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Abstract
Background  Ichthyosis defines a group of chronic conditions that manifest phenotypically as a thick layer of scales, often affecting the entire 
skin. While the gene mutations that lead to ichthyosis are well documented, the actual signalling mechanisms that lead to scaling are poorly 
characterized; however, recent publications suggest that common mechanisms are active in ichthyotic tissue and in analogous models of 
ichthyosis.
Objectives  To determine common mechanisms of hyperkeratosis that may be easily targeted with small-molecule inhibitors.
Methods  We combined gene expression analysis of gene-specific short hairpin RNA (shRNA) knockdowns in rat epidermal keratinocytes 
(REKs) of two genes mutated in autosomal recessive congenital ichthyosis (ARCI), Tgm1 and Alox12b, and proteomic analysis of skin scale 
from patients with ARCI, as well as RNA sequencing data from rat epidermal keratinocytes treated with the Toll-like receptor 2 (TLR2) agonist 
Pam3CSK4.
Results  We identified common activation of the TLR2 pathway. Exogenous TLR2 activation led to increased expression of important cor-
nified envelope genes and, in organotypic culture, caused hyperkeratosis. Conversely, blockade of TLR2 signalling in keratinocytes from 
patients with ichthyosis and our shRNA models reduced the expression of keratin 1, a structural protein overexpressed in ichthyosis scale. A 
time course of TLR2 activation in REKs revealed that although there was rapid initial activation of innate immune pathways, this was rapidly 
superseded by widespread upregulation of epidermal differentiation-related proteins. Both nuclear factor kappa B phosphorylation and GATA3 
upregulation was associated with this switch, and GATA3 overexpression was sufficient to increase keratin 1 expression.
Conclusions  Taken together, these data define a dual role for TLR2 activation during epidermal barrier repair that may be a useful therapeutic 
modality in treating diseases of epidermal barrier dysfunction.

What is already known about this topic?

•	 Multiple genetic mutations are associated with severe ichthyosis.
•	 Little is known about common mechanisms that could be targeted to reduce scaling in ichthyosis.

What does this study add?

•	 We show that activation of Toll-like receptor 2 (TLR2) causes scaling in three-dimensional culture and increases the expression of 
known markers of scale.

What is the translational message?

•	 TLR2 blockade can reduce the expression of these markers and may be a useful therapeutic modality in treating scaling in ichthyosis.
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The ichthyoses are a family of Mendelian diseases of kerati-
nization.1,2 Patients with autosomal recessive congenital ich-
thyosis (ARCI) are the most severely affected. Most children 
with ARCI present as a collodion baby at birth;3 afterward, 
thick scales appear on their skin. As a result of improve-
ments in neonatal care, there is a minimal risk of perinatal 
death due to insensible water loss and infections; however, 
patients’ skin remains abnormal throughout life, and is the 
principal phenotype in ARCI.

ARCI can be divided into disease classes defined by diag-
nostic criteria. Lamellar ichthyosis (LI) typically presents at 
birth with a collodion. After the collodion is shed, thick scal-
ing is present without redness of the skin, while nonbullous 
ichthyosiform erythroderma (NBIE) has lighter scaling and 
presents with redness of skin – collodion is less common.1,4 
Approximately 30% of cases of ARCI are caused by muta-
tions in TGM1;5 TGM1 mutations are only rarely associated 
with NBIE.4 Mutations in ALOX12B and ALOXE3 account 
for 14% of ARCI but are common in NBIE.6,7 At least 10 dif-
ferent genes are mutated in ARCI;8,9 they all encode genes 
important for the epidermal barrier.

The scaling typically seen in ARCI reflects a homeostatic 
response to chronic barrier dysfunction. The barrier func-
tion of grafted Tgm1 or Alox12b knockout skin on immu-
nocompromised mice was restored through hyperkeratosis 
and increased lipid production.10,11 Understanding the gene 
expression changes underlying these responses is critical 
in finding therapies to reduce scaling. Oral retinoids are the 
primary treatment for these patients, and while they effi-
ciently reduce patient scale, they are associated with seri-
ous side-effects.12 Although gene-specific gene therapy 
and protein-replacement therapies are being developed,13–15 
mechanism-specific, generalized therapies to reduce scal-
ing are still needed. We examined the effects of Tgm1 and 
Alox12b short hairpin RNA (shRNA) knockdown in keratino-
cytes. While there were distinct differences between the 
two knockdowns, there were common gene expression 
changes between the two lines that may define a common 
pathway of hyperkeratosis and scaling in ARCI.16,17

Significant progress has been made in understanding 
the mechanisms underlying scaling in ARCI. In Tgm1 and 
Alox12b shRNA knockdown rat epidermal keratinocytes 
(REKs), we identified increased interleukin (IL)-1α signal-
ling and upregulation of mouse double minute 2 homolog 
(MDM2) as necessary for hyperkeratosis.16,17 MDM2 upreg-
ulation increased keratin 1, but not keratin 10, and this 
was also seen in patient scale samples.16,17 Full-thickness 
skin biopsies from patients with ichthyosis revealed a T 
helper (Th)17/interleukin (IL)-23/IL-36-related signature of 
upregulated genes in both the dermis and epidermis of 
patients.18,19 Upregulation of these signature genes corre-
lated with increased transepidermal water loss (TEWL).20 
ABCA12 shRNA knockdown that phenocopied the severe 
ichthyosis, harlequin ichthyosis, caused upregulation of key 
innate immune mediators, such as STAT1, the IL-36 family of 
cytokines and nitric oxide synthase 2.21 These data strongly 
implicate innate immune pathways in ARCI.

Understanding the key keratinocyte-mediated mecha-
nisms underlying altered innate immune signalling and scal-
ing in these patients would allow for the identification of 
new therapeutic targets and discovery of molecular modu-
lators of scaling. Using an integrated analysis of proteomics 

data from patient scales and datasets from our in vitro ARCI 
models, we identified upregulation of the Toll-like receptor 
2 (TLR2) pathway. TLR2 activation caused scaling in REK 
organotypic models. TLR2 inhibition reduced expression of 
the terminal differentiation marker keratin 1 in ARCI mod-
els. RNA sequencing (RNAseq) analysis of a period of TLR2 
activation showed a biphasic gene expression pattern, a 
short-term innate immune response and a longer-term 
GATA3-mediated hyperkeratotic response.

Materials and methods

Quadrupole time-of-flight mass spectrometry

These analyses have been described previously;22 full details 
are provided in Appendix S1 (see Supporting Information).

Cell culture

Passage 20–30 REKs were cultured in Dulbecco’s Modified 
Eagle Medium + 10% fetal bovine serum (Thermo Fisher 
Scientific, Waltham, MA, USA) and incubated at 37°C and 
5% CO2.23 Organotypic culture was performed as described 
previously described:24 2 × 105 REKs were cultured in 
medium containing 100 mg mL–1 G418 on de-epidermized 
dermis made from cadaverous skin (Euro Skin Bank, 
Beverwijk, the Netherlands) in a metal ring until confluent. 
Cultures were raised to the air–liquid interface and cultured 
for a further 10 days. Cultures were processed for paraffin 
embedding by fixing in 4% paraformaldehyde. Sections of 
5 mm were cut for immunofluorescence.

Human epidermal keratinocytes (HEKs; Thermo Fisher 
Scientific), and patient primary keratinocytes (passage five 
or less) were cultured in defined EpiLifeTM-supplemented 
medium (Thermo Fisher Scientific). Keratinocytes were 
differentiated by gradual calcium switch from 0.06 mmol 
L–1 to 2.4 mmol L–1 CaCl2.25 We used the following drugs: 
Pam3CSK4 10 µg mL–1 (Tocris Bioscience, Bristol, UK); 
CU-CPT-22 0.4 mmol L–1 (Sigma Aldrich, Irvine, UK); 
Etoposide 7.5 μg mL–1 (Sigma Aldrich); lipopolysaccha-
ride 100 ng mL–1 (Sigma Aldrich); dithiothreitol 2.5 μL mL–1 
(Invitrogen, Inchinnan, UK); and tunicamycin 50 ng mL–1 
(Sigma Aldrich).

Alox12b and Tgm1 shRNA knockdown in REKs using 
SureSilencing shRNA plasmids (QIAGEN, Hilden, Germany) 
has been described previously.16,17 The human GATA3 
construct for overexpression in REKs was obtained from 
OriGene (https://www.origene.com). All transfections 
were performed using lipofectamine 2000 (Thermo Fisher 
Scientific), according to manufacturer’s instructions.

Immunofluorescence

Keratinocytes were fixed in 4% paraformaldehyde con-
taining Triton-X-100 0.2% and blocked in phosphate buff-
ered saline (PBS) containing Triton-X-100 0.2% and fish 
skin gelatin 0.2% (Sigma Aldrich). Primary and secondary 
antibodies were incubated in this blocking medium. Slides 
were mounted with 4′,6-diamidino-2-phenylindole-con-
taining ProLong GoldTM (Thermo Fisher Scientific). Images 
were taken using a Leica DM4000 upright epifluorescence 
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microscope (Leica, Wetzlar, Germany). Antibody use is 
detailed in Appendix S1.

Western blotting

Proteins were extracted in total lysis buffer (sodium dode-
cyl sulfate 10%, β- mercaptoethanol 10 mmol L–1 Tris) at pH 
7.5 and run on 10–20% TGXTM polyacrylamide gel (Bio-Rad, 
Hercules, CA, USA) and blotted onto HybondTM-N nitrocellu-
lose filters (Amersham Biosciences, Little Chalfont, UK) and 
blocked in 5% milk powder in PBS containing 1× Tween-20 
(Sigma Aldrich). The membrane incubated with the primary 
antibody at 4°C overnight. A secondary antibody was incu-
bated for 60 min at room temperature. The membrane was 
developed on film (Amersham Biosciences) using enhanced 
chemiluminescence solution (Thermo Fisher Scientific). 
Antibody use is detailed in Appendix S1.

RNA sequencing analysis and downstream 
analyses

REKs were treated with Pam3CSK4 at 2, 6, 12 and 24 h, 
followed by RNA extraction and purification using the 
RNeasy kit (QIAGEN). Sample purity and concentra-
tion was determined using a NanoDrop (Thermo Fisher 
Scientific) and Bioanalyzer (Aglient, Santa Clara, CA, USA). 
Libraries were prepared using a mRNA library prepara-
tion kit (New England Biolabs, Ipswich, MA, USA) from 
100 ng total RNA. Sequencing was done on a single lane 
of an Illumina NextSeq 500 (Illumina, San Diego, CA, USA) 
using a high-output kit with 75 base pair paired-end reads. 
Principal component analysis (PCA) was run on the gene 
expression data, followed by a two-way anova to deter-
mine differentially expressed genes across all timepoints. 
Heat maps derived from these data and previous data were 
made using Morpheus (https://software.broadinstitute.org/
morpheus).16,17 STRING analysis (https://string-db.org) was 
performed using the full string network with a minimum 
confidence of 0.400 for positive evidence of association. 
Gene Ontology (GO) analyses were performed using DAVID 
(https://david.ncifcrf.gov).26,27 Mapping of rat gene expres-
sion data to human promoter binding was performed with 
Enrichr (https://maayanlab.cloud/Enrichr/).28

Consent for tissue samples

Skin scale was obtained with consent from the patients’ 
families at Great Ormond Street Hospital for Children, 
London, UK (REC 08/H0713/123). LI and NBIE keratinocytes 
were obtained from skin biopsies taken with consent at the 
Royal London Hospital.

Statistical and image analysis

All data analysed were based on mean values. Western blots 
were analysed with ImageJ (National Institutes of Health, 
Bethesda, MD, USA). A Student’s t-test, anova and post-
hoc testing were used to assess the statistical significance 
between the treated and untreated samples. Gene expres-
sion changes were analysed using a two-tailed Student’s 
t-test. RNAseq data were analysed by PCA and two-way 
anova, and cell staining intensity was quantified in ImageJ.

Results

Combining proteomic and gene expression data 
revealed an upregulated SUMO1/Toll-like receptor 
2/GATA3 axis in autosomal recessive congenital 
ichthyosis

To identify changes in expression in innate immune path-
ways, we combined the genes that were commonly differ-
entially regulated in Tgm1 and Alox12b shRNA knockdown 
REKs, a spontaneously transformed rat keratinocyte line 
that can fully differentiate in culture,23 with mass spectrom-
etry (MS) data comparing scale from four patients with ARCI 
of unknown genetic background and eight normal controls. 
We used REKs to investigate a wide variety of terminal dif-
ferentiation phenomena and signalling pathways, with little 
or no differences between human and rat, and no differ-
ences in epidermal terminal differentiation, in submerged 
or organotypic culture.16,17,29

We identified 20 upregulated and 18 downregulated pro-
teins by at least 1.5-fold in two or more patient samples (Figure 
1a, b; Table S1, see Supporting Information). The most highly 
upregulated proteins were cathepsin D, apolipoprotein A1 and 
the SUMO ligase RANBP2. There was over-representation of 
proteins involved in the formation of the cornified envelope, 
keratinization, SUMOylation and TLR signalling (Figure 1c). As 
only a subset of proteins is typically detectable by MS of corni-
fied envelopes,22,30,31 we combined these data with our pre-
vious gene expression analyses of Tgm1 and Alox12b shRNA 
knockdowns and identified a large protein–protein interaction 
network with a connection between RANBP2, SUMO1 and 
GATA3 (Figure 1d). We confirmed SUMO1 upregulation in our 
shRNA knockdown ARCI models (Figure 1e)17 by immunoflu-
orescence and Western blot (Figure 1f, g); we also identified 
increased SUMOylated proteins (Figure 1h).

Toll-like receptor 2 activation induced 
hyperkeratosis in organotypic culture

Based on the potential functional interaction between 
SUMO1 and TLR2, we tested the hypothesis that TLR2 
activation induces Sumo expression by treating REKs with 
either lipopolysaccharide (LPS), which activates TLR4, or the 
synthetic ligand Pam3CSK4, which activates TLR2 for 24 h 
(Figure 2a). Sumo1 was upregulated only after Pam3CSK4 
treatment. Testing different stressors indicated that Sumo1 
upregulation occurred only with Pam3CSK4 treatment 
(Figure S1a; see Supporting Information). Increased keratin 
1 expression, without concomitant expression of keratin 
10, and upregulation of Il1a was only observed with LPS or 
Pam3CSK4 treatment (Figure S1b, c).

TLR2 signalling was upregulated in Tgm1 and Alox12b 
shRNA knockdown REKs. While Tlr2 mRNA expression 
was not significantly increased (Figure S2; see Supporting 
Information), TLR2 protein levels were increased in the 
shRNA knockdown lines (Figure 2b). There was also 
increased phosphorylation of the p65 subunit of nuclear 
factor kappa B (NFκB), consistent with our previous find-
ing of increased nuclear localization of p65 in Tgm1 shRNA 
knockdown organotypic cultures.16 TLR2 activation by 
Pam3CSK4 caused p65 phosphorylation without Iκbα deg-
radation (Figure 2b). Despite this, nuclear localization of 
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Figure 1  Combining proteomic and gene expression data revealed an upregulated SUMO1/Toll-like receptor 2 (TLR2)/GATA3 axis in autosomal 
recessive congenital ichthyosis (ARCI). (a) Average fold-change in protein expression from protein mass spectrometry data from ARCI patient 
scale (n = 4) vs. normal skin (n = 8). (b) Heat map of the data in (a); red indicates the maximum values and blue the minimum value for each row. 
(c) Over-represented biological process gene ontologies for up- (red) and downregulated proteins (green). ECM, extracellular matrix. (d) STRING 
network analysis of combined overexpressed proteins in scale and genes that are differentially expressed in both Tgm1 and Alox12b short 
hairpin RNA (shRNA) knockdown rat epidermal keratinocytes.17 GO, Gene Ontology. (e) Expression of each of the SUMO isoforms in control rat 
epidermal keratinocytes (Scr REKs; n = 3) and in both the Tgm1 and Alox12b shRNA knockdowns (ARCI, n = 5 total), P < 0.05 (Student’s t-test). (f) 
Representative immunofluorescence of SUMO1 and SUMO2/3 in control REKs (Scr) and in both the Tgm1 and Alox12b shRNA knockdowns (both 
n = 3), bar = 10 mm. (g) SUMO1 and SUMO2/3 immunofluorescence intensity (**P < 0.005, ****P < 0.00005; ns, not significant). One-way anova 
followed by post-hoc testing. (h) Western blot of a pan-SUMO antibody in control REKs (Scr) and in both the Tgm1 and Alox12b shRNA knockdowns. 
*Over-represented SUMOylated protein species.
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phosphorylated p65 occurred within 15 min of Pam3CSK4 
treatment and was maintained for 2 h (Figure 2c). In both 
REKs and normal HEKs (NHEKs), 24 h of treatment with 
Pam3CSK4 upregulated key epidermal terminal differenti-
ation markers keratin 1 (Figure 2c), loricrin and involucrin 
(Figure 2d, e). It was notable that while this was associ-
ated with an increase in TLR2 protein in REKs, in NHEKs, 

TLR2 was present before Pam3CSK4 treatment and did 
not change afterward. In organotypic culture, Pam3CSK4 
induced a dose-dependent thickening of the cornified 
layer, without increased vital epidermal thickness (Figure 
2f). Organotypic cultures treated with Pam3CSK4 showed 
keratin 1 and involucrin expression, while the expression 
of keratin 10 remained unchanged (Figure 2g). There was 

Figure 2  Activation of nuclear factor kappa B (NFκB) and epidermal terminal differentiation markers with Toll-like receptor 2 (TLR2) activation. (a) 
SUMO1 immunofluorescence in rat epidermal keratinocytes (REKs) treated with lipopolysaccharide (LPS), Pam3CSK4 or vehicle [dimethyl sulfoxide 
(DMSO)]. 4′,6-Diamidino-2-phenylindole was the nuclear counterstain. Graph shows normalized intensity (n = 3). (b) Western blot of TLR2, keratin 1 
(KRT1), phosphorylated-p65 (pp65) and IκBα in REKs treated with Pam3CSK4 (PAM3, n = 6) or vehicle (DMSO, n = 2). Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) served as the loading control. Graph shows normalized intensity. (c) Phosphorylated p65 immunofluorescence in REKs 
over a 2 h period with the intensity graph on the right. (d, e) Western blots for TLR2, involucrin (INV) and loricrin (LOR) in Pam3CSK4- (PAM3, n = 6) 
or vehicle-treated (DMSO, n = 2) (d) REKs and (e) normal human epidermal keratinocytes (NHEKs). Graphs show normalized intensity. (f) Histology 
of REKs either treated or not with Pam3CSK4 from 5 days after raising to the air–liquid interface until day 10. The continuous line indicates the 
dermoepidermal junction and the dotted lines indicate the extent of the cornified layer. The thick bar indicates the thickness of the cornified layer. 
(f) Quantification of cornified layer thickness in Pam3CSK4-treated organotypic cultures measured at five sites over two different REK organotypic 
cultures in ImageJ. (g, h) Representative immunofluorescence of keratins 1 and 10 and (g) involucrin and (h) phosphorylated NFκB (pNFκB) in 
organotypic cultures treated with Pam3CSK (n = 2). *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.00005 (one-way anova followed by post-hoc 
testing); ns, not significant. Error bars show the SD of the mean. Bar in (a) = 10 mm; bar in (f, g) = 50 mm.
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no change in proliferating cell nuclear antigen, a marker of 
proliferating cells in these cultures (Figure 2h).

Toll-like receptor 2 inhibition reduced levels of 
keratin 1 in both autosomal recessive congenital 
ichthyosis models and in autosomal recessive 
congenital ichthyosis keratinocytes

CU-CPT22 is a selective inhibitor of TLR2.32 CU-CPT22 
treatment of Tgm1 and Alox12b shRNA-expressing kerat-
inocytes reduced keratin 1 expression over an 8 h period 
(Figure 3a), with a longer-lasting effect observed in Alox12b 
shRNA knockdowns. Treated non-genotyped ARCI primary 

keratinocytes from two patients diagnosed with LI and 
NBIE showed increased keratin 1 expression vs. normal 
keratinocytes, while IL-1α was increased only in LI kerati-
nocytes (Figure 3b). CU-CPT22 treated caused a transient 
reduction of keratin 1 expression after a single treatment 
(Figure 3c).

RNA sequencing of rat epidermal keratinocytes 
treated with Pam3CSK4 indicated a biphasic 
pattern of nuclear factor kappa B activation

After a single Pam3CSK4 treatment, the expression of kera-
tin 1 and IL1a was increased from 12 h and 2 h, respectively. 

Figure 3  Toll-like receptor 2 (TLR2) inhibition reduced levels of keratin 1 in both autosomal recessive congenital ichthyosis (ARCI) models and in ARCI 
keratinocytes. (a) Western blot of keratin 1 in Tgm1 and Alox12b short hairpin RNA (shRNA)-expressing rat epidermal keratinocytes (REKs) treated with 
the TLR2 inhibitor CU-CPT22 over 8 h. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as a loading control. Graphs show densitometry of 
two biological replicates, Alox12b and Tgm1 shRNA-expressing REKs treated with CU-CPT22 showing the comparison as a percentage of the untreated 
time zero value. (b) Triplicate Western blots for keratin 1 (KRT1) and interleukin-1α (IL-1α) in primary keratinocytes from two patients with ARCI: one with 
lamellar ichthyosis (LI) and one with nonbullous ichthyosiform erythroderma (NBIE). GAPDH served as the loading control. NHEK, normalized human 
epidermal keratinocytes. Graphs show normalized densitometry of keratin 1 (KRT1) and IL-1α in both patient lines. (c) Representative Western blot 
(n = 2) of KRT1 in the primary keratinocytes of a patient with LI treated once with CU-CPT22 at time 0 over 8 h. U, untreated; T, treated. Graph shows 
normalized intensity of Western blot. *P < 0.05, **P < 0.005, ***P < 0.0005, ****P < 0.00005 (one-way anova with post-hoc testing).
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NFκB p65 showed both early and late increases in phospho-
rylation (Figure 4a), suggesting that multiple phases of gene 
expression change occurred, culminating in premature and 
increased expression of terminal differentiation markers. 
To examine this further, we performed RNAseq on REKs 
treated once with 10 mg mL–1 Pam3SCK over a 24 h period 
[Figure 4b, c; RPKM (reads per kb of transcript per million 
reads mapped) expression data are provided in Table S2; 
see Supporting Information]. In total, 1810 genes were sig-
nificantly differentially expressed over this timescale (Figure 
4b). Consistent with data from the ARCI shRNA lines, 
Pam3CSK4 treatment did not significantly increase Tlr2 
mRNA expression, although there was a transient increase 
in Tlr4 at 2 h and a progressive decrease in Tlr5 expression 
(Figure S3; see Supporting Information).

PCA showed a biphasic change in gene expression. 
Changes from 0 h to 2 h were seen in PC2, while changes 
in gene expression at 12 and 24 h were seen in PC1 (Figure 
4c). We identified six different patterns of gene expres-
sion change in our RNAseq data [Figure 4d; Table S3 (see 
Supporting Information)] reflecting the dynamic changes in 
gene expression: cluster 1 was transiently overexpressed 
at the 2 h timepoint, cluster 2 was significantly downregu-
lated from 12 to 24 h, cluster 3 was maximally expressed at 
24 h, cluster 4 genes peaked at 6 h, cluster 5 gene expres-
sion increased progressively over the treatment period 
and cluster 6 gene expression fell progressively over the 
treatment period. GO analysis revealed that cluster 1 was 
associated with positive regulation of apoptosis, cluster 2 
was associated with cell division, and cluster 3 was asso-
ciated with keratinocyte differentiation and the formation 
of the cornified envelope, and included both keratin 1 and 
IL-1α. Cluster 4 was associated with proteolysis, cluster 
5 with actin binding and cluster 6 with the nucleosome 
(Figure 4e). Further analysis of keratinocyte differentia-
tion-associated genes revealed that while some genes, 
such as Evpl and Cers3, were prematurely induced com-
pared to keratin 10, other important terminal differentia-
tion-related keratin genes such as Krt2 were not induced 
over the same timescale. Basal and simple keratins (5, 14 
and 8) were transiently induced, suggesting that there was 
a hyperkeratosis-specific programme of terminal differen-
tiation induced by Pam3CSK (Figure S4; see Supporting 
Information).

We analysed the signalling pathways upregulated in 
each cluster with Enrichr (Figure 4f). Tumour necrosis fac-
tor (TNF)-α/NFκB signalling was significantly increased 
in clusters 1 and 3, reflecting the biphasic activation dis-
cussed above. Cluster 2 was enriched in genes associated 
with aspects of the cell cycle, consistent with a switch to 
increased terminal differentiation. Clusters 4 and 5 were 
associated with the early oestrogen response. Cluster 6 
was strongly associated with Ras signalling, again reflect-
ing a switch from proliferation to differentiation. TNF-α/
NFκB-related genes were different between clusters 1 
and 3, with cluster 1 consisting of genes related to innate 
immunity and cytokine signalling, while cluster 3 consisted 
of genes involved in transcription, growth factor signalling 
and angiogenesis (Figure 4g). These data suggest that NFκB 
signalling plays two different roles during the time course of 
the response to TLR2 activation.

GATA3 upregulation increased keratin 1 
expression downstream of Toll-like receptor 2 
activation

To determine which of the genes controlled by TLR2 activa-
tion were involved in hyperkeratosis in ARCI, we compared 
the RNAseq gene expression data with our previous analy-
sis of Tgm1 and Alox12b shRNA knockdowns. Thirty-eight of 
61 (62%) genes were coordinately differentially expressed 
in both analyses [Figure 5a (Table S4; see Supporting 
Information)].17

GATA3 was increased in both the Tgm1 and Alox12b 
knockdown rat epidermal keratinocytes, with higher expres-
sion in Alox12b knockdown keratinocytes (Figure 5b). In the 
Pam3CSK4 RNAseq analysis, Gata3 was in cluster 3; the 
genes increased maximally at 24 h. However, Gata3 mRNA 
expression progressively increased during the whole treat-
ment period, prior to the increase in keratin 1 (Figure 5c). 
GATA3 increased after 12–24 h of Pam3CSK4 treatment 
in both REKs and HEKs (Figure 5d, e). Genes with GATA3 
binding promoters were significantly over-represented in 
cluster 3 genes (Figure S4a), and they were enriched for 
both genes involved in epidermal terminal differentiation and 
lipid synthesis (Figure S5b, c), suggesting that the upregu-
lation of epidermal differentiation genes and lipid synthesis 
was potentially driven by the upregulation of GATA3. GATA3 
increased in NBIE keratinocytes but not in LI keratinocytes 
(Figure 5f). Overexpression of GATA3 in REKs (Figure 5g, 
h) increased keratin 1 expression. However, treatment with 
Pam3CSK4 did not increase K1 further, suggesting that 
GATA3 was downstream of TLR2 activation, and potentially 
was a key downstream driver of the longer-term effects of 
TLR2 activation leading to hyperkeratosis.

Discussion

TLR signalling and SUMOylation is activated in ARCI mod-
els. TLR2 activation is necessary for hyperkeratosis and 
blockade of TLR2 signalling in ARCI models, and patient pri-
mary keratinocytes reduced the increased levels of keratin 
1 seen in ARCI.16,17 We show proof of principle that TLR2 
blockade transiently reduced keratin 1 expression in patient 
keratinocytes. In HEK293 cells, CU-CPT22 treatment 
reduced nuclear NFκB at 20 min,33 while in keratinocytes 
inoculated with Propionibacterium acnes, CU-CPT22 was 
still effective after 24 h.34 This suggests that the effects of 
CU-CPT22 are either variable and context-dependent or that 
the TLR2–NFκB-mediated pathway that increased keratin 
1 is different and responds differently to CU-CPT22. More 
investigation into both the stability of CU-CPT22 and the 
effects of treatment on a background of ARCI are required.

TLR2 upregulated SUMO1 in REKs. Typically, SUMO acti-
vation, and SUMOylation correlates with downregulation 
of the innate immune response.35 SUMOylation increases 
during epidermal terminal differentiation,36 and SUMOylated 
substrate proteins are concentrated in the upper epidermis, 
conferring a significant proportion of skin barrier function. 
Inhibition of SUMOylation prevented keratinocyte differ-
entiation. This is consistent with increased SUMOylation 
associating with a protective prodifferentiation response 
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Figure 4  RNA sequencing (RNAseq) analysis and signalling pathway analysis of rat epidermal keratinocytes (REKs) treated with Pam3CSK4 
indicated a biphasic pattern of nuclear factor kappa B (NFκB) activation. (a) Western blot of REKs treated with Pam3CSK4 or vehicle (dimethyl 
sulfoxide; DMSO) over a 24 h period (n = 2). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as a loading control. KRT1, keratin 1; IL-
1α, interleukin-1α; pp65, phosphorylated p65. (b) Venn diagram showing differentially expressed genes at different timepoints during the 24 h RNA 
sequencing experiment. (c) Graphical representation of principal component analysis showing the variation at both early and late timepoints (n = 4 at 
each timepoint). (d) Heat map and cluster analysis of all differentially expressed genes in the RNAseq experiment. (e) Analysis of over-represented 
Gene Ontology (GO) groups in each of the clusters described in (d). (f) Enrichr analysis of signalling related genes in each of the clusters. Blue 
denotes significant over-representation after correction for multiple testing. The red asterisk indicates tumour necrosis factor (TNF)/NFκB signalling 
in the relevant clusters. (g) String analysis and GO analysis of the TNF/NFκB signalling genes in clusters 1 and 3.
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Figure 5  GATA3 upregulation increased keratin 1 expression downstream of Toll-like receptor activation. (a) Heat map of genes differentially 
expressed in both Tgm1 and Alox12b short hairpin RNA (shRNA) knockdown rat epidermal keratinocytes (REKs)17 and in the Pam3CSK4-treated 
REKs. Differentially expressed genes are mapped to each of the clusters identified in Figure 4 (n = 4 at each timepoint). (b) Normalized Affymetrix 
signals of GATA3 in Tgm1 (n = 3) and Alox12b (n = 2) shRNA knockdown and Scrambled (Scr) control samples (n = 3). (c) Graph of normalized 
expression of GATA3 and keratin 1 (KRT1) across the 24 h period of Pam3CSK treatment. (d) Representative Western blot of GATA3 in REKs treated 
with Pam3CSK4 over a 24 h period. (e) Western blot of GATA3 in normal human epidermal keratinocytes (NHEKs) treated with Pam3CSK4 for 24 h; 
on the right is a graphical representation of normalized densitometry data (n = 3). (f). Western blot of GATA3 in lamellar ichthyosis (LI) and nonbullous 
ichthyosiform erythroderma (NBIE) keratinocytes and normal controls (each n = 3). Graph shows normalized intensity. (g) Western blot of GATA3 
in GATA3 overexpressing REKs (GATA3 OE) vs. vector alone. Graph shows normalized densitometry data (n = 3). (h) Western blot of duplicate 
REK cultures overexpressing GATA3, treated with Pam3CSK4 or overexpressing cells treated with Pam3CSK4 for KRT1 (n = 2); glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) served as the loading control. Graph shows normalized intensity. Bars represent the SD. **P < 0.005, 
***P < 0.0005, ****P < 0.00005, one-way anova with post-hoc testing.
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in individuals with ARCI. SUMOylation is known to control 
inflammation and antiviral responses during innate sensing, 
with SUMOylation blunting these responses in mice due 
to enhancer binding in proinflammatory genes.37 Therefore, 
SUMOylation caused by impaired barrier function in ARCI 
may be required to direct the TLR2/NFκB response toward 
a barrier repair programme.

Activation of TLR2 leads to the upregulation of clau-
din, and loss of TLR2 correlates with increased TEWL.38 
Therefore, it is likely that the increased TLR2 signalling is 
a protective response to the defective barrier in ichthyosis. 
The increased thickness of the cornified layer in organotypic 
cultures treated with Pam3CSK4 supports this concept. 
TLR2 activation may rescue epidermal barrier function, in 
part, by the activation of tight junctions.39 We have shown, 
via comprehensive RNAseq analysis, that the effects of 
TLR2 activation are wider ranging than their established role 
in classical innate immune activation. We have identified 
novel functions for TLR2 signalling in epidermal terminal dif-
ferentiation and lipid synthesis, both of which are required 
for optimal barrier restoration in response to severe barrier 
defects in ARCI.

One difference between rats and humans is the differ-
ent TLR2 expression changes in response to Pam3CSK4 
treatment, and how this relates to differences in TLR2 
expression and signalling in barrier disruption. TLR2 is con-
stitutively expressed in human epidermis,40 consistent with 
the data obtained from keratinocytes, and protein expression 
levels do not change in patients with barrier dysfunction.41 
However, in mouse skin, TLR2 protein levels are increased 
in response to barrier disruption, such as tape stripping;42 
however, the downstream effect (i.e. upregulation of termi-
nal differentiation markers) remained the same. Therefore, 
TLR2 activation is directly linked to epidermal terminal dif-
ferentiation.

We observed biphasic activation of NFκB signalling after 
Pam3CSK4 treatment. This is consistent with previous 
data that showed upregulation of nuclear p65 in Tgm1 shR-
NA-expressing REK organotypic cultures.16 Here we have 
shown that NFκB-related genes are markedly different in 
the ‘early’ and ‘late’ phase of the response to TLR2 activa-
tion. Our previous studies likely reflected the late stages of 
the TLR2 activation response, post-24 h. While NFκB sig-
nalling is required for the innate immune response, this was 
only apparent at early timepoints, while the second peak of 
NFκB signalling at 24 h was more clearly associated with 
a barrier protective response, including the expression of 
epidermal differentiation and lipid synthesis genes, and has 
also been seen in the flaky tail mouse – a model for ichthy-
osis vulgaris.43 NFκB subunit deletion or inhibition can also 
result in skin hyperproliferation and inflammation.44 Control 
of NFκB signalling is complex, involving both the pattern rec-
ognition receptors such as TLRs, signalling through Myd88 
and the action of IκB kinase (IKK) degrading IκBα, which 
allows NFκB into the nucleus.45 Ikk2 knockout mice have 
impaired epidermal terminal differentiation during murine 
development.46 Together, this implicates nuclear transloca-
tion of NFκB in response to TLR2 activation in activating 
epidermal terminal differentiation in response to the barrier 
dysfunction in ARCI.

GATA3 shRNA knockdown causes barrier impairment 
related to the loss of expression of lipid synthesis genes,47 
and GATA3 overexpression increases the expression of 
keratinization genes such as loricrin and inhibits prolifer-
ation.48–50 Upregulation of lipid synthesis genes and epi-
dermal terminal differentiation-related genes occurred 
in both Pam3CSK4-treated REKs and NHEKs, and in our 
Tgm1 and Alox12b shRNA knockdown REKs;17 downregu-
lation of cell cycling was seen specifically in the Alox12b 
shRNA knockdown keratinocytes.17 GATA3 methylation by 
the drug DZ2002 reduces psoriasis skin lesions.51 GATA3 
is a p63 target gene and is involved in the upregulation of 
IKK-α, which is also involved in epidermal differentiation,52 
linking GATA3 to the upregulation of the NFκB response in 
cluster 3 genes. Our data support a role for TLR2, NFκB 
signalling and GATA3 in establishing an altered epidermal 
differentiation programme in response to disrupted barrier 
function in ARCI. One outstanding issue that may have fur-
ther therapeutic implications is that TLR2 signalling in our 
ARCI shRNA models is increased, suggesting that there is 
an endogenous ligand present in defective differentiated 
cells. Although outside of the scope of this study, heat 
shock proteins HSP60 and HSP70 are abundant in differ-
entiating keratinocytes and activate TLR2 signalling.53,54 
Understanding the extracellular milieu in barrier-defective 
skin may reveal further therapeutic targets to reduce hyper-
keratosis induced by TLR2 activation.
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course cannot be confirmed. Inflammatory bowel disease: 
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inflammatory bowel disease. Cases of new or exacerbations of 
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management. Hypersensitivity: Serious hypersensitivity 
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pregnancy and lactation: Women of child-bearing potential 
should use an effective method of contraception during 
treatment and for at least 17 weeks after treatment. Avoid use 
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breastfeeding. It is unknown whether bimekizumab is excreted 
in human milk, hence a risk to the newborn/infant cannot be
excluded. No data available on human fertility. Driving and use 
of machines: No or negligible influence on ability to drive and 
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BIMZELX is indicated for the treatment of moderate to severe plaque psoriasis in adults who are candidates for systemic therapy.1

Prescribing Information and Adverse Event can be found below.

Note: The most frequently reported adverse reactions with BIMZELX are: upper respiratory tract infections (14.5%) and oral candidiasis (7.3%).1 Other common adverse events include: Tinea infection, 
ear infection, Herpes simplex infections, oropharyngeal candidiasis, gastroenteritis, folliculitis, headache, dermatitis and eczema, acne, injection site reaction and fatigue.
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 UK: Adverse events should be reported.  
Reporting forms and information can be found  

at www.mhra.gov.uk/yellowcard.  
Adverse events should also be reported  

to UCB Pharma Ltd.
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