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Abstract: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease,
commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac
death. Severity is highly variable, with incomplete penetrance among genotype-positive family
members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite
profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion
high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum
wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection
fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with
no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least
squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total),
36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could
be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and
steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study
identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future
studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their
contribution to risk stratification.
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1. Introduction

Hypertrophic cardiomyopathy (HCM) is characterised by left ventricular hypertrophy
not explained by abnormal loading conditions and may lead to left ventricular outflow
tract (LVOT) obstruction, sudden cardiac death, or heart failure [1]. Genetic variants often
underlie HCM, most frequently affecting the MYBPC3 gene [2]. This gene encodes cardiac
myosin-binding protein C (cMyBP-C), an important regulator of cardiomyocyte contraction
and relaxation [3].

Previous studies in the Dutch HCM population observed three pathogenic MYBPC3
founder variants, c.2373dupG p.(Trp792fs), c.2827C > T p.(Arg943*), and c.2864_2865delCT
p.(Pro955fs), that together accounted for up to 35% of HCM cases [4]. A fourth founder
variant, c.3776delA p.(Gln1259fs), has since been identified. These variants similarly result
in truncated mRNA and absent truncated cMyBP-C protein, leading to reduced total cMyBP-
C (i.e., haploinsufficiency) [5] and impaired cardiomyocyte function [3]. Consequently,
these variants equally impact the prognosis of carriers [6].

Clinical severity in HCM is highly variable and penetrance in pathogenic variants
carriers is incomplete [6–8]. Prediction of HCM development and adverse cardiac events
remains limited, urging the identification of novel predictors of HCM progression and
its underlying mechanisms. Previous studies showed destabilisation of myosin energy-
conserving states and decreases in myocardial efficiency due to HCM-causing genetic
variants [3,9]. Accordingly, metabolic changes have been demonstrated in cardiac tissue
of HCM patients [10–12]. If replicated in plasma, metabolites from affected metabolic
pathways can potentially function as biomarkers for HCM development and progression.
This may lead to the discovery of clinically usable prognostic biomarkers or potential
treatment targets. Relevant to this purpose, the advent of untargeted metabolomics methods
has enabled the simultaneous, unbiased evaluation of hundreds of metabolites [13].

Therefore, we assessed associations of plasma metabolites identified by untargeted
metabolomics with disease severity in an age- and sex-matched case-control study within
a genetically homogeneous group of carriers of MYBPC3 founder variants.

2. Results

Subjects had a median age of 57.3 years (interquartile range 39.0–69.1) and 57.1%
were male. Subject characteristics are provided in Table 1. Details on relatedness be-
tween subjects and genetic testing are provided in Table S1. Subjects were recruited from
a total of 51 families, with a median of one subject (interquartile range 1–2) per family.
Additional (likely) pathogenic variants were ruled out using next-generation sequencing
panels in 11 subjects (36.7%) with a severe phenotype and three subjects (10.0%) with no or
a mild phenotype.

Outcomes in the severe phenotype group included a maximum wall thickness≥20 mm
in 24 subjects (82.8%), septal reduction therapy in 8 subjects (26.7%), malignant ventricular
arrhythmia in 7 subjects (23.3%), and heart failure in 14 subjects (48.3%), including con-
gestive heart failure occurred in 10 subjects and systolic dysfunction in 9 subjects. In the
no or mild phenotype group, nine subjects fulfilled HCM diagnostic criteria (three with
a maximum wall thickness ≥15 mm and six with a maximum wall thickness of 13–14 mm).
The distribution of outcomes is shown in Figure S1.

Correlations between the 1903 peaks identified by metabolomics are shown in Figure S2.
Although the overall median correlation among peaks was low at 0.089 (IQR 0.042–0.15),
the median of the maximum (absolute) correlation was 0.45 (IQR 0.41–0.56), and there was
a strong correlation (Spearman’s ρ > 0.8 or <−0.8) among 129 peaks.
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Table 1. Subject characteristics. Data shown as counts (%), means (standard deviation), or medians
[interquartile range]. p-values are provided for comparisons across groups for age and sex and
for comparisons between the severe and no/mild phenotype groups for the remaining variables;
p-values < 0.05 are highlighted in bold. Family history of sudden cardiac death was defined in
accordance with the HCM-Risk SCD calculator [14]. SCD, sudden cardiac death; VT, ventricular
tachycardia; LVOT, left ventricular outflow tract; LV, left ventricular.

Severe Phenotype No/Mild Phenotype Genotype-Negative
p-Value

(n = 30) (n = 30) (n = 10)

Age (years) 56.3 (38.2–71.7) 58.4 (38.4–68.4) 55.5 (41.5–64.5) 0.835
Male sex 17 (56.7) 17 (56.7) 6 (60.0) 1.00

Index patient 18 (60.0) 5 (16.7) 0.001
Body surface area (m2) 2.0 (1.8–2.1) 1.9 (1.8–2.1) 0.437

Syncope 8 (27.6) 2 (6.7) 0.042
Family history of SCD 10 (37.0) 7 (25.9) 0.559

Non-sustained VT 16 (61.5) 8 (42.1) 0.237
Maximum wall thickness (mm) 21 (16–23) 11 (9–13) <0.001

Left atrial diameter (mm) 43 (40–50) 37 (35–42) 0.062
LVOT gradient (mmHg) 4 (3–80) 5 (4–6) 0.721
LV ejection fraction (%) 58 (50–60) 60 (58–65) 0.010

Atrial fibrillation 12 (41.4) 2 (6.7) 0.002

2.1. Biomarker Identification

The sPLS-DA model identified one component encompassing 50 peaks. The XGBoost
model incorporated 146 peaks. Lasso logistic regression selected 11 peaks. The full lists
of included peaks are provided in Table S2. Figure 1 shows the relative importance of the
top 25 peaks of each model. Twenty peaks had only one metabolite annotated to them and
22 peaks had multiple metabolites annotated to them.

As shown in Figure S3, none of these 42 top peaks correlated strongly with one another
(Spearman’s ρ > 0.8 or <−0.8). Moderate correlations (Spearman’s ρ > 0.5 or <−0.5)
were found among 15 peaks, with the highest correlation between the [1,3-dimethyluracil,
imidazolepropionic acid and {Pi-}methylimidazoleacetic acid] peak and 3-Methylhistidine
(Spearman’s ρ 0.69, p < 0.001).

Out of the 42 top peaks, 36 associated with severity with a p < 0.05, of which 20
were at p < 0.01, with aminoadipic acid, the [2-methoxy-estradiol-17b 3-glucuronide and
4-Hydroxyandrostenodione glucuronide] peak, and the [1,3-dimethyluracil, imidazolepro-
pionic acid and {Pi-}methylimidazoleacetic acid] peak associated at p < 0.001. Box plots are
provided in Figure S4.

Comparing subjects with no or a mild phenotype to genotype-negative subjects,
five peaks were associated at p < 0.05, all of which were also associated with HCM severity.
The [aspartyl-{iso}leucine, {gamma-}glutamylvaline, and {iso}leucyl-aspartate] peak was
associated at p < 0.01. Comparing subjects with a severe phenotype to genotype-negative
subjects, five peaks were associated at p < 0.05 and the [{3-}oxoglutaric acid] peak was
associated at p < 0.01.

The pathways connected to the top peaks are detailed in Figure 2. Acylcarnitines,
histidine metabolism, lysine metabolism, proteolysis, and purine metabolism were each
connected to ≥2 metabolites associated at p < 0.05, including ≥1 metabolite at p < 0.01.
Alanine, aspartate, and glutamate metabolism likewise fulfilled the above criteria, both
metabolites in this pathway were annotated to peaks that included metabolites from
other pathways.
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Figure 1. Relative variable importance. Top 25 metabolites in each model ordered by their mean
relative importance across the models, showing their relative importance scaled to the most im-
portant metabolite in each model. The sPLS-DA and XGBoost models show 26 and 30 metabolites,
respectively, as these metabolites were included in the top 25 of other models. Two metabolites
selected by the Lasso logistic regression, Ceramide (t18:0/16:0) and 4-Trimethylammoniobutanal,
are not visible owing to their very small coefficients (−8.67 × 10−7 and 1.82 × 10−6, respectively).
Metabolites annotated to the same mass spectrometry peak are denoted in square brackets. sPLS-DA,
sparse partial least squares discriminant analysis. * includes 2-methoxy-estradiol-17b 3-glucuronide
and 4-hydroxyandrostenedione glucuronide. † includes aspartyl-(iso)leucine, L-beta-aspartyl-L-
leucine, (gamma-)glutamylvaline, and (iso)leucyl-aspartate. ‡ includes 1,3-dimethyluracil, imida-
zolepropionic acid, and (Pi-)methylimidazoleacetic acid. § includes (S)-3,4-/2,4-dihydroxybutyric
acid, 4-deoxythreonic/-erythronic acid, erythrose, and L-erythrulose. ‖ includes dextrin, D-Gal
alpha 1- > 6D-Gal alpha 1- > 6D-glucose, 3-galactosyllactose, 1-kestose, maltotriose, and melezitose.
# includes 5,6-/8,9-/11,12-/14,15-dihydroxyeicosatrienoic acid, 6,7-dihydro-12-epi-/10,11-dihydro-
/12-keto-tetrahydro-leukotriene B4, and 15-hydroperoxyeicosa-8Z,11Z,13E-trienoate. ** includes
cholestane-3b,5a,6b-triol and 5b-cholestane-3a,7a,12a-triol/-3a,7a,26-triol/-3a,7a,27-triol. †† includes
hexanoylglycine, isovalerylalanine/-sarcosine, and N-acetylleucine. ‡‡ includes D-/L-lactic acid,
hydroxypropionic acid, glyceraldehyde, dihydroxyacetone, and methoxyacetic acid.
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Figure 2. Pathway analysis in peaks with multiple annotated metabolites. Pathways identified for the
top 25 metabolites in each of the biomarker identification models. Square brackets indicate metabolites
annotated to peaks including other metabolites; italics indicate that ≥1 annotated metabolite was
connected to ≥1 different pathway. Arrows indicate metabolites increased (green upward arrow)
or decreased (red downward arrow) in subjects with severe phenotypes compared with subjects
with no or mild phenotypes. Asterisks denote the level of significance in Mann–Whitney U tests
(* p < 0.05, ** p < 0.01, *** p < 0.001). Metabolites that did not associate with disease severity (p > 0.1)
are indicated with an equals sign (“=”). Lists of annotated metabolites were condensed as in Figure 1.

2.2. Sensitivity Analyses and External Validation

After excluding 15 subjects with heart failure, Lasso logistic regression included 20
of the 42 top metabolite peaks. Exclusion of eight subjects with prior septal reduction
therapy resulted in the Lasso model including 19 of the top metabolite peaks, including
12 retained by the sensitivity analysis excluding subjects with heart failure. Odds ratios for
the Lasso logistic regression models are provided in Table S3. Box plots of metabolite levels
are provided in Figures S5 and S6.

In the external validation cohort, Lasso logistic regression selected age, sex, and six out
of our top ten metabolites, including the [Threoninyl-Tryptophan, Tryptophyl-Threonine]
peak, the [2-Methoxy-estradiol-17b 3-glucuronide and 4-hydroxyandrostenedione glu-
curonide] peak, menadiol dissucinate, aminoadipic acid, the [1,3-Dimethyluracil, imida-
zolepropionic acid and (Pi-)methylimidazoleacetic acid] peak, 3-fumarylpyruvate, and
9,12-Hexadecadienoylcarnitine. Odds ratios are provided in Table S4.

3. Discussion

In this exploratory age- and sex-matched case-control study, we assessed associations
of plasma metabolites with clinical severity of carriers of Dutch MYBPC3 founder variants,
comparing 30 severely affected subjects to 30 subjects with no or only a mild phenotype.
Using untargeted metabolomics, we assessed a wide array of metabolites. Combining
the top 25 peaks of three supervised models identified 42 candidate peaks, of which 36
were associated with a severe phenotype, with 20 at p < 0.01 and 3 at p < 0.001. The
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metabolites annotated to the candidate peaks clustered to several pathways, including
acylcarnitines, histidine metabolism, lysine metabolism, proteolysis, purine metabolism,
and steroid hormone metabolism.

3.1. Energy Metabolism

Many of the peaks identified by our study clustered to pathways involved in en-
ergy metabolism. Myocardial proteomics and imaging studies have previously revealed
perturbations in the myocardial efficiency and energy metabolism in HCM [9,10,12].

A non-failing heart preferentially utilises fatty acids as its energy source, but in HCM,
a shift towards glucose utilisation occurs [15]. Acylcarnitines transport long-chain fatty
acids into mitochondria for β-oxidation, thereby reflecting the cardiomyocyte utilisation
of fatty acids [16]. Perturbations in acylcarnitines have been reported in HCM [17] and
related to disease severity in dilated cardiomyopathy [18]. Conversely, inborn errors of
acylcarnitine metabolism, particularly very long-chain acyl-coenzyme A dehydrogenase
deficiency, are known to cause HCM phenotypes [19]. Our study likewise identified changes
in acylcarnitines as a marker of HCM severity, particularly in 9,12-hexadecadienoyl- (C16:2,
p = 0.006), 2-octenoyl- (C18:1, p = 0.036), and arachidyl carnitine (C20:0, p = 0.026).

Additionally, 4-Trimethylammoniobutanal, a product of lysine degradation used in
carnitine biosynthesis, was found to be increased in severe HCM subjects (p = 0.034).
Another lysine metabolite, aminoadipic acid (also known as 2-Aminoadipate), was strongly
increased (p < 0.001) in severe HCM subjects. Aminoadipic acid was previously associated
with cardiac remodelling in the Framingham Study [20] and identified as a biomarker for
diabetes risk [21].

3.2. Other Pathways

In our study, both uric acid and a peak including 1,3-dimethyluracil, a methyl deriva-
tive of uric acid, were associated with HCM severity (p = 0.010 and p < 0.001, respectively).
Uric acid was previously shown to predict heart failure, ventricular arrhythmia, and all-
cause mortality in HCM subjects [22,23]. Additionally, increased uric acid levels have been
related to myocardial ischemia and heart failure [24].

Several histidine metabolites were associated with HCM severity in our study, i.e., 3-
methylhistidine (p = 0.018), 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine (p = 0.016),
hydantoin-5-propionic acid (p = 0.009), and a peak including imidazolepropionic acid
and methylimidazoleacetic acid (p < 0.001; the same peak as 1,3-dimethyluracil). 3-
methylhistidine acts as a marker for myofibrillar breakdown. It was identified as a prognos-
tic marker in heart failure [25] and associated with severity in dilated cardiomyopathy [18].
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is a modified histidine residue of
elongation factor 2, an essential factor for protein synthesis, which was found to be overex-
pressed in end-stage heart failure HCM patients [26]. Methylimidazoleacetic acid is the
main metabolite of histamine. Histamine-related mechanisms have been suggested in heart
failure. The use of histamine H2 receptor antagonists was associated with preserved left
ventricular morphological indices and a lower risk of incident heart failure [27]; likewise,
a small (n = 50) randomised controlled trial in heart failure patients found that famotidine,
an H2 receptor antagonist, improved heart failure symptoms and decreased heart failure
readmissions [28]. To the best of our knowledge, no studies have related hydantoin-5-
propionic acid, or imidazolepropionic acid, a microbially produced histidine metabolite
that impairs insulin signalling [29], to HCM or heart failure.

One peak that was negatively associated with HCM severity (p < 0.001) was paradoxi-
cally annotated to both an oestrogen metabolite, 2-Methoxy-estradiol-17b 3-glucuronide,
and an aromatase inhibitor metabolite, 4-hydroxyandrostenedione glucuronide. The effects
of sex hormones on HCM pathogenesis are currently being debated as fewer females are
diagnosed with HCM, albeit often at an older age and with worse symptoms and prog-
nosis [30]. A murine HCM model indicated a protective effect of oestrogen [31]; however,
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the effects in humans remain unclear. Still, the observation in our study warrants further
studies into the role of sex hormones in HCM.

Multiple di- and oligopeptides connected to proteolysis were identified in our study.
Previous studies have suggested stress on protein quality control systems as one of the mecha-
nisms behind MYBPC3 haploinsufficiency-mediated HCM [32,33], which could lead to a build-
up of products of incomplete proteolysis. However, some of the di-/oligopeptides in our
study were significantly increased (e.g., Hydroxyprolyl-Histidine/Histidylhydroxyproline,
p = 0.005), whereas others were significantly decreased in severe HCM (e.g., Threoninyl-
Tryptophan/Tryptophyl-Threonine, p = 0.002). Therefore, it remains unclear whether
deficient protein quality control systems or rather metabolite-specific changes underlie
these findings.

3.3. Previous Metabolomics Studies

To the best of our knowledge, our study is the first to comprehensively compare
metabolites among severely and mildly affected carriers of HCM-causing variants while
accounting for confounding from age and sex. Five previous studies assessed blood-based
metabolites using metabolomics in HCM patients, each with methodological differences
compared with our study [34–38]. These include comparisons to hospital [35] or general
population controls [36], not matching on age [37] or sex [36,37], differences in the range of
analysed metabolites [34–36,38], and differences in outcomes [34–38].

Nevertheless, taken together, these studies indicate pathways involved in energy
metabolism including acylcarnitines; eicosanoids; proteolysis products; and metabolites
from histidine, lysine, purine, and steroid hormone metabolism. Importantly, proteomics
and multi-omics studies in tissue of HCM patients likewise demonstrated perturbations
in acylcarnitines and histidine, lysine, and purine metabolites [10–12], corroborating
our findings.

3.4. Limitations and Future Directions

The limited sample size of this study precluded analyses for specific heart failure,
ventricular arrhythmia, and LVOT obstruction outcomes, as well as correction for potential
confounders including medication usage and kidney function or known prognostic factors.
Furthermore, the cross-sectional case-control design of this study limits causal and prognos-
tic inference. Large prospective studies are required to assess the incremental prognostic
utility of the metabolites indicated by our study for specific outcomes. Randomised-
controlled trials, Mendelian randomisation studies, and experimental studies are required
to assess the causality of the indicated pathways.

Although all carriers of each founder variant are by extension related to one another,
differing degrees in relatedness and concurrent genetic background may confound the
associations between HCM severity and metabolites. This confounding can be ameliorated
by matching or stratifying by relatedness. In our study, the use of age- and sex-matching
precluded matching by relatedness. Instead, relatedness between the subjects in our
study was limited, which should likewise reduce confounding from genetic background.
Moreover, metabolic perturbations that result from differences in genetic background may
still be clinically relevant, as long as the genetic variability and corresponding metabolic
differences are present in the broader (HCM) population. Further studies are required to
assess the interplay between metabolites, genetic background, and HCM severity.

Our study included a relatively large number of subjects with end-stage HCM, charac-
terised by congestive heart failure and/or systolic dysfunction. Likewise, several subjects
had previously undergone septal reduction therapy, which may alter cardiac metabolism [9].
Additionally, we only selected carriers of MYBPC3 variants, which may limit generalisabil-
ity to other genotypes. Furthermore, only a selection of our subjects underwent genetic
testing using next-gen sequencing approaches. Therefore, the effects of additional genetic
variants cannot be ruled out. Still, several of the metabolites indicated by our study retained
their associations after exclusion of subjects with heart failure or prior septal reduction



Int. J. Mol. Sci. 2023, 24, 4031 8 of 12

therapy, and six out of the top ten metabolites were externally validated in patients with
LVOT obstruction with diverse genotypes.

Our study utilised untargeted metabolomics, a non-quantitative method with high
costs and workload. Therefore, our results require validation using robust, easy-to-perform,
and cheaper quantitative methods. Additionally, we did not correct for multiple testing as
this is an exploratory study, which increases the risk of type I error. Therefore, confirmatory
studies using highly specific quantification methods are required. Furthermore, we only
measured metabolites in plasma. Recent data indicate that extracardiac production of
several novel heart failure biomarkers strongly influences their plasma levels [39]. We
cannot exclude extracardiac production of biomarkers identified by our study.

Finally, blood samples were not obtained under specific conditions, e.g., in a fasting
state or after exercise. This likely increased the variability in metabolite measurements,
which may have generated false-positive results or prevented the identification of potential
biomarkers. However, an ideal biomarker would be predictive independent of such
sampling conditions or other factors affecting its biological variability [40].

4. Materials and Methods
4.1. Subject Inclusion

This study consisted of an exploratory, nested case-control study within the BIO FOr
CARe (Identification of biomarkers of hypertrophic cardiomyopathy development and
progression in Dutch MYBPC3 founder variant carriers) cohort study [41]. In summary,
carriers of the MYBPC3 c.2373dupG, c.2827C > T, c.2864_2865delCT, or c.3776delA variants
aged ≥18 years were included from January 2017 onwards to prospectively undergo
blood collection.

Thirty individuals with a severe phenotype were age- and sex-matched to 30 with no
or a mild phenotype (i.e., not fulfilling criteria for a severe phenotype). A severe pheno-
type was defined as a documented maximum wall thickness ≥20 mm, LVOT obstruction
necessitating septal reduction therapy, occurrence of heart failure (congestive heart failure
or systolic dysfunction, defined as a left ventricular ejection fraction <50%), or malignant
ventricular arrhythmia (sustained ventricular tachycardia, i.e., >30 s, with haemodynamic
instability or requiring earlier termination, ventricular fibrillation, appropriate implantable
cardioverter-defibrillator intervention, or resuscitated cardiac arrest). Patients with severe
liver or kidney failure were excluded. Additionally, 10 age- and sex-matched genotype-
negative family members were included as genotype-negative controls.

This study was performed in accordance with the Helsinki declaration and was
approved by the Medical Ethics Committee of the UMC Utrecht. Written informed consent
was obtained from all subjects.

4.2. Metabolomics

Venous blood samples were collected under non-fasting, resting conditions in heparin-
containing tubes and processed within 45 min in accordance with our previously pub-
lished protocol [41]. Samples were stored at −80 ◦C until analysis. All samples were
analysed as a single batch, using an untargeted direct-infusion high resolution mass spec-
trometry and metabolite identification method [42]. In short, this method consistently
and accurately identified 1903 mass peaks corresponding to 3904 metabolite annotations
(including isomers).

4.3. Biomarker Identification

Three distinct supervised methods that use regularisation to reduce overfitting and
allow feature selection were fitted to the metabolomics data of subjects with severe pheno-
types and subjects with no or mild phenotype. Sparse partial least squares discriminant
analysis (sPLS-DA), a dimensionality reduction method, was performed on scaled and
centred peak intensities and tuned using fivefold cross-validation repeated 50 times using
the “mixOmics” package [43]. Gradient boosting was performed on crude peak intensities
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using XGBoost, which is able to detect non-linear interactions between metabolites and
outcomes by utilising gradient boosted decision trees [44]. Tuning was performed using
grid searches with fivefold cross-validation using the “caret” package [45]. Lasso logistic
regression was performed as a more conventional feature selection method, using scaled
and centred peak intensities, with lambda determined using fivefold cross-validation, using
the “glmnet” package [46]. Top peaks were selected based on the absolute values of weight
coefficients in sPLS-DA, the gain metric in XGBoost, and the absolute values of regression
coefficients in Lasso logistic regression. As a secondary analysis to aid the interpretation
of the results of these models, associations of the top 25 peaks of each model with HCM
severity were further explored using Mann–Whitney U and Kruskal–Wallis tests.

As peaks are annotated solely on accurate mass, identification is putative and peaks
may have multiple metabolites annotated to them, hereafter described as peaks with
annotated metabolites in square brackets (“[ ]”). Pathway analysis was performed to cluster
the peaks to pathways that may be associated with severe HCM and derive the more likely
involved metabolites. The metabolites annotated to the top 25 peaks identified by each of
the sPLS-DA, XGBoost, and Lasso logistic regression models were assessed in the Human
Metabolome Database [47], the Kyoto Encyclopaedia of Genes and Genomes [48] pathway
database, and by manual reference searching.

4.4. Statistical Analysis

Dichotomous and categorical variables are presented as counts with percentages and
were analysed using two-sided Fisher’s exact test. Continuous variables are presented
as means ± standard deviations or medians with interquartile ranges (IQR), according
to their distribution. Normally distributed variables were analysed using the unpaired
t-test or one-way ANOVA and non-normally distributed variables were analysed using the
Mann–Whitney U or Kruskal–Wallis test. Correlations between metabolites were calculated
using Spearman’s ρ and visualised as a heatmap with the “pheatmap” package [49]. All
analyses were conducted in R version 4.1.2 (R Development Core Team, Vienna, Austria,
2021) using RStudio Desktop version 2021.09.1+372 (RStudio Team, Boston, Massachusetts,
United States of America, 2021).

4.5. Sensitivity Analyses and External Validation

To assess the influence of heart failure on our results, we performed a sensitivity
analysis in subjects without congestive heart failure or systolic dysfunction and matched
subjects with no or a mild phenotype. Lasso logistic regression was performed using
fivefold cross-validation to assess the top metabolites identified by the sPLS-DA, XGBoost,
and Lasso logistic regression performed on all subjects, and associations between subjects
with severe phenotypes and those with no or a mild phenotype were assessed using
Mann–Whitney U. Similarly, to assess the effects of septal reduction therapy, we performed
a sensitivity analysis without septal reduction therapy prior to blood collection.

To assess the reproducibility of our results and assess the effects of fasting, we per-
formed external replication on 14 subjects with symptomatic LVOT obstruction and 31 un-
matched, asymptomatic carriers of (likely) pathogenic variants from the previously pub-
lished Engine study [37]. The top 10 peaks from the present study were evaluated using
Lasso logistic regression using fivefold cross-validation, additionally including age and sex
as covariates.

5. Conclusions

This exploratory case-control study comprehensively analysed metabolites in car-
riers of Dutch MYBPC3 founder variants with severe HCM phenotypes and age- and
sex-matched carriers with no or only a mild phenotype. This revealed multiple potential
biomarkers associated with disease severity, suggesting that several pathways, including
acylcarnitine, histidine, lysine, purine, and steroid hormone metabolism, as well as prote-
olysis, are dysregulated in patients with severe phenotypes. Further studies are required
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to replicate these findings using quantitative methods, determine causality, and assess
whether the biomarkers further improve risk stratification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24044031/s1.
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