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SUMMARY

Recent advances in synthetic biology are enabling exciting technologies,
including the next generation of biosensors, the rational design of cell memory,
modulated synthetic cell differentiation, and generic multifunctional biocircuits.
These novel applications require the design of gene circuits leading to sophisti-
cated behaviors and functionalities. At the same time, designs need to be kept
minimal to avoid compromising cell viability. Bifurcation theory addresses such
challenges by associating circuit dynamical properties with molecular details of
its design. Nevertheless, incorporating bifurcation analysis into automated
design processes has not been accomplished yet. This work presents an optimiza-
tion-based method for the automated design of synthetic gene circuits with
specified bifurcation diagrams that employ minimal network topologies. Using
this approach, we designed circuits exhibiting themushroombifurcation, distilled
the most robust topologies, and explored its multifunctional behavior. We then
outline potential applications in biosensors, memory devices, and synthetic cell
differentiation.

INTRODUCTION

Real-world and cutting-edge applications of synthetic biology are demanding circuit designs with increas-

ingly complex behaviors. Toward building the synthetic cell from the bottom-up, new developments are

expected, quoting,1 when designing cellular systems featuring complex behaviors, including division,

cognition, and motility.

One of the main challenges of synthetic biology is to design and implement gene regulatory circuits

capable of complex behaviors in a near-optimal fashion while keeping a minimal design.2,3 A milestone

in gene circuit automated design is CELLO4 enabling the design of circuits with pre-specified steady

state and input-output behaviors, and for the first time proving good predictability in living cells of

model-based automated design software. Aiming to address more complex (and dynamic) behaviors,

tools based on mixed integer nonlinear programming have shown good flexibility and computational

efficiency.5,6

The limited resources of the cell restrict the combination of multiple working circuits in the same organ-

ism.7,8 This gives leading relevance to the design of multifunctionality, regulatory networks capable of

distinct dynamical behaviors. But, how can different behaviors be integrated in the same circuit? How to

endow a cell with the capacity to respond differently to a signal leading to complex dynamical behaviors?

The bifurcation theory of dynamical systems provides powerful tools to answer these questions, enabling

the mapping between the topology of the network (given by a set of parametrized differential equations)

and the different dynamics available under a controllable input or signal. Each bifurcation of the system

changes the number and/or nature of the long-term dynamics of the system, e.g., from monostable to bi-

stable, or from a stable steady state to an oscillator. These phenomena can be represented by bifurcation

diagrams, showing how the number, position, and dynamics of each steady state change under a set of

controllable parameters. However, standard tools for bifurcation analysis are based on continuation algo-

rithms which require precise a priori knowledge of parameters and steady-state solutions, hampering the

integration of bifurcation diagrams within automated algorithms for circuit design. Alternative methodol-

ogies based on chemical reaction network theory9–11 have paved the way for the integration of bifurcation

theory into the automated design of biocircuits, an ambitious design framework that has not been

addressed so far.
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In this work we address this last topic and present a method for automated design of gene circuits with pre-

specified bifurcation diagrams. The method extends and combines efficient global mixed integer

nonlinear programming optimization methods with an innovative procedure for bifurcation detection, al-

lowing the following novel features:

(i) Automated design of gene circuits that not only exhibit behaviors compatible with a target bifur-

cation diagram but are also optimized for specific additional criteria (like metabolic cost) given

by sets of functions.

(ii) Systematic exploration of minimal topologies compatible with the required behavior.

(iii) Robust design i.e. finding robust topologies with respect to parameter perturbations (i.e., topol-

ogies that remain functional despite perturbations in the parameters).

(iv) More sophisticated design tasks, computing optimal trade-offs between design objectives and

finding Pareto optimal topologies with respect to different opposing criteria (such as performance

and metabolic cost, or robustness and topological complexity).

A multifunctional behavior of special interest for synthetic biology applications is the mushroom bifurcation,

named after its mushroom-shaped bifurcation diagram, originally identified in the differentiation of neural

stem cells.12–14 The mushroom can result from the combination of two toggle switches, giving rise to four sad-

dle-node bifurcations and a set of three disconnected loci of stable steady states (Figure 1). The intermediate

steady state (termed ‘‘ON state’’) is only available for a window of intermediate values of the signal, while the

other (termed ‘‘OFF states’’) are available for highand lowvaluesof the signal.Note thatdespite the ‘‘ON/OFF’’

nomenclature,wedonot require a certain threshold in theexpression levels todefineamushroom.Specifically,

the expression levels along each locus can vary with the signal without compromising the bifurcation diagram

structure. Similarly, the pattern of steady-states of the bifurcation diagram of the mushroom is a multidimen-

sional feature and its categorization can be independent of the gene that is used to describe it.

In certain aspects, the phenotypic behavior of the mushroom is an extension of ‘‘band-detect’’ gene reg-

ulatory networks, which are constructed from incoherent feedforward loops.15,16 These have recently been

A B

C D E

Figure 1. Searching for gene circuit topologies leading to mushroom bifurcation behavior

(A) Gene network containing two pairs of cross-repressing genes. The affinity parameter kij controls the strength of the

regulatory interaction of gene i on gene j, and di is the degradation rate constant for each protein species i.

(B) The circuit superstructure employed in this work to search for mushroom behavior: super graph and vector encoding.

(C) The mushroom bifurcation diagram shows four saddle-node bifurcations (indicated by red dots). The dotted squares

indicate possible constraints on the state-parameter space to be imposed on the search for a desired mushroom

bifurcation behavior.

(D and E) (D) Two different bistability ranges (Re1, Re2) and (E) ‘‘ON state’’ and ‘‘OFF state’’ ranges (shadowed).
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applied to model French flag type pattern formation2 and other programmed spatial behavior.17 The

mushroom-shaped locus of equilibria, leading to two different ranges of bistability provides the system

with unique hysteresis properties where the state of the cell will be determined by the signal history. Bist-

ability (and multistability in general) is in itself a property of interest in synthetic biology, microorganisms,

and mammalian cells,18–20 forming the basis of memory, cell decision-making systems, biological compu-

tation, and pattern formation.21–24 In addition, we can explore the phenotypic space close to the mush-

room bifurcation. In particular, mushroom topologies can also lead to isola bifurcation diagrams, which,

though well-known in dynamical systems theory, have never been demonstrated experimentally. Together,

these properties demonstrate how combining common motifs gives rise to an emergent range of dynam-

ical behaviors not described by the individual components, a growing area of interest in systems

biology.3,25 Hence the contribution of this study is 2-fold: on the one hand incorporating for the first

time target bifurcation behaviors in the automated design of biocircuits, while on the other exploring

the capabilities of the identified robust mushroom topologies showing how automated exploration can

be connected to functional design.

RESULTS

Minimal topologies leading to mushroom bifurcation

Themethod presented in this work allows for the general design of biocircuits with prescribed saddle-node

bifurcations in target regions of the bifurcation diagram (pre-defined by the user). Here we apply this meth-

odology for the design of biocircuits exhibiting mushroom bifurcations with particular gene expression

levels for the saddle-node bifurcations. Given that the mushroom bifurcation diagram contains four sad-

dle-node bifurcations, we expect that a network containing two pairs of cross-repressing genes (Figure 1A)

can give rise to the target bifurcation diagram. Nevertheless, we hypothesized that simpler topologies with

fewer connections can also yield the same functionality. In order to explore this idea we defined the super-

structure in Figure 1B. Starting from this superstructure, which includes 3 genes (U, V, andW) with a signal S

inducing genes U and V, we looked for circuits with a prescribed mushroom characteristic bifurcation

diagram. There are 9 potential connection arrows between the nodes (genes) represented by a vector y

of integers, such that yij = � 1 if gene j inhibits gene i, yij = + 1 if gene j activates gene i and zero otherwise.

The mushroom characteristic bifurcation diagram is depicted in Figure 1C, with 4 saddle-node points (SN)

delimiting the steady-state branches and generating two bistability regions (Re1 and Re2 in Figure 1D). This

results in an ‘‘ON state’’ available only for intermediate values of the signal (see Figure 1E). Note that, by

‘‘ON state’’ and ‘‘OFF state’’ we denote branches of stable the steady states in the bifurcation diagram

(where ‘‘ON’’ and ‘‘OFF’’ states correspond to intermediate values of the signal, and low and high values

of the signal, respectively). The particular search employed in this manuscript allows for ‘‘ON’’ states

with lowers expression levels than the ‘‘OFF’’ states i.e. inverted mushrooms. Nevertheless, the method

introduced in this manuscript allows us to restrict also the particular location of the saddle nodes (see

Figure 1C), which can be especially useful in the design of specific biosensors (see STAR Methods).

We search for topologies leading to a mushroom bifurcation diagram behavior using an optimization

algorithm and amultistart strategy (as described in the STARMethods section). In order to explore minimal

topologies leading to the target behavior, we first impose a number of 2 genes and a number of 2, 3, and 4

connections.

From the potential 72 connected topologies, only 7 topologies were found leading to mushroom behavior,

represented in Figure 2 and classified attending to the number of active connections. Topologies, A1, A2,

and A3 were the topologies that appeared more frequently in our search. This suggests that the cross-

repression motif is a robust way to obtain the mushroom bifurcation diagram. In particular, the minimal

structure leading to a mushroom bifurcation (A2) only requires two nodes, resembling the paradigmatic

cross-repressing topology encoding the bistable switch.18 Note that symmetric structures such as A1

and A3 are considered different since the symmetry of the model might be broken in the particular condi-

tions imposed. Here, we imposed a more strict range of possible values on gene u for the location of the

saddle-node bifurcations (as indicated STAR Methods section).

In addition to the cross-repression motif, inspection of all the successful topologies revealed 2 more core

topologies (for which no connection can be removed without losing the mushroom functionality), corre-

sponding to structures A5 and A7. Interestingly, this global topology screen did not return the mushroom

topology studied in14 and26 that is similar to structures A5 and A7 but without a self-activation. A specific

ll
OPEN ACCESS

iScience 26, 106836, June 16, 2023 3

iScience
Article



screen targeting this topology confirmed that for the regulatory functions and parameter ranges used in

our study, this topology was much less robust than the rest of the topologies found here (see Figure S4).

The key distinguishing feature for all topologies is the requirement of the signal activating both genes. A

screening looking for the existence of mushroom bifurcation diagrams in the presence of a single activating

input did not return any successful results, suggesting that the double activating role of the input is a

requirement to reproduce the mushroom diagram.

With the same optimization strategy, we explore three-dimensional topologies leading to mushroom bi-

furcations by fixing the number of genes to three. The corresponding bounds for the parameters for the

3-gene network are included in Table S2. The algorithm detected through multiple optimization runs,

more than 300 different 3 gene topologies leading to mushroom bifurcations from the potential 1728 to-

pologies (the set of solutions we denote as Mushroom3D). Unlike exhaustive exploration strategies, our

optimization-based approach finds structures fulfilling the target behavior very efficiently, in the order of

seconds per run using a standard PC. The most frequent structures found are depicted in Table S3 and

Figure S1. A selection of 3-gene structures which are not built up from 2-gene mushroom topologies are

illustrated in Tables S4 and S5, and Figure S2.

Robust functionality vs. topological complexity

A circuit is considered functional if it shows amushroom bifurcation. Nevertheless, it is important to in addi-

tionally assess its robustness by quantifying how the circuit functionality is kept with respect to perturba-

tions in the parameters. With this aim, we defined different robustness scores based on the size of the

parameter space occupied by successful parameter sets (see STAR Methods section). The most robust

A

B C

Figure 2. Gene regulatory circuits with 2 nodes with the capacity for mushroom bifurcation behavior

(A) All the 2-gene structures found by the algorithm leading to mushroom bifurcations, labeled according to their

frequency within the set of solutions (A1 and A7 are the most and least frequent, respectively). The topologies are labeled

according to their frequency within the set of solutions (Mushroom2D). Parameter bounds for the search are included in

Table S1.

(B) One possible synthetic realization of the circuit with minimal topology (A2) leading to mushroom bifurcation.

(C) Top 5 topologies with highest robustness (see STAR Methods). Bars and errorbars correspond with the median and

quartiles from bootstrapping.
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structures are shown in Figures 2C and 3A. For the 2-node structures the most robust topologies show the

expected cross-repression motif found in the bistable switch with marginal differences in robustness be-

tween topologies A1, A2, A3, and A4; highlighting the simplest topology A2 as a good potential candidate

to construct a synthetic circuit in the lab (Figure 2B).

A similar analysis was performed for the successful topologies in 3-node networks. From the point of view of

circuit implementation, we are interested in finding a good compromise between robustness and the number

of connections. In order to select the best structures we build a Pareto front in the objective space (robustness

vs. number of connections) as depicted in Figure 3B, identifying optimal topologies B8, B6, and B20 with 4, 5,

and 6 connections, respectively. The structures in the Pareto front are shown in Figure 3B. Interestingly, the

addition of connections to robust topologies did not show an improvement in the robustness of the network.

In particular for the 3 most robust 5-connection topologies (B5, B6, and B21), the addition of connections just

preserved or deteriorated the robustness of the network (see colored circles in Figure 3B).

A

B

Figure 3. Robustness analysis for the 3-node topologies

(A) Top 10 topologies with highest robustness (see STAR Methods). Bars and errorbars correspond with the median and

quartiles from bootstrapping.

(B) Relationship between number of connections and robustness for the most robust topologies. The Pareto front (red

dashed line) is determined by the topologies with an optimal trade-off between robustness and complexity (in terms of

the number of connections). Structures B8, B6, and B20 optimally trade-off robustness and complexity. Colored circles

(blue, purple, and yellow) correspond with topologies that share the same 5-connection topologies (B6, B5, and B21)

respectively.
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Mushroom annihilation and isola formation

Following the analysis of the mushroom robustness, we explored the resulting bifurcation diagrams when

the mushroom is lost. We observed three main transitions out of the mushroom bifurcation diagram (M1 in

Figure 4A): First, the mushroom head can cross values of saturation or absence or signal, resulting in incom-

plete mushrooms (M2, M3). Second, a pair of saddle nodes on one side of the mushroom collide, giving

place to a cusp bifurcation giving rise to a bifurcation diagram similar to a bistable switch (B). Finally,

the two saddle nodes forming the neck of the mushroom can collide, pinching the neck of the mushroom

and producing an isola (I1), a closed curve of equilibrium solutions delimited by two saddle nodes (Fig-

ure 4B). Strikingly, all these transitions are observed without the requirement to change the topology of

the system, making this rich dynamical scenario exploration attainable in gene regulatory circuits.

While all the landscapes provide different dynamical properties, isolas are particularly compelling for their

cell fate decision capabilities. Isolas are found in different contexts including chemical reactors, buckling of

elastic shells and plasma physics.27,28 Mechanisms of birth and annihilation of isolas have been classified via

singularity theory,28 being one of such mechanisms with particular interest in the transformation of a mush-

room to an isola by reducing the number of saddle-node bifurcations.12,29 It is interesting that despite be-

ing found both theoretically and experimentally in chemical systems, the isola bifurcation diagram has not

yet been directly observed in a biological system. Understanding how to construct such a system in a gene

network could therefore enable experimental verification of the underlying dynamical theory. In addition,

as we will see below, the isola can form the basis of permanent switching systems, allowing new function-

alities not achievable with a genetic toggle switch.

Building a genetic regulatory network with a functional isola requires us to be able to prescribe the range of

signals of the isola. In our parameter exploration, we observed a controllable diversity on the level and

A

B

Figure 4. Bifurcation diagrams surrounding the mushroom behavior reveal a controllable rich functional

landscape

(A) Phase diagram around a mushroom generated by varying the degradation rate dv and the interaction strength k (see

Figure 1A). Different colors show different bifurcation diagrams. A schematic of each bifurcation diagram is shown in the

right panel indicating the different continuation combinations of stable (solid lines) and unstable states (dashed lines).

(B)Change in themushroombifurcationdiagramby changing thedegradation ratedv for twodifferent valuesof k. Thedifferent

diagrams show the annihilation of the mushroom into an isola, followed by the collapse of the isola leading to monostability.

Parameters used are: p0 = 230;p1 = 50;p2 = 1000;R1 = 264;R2 = 275;K1 = 10;K2 = 133;du = 1 for topology A3.
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range of signals delimiting the isola. In addition, we also detected different degrees of robustness as pa-

rameters varied (Figure 5B). To explore their prevalence, we explored the formation of isolas in all the iden-

tifiedmushrooms’ 2D topologies and parameter sets by varying the degradation rate of the node V (dv ) and

keeping the rest of the parameters constant. Strikingly, all the topologies tested exhibited the formation of

isolas suggesting that the isola formation is a robust property of mushroom bifurcation. Alternatively, one

can also employ the same automated method described in this paper to impose properties of the isola

bifurcation diagram. In particular, these properties need to take into account, the location and curvature

of the saddle-node points (see STAR Methods section for a more detailed description).

Design of biosensors and memory devices

Thebifurcationdiagrams identified in themanuscript are unexplored in synthetic biology andopen thedoor

to new functionalities. One of the main characteristics of the mushroom is that the ‘‘ON state’’ is only avail-

able for a reduced range of signals (the neck of themushroom). This reveals themushroom’s capabilities as a

biosensor, only allowing the activation (transition from OFF to ON) for precise levels of a target signal

Figure 5. The mushroom circuit is able to discern intensities and durations of transient signals (top)

It can also be used to design a sensor of extreme signal values with memory using the isola regime (bottom).

(A) Response of themushroom (inset) for different temporal signal pulses (top) of the same duration (t = 20) but different

intensity (indicated by color). Expression of gene v (bottom) only becomes stably activated for pulses of intermediate

maximum intensity (Smax).

(B) Response of themushroom to signal pulses of different duration (t) andmaximum intensity (Smax) for two different values of

the parameter b2. Shaded regions indicate combinations of parameters for which node v is activated stably. Signal profiles

follow the shape SðtÞ = Smin + ðSmax �SminÞe� 1
2ððt� 100Þ=tÞ2 with Smin = 10. Results correspond to topology A1 with parameters

p0 = 361;p1 = p3 = 30;p2 = 411;k = 9:04$10� 2;R1 = 143;R2 = 300;du = 1;dv = 1:38;K1 = 10:0;K2 = 137.

(C) Expression of the circuit (bottom) for two different realizations of a noisy signal (top).

(D) Isola bifurcation diagram showing the detection mechanism. When the signal reaches high or low levels determined

by the isola boundary (dotted lines and black arrows in C and D), the system changes steady-state irreversibly. Schematic

of the irreversible transitions is indicated by colored arrows. Results correspond to topology A1 with the same parameters

than panel A but with p1 = 200. Initial state was set by opening the mushroom setting parameter p1 = 20. Noisy signal is

a Wiener process.
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located in the neck of the mushroom. Furthermore, since the neck of the mushroom is surrounded by two

saddle-node bifurcations, the resulting dynamical ghosts will slow down the transition to the ON state.23

Hence, activation is not immediate, filtering out transient signals, requiring the persistence of the target

signal for a certain amount of time in order to reach the ON state (Figure 5A). In addition, the size of the

head of the mushroom provides memory of the activation, preserving the ON state for a larger range of

signals than the ones required for the activation (Figure 5A). As discussed in the previous section the mush-

room bifurcation diagram is prone to pinching by controlling parameters such as the degradation rate of

one of the genes. This provides a mechanism to regulate the size of the neck mushroom, opening the

door to controlling the range of target signals as well as the required duration of such signals. This way

the mushroom not only serves as an accurate signal detector but also as a timer (Figure 5B).

In addition to the mushroom bifurcation, the isola also provides compelling functionalities. In contrast to a

genetic toggle switch, transitions out from the isola are irreversible. Hence, once in the isola state the sys-

tem is able to detect a signal that goes outside of the range of the isola (either low or high), unable to reach

back to the isola independently of future levels of the signal (Figures 5C andD). Thus the isola can serve as a

sensor of extreme values with infinite memory, detecting if the signal has been high or low at any time point

in the past. Since the isola bifurcation diagram is close to the mushroom diagram, reset of the system onto

the isola state can be done by ‘‘opening’’ and ‘‘closing’’ the neck of the mushroom.

DISCUSSION

In this work, we have developed an approach to biosystem design based on the specification of the bifur-

cation structure (through the location of saddle nodes in the bifurcation diagram) and applied it to the case

of the mushroom bifurcation of interest in developmental and synthetic biology. We found gene regulatory

networks composed of two and three genes that displayed the desired behavior. In particular, we found

that a system based on the genetic toggle switch incorporating a signal activating both genes was sufficient

to reproduce a mushroom bifurcation diagram. We also explored the robustness of these circuits and built

a Pareto front to capture the trade-off between the robustness and number of connections, identifying the

best topologies to implement the circuit using synthetic biology tools. In addition, we explore specific

dynamical functionalities of the mushroom that can be exploited to build biosensors with tuneable tempo-

ral and precision properties. We extended our exploration to the formation of different bifurcation dia-

grams, which occur in the parameter space close to the mushroom bifurcation. We showed that a variety

of dynamical behaviors can be created that can provide interesting memory and signal-detecting capabil-

ities unattainable with previous memory devices. Interestingly, this variety of behaviors was attained mainly

by inducing differences in the degradation rates of the genes of the network, which is a common pertur-

bation tool in synthetic biology,30 and opens the door to the exploration of novel dynamical behavior

when protein degradation is coupled to other synthetic circuits.31,32 The most interesting bifurcation dia-

gram found is the isola, which not only could be useful for error checking of deployed biosensors but could

be useful in clinical applications, for example in vivo detection of inflammation33 or metabolite levels.34,35

Finally, the minimal mushroom topologies identified reveal a new way to create multistable systems,

avoiding the need for loading a single bistable switch with additional autoregulation.36–38

Our results complement the small amount of other existing work on mushroom bifurcation. A recent study

explored four incoherent feedforward networks with positive auto-regulation for their potential to display

mushroom dynamics.14 They found that all were capable of mushroom-like behavior, though the appear-

ance depended on the incoherence of the networks and the strength of positive feedback. Even though

their networks apparently depend on a unique input signal, their topologies depend on an upstream

gene that imposes different regulation in the downstream genes, effectively recovering the double signal

input we analyze in our study. By contrast, they included the possibility of repressing input signals, and a

different regulatory formalism based on AND-type logic gate interaction in the activation and repression

of genes. This reinforces how the results of such computational investigations depend somewhat on the

modeling choice of the dynamics, a result demonstrated directly previously.39 Further work in the experi-

mental realization of these systems is required to understand the actual dynamics, and how these depend

on the particular biological context. Another study modeled feedforward topologies with positive auto-

regulation and demonstrated that only incoherent feedforward networks were capable of atypical bistabil-

ities (mushrooms and isola’s).26 Although in this study we consideredmore complex topologies, we can see

that when considering feedforward-like networks we also find that incoherence is required (e.g., A5 and A7

in Figure 2). Analysis of the topology studied in26 using the thermodynamical formalism employed in our
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study, revealed that the topology used by these authors can also show the mushroom bifurcation albeit in a

smaller parameter region than topologies A1–A7. This manifests again the relevance that the choice of reg-

ulatory functions has on the resulting robustness of a topology.

Overall, designing biological systems based directly on bifurcation properties provides a natural tool to

explore phenotype-genotype relationships, relating topologies of the network with the available dynam-

ical behaviors. Such an approach allows for the specification of a set of functional requirements without

precision of explicit integration of the differential equations. In addition, it provides a tool to design target

dynamics that occur in a robust manner making these approaches key to the future of engineering of

biological systems where uncertainty dominates. In future work, we will extend the method to encode

different types of bifurcations (including the Hopf bifurcation) related to other complex nonlinear behaviors

of interest in systems and synthetic biology.

Limitations of the study

Future research on this topic should take into account some limitations on the use of automated bifurcation

design. Firstly, the choice of regulatory functions used in the study can significantly impact the results

obtained, implying that it is necessary for case-by-case precise biochemical knowledge of the specific pro-

moter and regulatory reactions used in experimental designs of the circuit. Additionally, the study does not

account for stochastic effects such as intrinsic or extrinsic noise, which may influence the bifurcation

behavior of the system. Finally, other cellular processes, such as competition for protein degradation, or

metabolic overload; are not considered, requiring more tailored constraints in the optimization to real-

world synthetic biology scenarios.
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tact, Ruben Perez-Carrasco (r.perez-carrasco@imperial.ac.uk).

Materials availability

This study is computational and did not generate new reagents.

Data and code availability

d Data files including the resulting topologies and parameters from the optimization are available online at

Zenodo: https://doi.org/10.5281/zenodo.6024249.

d The code used in the analysis can be found in the same repository at Zenodo: https://doi.org/10.5281/

zenodo.6024249.

d Any additional information required to reanalyse the data reported in this work is available from the lead

contact upon reasonable request.

METHOD DETAILS

Gene network mixed integer modeling framework

The first step of the method proposed consists of encoding the dynamics of the gene regulatory super-

structure in a mixed integer modeling framework. For models endowed with typical kinetics of the Hill

or Shea-Ackers types, the state vector u˛RN
R 0 contains the concentrations of the protein species involved,

and the system’s dimension N is determined by the number of genes in the network. See6 for mixed integer

modeling encodings with different kinetics. The dynamics are expressed in a mixed integer framework in

terms of the vectors u, x, y in the following form as a set of Ordinary Differential Equations:

du

dt
= xðu; x; yÞ (Equation 1)

where x, and y are the vectors containing respectively the real and integer design variables. In general

terms, real variables might include kinetic parameters, degradation rates, promoter strengths etc, and

integer variables determine the structure and connectivity of the network.

In this study, we use the superstructure in network in Figure 1B, encoded in a mixed integer framework as

follows: the gene circuit topology is characterized by a vector y of 9 integer variables (yuu, yvu, ywu, yuv , yvv ,

ywv , yuw , yvw , yww ) such that yij = � 1 if j is repressed by i, yji = 1 if i is activated by j, and yij = 0 otherwise with

i;j = fu;v;wg. Within this framework, a gene circuit is characterized by the vector y and a vector x containing

12 real variables coding for tunable biochemical parameters (including promoter strengths, leakiness,

degradation rate constants, repression and activation affinities). We consider that the rate constants

governing the strengths of the active interactions kij in Figure 1B are equal (k). As an illustrative example,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code used for analyses This paper https://doi.org/10.5281/zenodo.6024249

Software and algorithms

Matlab MathWorks https://www.mathworks.com

Python 3 Python https://www.python.org

Affinity Designer 2 Serif https://affinity.serif.com

ll
OPEN ACCESS

12 iScience 26, 106836, June 16, 2023

iScience
Article

mailto:r.perez-carrasco@imperial.ac.uk
https://doi.org/10.5281/zenodo.6024249
https://doi.org/10.5281/zenodo.6024249
https://doi.org/10.5281/zenodo.6024249
https://doi.org/10.5281/zenodo.6024249
https://www.mathworks.com
https://www.python.org
https://affinity.serif.com


the three gene system in Figure 1A (for which yuu = ywu = yvv = yuw = yww = 0 and yvu = yuv = ywv =

yvw = � 1) is given by:

du

dt
= p0

p1+q1ðSÞ
1+p1+q1ðSÞ+kv2

� duu

dv

dt
= p2

p3+q2ðSÞ
1+p3+q2ðSÞ+ku2+kw2

� dvv

dw

dt
= p4

p5

1+p5+kv2
� dww;

where the state vector is denoted byu = ðu; v;wÞ being u; v;w the concentrations of the proteins expressed by

genesU;V ;W respectively;p0;p2;p4 are thepromoter strengths,p1;p3;p5 thepromoter leakiness,kare repres-

sion strengths and du;dv ;dw the degradation rate constants. The functions q1ðSÞ;q2ðSÞ represent the concen-

tration of activating transcription factors regulated by an input biochemical signal S, given by Hill functions:

qiðSÞ = Ri
S2

K2
i +S

2
;

where R is the total concentration of transcription factor, S is the concentration of signal inducer, K is

thedissociationconstant, and thecooperativity is 2.Weassumethat repressorproteinsbindasdimers (or equiv-

alently there are two operator sites). Depending on the specific design scenario, a number of assumptions can

bemade to reduce the dimensionality of the parameter search space, here we considerp3 = p1 anddu = 1. In

this way, the vector of real design variables reads x = ðp0;p1;p2;p4;p5; k;R1;R2;dv ;dw ;K1;K2Þ, and the dy-

namics is expressed in terms of the vectors u, x, y in the form given by Equation 1.

Importantly, previous to the formulation of the design as an optimization problem, we have to select an

appropriate bifurcation parameter. We use the concentration of the inducer input S as bifurcation param-

eter and, for convenience, we express the dynamics in the compact form:

du

dt
= f ðu; x; y; SÞ: (Equation 2)

Bifurcation conditions

Once the dynamics are encoded in the mixed integer form (2), we formulate the conditions for the target

bifurcation in terms of the design variables x; y and the bifurcation parameter S. Here, the bifurcation of

interest is the saddle-node bifurcation (also denoted as fold or limit point bifurcation). In particular, there

are 4 saddle-node bifurcations in the mushroom-shaped diagram (as indicated in figure below).

A parametric condition for saddle-nodes in biochemical networks with mass action kinetics was

demonstrated by.40,41 This analytic condition is exploited in effective computational tools to detect, via

optimization, saddle-node bifurcations and bistability in biochemical reaction networks with mass action

kinetics.9–11 For non-mass-action kinetics, as it is the case in this study, we use an alternative formulation

of optimization problem (see42), in which the objective function to minimize is defined in terms of the

extended Jacobian of the system, as follows.

A B

Bifurcation diagram structure used in the optimisation

(A and B) (A) Mushroom-shaped bifurcation diagram and (B) Saddle-Node bifurcation and tangent vector b at the

bifurcation point.
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Starting from Equation 2 we compute the following extended Jacobian:

Q = ½Duf ðu; x; y;SÞ;DSf ðu; x; y;SÞ� (Equation 3)

with dimensions N3N+ 1. This extended Jacobian can be obtained symbolically or approximated numer-

ically by finite differences. The tangent vector at the bifurcation point can be computed as b = nullðQÞ. By
definition, a saddle-node point occurs when bN+1 = 0, i.e., if theN+ 1 entry of the tangent vector b is equal

to zero (see figure in bifurcation conditions). Therefore, the function:

J = b2
N+1ð _u;u; y;SÞ (Equation 4)

reaches its minimum value (i.e. J = 0) at a saddle node point.

Optimization-based automated design

Mushroom-shaped bifurcation diagrams show four saddle-node bifurcation points, see figure in bifurcation

conditions. in which SN1, SN2, SN3 and SN4 indicate saddle node bifurcations with coordinates (Si;ui ) for

i = 1;.; 4 in the bifurcation diagram. Following the reasoning of the previous subsection, the function:

J =
X4

k = 1

Jk with Jk = b2
kN+1ð _uk ;uk ; x; y; SkÞ

reaches its minimum (J = 0) when four saddle-node bifurcations occur at coordinates (Sk ;uk ) for k =

1;.; 4 in the bifurcation diagram. Therefore, we can formulate the design of bio-circuits with mushroom

bifurcation behavior (with saddle node bifurcations located within the desired regions in the bifurcation

diagram) as the following optimization problem:

min
x;y;S

Jð _u;u; x; y; SÞ

subject to:

f ðu; x; y; SÞ = 0 (Equation 5)

uL % u%uU (Equation 6)

xL % x% xU
yL % y% yU
SL %S% SU

(Equation 7)

Note that S here denotes a four dimensional vector, being SL and SU the lower and upper bounds of the target

rectangular regions. The lower and upper bounds of the real and integer decision variables are encoded in vec-

tors xL; yL and xU;yU, respectively.We can specify the (rectangular) regions in the bifurcation diagramwherewe

want the bifurcation points to be located through the values of the lower and upper bounds of the inequality

constraints (6) and the decision variable S, see for example the rectangular regions in Figure 1C. The choice of

constraints can bedefined accordingwith the design specifications required by the user, related to the desired

specific functionality (for example, if the desiredmushroommight be inverted, i.e. upside down), the particular

experimental constraints, etc. In this work, the goal was to find circuits leading to mushrooms (including the

possibility of inverted ones), so we defined 2 instead of 4 rectangular regions as constraints, which led to a

very efficient search for biocircuits with the target behavior). The constraints used are in Tables S1 and S2.

Note that the constraints for u and v are different, resulting in a break of the symmetry of the model.

The optimization problem is aMixed IntegerNonlinear Programming problem (MINLP). Due to its non-convex

nature, global optimization solvers are needed to obtain adequate solutions.43 It is important to remark that

the solution of this optimization problem is not unique, since there aremultiple combinations of topology and

parameters leading to mushroom bifurcations. A single run of the algorithm will find a particular solution very

efficiently (in the order of a few seconds for a standard PC), whereas a multistart strategy (running the optimi-

zation algorithm multiple times) will effectively find different topologies with mushroom bifurcation diagram.

For the screening of 2-gene and 3-gene topologies with mushroom behavior, we use a multistart strategy

with 2000 and 10000 runs, respectively. As indicated in the results section, the corresponding bounds for

the parameters for the 2-gene and 3-gene networks are included in the Tables S1–S3, and the solution

sets denoted by Mushroom2D and Mushroom3D, respectively.
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In advanced design applications, it is usually the case that multiple objectives need to be taken into ac-

count.6 For example, during the design of next generation biosensors, we might be interested not only

in a mushroom-shaped diagram, but also in maximizing the regions of bistability. In numerous occasions,

it is also required to operate at low protein burden to avoid compromising the viability of the cells, being

theminimal protein production cost another important objective to be considered. In order to find the best

designs with respect to multiple criteria (j1;.;jM), we consider a multi-objective formulation of the opti-

mization problem., i.e. we set the mushroom bifurcation condition J = 0 as a constraint of the following

Multiobjective Mixed Integer Nonlinear Programming (MO-MINLP) problem:

min
x;y;S

j1ð _u;u; x; y; SÞ;.;jMð _u;u; x; y;SÞ

subject to:

f ðu; x; y; SÞ = 0

Jð _u;u; x; y; SÞ = 0

xL % x% xU
yL % y% yU
SL %S% SU

(Equation 8)

The solution of the above multicriteria mixed integer nonlinear problem is not unique, but a set of vectors

representing the best compromises between the (usually conflicting) objective functions. This set of best

trade-offs is usually known as the Pareto set.

The isola-behavior can be also designed automatically, taking into account that at the isola both bifurcation

curves of steady-state solutions u�ðSÞ exhibit two saddle-node bifurcations at the coordinates ðS1; u�1Þ and
ðS2;u�2Þ with S1 <S2. The isola will fulfill the property u� 1

SS ðS1Þ> 0 and u� 1
SS ðS2Þ< 0, where u� 1

SS is the local cur-

vature of the inverse of the function u�ðSÞ that can be evaluated numerically. In contrast, for a bistable

switch we would expect u� 1
SS ðS1Þ< 0 and u� 1

SS ðS2Þ> 0. These conditions are easily incorporated into the opti-

mization problem in order to target the isola bifurcation.

Optimization strategy and solvers

Computing the Pareto set of optimal designs by solving the above problems efficiently and reliably can be

a daunting task due to their non-convexity, arising from their highly constrained, partially discrete and non-

linear nature.

Here we transform the multicriteria mixed integer formulation (MO-MINLP) into a finite set of single-objec-

tive mixed integer (MINLP) problems by adopting an ε-constraint approach.44 The resulting set of MINLPs

is then solved using a hybrid strategy, eSS-MISQP, which combines a diversification phase (using a global

optimization metaheuristic, eSS) with intensification steps (using an efficient local mixed integer optimiza-

tion solver, MISQP). This hybrid strategy has been found to outperform other global approaches in terms of

both efficiency and robustness.6

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of robustness

In order to assess the robustness of a topology, we used two different scores based on the covariance and

the interquantile range of the successful parameter sets for that topology (see Figure 3). On the one hand

we defined a robustness scores based on the hypervolume of the parameter space occupied by solutions

that return a successful mushroom bifurcation. This is achieved by calculating the logarithm of the deter-

minant of the covariance matrix of the parameter sets. On the other hand we used a score successfully em-

ployed for gene regulatory structures45 calculated as the sum of the interquantile ranges (IQR) measuring

the spread of the distributions of each of the parameters for the solution set. Both scores were regularized

by using the standardized parameters of the aggregated parameter set for all the topologies. The robust-

ness histograms for the extremes of the Pareto front in Figure 3 are included in the Figure S4.
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