting that it might be rather linked to the change in the

underlying topology of the network of counterparties that occurs when the fraction

of centrally cleared notional increases.

I then study the behaviour of the optimal fraction under different combinations

of M and e. I can see that the fraction of realisations with a minimum is non-

increasing w.r.t. M, and for larger values of e, the fraction drops to 0 faster than

realisations with smaller e. I would therefore conclude that the central clearing will

be more efficient in reaching an optimal shortfall for systems with low connectivity

and exogenous cashflow. On the other hand, the fraction of realisations with 0
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shortfall increases for higher average degree, and the fraction reaches 1 faster for

higher exogenous cash. These two results match with each other on the fact that

having a CCP becomes less necessary when the network is widely connected and

each node has sufficient cashflow.

When centrally cleared and bilateral exposures are perfectly correlated, and

therefore the underlying counterparties on centrally cleared and bilateral contracts

are exactly the same, increasing the fraction of centrally cleared notional is always

weakly beneficial, in the sense that the the aggregate liquidity shortfall weakly

decreases with the fraction of centrally cleared notional. However, the aggregate

shortfall starts decreasing only if a sufficiently large fraction of notional is centrally

cleared. As a consequence, in this case, introducing central clearing might not re-

duce the demand for collateral, unless its scope is sufficiently large.

Different distributions of aggregate liabilities are checked. In particular, I ex-

tend the homogeneous exposures where all banks have the same liabilities to the

case of heterogeneous exposures, where the total liability for each bank is drawn

from exponential distribution. In case heterogeneous total liabilities, α and short-

fall are observed to exhibit an relationship similar to the case of homogeneous expo-

sures. However, the system becomes less efficient as total shortfall is getting larger

in this case. Another key difference falls within the fraction of realisations with a

minimum. For heterogeneous liabilities, the fraction of realisations with a minimum

has no conclusive relationship w.r.t M and e as the minimum always exists in almost

all realisations. This phenomenon indicates that in this scenario, having a CCP is

more efficient in reducing liquidity shortfall over the whole system. When total ex-

posures are perfectly correlated, the relationship between α and shortfall is similar

between homogeneous and heterogeneous liabilities, while total shortfall gets larger

for heterogeneous case. The most notable difference comes from the value of α∗, at

which point the CCP begins to be effective. I find weaker dependency of α∗ against

connectivity and cashflow. This suggests that, it is easier for central clearing to be

beneficial, as the critical fraction of obligations that should be centrally cleared for

the shortfall to start decreasing is lower with respect to the benchmark of a system
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in which total gross VM obligations are homogeneous.

I also study the role of payment sequencing. In practice, transactions associ-

ated with the CCPs are organised in a specific order, where payments towards the

CCP should be paid first, then banks receive payments from the CCP, after that

bilateral transactions can be settled. One may argue that this phenomenon could re-

sult in the minimum shortfall exists as for higher values of α , as a bank might have

fewer cashflow to settle transactions in the third round so the shortfall goes up after

certain level of α . I find, however, such payment sequencing plays only little role

for the minimum to occur. After checking the scenario that no payment sequenc-

ing involved, I find such minimum still exists. In short word, this clearly implies

that payment sequencing has no effect on the minimum. When checking fraction

of realisations that the minimum occurs, it still does not have significant difference.

Such results indicate that the existence of the minimum in aggregate shortfall may

mainly arise because of the change in network topology when novating bilateral

obligations to central obligation.

I then extend results from the Erdős-Rényi random network to other different

network topologies. Two other topologies studied are heavy-tailed degree distri-

bution and network assortativity. Those two frameworks are widely observed and

examined in literature (see previous). For the scale-free network, I consider the

fitness model to construct networks with power-law degree distribution (Caldarelli

et al., 2002). To generate non-neutral assortativity networks, I use the link rewiring

algorithm developed by Noh (2007). These two properties provide more accurate

and realistic hypothetical interbank networks.

For the scale-free network, liquidity shortfall exhibits higher value compare

to the Erdős-Rényi benchmark case. At the same time, under perfectly correlated

exposures, the relationship of shortfall against α stays similar with plateau at begin-

ning and monotonic decreasing after αc. Because under homogeneous distributed

VM assumption, low-degree nodes have fewer incoming links but same outgoing

links, as a result contribute more shortfall to the system. Above justification is ver-

ified using regression in Table 7.2, which I can see high degree nodes tend to expe-
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rience lower shortfall, and the Erdős-Rényi model tends to produce lower shortfall.

Regarding networks with different assortativity, assortative networks have

lower shortfall than disassortative networks. This can be explained using the spe-

cific network structure, where the liabilities of high-degree nodes are spread to many

counterparites, the amount of incoming assets of a low-degree node therefore be-

comes smaller. For all network frameworks I studied, as long as exposures are

perfectly correlated, I still find the fully centrally cleared network has shortfall no

larger than the case in fully bilaterally cleared network, indicating that having a

CCP is at least not worse off the system.

This thesis contributes to the literature and policy-making perspectives on the

design of derivatives markets, in particular, the proportion of notional to be centrally

cleared to gain the most maximised effects. Inspired by the finding of Duffie and

Zhu (2011) that it is always more efficient to clear all asset classes within one CCP,

I consider a framework with only one CCP presents. Despite the fact that central

clearing is becoming one of the pillars of the approach undertaken by regulators

after the Global Financial Crisis to enhance financial stability, it is still very much

debated whether introducing central clearing or extending its scope can have unin-

tended consequence (Pirrong, 2011; Ghamami and Glasserman, 2017; Bellia et al.,

2019; Berndsen, 2020; Menkveld and Vuillemey, 2021). The key finding falls into

the fact that it is not always optimal to increase the fraction of central clearing,

despite it has been proved in the literature that increases in multi-lateral netting is

the major source in reducing interbank exposures (Cont and Kokholm, 2014). For

regulators and policy-makers, this study provides a potential direction in figuring

out the percentage of central clearing required to achieve the most efficient clearing

mechanism. In some cases, not all contracts should be centrally cleared and an opti-

mal level of liquidity shortfall can be achieved before that point. On the other hand,

for the other network structures, it is never inadequate to increase the percentage of

centrally cleared contracts, but the advantage only occurs after a certain threshold.

This thesis can be extended in several ways. Regarding the network topology,

it has been proved in empirical study that interbank networks follow low level of
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clustering (see Eq.3.2) (Boss et al., 2004a). Therefore, how the liquidity shortfall

behaves should be further examined in this framework. The other direction could be

to relax the assumption that CCP never defaults. In adverse market conditions, the

value of IMs can become extremely volatile so the speed of VM calls might not meet

the large fluctuation in asset prices. In addition, when all asset classes are cleared

with in single CCP, and the percentage of central clearing keeps increasing, it can

impose higher operational risk on the CCP as it faces greater workload. Further

possible way is adjusting e(1)i from exogenous cashflow to other liquidity/illiquidity

assets, then incorporating stochastic terms in asset values (Barucca et al., 2020) and

fire sales on asset. At the end, this model should also be tested using empirical data

to assess its stability in real payment systems and the scope of their improvements.
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