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Abstract
The looting of cultural heritage sites has been a growing problem and threatens national
economies, social identity, destroys research potential, and traumatizes communities. For many
countries, the challenge in protecting heritage is that there are often too few resources, par-
ticularly paid site guards, while sites can also be in remote locations. Here, we develop a new
approach that applies deep learning methods to detect the presence of looting at heritage sites
using optical imagery from unmanned aerial vehicles (UAVs). We present results that demon-
strate the accuracy, precision, and recall of our approach. Results show that optical UAV data can
be an easy way for authorities to monitor heritage sites, demonstrating the utility of deep learning
in aiding the protection of heritage sites by automating the detection of any new damage to sites.
We discuss the impact and potential for deep learning to be used as a tool for the protection of
heritage sites. How the approach could be improved with new data is also discussed. Additionally,
the code and data used are provided as part of the outputs.
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Introduction

The looting and destruction of heritage sites is a growing concern for authorities and communities
worldwide (Al-Ansi et al., 2021; Basnet Silwal, 2021). The consequences of such damage can
have far-reaching social impact, including damage to local economies that depend on heritage
tourism, destruction of sites used for scientific and heritage research, attacks on ethnic or religious
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identity affiliated with heritage places, and the erasure of the past that can be important for social
cohesion and community building (Kersel and Hill 2020; Brusasco, 2012; Taniguchi 2017).
Additionally, looted objects can be sold on the black market, resulting in their permanent loss and
even funding of other illegal activities that can harm societies where looting might be prevalent
(Clarke & Szydlo, 2017). Given these threats to cultural heritage sites and their broader social and
economic implications, there is a critical need for new technologies that can enhance site
protection.

Unmanned aerial vehicles (UAVs) have the potential to provide a solution to the threats against
cultural heritage by being platforms that police and other authorities can use to monitor for
potential damage or impact against heritage sites, particularly in remote locations or areas with
limited resources (Silverman and Ruggles 2007). However, a problem remains in that not all
personnel can easily determine if looting has occurred, especially if damage is not easily detected,
or authorities are not trained on what to look for. Therefore, there is a need to develop technologies
that address these limitations, including in monitoring and responding to threats against heritage
sites.

In this study, we propose a new deep learning tool that processes optical imagery from un-
manned aerial vehicles and demonstrates the ability to identify looting damage to heritage sites.
The purpose of this application is not only to identify potential damage to sites but also to monitor
live imagery to alert authorities of potential damage, which can then be used to dispatch protection
or develop an appropriate response to damaged cultural heritage sites. We argue that such
computational tools will be increasingly needed as looting and damage to heritage sites accelerate
and pose a real threat to countries’ heritage.

We begin our presentation by providing background on heritage site looting and the use of deep
learning methods for monitoring threats. Our approach is then presented, along with relevant data
used to demonstrate the efficacy of our work. We then present results to show the accuracy,
precision, and recall of the tool. A discussion on the implications of such tools for protecting
heritage is then given. Future work and direction of research are also discussed.

Background

Looting of Heritage Sites

Key reasons why heritage looting can be destructive to communities where such events occur
include damage to aesthetic, historical, and/or spiritual characteristics of given sites (Al-Ansi
et al., 2021; Byrne, 2016; Silverman and Ruggles 2007). Furthermore, economic loss from
heritage damage or looting could make it difficult for communities to recover and create em-
ployment opportunities, particularly those that had greatly depended on heritage for income
(Brodie, 2010). Looted items from cultural heritage sites also generate illicit revenue, often for
criminal gangs (Kersel and Hill 2019; Brodie & Renfrew, 2005). A relatively recent UNESCO-
sponsored estimate has stated that sales of heritage items amounts to over $50 billion USD, with a
large percentage of this likely being illegal sales. In 2020 alone, over 800,000 cultural heritage
objects were seized globally by law enforcement, with many of these objects coming from il-
legally excavated or looted sites (UNESCO 2021). This suggests that heritage site looting has
likely increased or continues to pose a significant threat to communities and their social and
economic well-being. Among various international treaties, an important one is the UNESCO
1970 Convention on the Means of Prohibiting and Preventing the Illicit Import, Export and
Transfer of Ownership of Cultural Property treaty, which was intended to help limit the sale of
illegally obtained heritage objects and thereby potentially limiting damage to heritage sites where
cultural objects come from (UNESCO 2022). While over 140 countries have now ratified this
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international treaty, enforcement and attitudes towards enforcing this and other similar treaties
have been argued to be weak, including in relative priorities for law enforcement (Runhovde
2022). This potentially necessitates more time efficient tools that demand less resources to aid law
enforcement, particularly if the priority in allocating financial and personnel resources in pre-
venting looting or illicit removal of cultural objects from sites is likely to remain low in the future.

Deep Learning and Heritage Monitoring

There is a need to increase efficiency in the monitoring and protection of cultural heritage sites.
Machine learning-based implementations are more cost-effective and time-efficient because they
eliminate the need for labor-intensive manual feature engineering and extraction from raw data,
such as images and videos. Deep learning (DL), also known as deep structured learning, has the
capabilities to transform the traditional input pipeline requiring data pre-processing and manual
feature extraction. Recent trends within the field have shifted towards end-to-end (E2E) deep
learning that promises potentially better performance (Boloor et al., 2020). Supervised learning,
semi-supervised learning, unsupervised learning, and reinforcement learning techniques can be
utilized to create DL models that combine automatically learned input data representations and
artificial neural networks (ANNs). The deep learning model is comprised of two components, with
the first being feature extraction and second is the learning component (Sarkar and Shenoy 2020).

The superior performance of DL over traditional machine learning techniques has revealed its
potential for automating processes across a wide variety of applications. Work has shown that DL
can improve performance in image classification, computer vision, machine translation, speech
recognition, image captioning, healthcare domain applications, prediction of events, and in many
other areas of application (Rajesh et al., 2021; Sarkar 2021). In most cases, DL can work with 2D
image data (LeCun et al., 2015; Krizhevsky et al., 2018), 3D point cloud data (Charles et al.,
2017), hyper-spectral imagery (Chen et al., 2014), and interpret sequence to sequence data
(Tandler et al., 2019). Among deep learning models, variations of convolutional neural network
(CNN) models have been proven to work well on image data, while stacked autoencoders are
suitable for learning features from input data and encoding them to a compressed vector, from
which a decoder learns to generate the original input data. Deep learning models usually require a
lot of training data to be able to generalize and classify given images. In many applications where
the number of training data are not sufficient, transfer learning can be applied (Tammina 2019).
Transfer learning refers to training a model in which the neural network is trained using a large set
of training data first and subsequently using the pre-trained model as a feature extractor for a new
application, where the new application often has a smaller dataset. Disadvantages of DL have
included the large number of training data required as well as long processing times sometimes
required to train models.

In heritage-related topics, automated classification has been applied to remotely sensed images,
including in topics related to the detection of looting on heritage sites. For instance, research has
applied hierarchical categorization and localization as a method to detect looting pits (or holes) on
satellite imagery for archaeological sites (Bowen et al., 2017). Other work uses autocorrelation,
unsupervised classification, and segmentation on satellite imagery (Lasponara and Masini 2018).
A relatively fast change detection technique was used to also automate detection of looting and
heritage damage at sites (Cerra et al., 2016). Other machine learning techniques have also been
used, including those that deploy multiple methods to derive optimal results (El-Hajj, 2021).
Currently, most DL methods have been used on satellite-based data, although within remotely
sensed data most of this work is not related to looting detection but general feature detection and
extraction (Guyot et al., 2021; UNESCO 2022). The application of DL to optical data from UAVs
has been deployed in cultural heritage research, but this has been limited mainly to non-looting
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contexts and detection (Altaweel et al., 2022). Here, we assess the utility of DL as a technique for
looting monitoring using optical data from UAVs and the applicability of this technique for site
protection. What this entails and the contributions we make in applying UAV data are further
discussed in the methods section.

One advantage that UAVs provide over most satellite imagery is that they can be used to more
rapidly inform on damage occurring to heritage sites. Data, in fact, could potentially be used
almost instantaneously, where automated messaging from detected damage can be used to alert
authorities, potentially even in near real-time. While short-range UAVs may not be ideal to cover
vast distances for monitoring of potential looting, long-distance UAVs, which can travel tens or
hundreds of kilometers, could be utilized to access remote regions. By decreasing the time
between the detection of damage to sites and alerting relevant authorities, UAVs and deployed
software can play a crucial role in the protection of heritage and limiting damage that affects
communities and economies. Applying detection algorithms that can identify threats or occur-
rences of looting are needed to enable automation without the requirement of having trained staff
always present to monitor UAV data.

Methods

Deep Learning Approach

We develop a DL technique that processes optical imagery from UAVs, where still images from
theMiddle East are used to train a deep learning model for heritage sites in that region. Potentially,
different imagery types, such as hyperspectral data, can be used in the approach presented, but we
purposely limit this to optical data due to the fact such data represent the most common data UAVs
produce and our experience is in the Middle East region.

Prior to beginning, we evaluated different detection algorithms for our application. One
popular object detection algorithm is You Only Look Once (YOLO); one critique is this approach
may struggle with smaller or unusual shapes within smaller images (Francies et al., 2022). Other
popular object detection models include Single Shot MultiBox Detector (SSD) (Liu et al., 2016),
RetinaNet (Del Prete R et al., 2021), and Faster regional-convolutional neural network (RCNN)
(Girshick, 2015). SSD is known for its speed and accuracy in detecting objects in real-time video
streams. However, it may struggle with detecting small objects or objects with complex shapes.
RetinaNet is a popular choice for detecting objects at various scales and resolutions, making it
suitable for a wide range of applications. However, it may require more training data to achieve
optimal performance. Faster RCNN is an extension of RCNN and is known for its speed and
accuracy in object detection tasks. However, it may be more computationally intensive than other
models and may require longer training times.

We utilize a form of RCNN to detect and extract features using segmentation (Girshick et al.,
2014). This algorithm works by creating proposed regions in an image that are evaluated to
potentially belong to a given object. The regions are sub-segmented using color, texture, size, and
shape using a selective search algorithm, where similar regions are then combined to form
identified singular objects (Uijlings et al., 2013). Our full training method is a mask region-based
convolutional neural network (Mask RCNN) used to train on data that consist of looted regions
within cultural heritage sites. Imagery obtained were used to train and validate results. The
approach is comparable to earlier work and is summarized here with the code also provided with
this work (Altaweel et al., 2022).

Our developed approach enables image segmentation as well as instance segmentation, where
images, in this case 2D optical photographs, are divided into multiple segments. This then divides
and delineates objects within imagery. Here, we deploy the approach to perform instance
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segmentation, which enables instances of objects to be demarcated to show their boundaries. The
instances we identify are looting pits or holes that signify damage or presence of damage on
heritage sites likely conducted by looters. Our main algorithm is related to and builds on the Fast
RCNN method (He et al., 2017; Girshick, 2015). When potential objects, such as pits that suggest
looting or damage by looters on an image, are identified, classification is done using a con-
volutional layer which generalizes data from input images into feature maps via a series of filters
and kernels. Within this series of layers, pooling layers are used to downsample feature maps;
layers are then connected using references to enable feature reconstruction. These connections
enable and incorporate weights and bias input data that translate between layers. Multiple
convolutional and pooling layers are created to enable further propagation between layers that
enable forward and backward image reconstruction on imagery data. The underlying neural
network model used is ResNet101, which means a convolutional model with 101 layers. The
regional aspect of the Mask RCNN used applies bounding boxes across regions of interest (ROI)
to then classify single or multiple regions into relevant classes, such as looted areas or holes in our
case. The mask part of the algorithm creates an output that determines a spatial layout by refining
the bounding box at the pixel level.

Figure 1 demonstrates the steps deployed in the Mask RCNN used; the code provided (see
Supplementary Material) gives further, specific detail on the implementation algorithm. To
summarize the main CNN algorithm, connectivity between layers in the neural network and layer
transformation is conducted using convolution functions (Figure 2) (Chen & Ho, 2019). The
convolution changes pixels into a single value which is then connected with a rectified linear
activation function (ReLU), which is a piecewise linear function that outputs positive input or zero
for non-positive. The pooling operation layer is used to calculate feature map values, ultimately
creating a downsampled map feature. At the end, layers in the CNN are connected with the output

Figure 1. Diagram showing the deployed mask RCNN approach with relevant layers deployed to process
and classify data.
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feature. Going back to Figure 1 and the steps used in our sequence of methods, training images are
preprocessed and augmented, which includes preparing and cleaning training images as well as
annotating images. Augmentation is a process whereby improvements to images attempt to reduce
validation error in training (Shorten and Khoshgoftaar 2019). In our case, this involved creating
new images from existing images. Images were flipped left to right, up and down, rotated 45°,
rotated 90°, scaled to .5 size, and scaled to 1.5 size. This enabled different sized images and
different angles and variations to be used in training data. Once training and validation data were
prepared, then a ResNet101 network model was used; in our case, we used the ResNet101-Feature
Pyramid Network (FPN). This is a feature extraction model that takes an image of an arbitrary size
and produces an output that has proportionally sized feature maps at multiple levels. The result
from each network layer is used to reference feature maps for subsequent layers (Lin et al., 2017).
The next step is ROI pooling, where the step involves taking input from identified classes and
converting given feature maps into fixed dimensions. This helps connect layers and ensure outputs
are the same size between layers. The subsequent step involves using intersection over union
(IOU), which is used to calculate mean average precision. This is a calculation used to determine
the accuracy of object detection in a model relative to ground-truth object annotations. Results
over .5 are deemed sufficient or a good prediction, which is used here to evaluate performance of
training. After this step, the trained model can be used to identify a relevant class, in this case
looting pits/holes with bounding boxes for features designating site damage, and the regional
mask, which is an extraction of a regional layout on images.We used a threshold value of 0.5 as the
decision point for classifying pixels as looting holes/pits or background data.

Table 1 lists key input values used in training and developing the DLmodel deployed in our case.
The final product of the DL algorithm is a model file that can then be used to classify new imagery
for the presence of looting on a given site. In this case, we identify relatively new or fresh looting,
with an excavated pit being by far the most common pit encountered on heritage sites in the study
area. In Table 1, the learning rate is how much the model is updated and changed in response to the
estimated error asmodel weights are updated during training. The Train ROIs Per Image refers to the
region of interests being incorporated to the classifier. The learning momentum refers to the value

Figure 2. Connectivity between layers and input and output data applying convolution, ReLU, and pooling
functions in the CNN.
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that helps to improve training speed and accuracy by providing a coefficient for weight updates and
helping to prevent sensitive movement in model training. Weight decay is used as regularization to
reduce model complexity and overfitting. The detection minimum confidence gives us a score
(usually scored between 0 and 1) whereby the detected object is a correct classification, with 1 being
a more certain classification. The steps per epoch parameter refers to the number of training samples
to run relative to the batch size; the number of classes refers to the classes to identify in imagery (i.e.,
looting holes and non-pit damage). Masking pool size refers to the sequence-processing layers that
are reduced when processing the data. The pool size refers to the pooling operation or filter size (e.g.,
2 × 2 or 8 × 8) applied to a feature map for given scenes. The validation step refers to the number of
backpropagation applied to validation data to track validation accuracy. The anchor scales refers to
one of the inputs used to generate candidate boxes for anchor points; this is used to identified given
objects (e.g., looting holes). In addition to the scales, the ratios help derive these candidate boxes.
Additionally, the image minimum dimension refers to the minimum dimension possible for images
used in our examples (e.g., 512 × 512 resolution).

Data Collection Process and Training Data

Training data were obtained from available imagery from our own data, archival data (APAAME,
2022), and images made available to us. These data allow us to annotate given imagery so that
evidence for looting is indicated on images and objects classified as looting are used to train (Figure 3).

The UAV data made available to us and used in this study were collected using a DJI
Phantom 4 Pro drone at an altitude of 100 meters above ground level (AGL). The drone was
equipped with a 20-megapixel camera capable of capturing high-resolution images with a
pixel size of 5472 × 3648. The camera was set to capture images in JPEG format with a
compression quality of 100%. The study area where we obtained imagery covers a region of
approximately 25 square kilometers in the vicinity of archaeological or heritage sites that have
experienced looting damage in the form of looting pits or holes. The drone was flown in a grid
pattern over the study area, capturing images of the ground at an angle perpendicular to the
surface. The images were taken during daylight hours with clear weather conditions to ensure
high-quality images. The number of looting pits/holes ranged between 10 and 200 in each
image, with over 8000 looting holes in total.

Table 1. Relevant Input Hyperparameters for the Deep Learning Model Produced.

Input Parameter Value

Learning rate .002
Train ROIs per image 700
Learning momentum .95
Weight decay .0001
Detection min. confidence .7
Steps per epoch 150
Num. classes 2
Mask pool size 15
Pool size 8
Validation steps 50
RPN anchor scales 16, 32, 64, 128, 256
RPN anchor ratios .5, 1, 1.5
IMG. min. dim 512
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In total, there are 95 images used in training and model validation, with 80% of the
samples (76 images) used for training a model and 20% (19) used for validation. This worked
out to be over 1500 looting holes for validation and over 6000 for training. This is also what
we based our tests on for validation. All images were made to be the same dimensions and
underwent quality enhancement, including orienting and adjusting images so that looting
damage was clear. Objects classified as evidence for looting are annotated using a tool called
LabelMe that enabled classes to be defined as polygons (LabelMe 2022) and used in training/
validation. Additionally, as models are created by the end result of the training in the Mask
RCNN algorithm, we used a pretrained model derived from the Microsoft COCO dataset.
This assists in creating a final trained model using an annotated set that consists of over
330,000 images where pre-defined and pre-trained weights are generated (Microsoft COCO
Dataset 2022). The COCO dataset is also used to benchmark our algorithm to compare
performance with object detection on deployed images. The class identified is a looting hole/
pit, as the images we have from all of our sampled images relate to archaeological or heritage
sites that have looting damage in the form of looting pits or holes. This was, therefore, used
for training, validating, and testing the final model result.

Data Collection Process

Figure 3. Example of looting damage used for training from different regions and used to train the mask
RCNN algorithm.
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Results

We deploy our algorithm, which produces a model output from training. Table 2 provides
summary results of key metrics that demonstrate the potential and testing results of our approach.
Type I and II errors were 85 and 20, respectively, from validation samples. The key output of our
approach is instance segmentation of looting damage, that is the identification of individual
looting hole features, displayed. Figure 4 demonstrates an example of instance segmentation,
where identified looting hole/pit instance segments are shown and counted. While this dem-
onstrates the utility of the approach, we also deploy formal tests to indicate accuracy, precision,
and recall results. This is discussed below.

Validation

During model training, the best results achieved demonstrate model accuracy at 93%, that is the
accuracy in positive detection of looting holes, with a loss close to .3 (Figure 5). The true positive

Table 2. Summary Results of Tested Metrics for the Applied DL Approach.

Test Metric Result

Model accuracy 93%
Model loss .3
Precision score .65
Recall score .73
F1 score .69

Figure 4. Example of instance segmentation enabled by the deployed algorithm.
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identification refers to the fact that when a hole was detected by our software, the trained model
was accurate at about 93%. The loss function demonstrates how well the model training can
predict the dataset. A mean square error function is used to calculate loss, which measures how
well the training meets given expected results. Although this is useful for training, we wanted to
also test the application using introduced images. Figures 6 and 7 demonstrate two introduced
samples where the model is deployed to apply instance segmentation on looting damage. Overall,
about 80% of new looting damage can be identified in these images, which have over 800 pits.
Formally, and deploying an F1 score (Baeza-Yates & Ribeiro-Neto, 2011) for testing precision and
recall for introduced images, results demonstrate an overall score of .69; the precision score
achieved is about .65, while recall is .73. A total of 750 looting holes were predicted; 120 present
holes were not detected. Overall, the model performed well in detecting looting holes in new
excavations or holes, but was less successful in identifying some older holes, particularly those
with poor preservation. The results suggest that even for trained experts identifying older looting
could be challenging. The accuracy score was high, being over 90%, but better training data might
be needed to improve the precision and recall rates particularly for older looting holes.

In other words, a number of false negative observations are recorded by the existing model.
Looking at most of the looting damaged missed, it is clear that older holes have in many cases
eroded and lost some of their form, which can create irregular shapes and can be more easily
missed, even by trained professionals. In regards to more fresh holes or those with clear shadowing
and linear features that define shape, these are more easily identified and are often not missed.
However, even some of these are missed as demonstrated on Figures 6 and 7. Clearly identifiable
looting damage holes that are mostly or partially eroded are missed in about 30–40% of cases; the
figure could be higher given that we could not always determine if previous looting holes were in
fact evidence for looting. This shows that even for trained experts identifying older looting could
be challenging. Nevertheless, where clear forms and shapes are evident for looting damage, the
approach demonstrates utility as confirmed by manual observation by experts. In particular, the
accuracy score was high, being over 90%, but better training data and increased augmentation
methods might be needed to improve the precision and recall rates, including for older looting
holes. The results for new images reflects the model’s inability to generalize well to new data,
particularly data with old holes that create irregular shapes.

Figure 5. Results from the deployed loss function used in training validation.
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Discussion

Recent events around the destruction of heritage have demonstrated the need for measures that
better protect and detect threats. Cultural heritage plays an integral role in the economies,
identities, and well-being of communities; however, it is repeatedly under threat and better
measures for its protection are needed. Computational approaches applied to optical imagery that
can determine ongoing or real-time events could benefit stretched or limited policing resources,
particularly in remote areas. We present an approach that shows good results in detecting looting
damage, which can then be used to automatically inform policing authorities of such damage. We
have chosen to focus on detecting looting holes, as these are often the main evidence for ongoing

Figure 6. Introduced image used to identify looting holes and damage to an archaeological site.

Figure 7. Another introduced image with segmented looting damage; some older looting damage is missed.
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or new looting to an area. Such detection of these features would enable police or other protective
forces to respond to events, particularly if security is untrained or not able to easily identify looting
damage without assistance from an automated approach. Previous approaches, as discussed
above, had mostly depended on satellite-based imagery, which is limited by the fact that data from
satellites often are not obtained quickly enough to enable a more rapid protective response.

Application to Heritage

We envision that the approach we used is incorporated with real-time optical data received from
UAVs, where the data are accessed by those responsible in protecting heritage sites. Authorities
can utilize the tool to automatically assess imagery as they are received, the number of looting
holes could be counted, and any information that demonstrates new damage to a site or unknown
damage could then enable a response. The tool is best used for remote sites that are likely to be
monitored by long-range UAVs. For instance, the software could be applied to analyze imagery
coming in from a remote feed, where authorized individuals in charge of security for sites could
use the information to respond to threats. Such threats are identified if new or an increase in the
number of looting holes is evident from previous observations. While drones (UAVs) are widely
used for security and monitoring for looting, the use of automated approaches has rarely been used
for heritage. This can become a problem if those who provide security on sites are not trained to
identify looting or to more easily count new looted features; the automated approach such as the
one presented can be used to demonstrate discrepancies from previous observations by indicating
if new or additional damage is evident (Kersel and Hill 2019).

The current approach shows efficacy in being relatively accurate at detecting particularly new
looting holes. The results described show that overall holes or pits, when evident and identified
were accurately recorded at around 93%. Such features are generally regular and more clear on
optical imagery. The approach did not always work well in identifying older or more eroded
looting features; however, we attribute this to the fact that such instances are often irregular in
shape and can be even difficult for trained individuals to identify. More machine training on
eroded or irregular features might be needed to improve overall accuracy for these specific sub-
type features. Overall, increasing training samples would improve accuracy, precision, and recall
values. Augmentation was observed to help training of our data, helping to make the model more
accurate. Providing imagery with varied angles and rotation helps DL models to increase training
samples even in cases where the original, non-augmented data are somewhat limited.

Given the threats to and importance of heritage in different countries, we envision au-
tomated approaches to protecting heritage sites to be important in coming years. We also
foresee potential privacy violations such DL tools present. To avoid problems in privacy, such
software should only be trained for specific tasks such as identifying threats or damage to
heritage sites without providing information on individuals. Work that uses collaborative
training between stakeholders, such as between policing authorities but also groups that
represent the wider public, might be needed to ensure privacy protection. In such cases,
example training data are collaboratively selected and approved rather than only one
stakeholder choosing training data (Boulemtafes et al., 2020).

Conclusion

More can be done to improve the approach. For instance, we noted above that the approach is the
weakest in relation to identifying old looting pits or holes. While this does not significantly limit
the tool, in our opinion, as policing authorities are more likely to be interested in newer damage,
we could improve the analysis by also segmenting more old looting damage to train along with
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additional clear examples of looting. This would then allow the tool to differentiate new versus old
damage if enough varied examples are provided. Additionally, other classes, such as looter
equipment, could be added to identify potential for looting. There would have to be protection of
individual data enabled in such cases, requiring work with stakeholders to ensure protection, but
identification of unauthorized equipment or items on heritage sites could be useful for protective
authorities. Finally, thermal imagery as well as optical data could be useful to incorporate given
that looting often takes place at night and detection of illegal activities at night might be an even
better approach to enable more timely responses. In all these cases, the main limitation has been
training data for the DLmodel, which is often the case for DL in general. Therefore, there is a need
to better share and obtain data in such an approach. As part of our effort, we provide the code and
hope others can build on this effort. From the current results, we have demonstrated the efficacy of
training such DL algorithms to automatically identify looting damage, including the most
common damage identified on heritage sites in the form of looting pits or holes.
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