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Abstract
The relationship between structural connectivity (SC) and functional connectivity (FC) captured from MRI, as well as
its interaction with disability and cognitive impairment, is not well understood in people with multiple sclerosis (pwMS).
The Virtual Brain (TVB) is an open-source brain simulator for creating personalized brain models using SC and FC. The
aim of this study was to explore SC-FC relationship in MS using TVB. Two different model regimes have been studied:
stable and oscillatory, with the latter including conduction delays in the brain. The models were applied to 513 pwMS
and 208 healthy controls (HC) from 7 different centers. Models were analyzed using structural damage, global diffusion
properties, clinical disability, cognitive scores, and graph-derived metrics from both simulated and empirical FC. For the
stable model, higher SC-FC coupling was associated with pwMS with low Single Digit Modalities Test (SDMT) score
(F=3.48, p<0.05), suggesting that cognitive impairment in pwMS is associated with a higher SC-FC coupling. Differences
in entropy of the simulated FC between HC, high and low SDMT groups (F=31.57, p<1e-5), show that the model
captures subtle differences not detected in the empirical FC, suggesting the existence of compensatory and maladaptive
mechanisms between SC and FC in MS.
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Introduction1

Multiple Sclerosis (MS) is a chronic autoimmune disease2

affecting the central nervous system (Thompson et al.,3

2018a) and characterized by inflammation, demyelination, and4

neurodegeneration. MS presents heterogeneously in subjects5

and causes a wide range of symptoms, including visual6

impairment, motor disability, and cognitive decline, among7

others. It has a prevalence of 35,9 per 100,000 in the general8

population and has been increasing worldwide in the last9

decade (up by 30% from 2013 to 2020) (Walton et al., 2020).10

Magnetic resonance imaging (MRI) plays an important role in11

the diagnosis and in the assessment of the response to treatment12

(Rovira et al., 2015; Wattjes et al., 2021). Patients with MS13

(pwMS) present brain and spinal cord atrophy (Sastre-Garriga14

et al., 2020), focal and diffuse white matter damage (Kutzelnigg15

et al., 2005), and changes in functional connectivity compared16

to healthy subjects (HC) (Rocca et al., 2018; D’Ambrosio et al.,17

2020).18

19

While research on MS has led to important advancements20

in diagnosis (Thompson et al., 2018b; Rovira and Auger,21

2021), therapy and patient care (Tintore et al., 2019), and22

further understanding of disease mechanisms (Bjornevik et al.,23

2022), there are many aspects of MS that are still poorly24

understood. One of the characteristics of MS which is under25

active research is the link between brain structural damage and26

functional connectivity (FC) changes (Kutzelnigg et al., 2005).27

Cognitive or motor function depends on intact communication28

between brain and spinal chord areas, usually observed through29

FC. However, the hallmark of MS is structural damage. To30

understand why individual patients have certain cognitive and31

and motor/non-motor symptoms it is crucial to understand32

the relationship between damage to structural connectivity33

(SC) and FC. Schoonheim et al. (2015) hypothesized that34

this relationship could be explained by a "compensation35

mechanism" of the brain: under pressure due to the structural36

effects of MS, the brain tries to compensate by adapting its FC,37

but after a certain threshold of damage, it is no longer able to38

compensate and the condition of the affected person worsens 39

rapidly. Some hypotheses also suggest that this "compensatory" 40

effect can become "maladaptive" (i.e., actually worsen the 41

condition of the patient) (Chard et al., 2021; Schoonheim, 42

2017), or that both mechanisms may co-exist in early phases of 43

the disease (Groppa et al., 2021). In this context, multimodal 44

models would help to explain functional changes derived from 45

structural damage at the individual patient level. 46

47

Recently, there have been efforts in developing whole-brain 48

computational models to model brain functional activity from 49

empirical SC. These models simulate brain activity through 50

a set of differential equations constrained by a given SC 51

and biological assumptions of the brain, creating personalized 52

individual models. A relevant framework for such models is The 53

Virtual Brain (TVB) (Sanz-Leon et al., 2013, 2015), which can 54

generate realistic, synthetic neuronal activity associated with 55

that patient from diffusion and resting state functional MRI. 56

57

TVB and other similar frameworks have been used to 58

study brain pathologies such as tumor resection (Aerts et al., 59

2020), traumatic injuries (Good et al., 2022), epilepsy (Jirsa 60

et al., 2017), and mechanisms of recovery after stroke (Falcon 61

et al., 2016). Depending on the model and parameters, 62

different aspects of brain function can be studied, such as 63

conduction speed using an oscillatory model (Ghosh et al., 64

2008). Oscillatory models have been shown to generate brain 65

activity close to the resting brain (Petkoski and Jirsa, 2019). 66

TVB has also been proposed to study neurodegenerative 67

diseases. For example, Zimmermann et al. (2018) evaluated 68

how Alzheimer’s disease (AD) can affect brain dynamics at 69

the local and global levels, fitting the model individually for 70

each patient and showing that the model parameters were 71

better correlated with cognition and other quantitative MRI 72

measures of the disease than the conventional MRI data. 73

Also on AD, Monteverdi et al. (2022) found subject specific 74

excitation/inhibition profiles across patients at different stages 75

of the disease. Arsiwalla et al. (2015) applied a similar model to 76
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pwMS to study the model’s behavior when affected by diffusion77

lesions, but the disease was not the main focus of the study.78

Tewarie et al. (2018) used a corticothalamic model to study79

the relationship between gray matter damage and functional80

alterations, but their model used estimated values from a81

population of patients for simulation and did not use specific82

personalized models.83

84

In this paper, we propose a multicenter analysis of the85

SC-FC relationship in pwMS and healthy controls (HC) with86

TVB, using a whole brain computational model to fit the87

structural and functional patterns of each subject, generating88

individualized synthetic brain activity and relating it to changes89

in disability and cognition.90

91

Materials and Methods92

Data93

Data for this project were provided by the European Magnetic94

Resonance Imaging in MS (MAGNIMS) consortium. Seven95

centers have participated in the study, in no specific order:96

Hospital Clínic, IDIBAPS, Barcelona, Spain; University97

Medical Center of the Johannes Gutenberg, Mainz, Germany;98

IRCCS Ospedale San Raffaele, Milan, Italy; Università degli99

Studi di Napoli "Federico II", Naples, Italy; Oslo University100

Hospital, Oslo, Norway; Amsterdam Universitair Medische101

Centra, Amsterdam, Netherlands; UCL Queen Square Institute102

of Neurology, London, United Kingdom.103

104

Subjects were recruited at each center and data were105

transferred within a MAGNIMS general framework agreement.106

For each subject, the centers provided structural T1 and107

FLAIR MRI, diffusion (DWI) and resting-state functional MRI108

(rsfMRI), all acquired with 3T scanners. Disability (Expanded109

Disability Status Scale, EDSS) and cognitive (Symbol Digit110

Modalities Test, SDMT) outcomes were also provided. PwMS111

were divided between low / high EDSS (cut-off value of 3, as in112

(Leray et al., 2013)) and low / high SDMT (cut-off value of 40,113

as described in (Van Schependom et al., 2014) for differentiating 114

cognitive impairment) for later analysis. Information about the 115

specific imaging protocols provided by each center is available 116

in Supplementary Data 1. 117

118

After data processing and quality control (see Section 2.2, 119

Data processing), the final cohort contained a total of 697 120

subjects, divided between 513 pwMS and 208 HC. Table 1 shows 121

the age and sex (and for pwMS, disease duration, EDSS, and 122

SDMT) of the subjects, divided by center. Further information 123

and distribution of values across centers can be found in 124

Supplementary Data 2. 125

126

Data processing 127

All the available data was processed using the same pipeline, 128

adapting it to the differences in sequences across centres when 129

needed, and with a single machine (Intel® Xeon(R) with 130

24 cores at 3.50Ghz, 128 GB RAM, Nvidia Quadro RTX 131

5000 GPU). Subjects were processed in parallel when possible, 132

depending on the number of cores available. Code for MRI 133

preprocessing is available at1. 134

135

Figure 1 a) shows a diagram of the data processing pipeline. 136

Specific details of the pipeline are detailed below. 137

138

Structural preprocessing 139

The 3D-T1 was segmented and parcellated in the Desikan- 140

Killiany atlas with FastSurfer (Henschel et al., 2020, 2022). We 141

included 60 cortical and 16 subcortical regions in our analysis. 142

Grey matter (GM), White matter (WM) and cerebrospinal 143

fluid (CSF) were also segmented for later use in diffusion and 144

rsfMRI preprocessing. Brain parenchymal volume (BPF) was 145

also computed. 146

147

1 https://github.com/GerardMJuan/FC-SC-data-pipeline

https://github.com/GerardMJuan/FC-SC-data-pipeline
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Table 1. Cohort information.

CENTER AMSTERDAM CLINIC LONDON MAINZ MILAN NAPLES OSLO

N - HC 48 8 19 26 30 53 24
N - MS 173 58 43 50 56 51 58
N - Total 221 66 62 76 86 104 82
Age - HC 48.41±9.3 29.94±10.6 33.19±7.0 27.85±6.4 37.26±9.3 41.30±11.6 35.12±8.7
Age - MS 48.80±11.3 48.81±9.6 34.43±7.9 35.78±11.6 42.18±9.7 42.48±12.9 40.59±7.2
Sex (%F) - HC 58.33% 87.50% 63.16% 50.00% 40.00% 62.26% 62.50%
Sex (%F) - MS 71.68% 72.41% 62.79% 64.00% 55.36% 66.67% 70.69%
EDSS 3.50 (2.5-5.5) 2.50 (1.5-3.9) 1.50 (1.0-2.0) 1.50 (1.0-2.0) 3.75 (1.5-6.1) 4.50 (2.5-6.0) 2.00 (1.5-2.9)
SDMT 51.21±13.3 46.05±13.4 58.84±9.9 53.12±11.3 50.95±14.3 41.29±13.8 51.48±9.5
DD 15.26±8.7 19.54±9.4 0.41±0.5 4.99±6.6 10.81±9.8 13.29±9.0 10.09±5.3

Age (years), EDSS is shown as (median (Q1-Q3)). SDMT is shown in the format mean±SD. Sex is shown as percentage of females over the total.

Abbreviations: DD = Disease Duration (years). EDSS=Expanded Disability Status Scale. SDMT=Symbol Digit Modality Test. HC=Healthy Control.
pwMS=people with Multiple Sclerosis.

Lesion segmentation148

Hyperintense white-matter lesions in pwMS were segmented149

using the Lesion Segmentation Toolbox (Schmidt et al., 2012;150

Pareto et al., 2016). We also computed the lesion volume151

fraction (LVF) for all pwMS.152

153

Diffusion preprocessing154

Diffusion image processing was performed using Mrtrix3155

(Tournier et al., 2019). The steps applied to the data156

were denoising, Gibbs ringing removal (Kellner et al.,157

2016), distortion correction (Smith et al., 2004) (including158

eddy current-induced distortion correction, motion correction,159

and, if possible, fieldmap-based unwarping using PRELUDE160

(Jenkinson, 2003) or inhomogeneity distortion correction161

using TOPUP (Andersson and Sotiropoulos, 2016), and162

bias correction. Normal appearing white matter (NAWM)163

mask (obtained from T1 segmentation and then subtracting164

lesion masks coregistered on T1) were adjusted to each165

DTI space applying the boundary-based registration inverse166

transformation matrix between undistorted DWI and T1w to167

compute its radial diffusivity (RD) and fractional anisotropy168

(FA) values.169

170

Fiber tracking was performed using a single shell /171

multishell (depending on center characteristics described in172

Supplementary data 1) constrained spherical deconvolution173

(CSD) algorithm to estimate fiber orientation distributions174

(Tournier et al., 2007; Jeurissen et al., 2014), and using 175

the available segmentation of tissues (GM, WM, and CSF) 176

created during the structural preprocessing, as well as white 177

matter lesion segmentation (considered as WM tissue type, 178

as in (Llufriu et al., 2017)), to create a probabilistic tissue 179

mapping. This mapping was used to perform an anatomical 180

constrained tractography (Smith et al., 2012), using the 181

iFOD2 algorithm (Tournier et al., 2010). 6.000.000 fibers were 182

generated connecting the segmented regions. 183

184

To reduce the amount of tracts with biologically unrealistic 185

streamlines, an automatic anatomical exclusion criterion was 186

used to remove implausible streamlines (Martínez-Heras et al., 187

2015). Then, the SIFT2 algorithm (Smith et al., 2015) was 188

applied to filter the tractogram and adjust the number of 189

streamlines between regions to be proportional to the cross- 190

sectional area of the fibers connecting those two regions, 191

allowing to use of the number of streamlines as a quantitative 192

value of connection. 193

194

The final SC matrix was computed as the number 195

of connections or streamlines between regions. Finally, 196

normalization was applied so that the SC largest value was 0.2, 197

as in Deco et al. (2017). 198

199
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Fig. 1. Diagram of the project pipeline. a) Preprocessing of the data, from MRI sequences to the SC and FC. b) Simulation, with the two experimental
procedures (Average, which uses an averaged SC of the healthy controls per center, and individual), and the two model regimes, with the variables to
optimize. E=Excitatory, I=Inhibitory. c) Analysis over the fitted model parameters compared to clinical measures and quantitative MRI parameters,
and graph analysis of the FC and simFC.
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Functional preprocessing200

All resting-state functional MRI was processed using the CONN201

toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). The202

preprocessing steps were: 5 first scans removal, realignment,203

unwarping, slice timing correction, outlier detection and204

removal, co-register to structural space, WM/CSF signal205

regression, low pass filtering (0.001-0.08 Hz), and segmentation.206

The final FC matrix was defined for each pair of the included207

regions as the Pearson correlation coefficient between the mean208

signal from those two regions.209

210

Quality control211

Quality control was performed by visually checking the212

segmentation of the cortical and subcortical regions, the213

lesion segmentation, and correct registration of structural,214

diffusion and functional scans. Any subjects that showed215

poor registration across sequences, bad quality scans, or216

incorrect segmentations were removed. This was facilitated by217

an automated script, included in the available code.218

219

Computational model220

A dynamic reduced mean field model (DRMF) proposed by221

(Deco et al., 2014) was chosen as model, due to its use in the222

study of other neurological diseases, such as AD (Zimmermann223

et al., 2018). This model is a two-population adaptation of224

the reduced mean field model proposed by Wong and Wang225

(2006) that simulates local activity through local and globally226

connected populations of inhibitory and excitatory groups of227

neurons. The complete derivation of the reduced model and the228

justification of its approximations can be found in Deco et al.229

(2014).230

231

The DRMF model is defined by two coupled excitatory and232

inhibitory populations for each region or node i, represented by233

a set of differential equations. Figure 2 a) shows a diagram of234

the connection between the two populations for a single node.235

Equations 7 to 2 show the differential equations that define the 236

two populations that characterize the model. 237

dS
(E)
i (t)

dt
= −

SE
i

τE
+ (1 − S

E
i )γEr

(E)
i + συi(t) (1)

dS
(I)
i (t)

dt
= −

S
(I)
i

τI
+ γIr

(I)
i + συi(t), (2)

r
(E)
i =

aEI
(E)
i − bE

1 − exp(−dE(aEI
(E)
i − bE))

(3)

r
(I)
i =

aII
(I)
i − bI

1 − exp(−dI(aII
(I)
i − bI))

(4)

I
(E)
i = WEI0 + w+JNMDAS

(E)
i − JiS

(I)
i + Ci (5)

I
(I)
i = WII0 + JNMDAS

(E)
i − S

(I)
i (6)

Ci = GJNMDA

∑
j

CijS
(E)
j (7)

S
(E)
i and S

(I)
i (Equations 1, 2) represent the excitatory and 238

inhibitory synaptic gating variable at node i, which modulates 239

based on the firing rate of the corresponding population, with 240

decay regulated by τI and τE and stochastic white noise (υi(t)) 241

modulated by an amplitude σ. Population firing rates r
(E)
i and 242

r
(I)
i (equations 3, 4) are defined by a sigmoidal function on 243

the input currents I
(I)
i and I

(E)
i . These currents (equations 244

5, 6) are defined by local connections between populations 245

weighted by population-specific parameters, creating a closed 246

loop between the gating variables, currents and firing rates of a 247

single node. Long range connections across nodes are defined 248

by Ci (Equation 7) in the excitatory input current. Those 249

connections are represented in Figure 2, a). S
(E)
i and S

(I)
i are 250

constrained to be between 0 and 1 due to numerical stability 251

concerns. Equations are solved using Heun’s stochastic method. 252

253

Two different sets of parameters were used for the DRMF 254

model (Table 2): 255

• Stable. All parameters have the same values across all nodes 256

except Ji (parameter regulating inhibitory to excitatory 257

coupling), which is fitted iteratively for each node using 258

feedback inhibition control (FIC) (Deco et al., 2014). After 259

adjusting Ji, the simulation is run for the duration of the 260
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rsfMRI acquisition. The model shows stability across its261

excitatory and inhibitory states, perturbed by connections262

across nodes and noise (see phase plane, Figure 2, b)).263

264

• Oscillatory. An oscillatory model is able to model265

signal delays across nodes, introducing another parameter266

regulating those delays, conduction speed (cs). An267

exhaustive search was carried out on the excitatory and268

inhibitory synaptic and recurrent parameters of the original269

model to obtain, for a single node, the excitatory and270

inhibitory oscillation frequency was 40Hz, as in Deco et al.271

(2009). The search space for each fitted parameter is272

included in Supplementary Data 3. Figure 2, c), shows273

the dynamics of the model, with a clear oscillatory regime.274

In addition to the different parameters, a change was275

introduced in Equation 7, where the time delays are276

modulated by the new parameter, cs.277

278

Ci = GJNMDA

∑
j

CijS
(E)
j (t −

Dij

cs
), (8)279

where Dij is the distance between nodes i and j,280

extracted from the mean tract length across regions for that281

subject, obtained during fiber tracking analysis.282

283

BOLD activity was generated using the excitatory synaptic284

activity SE , through a Balloon-Windkessel hemodynamic285

model (Friston et al., 2000, 2003), from which a simulated FC286

(simFC) was generated. The simulated signal has been band287

passed using the same filter used in the rsfMRI (see Section288

2.2.4).289

290

Model optimization291

Two different approaches to fit the models were proposed:292

• Average HC per center: a connectivity template averaged293

from the healthy controls was created for each center,294

and each subject was fitted using the template SC from295

E I

I0

-JI

SCiS
E

-1W+ JNDMA
I

W+ JNDMA

G JNDMA

b) Non-oscillatory phase plane

a) Single node diagram
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S_e

S_i
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c) Oscillatory phase plane
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Fig. 2. Diagram and phase plane of the model in both stable and
oscillatory regimes for a single node. Each phase plane show trajectories
with and without noise. Phase planes are divided using the dotted lines
to indicate changes in behavior.

the corresponding center to their FC. The motivation for 296

this experiment was to observe how the model and its 297
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Table 2. Parameters of the model, for the stable and oscillatory regimes.

Name Value (stable) Value (osc.) Units Description

aE 310 310 nC−1 Excitatory synaptic gating constant
bE 125 125 Hz Excitatory synaptic gating constant
dE 0.16 0.16 s Excitatory synaptic gating constant
τE 100 10 ms Excitatory kinetic parameter, decay time
WE 1 1.0 Excitatory external input weight
γE 0.641e−3 5e−3 ms Excitatory kinetic parameter
w+ 1.4 2.4 Local excitatory recurrence parameter
JNDMA 0.15 1.271 nA Excitatory synaptic coupling parameter
JI * 3.099 nA Local inhibitory synaptic coupling parameter
aI 615 615 nC−1 Inhibitory synaptic gating constant
bI 177 177 Hz Inhibitory synaptic gating constant
dI 0.087 0.087 s Inhibitory synaptic gating constant
τI 10 20 ms Inhibitory kinetic parameter, decay time
WI 0.7 0.45 Inhibitory external input weight
γI 1e−3 1e−3 ms Inhibitory kinetic parameter
I0 0.382 0.382 nA Effective external input
σ 0.001 0.001 Gaussian noise variance

∗Obtained iteratively per node.

parameters behave and adapt when trying to adapt to the298

FC of pwMS without information about the subject’s SC.299

Moreover, this greatly reduces the computational cost of the300

simulation, as only one simulation per center is needed.301

302

• Individual data: for each subject, their corresponding SC303

and FC were used to build the model and fit it individually.304

305

Optimization of the model for each subject was carried306

out by minimizing the difference between real and simulated307

metastability of the FC and the simFC (Deco et al., 2017).308

Metastability is defined as the standard deviation of global309

synchronization of the brain signal at all nodes over time, used310

to study the coherence of a brain signal. Pearson’s uncentered311

correlation was also calculated between the upper triangular312

matrix of the FC and the simFC, as very low correlations would313

suggest a bad optimization.314

315

Model fitting was through a grid search to find the best316

value of G for the stable model (between 0 and 10), and G317

(between 0 and 2) and cs (between 0 and 40) for the oscillatory318

model. Ranges for the parameters were found experimentally,319

by setting initial ranges from the literature and testing it with320

a small subset of subjects. We prioritized G and cs as the free321

parameters of the model for various reasons: They are directly 322

related to the SC, and the other parameters are fixed to obtain 323

the desired model regime (stable and oscillatory). Moreover, 324

adding more free parameters would make the optimization of 325

such a number of subjects computationally infeasible. 326

327

For each iteration, the simulation was run 5 times to reduce 328

the influence of noise and results were averaged. A faster 329

implementation of the model in C was used, written by Schirner 330

et al. (2018) and available in2. Simulation was done on a High 331

Perfomance Computing (HPC) environment. Code used to run 332

the model is available in3. 333

334

Graph derived metrics 335

Analyzing FC using graph theory has been proposed as a way 336

to study MS (Fleischer et al., 2019) and to further analyze 337

brain computational models (Deco et al., 2015; Adhikari et al., 338

2017). Three graph-derived metrics were extracted from both 339

FC and simFC for further analysis, computed independently 340

from the TVB simulation using the networkx Python package 341

(code available in the repository): 342

2 https://github.com/BrainModes/fast_tvb
3 https://github.com/GerardMJuan/tvb-wongwang-ms

https://github.com/BrainModes/fast_tvb
https://github.com/GerardMJuan/tvb-wongwang-ms
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• Entropy: entropy is a theoretical measure of information343

that quantifies, for a FC, the diversity of correlations across344

nodes. Entropy for a FC can be defined as the mean of the345

entropies of each node.346

H(i) = −
N∑

j=1

pij log pij , (9)347

where pij is the FC correlation between nodes i and j.348

• Integration: the integration of a network measures its349

connectivity between nodes. For N thresholds between 0350

and 1 (N=50), the graph is binarized and the size of its351

largest connected component is measured, normalized by352

the number of nodes, generating a threshold curve against353

the threshold value. The integration of the network is the354

area under the curve.355

• Efficiency: the efficiency of a network quantifies the small-356

worldness behavior of the network, that is, that all or most357

nodes can be reached from another node in few steps. For M358

pairs of nodes, efficiency is defined as the mean of the inverse359

of the shortest path length across M. Before calculating360

the efficiency of the FC, a binarization is needed. The361

binarization threshold was 0.5, ensuring that only strong362

connections were considered.363

In addition to those three metrics, the mean of the upper364

triangular matrix of both SC and FC was also calculated, as a365

simple measure of the connection strength and the correlation,366

respectively, to discover its relative importance with respect to367

the fitted parameters.368

369

Experiment design370

All the experiments described here were done on the stable371

and oscillatory regimes, with the average and individual372

configurations. All statistical analysis was implemented in373

Python using the statsmodels package.374

375

Differences in G and cs across HC, and pwMS divided in376

high and low EDSS and SDMT groups were computed using377

an ANOVA model including three groups (two models, one 378

for EDSS and another one for SDMT), and differences across 379

groups were evaluated with post hoc pairwise Tukey HSD tests. 380

Partial correlations were run between model outcomes (G, cs, 381

best metastability and correlation between sim FC and FC), 382

image derived quantitative MRI parameters (BPF, LVF, FA, 383

RD) and disability and cognitive scores (age, sex and center 384

included as covariates). 385

386

Entropy, integration and efficiency of both FC and simFC 387

were compared with G, cs, EDSS and SDMT, via partial 388

correlations (age, sex and center included as covariates). The 389

entropy, integration, and efficiency of FC and simFC were also 390

used to detect differences between HC, high/low EDSS/SDMT 391

for pwMS, using the same ANOVA model procedure described 392

before. 393

394

Data availability 395

Data availability is subject to specific data agreements between 396

Vall d’Hebron Research Institute and each participating 397

MAGNIMS center. Both the MRI and the processed data are 398

available upon request and data transfer approval with the 399

corresponding center. 400

401

Results 402

After applying the data processing pipeline and quality control, 403

a total of 51 subjects were removed for the original cohorts, 404

leaving the total number of subjects at 513 pwMS and 208 405

HC, as described in Section 2.1. For each model (stable and 406

oscillatory) and configuration (average or individual), the 697 407

subjects were optimized in parallel, with each subject taking 408

between 3 and 6 hours for the stable model and 12 to 16 hours 409

for the oscillatory model, depending on center. 410

411

Figure 3 shows the optimized ∆Metastability for each 412

experiment and model (average and individual, stable and 413
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0.00 0.02 0.04 0.06 0.08
ΔMeta
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Ind.

Avg osc.

Ind osc.

Model fit

Fig. 3. ∆Metastability for for each experiment, for all subjects.

oscillatory). The oscillatory models achieve a better fit414

(lower metastability difference between real and simulated415

FCs) compared to the stable ones. In addition, there were416

no significant differences in ∆Metastability between average417

and individual experiments for a given model. The mean418

correlations between FC and simFC ranged between 0.4 and419

0.7 (Supplementary Data 4), being slightly higher for the stable420

regime.421

422

Figure 4 shows the differences in fitted parameters across423

HC, and pwMS divided by high/low EDSS and SDMT scores.424

For the stable model, there were significant differences in the425

ANOVA when comparing HC, high and low SDMT groups426

(F=3.48, p<0.05) with significant pairwise differences between427

HC and low SDMT, and between high and low SDMT groups,428

with this last groups having higher values of G. That effect429

is not observed in the average configuration, nor any other430

significant effect in the oscillatory model.431

Table 3 shows the partial correlations between model432

parameters and quantitative MS measurements. There were433

no associations between model parameters (G, c) or model434

fit values (Corr, ∆Meta) and cognitive, disability and MRI435

measures of structrual damage in the average experiments436

(Table 3 a), c)). There were significant (albeit weak, with low437

r) correlations between G and BPF, FA, and RD, in both stable438

and oscillatory individual optimizations (Table 3 b), d)).439

440

Table 3. Partial correlations between TVB derived values, and
cognitive/disability scores/quantitative MS measurements extracted
from the images, corrected by age, sex and center, for each model
and configuration.

a) Average stable

G Corr ∆Meta

EDSS r=0.01 r=0.03 r=-0.03
SDMT r=0.01 r=-0.00 r=0.04
BPF r=0.01 r=-0.04 r=-0.02
LVF r=-0.00 r=0.02 r=0.00
FA r=-0.01 r=0.00 r=0.02
RD r=0.00 r=-0.01 r=-0.02

b) Individual stable

G Corr ∆Meta

EDSS r=0.05 r=0.01 r=-0.01
SDMT r=-0.02 r=0.05 r=0.04
BPF r=-0.09* r=-0.00 r=-0.04
LVF r=0.03 r=-0.01 r=0.03
FA r=0.10** r=-0.03 r=0.01
RD r=-0.10** r=0.02 r=-0.02

c) Average oscillatory

G cs Corr ∆Meta

EDSS r=-0.01 r=-0.02 r=0.03 r=-0.05
SDMT r=-0.03 r=0.00 r=0.02 r=0.05
BPF r=-0.00 r=-0.02 r=-0.02 r=-0.03
LVF r=0.03 r=-0.01 r=0.01 r=-0.02
FA r=0.02 r=-0.02 r=-0.01 r=0.01
RD r=-0.00 r=0.00 r=0.01 r=-0.01

d) Individual oscillatory

G cs Corr ∆Meta

EDSS r=0.02 r=-0.03 r=0.03 r=-0.03
SDMT r=-0.04 r=-0.02 r=0.04 r=0.07
BPF r=-0.09* r=0.01 r=0.00 r=-0.00
LVF r=0.03 r=-0.01 r=0.02 r=-0.01
FA r=0.11** r=0.00 r=-0.03 r=0.02
RD r=-0.10** r=0.02 r=0.04 r=-0.02
FA: Fractional Anisotropy in normal appearing white matter. RD: Radial
Diffusivity in normal appearing white matter. LVF: Lesion Volume
Fraction. BPF: Brain Parenchymal fraction. G: Coupling value. Corr:
Correlation between simulated and real FC. ∆Meta: Absolute difference
in metastabilities between FC and simFC.
∗p<0.05.
∗∗p<0.01.
∗∗∗p<0.001.

Table 4 shows the results of the partial correlations between 441

G and quantitative MS measurements for the EDSS/SDMT 442

subgroups, correcting for age, sex, and center, for individual 443

stable and oscillatory models. G was associated with BPF for 444

higher values of EDSS (being significant for the stable model, 445

-0.23, p<0.01), with the same behavior occurring with RD and 446

FA. The association between G and RD/FA in the stable model 447

was significant (0.14, p<0.01 and -0.13, p<0.05 respectively) in 448

subjects with higher SDMT, while in the oscillatory model that 449

association was present in subjects with lower SDMT (0.23, 450
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Fig. 4. Comparison of G and cs parameters between HC, and pwMS divided in low/high EDSS and SDMT groups, for each model and configuration.
*: p<0.05.
*p<0.01

Table 4. Partial correlations between G and quantitative MS
measurements in groups of patients divided by EDSS and SDMT
values, for the individual stable and oscillatory models. Results
corrected by age, sex and center.

(a) Individual stable: G

EDSS<=3 EDSS>3 SDMT>=40 SDMT<40

BPF r=0.02 r=-0.23** r=-0.08 r=-0.10
LVF r=-0.05 r=0.09 r=0.06 r=-0.01
RD r=0.05 r=0.17* r=0.14** r=0.02
FA r=-0.07 r=-0.14 r=-0.13* r=-0.02

(b) Individual oscillatory: G

EDSS<=3 EDSS>3 SDMT>=40 SDMT<40

BPF r=-0.05 r=-0.15* r=-0.06 r=-0.18
LVF r=-0.05 r=0.06 r=-0.06 r=0.10
RD r=0.01 r=0.22** r=0.06 r=0.23*
FA r=0.01 r=-0.24*** r=-0.04 r=-0.28**
LVF: Lesion Volume Fraction. BPF: Brain Parenchymal fraction. FA:
Fractional Anisotropy in normal appearing white matter. RD: Radial
Diffusivity in normal appearing white matter.
∗p<0.05.
∗∗p<0.01.
∗∗∗p<0.001.

p<0.01 and -0.28, p<0.01, respectively) and high EDSS (0.22,451

p<0.05 and -0.24, p<0.01, respectively), with comparatively452

stronger correlations.453

454

Tables 5 and 6 show the partial correlations (corrected 455

by age, sex and center) between graph-derived features from 456

SC, FC and simFC, and G, cs, EDSS and SDMT. SCmean 457

was weakly associated with EDSS and SDMT. G showed a 458

moderate correlation with FC-derived graph features for the 459

average models; for the individual models these correlations 460

disappeared, while the correlation with SCmean was higher 461

(-0.42, p<0.001). When analyzing the relationship of model 462

parameters with graph-derived features from the FC, the stable 463

model showed positive associations with G only for the average 464

configuration: higher values of G were associated with FCs with 465

higher entropy, efficiency and integration. This behavior is not 466

observed in the individual model. 467

468

Entropysim was significantly associated with SDMT and 469

EDSS in all individual configurations, albeit weakly. Strong 470

negative associations between G and simulated features were 471

found (Entropysim -0.32, integrationsim -0.26, efficiencysim 472

-0.42) for the individual stable model. In the individual 473

oscillatory model, higher G was associated with lower 474
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Table 5. Partial correlations (r values) between TVB derived values
and graph derived features, stable model. Results corrected by age,
sex and center.

Average stable Individual stable

G EDSS SDMT G EDSS SDMT

SCmean -0.03 -0.10* 0.11** -0.42*** -0.10* 0.11**
FCmean 0.30*** 0.03 0.03 0.06 0.03 0.03
Entropy 0.19*** 0.07 0.01 0.04 0.07 0.01
Integration 0.26*** 0.06 0.04 0.05 0.06 0.04
Efficiency 0.27*** 0.03 0.03 0.06 0.03 0.03
Entropysim -0.13*** 0.01 0.03 -0.32*** -0.10* 0.19***
Integrationsim -0.01 0.01 0.04 -0.26*** -0.02 0.06
Efficiencysim -0.45*** 0.02 0.03 -0.42*** -0.01 -0.01
SCmean: SC Mean connectivity value. FCmean: FC mean correlation
value. Entropy, Integration and Efficiency are computed over the FC,
while their simulated counterparts (sim) are computed over the simFC.
∗p<0.05.
∗∗p<0.01.
∗∗∗p<0.001.

entropysim (-0.25) but higher efficiencysim (0.42) and475

integrationsim (0.3), with cs showing opposite associations and476

no significant relation with entropysim. Similar results were477

found for the average oscillatory configuration.478

479

Figure 5 shows the differences between entropy, integration480

and efficiency in simFC across HC and pwMS. Entropysim481

showed the largest differences, with differences between HC, low482

and high SDMT groups in average stable (F=10.41, p<1e-4),483

individual stable (F=31.5, p<1e-5), and individual oscillatory484

(F=6.72, p<0.01) models. There were also differences between485

HC and high/low EDSS in the stable, although the effect was486

much weaker (F=3.11, p<0.05 for the average stable, F=4.98,487

p<0.01 for individual), with the tendency being that patients488

in the group with lower SDMT/higher EDSS have lower values489

of Entropysim. The same tendency could be seen for efficiency490

and integration, but no significant differences were observed,491

apart from a weak difference between HC and low SDMT in492

Efficiencysim for the average stable model.493

494

Discussion495

In this paper, we explored TVB to study the SC-FC relationship496

in MS. A DRMF-based model with two different configurations497

was used to create personalized brain simulations through SC- 498

FC coupling and to observe how they relate to disability and 499

cognition in MS. To our knowledge, this is the first study to 500

evaluate personalized whole-brain computational models in MS. 501

502

The TVB models achieve a good fit even with incomplete 503

information (HC average), but the oscillatory version is capable 504

of generating a simFC closer to the real one. More specifically, 505

Supplementary data 5 show a qualitative example to better 506

illustrate this point. Differences can be observed between the 507

simFC and the FC: for example, the model struggles to generate 508

homotopic interhemispheric connections that are present in the 509

FC. Supplementary data 6 show a visual example for reference. 510

511

Our findings suggest the idea that, for the individual stable 512

configuration, the model needs higher G values compared to 513

HC to fit it to pwMS with a lower SDMT, and to fit pwMS 514

with higher structural and diffusion damage. In other words, 515

structural damage and cognitive impairment appears to make 516

FC more coupled or conditioned by SC through the coupling 517

variable G, as has been observed for MS in other works 518

studying FC (D’Ambrosio et al., 2020). Models with the average 519

configuration do not show this effect. The differences between 520

the average and individual results indicate that including the 521

individual SC is necessary for the model to adapt and capture 522

changes in the brain of the subject (as in (Palesi et al., 2020; 523

Monteverdi et al., 2022)), and it is not able to do so only with 524

the individual FC and a template healthy SC. No differences 525

are observed in the oscillatory model. 526

527

The associations found in the stable model can be 528

interpreted as evidence of a compensatory mechanism 529

(Schoonheim et al., 2015; Chard et al., 2021): coupling between 530

SC and FC is not directly related to structural damage, but 531

as the disease progresses and the cognitive impact increases, 532

FC becomes increasingly constrained by the SC. Comparing 533

between average and individual configurations, the model seems 534
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Table 6. Partial correlations (r values) between TVB derived values and graph derived features. Oscillatory model. Results corrected by
age, sex and center.

Average oscillatory Individual oscillatory

G cs EDSS SDMT G cs EDSS SDMT

SCmean 0.01 0.04 -0.10* 0.11** -0.18*** 0.03 -0.10* 0.11**
FCmean -0.23*** -0.36*** 0.03 0.03 -0.14*** -0.37*** 0.03 0.03
Entropy -0.16*** -0.27*** 0.07 0.01 -0.10** -0.29*** 0.07 0.01
Integration -0.24*** -0.34*** 0.06 0.04 -0.14*** -0.36*** 0.06 0.04
Efficiency -0.22*** -0.35*** 0.03 0.03 -0.12** -0.36*** 0.03 0.03
Entropysim -0.33*** 0.14*** 0.10* 0.02 -0.25*** 0.02 -0.09* 0.11**
Integrationsim 0.40*** -0.37*** 0.03 0.03 0.42*** -0.29*** -0.08 0.07
Efficiencysim 0.26*** -0.55*** 0.03 0.00 0.30*** -0.48*** -0.05 0.00
SCmean: SC Mean connectivity value. FCmean: FC mean correlation value. Entropy, Integration and Efficiency are computed over the FC, while their
simulated counterparts (sim) are computed over the simFC.
∗p<0.05.
∗∗p<0.01.
∗∗∗p<0.001.
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Fig. 5. Comparison of entropy, integration and efficiency of the simulated FC, between HC and pwMS divided in low/high EDSS and SDMT groups,
for each model and configuration.
*: p<0.05. **: p<0.01. ***: p<0.001. ****: p<0.0001.

to be more informative when including the individual SC.535

536

The partial correlations found in the patient subgroups of537

high and low EDSS and SDMT seem to suggest a complex538

relationship between G, cognition and disability, and show539

that both models were affected differently by disability and540

cognition: while the stable model G seemed to correlate better541

with BPF on pwMS with high EDSS (more disability) and with 542

FA and RD on pwMS with high SDMT (less affected)) the 543

oscillatory G associates only with RD and FA in pwMS with 544

high EDSS/low SDMT (more affected). This could suggest a 545

maladaptive process, where the model tries to adapt both at low 546

cognitive affectation and as the disability increases. However, 547
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these correlations, while significant, are weak.548

549

Differences between the stable and the oscillatory model550

described in previous paragraphs could be explained by the551

inclusion of connection delays modulated by cs and tract552

lengths in the oscillatory model, but no associations betwen553

cs and EDSS/SDMT/quantitative MS measurements have been554

found (Supplementary Data 7), so we cannot fully determine it.555

The optimal cs for each subject found by the oscillatory model556

does not seem to be related to disability or cognition.557

558

Looking at the relationship of the models with SCmean and559

FCmean, the main difference between individual and average560

stable configurations when comparing how G associates with561

both SC and FC, is that when individual SC information is562

available, the model relies on it to perform a better simulation.563

In the oscillatory model the individual configuration accounts564

for both SC and FC, meaning that the oscillatory model565

leverage both sources of information to generate a meaningful566

prediction.567

568

Entropysim shows weak but significant associations with569

SDMT and EDSS in individual configurations. The differences570

found in the stable and oscillatory models between SDMT571

and EDSS groups suggests that the simulated FC present572

alterations for subjects with disability or cognitive impairment,573

so the model is able to incorporate those alterations in its574

simulation, even if G is not directly associated with EDSS575

or SDMT. Interestingly, graph-derived measures extracted576

from the empirical FC show no differences across groups577

(Supplementary Data 8). SimFC generated by whole-brain578

computational models being more associated with quantitative579

neurological measurements than empirical activity is not a580

new phenomenon. (Zimmermann et al., 2018) found that,581

for Alzheimer’s disease, simFC generated by a Wong-Wang582

model (equivalent to our individual stable model) was better583

correlated with decreased cognitive activity than real FC.584

585

Differences between the results using graph-derived features 586

from FC and simFC could be explained by two different 587

reasons. First, the associations with disability and cognitive 588

impairment present in empirical FCs could be obscured by 589

the inherent noise associated with the acquisition of fMRI, 590

whereas simFCs do not have this problem. Another reason 591

could be that the simFC directly reflects the SC changes, 592

while the relationship between real SC and FC is a much more 593

complex process that cannot be completely reflected in the 594

model. This could again support the idea of a compensatory 595

or reorganization mechanism, where pwMS with significant 596

structural damage show low or no disability without cognitive 597

impairment (Schoonheim et al., 2015; Chard et al., 2021). 598

However, to discard any possible biases from the data that 599

could have caused this difference, we would need to replicate 600

the phenomena on a separate cohort of patients. 601

602

The low (and, in some cases, lack of) association of the 603

model parameters with disability and cognitive scores does 604

not indicate that the model does not capture relevant disease 605

processes: it just indicates that the fitted parameters to each 606

subject are not directly related to our scale of cognitive 607

impairment and disability. Following the experiments done 608

on the simFC, the model generates an altered FC, with less 609

"healthier" graph-derived measures when the patient presents 610

cognitive effects caused by the disease (See Figure 5). 611

612

When taking into account all the results, the stable regime 613

with individual data is the one that shows a better overall 614

performance: it has a reasonable computation time, it is easier 615

to interpret as it has only a free parameter (G), it has a 616

more consistent behavior compared to the oscillatory, and the 617

simulated signal shows slightly more association with disability 618

and cognition. However, the oscillatory regime has certain 619

advantages that should not be overlooked, as it seems to 620

better integrate FC and SC information on the output simFC 621

compared to the stable model. Given the higher computational 622

cost of the oscillatory model and its similarity between the 623
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average and individual configurations, we would recommend624

using it with a lower number of subjects, or using a SC template625

when the number of subjects is higher, as this would allow a626

researcher to explore its dynamics through more detailed ranges627

of G and cs or longer and more coarse simulations.628

629

This study presents several limitations. Changes in data630

processing and cortical parcellation have been shown to affect631

the results obtained by such models (Proix et al., 2016; Aquino632

et al., 2022), so other atlases with more detailed parcellations633

could be used. A clear brain region candidate to include would634

be the cerebellum as it has been strongly linked to MS (Parmar635

et al., 2018; Tur et al., 2022; Bonacchi et al., 2022) and has636

been shown to affect TVB simulations (Palesi et al., 2020;637

Monteverdi et al., 2022). However, due to data and time638

constraints, it could not be included in this study.639

640

Another limitation of our work concerns our multi-center641

cohort. We correct for center in our tests, but it has been642

shown that differences in image acquisitions can significantly643

alter the tractography and hinder reproducibility across centers.644

For example, in single shell versus multishell diffusion data,645

which have been shown to track bias in the tractography646

reconstruction (Prčkovska et al., 2016; Borrelli et al., 2022).647

To paliate this, we have used methods that have been648

shown to reduce variability, such as the CSD algorithm, or649

the automatic anatomical exclusion criterion used to trim650

implausible streamlines (Martínez-Heras et al., 2015). However,651

given the number of different centers we studied, a more652

complex harmonization method could have been used, such as653

ComBat (Wachinger et al., 2021).654

655

An initial hypothesis of the oscillatory model was that656

changes in cs would be associated with demyelination in pwMS657

(Lubetzki and Stankoff, 2014), but such differences were not658

found using the proposed model. However, other oscillatory659

models could be used, such as the Kuramoto or Wilson-Cowan660

models (Nakagawa et al., 2014; Deco et al., 2009; Petkoski and661

Jirsa, 2019), using more complex parcellations as mentioned 662

above, or using different connectivity metrics that could better 663

reflect this demyelination (Cercignani et al., 2001). 664

665

Furthermore, analyzing changes in dynamic functional 666

connectivity, both real and simulated, could be another 667

interesting option, as it has already been explored before using 668

these models with good results (Cabral et al., 2017). However, 669

this would require longer functional sequences, since sequences 670

acquired in a clinical context, such as those used in this paper, 671

are usually too short. Longitudinal studies would also be useful 672

to further study the compensative/maladaptive hypothesis. 673
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