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Control flow in active inference systems
Part II:

Tensor networks as general models of control
flow

Chris Fields, Filippo Fabrocini, Karl Friston, James F. Glazebrook, Hananel Hazan, Michael Levin and
Antonino Marcianò

Abstract—Living systems face both environmental complexity
and limited access to free-energy resources. Survival under these
conditions requires a control system that can activate, or deploy,
available perception and action resources in a context specific
way. In Part I, we introduced the free-energy principle (FEP)
and the idea of active inference as Bayesian prediction-error
minimization, and show how the control problem arises in
active inference systems. We then review classical and quantum
formulations of the FEP, with the former being the classical limit
of the latter. In this accompanying Part II, we show that when
systems are described as executing active inference driven by
the FEP, their control flow systems can always be represented
as tensor networks (TNs). We show how TNs as control systems
can be implemented within the general framework of quantum
topological neural networks, and discuss the implications of these
results for modeling biological systems at multiple scales.

Index Terms—Bayesian mechanics, Dynamic attractor, Free-
energy principle, Quantum reference frame, Scale-free model,
Topological quantum field theory.

I. INTRODUCTION

THE framework of active inference provides a completely
general, scale-free formal framework for describing in-

teractions between physical systems in cognitive terms. In
Part I of this paper, we reviewed how active inference –
a combination of learning with active exploration of the
environment – emerges in systems compliant with the Free En-
ergy Principle (FEP), a general least-action principle initially
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developed in neuroscience [1]–[7]. We then showed how the
control flow problem arises in active inference systems, and
reviewed classical and quantum formulations of the problem.
Control flow can be represented as switching between classical
dynamical attractors, between deployed quantum reference
frames (QRFs) [8], [9], and between computational processes
represented by TQFTs [10], [11]. Implementing control flow
has a free-energy cost; hence any control-flow system must
trade off its own processing costs against the expected benefits
of switching between input/ouput modes. The time and mem-
ory dependence of control flow generically leads to context
effects on both perception and action.

In this Part II, we develop a fully-general tensor repre-
sentation of control flow in §II, and prove that this tensor
can be factored into a TN if, and only if, the separability
(or conditional statistical independence) conditions needed to
identify distinct features of, or objects in, the environment
are met. We show how TN architectures allows classification
of control flows, and give two illustrative examples. We then
discuss several established relationships between TNs and
artificial neural network (ANN) architectures in §III, and
show how these generalize to topological quantum neural
networks [11], [12], of which standard deep-learning (DL)
architectures are a classical limit [13]. Having developed these
formal results, we turn to implications of these results for
biology in §IV, and discuss how TN architecture correlates
with the observational capabilities of the system being mod-
eled, particularly as regards abilities to detect spatial locality
and mereology. We consider how to classify known control
pathways in terms of TN architecture and how to employ the
TN representation of control flow in experimental design. We
conclude by looking forward to how these FEP-based tools
can further integrate the physical and life sciences.

II. TENSOR NETWORK REPRESENTATION OF CONTROL
FLOW

A. Tensor networks and holographic duality

Entanglement and quantum error correction, two concepts
developed in quantum information theory, have been proved to
have a fundamental role in unveiling quantum gravity [14]. At
the origin of this consideration is the discovery by Bekenstein
and Hawking [15]–[18] that the second law of thermodynamics
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can be preserved in the gravitational field of a black hole,
if this latter has an entropy proportional to the area of its
horizon, by the inverse of the Newton gravitational constant
G. This entropy is maximal, as implied by the second law
itself, providing an upper bound for possible configurations of
matter within a region of the same size [19], [20].

Nonetheless, the scaling of the local degrees of freedom
counted by the entropy does not increase as the volume,
hinging toward the formulation of the holographic conjecture
[21], suggesting a division between the information that can
only be retrieved on the boundary world, and a merely appar-
ent bulk world. AdS/CFT realized the holographic conjecture,
postulating a duality between gravity in asymptotically AdS
space and quantum field theory on the spatial infinity of the
AdS space [22]. Giving literal meaning to the duality, Ryu
and Takayanagi (RT, [23]) proposed that entanglement of a
boundary region fulfils the same law as for the black hole
entropy, replacing the area of the black hole horizon with
an extremal surface area that bounds the bulk region under
scrutiny.

While on the boundaries the theory can be individuated
by assigning a specific conformal field theory (CFT), in the
bulk the geometry can be associated to specific entanglement
structures of the quantum systems. This is, for instance, what
happens to the ground states of a CFT associated to an
AdS space: the RT surface area increases less fast than the
volume of the boundary. When the boundary is at equilibrium,
in a thermal state of finite temperature, the bulk geometry
corresponds to that of a black hole, its horizon being parallel to
the boundary and its size increasing with the temperature. The
RT surface is then confined between the boundary and the back
hole horizon, approaching the boundary at higher temperature
and increasing its entropy. These considerations suggest the
existence of a subtle link interconnecting the structure of
spacetime and quantum entanglement, and hence that a theory
of quantum gravity must be fundamentally holographic, where
its states satisfy the RT formula for some bulk geometry.

The existence of an exact correspondence between bulk
gravity and quantum theory at the boundary may hinge toward
possible inconsistencies with locality. This has been discussed
in the literature, in terms of local reconstruction theory [24]–
[26]: variables in the bulk (e.g. bulk spins) can be controlled
instantaneously from the boundary, but this requires simul-
taneous access to a large portion of the boundary: locality
and an upper speed of light do not hold exactly in this
theory. Nonetheless, local observers confined in small regions
at the boundary still fulfill locality and the existence of
an upper limit of the speed of information exchange, in a
way that is reminiscent of quantum error correction codes
(QECCs) in quantum information theory: information is stored
redundantly, in such a way that when part of it is corrupted,
a reconstruction of information is still possible. Locality in
the bulk is therefore a QECC property of the encoding map
that realizes the duality between bulk and boundary. On the
other hand, these properties are strictly connected to RT, which
provides the necessary resource of entanglement for QEEC to
emerge.

The RT formula and QECC are properties fulfilled by

different classes of models, among which TNs [28]. These
have been first introduced in condensed matter physics as
variational wave-functions of strongly correlated systems [29],
[30]. TNs are many-body wavefunctions that can be derived by
composing few-body quantum states, which are indeed tensors.
A prototype TN is, e.g., a collection of Einstein-Podolsky-
Rosen (EPR) entangled pairs of qubits: in a nonentangled
basis, the measured qubits are in some entangled pure state,
and can be composed with additional qubits to create states
with increasing complexity. Indeed, complicated quantum en-
tanglement can be derived by entangling only a few qubits
[31].

Particularly relevant for its implications on the reconstruc-
tion of spacetime structure is the multi-scale entanglement
renormalization ansatz (MERA) [32]. TNs can be naturally
related to holography duality by considering that their entan-
glement entropy can be controlled by their graph geometry.
Some versions of TNs that are characterized by RT entangle-
ment entropy and QEEC have been constructed resorting to
stabilizer codes [33], [34] and random tensors with large bond
dimensions [35]. TNs with random tensors at each node can
be regarded as random states restricted by the topology of the
network. Exactly as random states are almost maximally en-
tangled, random TNs show, through the RT formula, an almost
maximal entanglement, providing a large family of states with
interesting properties to explore holographic duality. Further-
more, for random TNs, the RT formula holds in generic spaces
with not necessarily hyperbolic geometry, hinging toward an
extension of holographic duality beyond AdS, to more general
configurations in quantum gravity. Nonetheless, at least in
three dimensions, random tensor networks have been related
to the gravitational action, by means of the Regge calculus
[36].

On the other hand, since geometry emerges as a specifica-
tion of the entanglement structure, one may consider that the
Einstein equations should be connected as well to the dynam-
ics of entanglement. For small perturbations around the ground
state of a CFT on a boundary, linearized Einstein equations
have been derived from the RT formula [37], [38]. Indeed,
the conformal symmetry enables a relationship between the
energy-momentum and the entanglement entropy, and conse-
quently the area of the extremal surface can be connected to
the energy-momentum distribution at the boundary – the result
is equivalent to the linearized Einstein equations.

The dynamics on the boundary, on the other hand, shows
a chaotic behaviour, with scrambling of the single-particle
operators, which evolve into multi-particle operators [39].
Maximal chaotic behavior recovered in the growth of the
commutator between ladder operators, as encoded in the out-
of-time-ordered correlation (OTOC) functions, is characterized
by exponential growth in time and temperature. A model
endowed with this property is, e.g., the Sachdev-Ye-Kitaev
model, developed to describe certain systems in condensed
matter physics, such as Gapless spin-fluids [40]–[42]. On the
other hand, operator scrambling is also related to QEEC: the
chaotic dynamics at the boundary instantiates QECC preserv-
ing quantum information, which is efficiently hidden (and
protected) behind the horizon. Nevertheless, this has led to
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many questions concerning the information behind the horizon
being eventually accessible from the boundary though non-
local measurements, the fate of the local degrees of freedom
hitting the singularity, and the relation between the causal
structure of the bulk and the smooth geometry across the
horizon.

B. General results

We can now move to prove a general result:

Theorem 1. A system A exhibits non-trivial control flow if,
and only if, its control flow can be represented by a TN.

and examine some of its corollaries. We begin by defining:

Definition 1. Control flow is trivial if a system deploys only
one QRF.

As any collection of mutually-commuting QRFs can be rep-
resented as a single QRF [11], [79], any system that deploys
only mutually-commuting QRFs exhibits trivial control flow.

Systems that deploy only a single QRF “do the same thing”
regardless of context, and so do not qualify as “interesting” in
the sense used here. As noted above, no finite physical system
can measure the entire state of its boundary with a single QRF,
so no such system can simultaneously measure and act on its
entire context. Any system A that deploys multiple QRFs Qi
in sequence cannot, as noted in Part I, avoid contextuality
due to unobservable effects, mediated by the action of HB ,
of the action of Qi on the state later measured by Qj . Every
action taken by an “interesting” system, in other words, at
least transiently increases the VFE at its boundary.

Consider, then, a system A that deploys multiple, distinct
QRFs Q1, Q2, . . . Qn, acting on its environment B, where
n � N = dim(HAB). Classical control flow in A can then
be represented by a matrix CF = [Pij ], where Pij is the
probability of the control transition Qi → Qj . As noted in
Part I, any such transition has an energetic cost, which must
be paid with free energy sourced from the thermodynamic
sector F of the A-B boundary B.

The matrix CF is a 2-tensor. Theorem 1 states that this
tensor can be decomposed into a TN. We prove it as follows:

Proof (Thm. 1). Suppose first that control flow in a system
A can be represented by a TN. A TN is, by definition, a
factorization of a tensor operator into a network of tensor
operators. This network can be either hierarchical or flat; if
it is hierarchical, each layer can be considered a flat TN.
Hence no generality is lost in considering just the case of a flat
TN, which is an operator contraction T = . . . TijTjkTkl . . . ,
where summation on shared indices is left implicit. In general,
Tjk 6= TTjk = Tkj , hence these expressions do not commute.
They therefore represent non-trivial control flow. Conversely,
any non-trivial control flow can be written, at any fixed scale
or level of abstraction, as a linear sequence of (in general
probabilistic) operators. The fixed order of operators in the
sequence can be encoded formally by adding “spatial” indices
as needed to allow contraction over shared indices. Hence any
non-trivial control flow at a fixed scale can be written as a flat
TN. This construction can be repeated at each larger scale to

produce a hierarchical TN over a collection of “lowest-scale”
TNs.

We can now examine two corollaries of this result:

Corollary 1. Decoherent reference sectors exist on a bound-
ary B if and only if control flow can be implemented by a
TN.

Proof. Decoherence between sectors requires independently-
deployable, non-commuting QRFs. This requires a control
structure that factors, hence by Theorem 1, it requires a
TN. Conversely, a TN factors the control structure, making
QRFs independently deployable, which renders their sectors
decoherent.

Equivalently, the generative model (GM) implemented by
a system [4] factors if, and only if, control flow can be
implemented by a TN.

Corollary 2. The TN of any system compliant with the FEP
is a decomposition of the Identity.

Proof. The FEP applies to systems with a NESS, and drives
such systems to return to (the vicinity of) the NESS after
any perturbation. Hence at a sufficiently large scale, the TN
of any such system is a cycle, i.e., a decomposition of the
Identity.

Many standard TN models, e.g., MERAs, assume bound-
ary conditions asymptotically far, in numbers of lowest-scale
operators, from the region of the network that is of interest.
Identifying such asymptotic boundary conditions yields a
cyclic system.

Theorem 1, together with its corollaries, provides a natural,
formal means of classifying systems by their control architec-
tures. At a high level, two characteristics distinguish systems
with different architectures:
• Hierarchical depth, which indicates the number of “virtual

machine” layers [43] the architecture supports. The in-
terfaces between these layers implement coarse-graining,
removing from the higher-level representation all dimen-
sions, and hence all information, which is contracted out
of the lower-level operators.

• Number and location of contractions that yield unitary op-
erators, and hence build in entanglement between lower-
level operators. The natural limit is a MERA, in which
every pair of lower-level operators is entangled at every
hierarchical level [44].

The control-flow architecture, in turn, specifies the structure
of the “layout” of distinguishable sectors on B and hence
of detectable features/objects in the environment. Locality
on B requires a hierarchical TN; detectable entanglement
requires a MERA-like TN. Locality is required for detectable
features/objects to appear to have components with nested
decompositions. Any QRF for geometric space, and hence for
spacetime, must be hierarchical, and must be a MERA if en-
tanglement in space is to be detected. A MERA is required, in
particular, if the use of coherence between spatially-separated
systems as a computational or communication resource is
detectable.
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Fig. 1. Example state transition from Dataset 1.

To illustrate the classification of systems by hierarchical
level, consider the ten-step cyclic TN shown in Diagram (1):

. . .A B J
(1)

and its extension to a hierarchy as shown in Diagram (2):

A B C D E F G H I J

(2)
where red, blue, and green colors indicate distinct hierarchical
“layers” of tensor contractions. We have trained artificial
neural networks (ANNs) to execute these TNs as the sequences
of state transitions shown in Table 1. The first sequence
(Dataset 1) is a ten-step cycle as shown Diagram (1); the
second sequence (Dataset 2) layers the coarse-grained state
transitions of Diagram (2) onto this ten-step cycle. In Dataset
2, a two-bit tag is used to differentiate the “low-level” from
the coarse-grained “high-level” cycles. An example state state
transition from a randomly-generated initial state is shown in
Fig. 1; the red-on-green bit pattern effectively moves “up” one
step on each state-transition cycle.

Table 1: Datasets used in ANN simulations. Dataset 1 specifies
a ten-step cycle A→ B→ . . . → J → A. Dataset 2 specifies
this same cycle, with three coarse-grained cycles layered on
top. The tags (0,0), (0,1), (1,0), and (1,1) distinguish the data
for the low- and high-level cycles.

Fig. 2. Feed-forward network archtecture used to learn the control cycles
specified in Table 1. Each node is connected to every node of the next layer,
as shown here for the first and last nodes only. The labels ‘T’ and ‘T+1’
indicate time steps in the executed control flow.

We trained two ANNs, one to execute each of the control
cycles shown in Table 1. The networks are each composed
of three layers, as illustrated in Fig. 2, with network sizes
of [10, 50, 10] and [10, 200, 10], respectively, for the input,
hidden, and output layers. The units in the hidden layer use
the rectified linear unit (ReLU) nonlinear activation function
and the neurons in the output layer use the hyperbolic tangent
activation function. The network is connected in a feedforward
way where a neuron in one layer connects to every neuron
in the next layer. Since the ANN serves as a switch state
controller, we use a training scheme, similar to one-class
classification [45], where the training data are the only data
that the network learns to produce. In so doing, the network
learns to overfit the training data, and any input outside of
the designated state-encoding is discarded. The network is,
therefore, not expected to deviate from the learned pattern.
The network learns both control regimes with 100% accuracy
after training with 3,000 randomly-generated 10-bit inputs.

In the more realistic case of noisy input data, where binary
states can be flipped, the Bidirectional Associative Memory
(BAM), a minimal two-layer nonlinear feedback network [46],
is a viable alternative to a shallow feed-forward ANN. The
architecure is shown in Fig. 3. This BAM network learns to
associate between the two initial and final states in Table 1,
with similar performance to that of the feed-forward network.

III. IMPLEMENTING CONTROL FLOW WITH TQNNS

Tensor Networks can be naturally associated to the ma-
trix elements of physical scalar products among topological
quantum neural networks (TQNNs). Physical scalar products
encode indeed the dynamics of TQFTs, since they fulfill their
constraints of imposing flatness of the curvature and gauge
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Fig. 3. Architecture of the Bidirectional Associative Memory (BAM) network
employed here. As in Fig. 2, only the connections of the first and last nodes
are shown explicitly.

invariance. Thus, the matrix elements associated to scalar
products can be seen as evolution matrix elements for the spin-
network states that span the Hilbert spaces of TQNNs.

A. Tensor networks as classifiers for TQNNs
A notable example is provided by BF theories [47], a

class of TQFTs particularly well studied in the literature of
mathematical physics that enables expressing effective theories
of particle physics, gravity and condensed matter, and provides
as well a general framework for implementations of models
of quantum information and quantum computation, machine
learning (ML), and neuroscience. These are defined on the
principal bundle M of a connection A for some internal gauge
group G, with algebra g, according to the action on a d-
dimensional manifold Md:

S =

∫
Md

Tr[B ∧ F ] , (3)

where B is an ad(g)-valued d-2-form, F denotes the field-
strength of A, which is a 2-form, and the trace Tr is over the
internal indices of g, ensuring gauge invariance of the density
Lagrangian L = Tr[B ∧ F ] of the BF theory.

Variation with respect to the conjugated variables, the
connection A and the B frame-field, closing a canonical
symplectic structure, provide the equations of motion of the
theory [47]:

F = 0 , dAB = 0 , (4)

which are, respectively, the curvature constraint, imposing the
flatness of the connection, and the Gauß constraint, imposing
invariance under gauge transformations, having denoted with
dA the covariant derivative with respect to the connection A.

At the quantum level, the states of the kinematical Hilbert
space of the theory, fulfilling by construction the Gauß con-
straint, can be represented in terms of cylindrical functionals

Cyl, supported on graphs Γ that are unions of segments γi, the
end points of which meet in nodes n, and with holonomies
– elements of the group G – Hγi [A] of the connection A
assigned to γi and intertwiner operators – invariant tensor
products of representations – vn assigned to the nodes n.

For G = SU(2), spin-networks |Γ, jγ , ιn〉, supported on Γ
and labelled by the spin jγ of the irreducible representations
of the group elements assigned to γ and by the quantum
intertwiner numbers ιn associated to vn, represent a basis of
the kinematical Hilbert space of the theory. In terms of func-
tionals of Cyl, one can provide the holonomy representation,
which is related to the “spin and intertwiner” representation of
|Γ, jγ , ιn〉 by means of the Peter-Weyl transform. This allows
us to decompose the spin-network cylindric functional as [48]:

Ψjγij ,ιni
(hγij ) =

(⊗
n

ιn

)
·

⊗
γij

D(jγij )(hγij )

 , (5)

with D(j) are Wigner matrices providing representation ma-
trices of the SU(2) group elements.

The functorial evolution among spin-networks is ensured by
the projector operator [11], which implements the curvature
constraint in the physical scalar product among states, i.e.

〈in|P |out〉 , with P =

∫
D[N ] exp(ı

∫
Tr[NF ]) .

(6)
We may then regard |in〉 as elements of the Hilbert space, and
without loss of generality pick up those ones resulting from
composing tensorially in Cyl k-representations of holonomies.
We may further denote them as |j1 . . . jk〉, with some ordering
prescription to associate the topological structure of Γ to
the sequence of spin labels. Physically evolving states P |in〉
are distinguished from the former ones by labelling them as
| ˜j1 · · · jk〉. Similarly, we introduce |out〉 as the tensor product
of (n-k)-representations of holonomies, and denote these states
as |i1 . . . in−k〉. Then the matrix elements of 〈in|P |out〉
naturally give rise [27] to an n-tensor, i.e.

〈i1 . . . in−k| ˜j1 · · · jk〉 = Ti1...in−kj1...jk . (7)

B. Geometric RG flow for TQNNs and TNs

The mathematical structures of TQNNs we summarized in
Sec. III-A are picturing systems “at equilibrium”, for which
TQFTs characterize a topological stability that percolates into
the related transition amplitudes. Nonetheless, it is worth
considering as well how stochastic noise might interfere with
the topological order ensured by TQFTs, and study the role of
“out-of-equilibrium” physics in the analysis of the evolution
of the systems under scrutiny.

Out-of-equilibrium dynamics is instantiated considering a
heat-flow evolution of the fundamental fields of the theory,
with respect to a thermal time τ . Typical Langevin equations,
complemented with stochastic noise, provide through their
convergence toward the equations of motion of the theory the
relaxation toward equilibrium of the field configurations rep-
resenting specific systems [49]. In general, given some fields
φσ , with a classical equation of motion derived, according

This article has been accepted for publication in IEEE Transactions on Molecular, Biological, and Multi-Scale Communications . This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMBMC.2023.3272158

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on June 12,2023 at 15:18:19 UTC from IEEE Xplore.  Restrictions apply. 



FIELDS ET AL, CONTROL FLOW IN ACTIVE INFERENCE SYSTEMS, PART II 6

to the variational principle δS/δφσ , from an action S over
a Euclidean manifold M, the associated Langevin equations
read:

∂

∂τ
φσ = − δS

δφσ
+ ησ , (8)

with ησ a stochastic noise term. The theory at equilibrium is
characterized by the symmetries of the equations of motion
δS/δφσ = 0 that are broken in the transient phase [50];
these symmetries are consistent with – and in the case of BF
theories, actually generated by – the theories at equilibrium.

A prototype of geometric heat-flow was introduced by
Hamilton, and then used by Perelman to prove the Poincaré
conjecture, which goes under the name of Ricci flow. Here the
gravitational field gµν is the basic configurational space field,
while the drift terms are the Einstein equations of motion in
the vacuum, which indeed are expressed by requiring that the
components of the Ricci tensor vanish, i.e. Rµν = 0. The
Ricci flow then reads

ı
∂

∂τ
gµν = −2Rµν , (9)

having considered now a Lorentzian manifold M. The Ricci
flow equations can be further complemented introducing the
Ricci target RTµν = κ2(Tµν−1/2gµνT ), expressed in terms of
the Newton constant G = κ2/(8π) and the energy-momentum
tensor of matter Tµν , so as to obtain at equilibrium the Einstein
equations:

Rµν−
1

2
gµνR = κ2Tµν , or equivalently Rµν = RTµν .

(10)
The stochastic version of the Ricci flow, with heat equation
turning into a Langevin equation, has been introduced and
deepened in [50] for a generic gravitational system in the
presence of matter fields, describing an action S for gravity
and matter. Moving then from:

ı
∂

∂τ
gµν = − 1

κ2
δS
δgµν

+ η gµν , (11)

in which a multiplicative noise ηµν = η gµν appears, the
Hamiltonian analysis of the stochastic Ricci flow (SRF) in the
Adomian decomposition method (ADM) variables has been
derived [50].

An essential by-product of the discussion, from the Ricci
flow perspective, is that the equilibration trajectories corre-
spond to those of a renormalization group (RG) flow. The
thermal time τ plays the role of scale parameter that individ-
uates a dimension in the bulk, which is out-of-equilibrium.
The boundaries are recovered asymptotically in τ , in the
infrared regime, and are by definition at equilibrium and thus
symmetric.

For a particular class of TQFTs, the BF theories we have
introduced in Sec. III-A for implementing TQNNs and TNs,
the geometric RG flow acquire a specific expression as the
TQFT equivalent of the gravitational Ricci flow [51].

C. TNs as a generalization of the main model architectures in
ML

The use of TNs is an emerging topic in the ML community.
The integration between the two appears quite immediate. A

Fig. 4. Representation of the decision function (see [53]).

Fig. 5. Matrix product decomposition (again see [53]).

TN structure can be viewed as a ML model in which the
parameters are properly adjusted to learn the classification of a
data set. Yet, as Ref. [52] mentions, machine learning can aid,
in turn, in determining a factorization of a TN approximating
a data set. Moreover, TNs are also used to compress the layers
of ANN architectures, besides a variety of other uses. Tensor
networks are becoming more and more popular to the extent
that they are a powerful tool for representing and manipulating
high-dimensional data, as in the case of image and video
classification tasks in which the data are represented as a high-
dimensional tensor. High efficiency, flexibility, and ease of use
are making them a dominant choice for many AI applications.
Furthermore, besides being used to represent data, TNs can
be used to process data by exploiting a number of operators.
This feature makes them an effective technique for processing
data in ML applications.

As is well known, TNs are particularly well suited for rep-
resenting quantum many-body states in which the dimension
of the Hilbert space is exponentially large in the number of
particles. The corresponding ML approach consists in:
• Lifting data to exponentially higher spaces;
• Applying any linear classifier f(x) = W ?Φ(X) to a non-

linear space;
• Compressing the weights by using TNs.
The output of the model is a separation of classes that would

not be linearly separable in a linear space. In particular, the
decision function is the overlap of the weight tensor W with
the feature map tensor Φ as in Fig. 4. The weight tensor W
can be approximated by the decomposition in Fig. 5.

Regularization and optimization are built as a constructive
product of low-order tensors while weight compression is
performed by using the Matrix Product States (MPS) decom-
position. If we look at Deep Neural Networks as a piecewise
composition of linear discriminators (logistic regression func-
tions), then the TN framework appears as a generalization of
the main model architectures found in the ML literature, e.g.
Support Vector Machines, Kernel models, and Deep Neural
Networks.

The literature concerning the use of tensor theory in tra-
ditional ML is becoming large. A short review starts with

This article has been accepted for publication in IEEE Transactions on Molecular, Biological, and Multi-Scale Communications . This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMBMC.2023.3272158

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on June 12,2023 at 15:18:19 UTC from IEEE Xplore.  Restrictions apply. 



FIELDS ET AL, CONTROL FLOW IN ACTIVE INFERENCE SYSTEMS, PART II 7

a seminal paper by Stoudenmire and Schwab [54], which
demonstrated how algorithms for optimizing TNs can be
adapted to supervised learning tasks by using MPS (ten-
sor trains) to parametrize non-linear kernel learning models.
Novikov, Trofimov, and Oseledets [55] have shown how an
exponentially large tensor of parameters can be represented
in a factorized format called Tensor Train (TT), with the
consequence of obtaining a regularization of the model. van
Glasser, Pancotti, and Cirac [56] explored the connection be-
tween TNs and probabilistic graphical models by introducing
the concept of a “generalized tensor network architecture”
for ML. Ref. [57] then designed a generative model, i.e. a
traditional machine learning model that learns joint probability
distributions from data and generates samples according to
it, by using MPS. Ref. [58] made use of autoregressive
MPSs for building an unsupervised learning model that goes
beyond proof-of-concept by showing performance comparable
to standard traditional models. Finally, Ref. [59] analyzes
the contribution of polynomials of different degrees to the
supervised learning performance of different architectures.

IV. IMPLICATIONS FOR BIOLOGICAL CONTROL SYSTEMS

Scale-free biology requires a smooth transition from
quantum-like to classical-like behavior. Typical representations
of metabolic, signal-transduction, and gene-regulatory path-
ways are entirely classical, even though many of their steps in-
volve electron-transfer or other mechanisms that are acknowl-
edged to require a quantum-theoretic description [60], [61]. As
noted earlier, free-energy budget considerations suggest that
both prokaryotic and eukaryotic cells employ quantum coher-
ence as a computational resource [62]. Emerging empirical
evidence for longer-range entanglement in mammalian brains
suggests that large-scale networks may also be using quantum
coherence as a resource [63]. Control flow models must,
therefore, support the possibility of quantum computation
in biological systems. Hierarchical TNs that include unitary
components, e.g., MERA-type models, provide this capability.

In prokaryotes, the primary tasks of control flow are
adapting metabolism to available resources via metabolite-
driven gene regulation [64] and initiating DNA replication
and cell division when conditions are favorable. We can,
therefore, expect shallow hierarchies of effectively classical
control transitions in these organisms. Eukaryotes, however,
are characterized by both intracellular compartmentalization
and morphological degrees of freedom at the whole-cell scale.
We have shown previously that the FEP will induce “neu-
romorphic” morphologies – i.e. morphologies that segregate
inputs from outputs and enable a fan-in/fan-out computational
architecture – in any systems with morphological degrees of
freedom [65]. Such systems can be expected to have deep con-
trol hierarchies at the cellular level, with hierarchical structure
correlating with morphological structure in morphologically-
complex cells such as neurons [66], and in multicellular
assemblages at all scales. These distinctions correlate with the
orders-of-magnitude increase in classical computational power
(estimated from total metabolic energy budget) as a function
of cell-surface area in eukaryotes as compared to prokaryotes
[62], as illustrated in Fig. 6.

Fig. 6. Power-law relation between maximum classical computation rate (ver-
tical axis) and cell-surface area (horizontal axis) derived in [62]. Information
processing in eukaryotes is implemented by complex , overlapping signaling
pathways that require hierarchical control, which information processing in
prokaryotes is implemented by comparatively simple, two or three component
pathways that require only shallow control systems. Adapted with permission
from [62] Fig. 3.

As well as managing metabolism and replication, most
eukaryotes implement active exploration of the environment,
communication with other systems, and – crucially for cog-
nition – the writing and reading of stigmergic memories.
Thus we can expect such systems to implement QRFs for
spacetime and for specific kinds of objects, e.g., conspecifics
and suitable substrates for recording stigmergic memories.
Such QRFs rely on symmetries, and hence on redundancy
of encoded (or encodable) information; they depend, in other
words, on the availability of error-correcting codes [67], [68].
The implementation of spacetime as a QECC by TNs has
been extensively studied by physicists as noted above; see [69]
for review and [27] for a detailed analysis using the present
formalism. The use of spacetime as an error-correcting code
by organisms – e.g., the implementation of translational and
rotational invariance of objects by dorsal visual processing in
mammals [70], [71] – is well-understood phenomenologically,
but the details of neural implementation remain to be eluci-
dated.

Both the context-sensitivity of, and the occurence of context
effects due to non-commutativity of QRFs in, control net-
works can be expected to increase with their complexity and
hierarchical depth. “Bowtie” networks with high fan-in/fan-
out to/from multi-use proteins or second messengers such
as Ca2+ are increasingly recognized as ubiquitous in higher
eukaryotic cells [72]. Such networks have the general form
of the CCCD depicted in Part I, Diagram 3. Frequently, such
networks evolve via compression of information (e.g. toward
share second messengers, as in [Ca2+]-based interactions [73],
[74]) as an efficiency-increasing mechanism. Bowties intro-
duce semantic ambiguities that must be resolved by context.
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Each incoming signal has its own governing semantics, but
the relevant context can depend on boundary conditions which
can be exceedingly difficult (if not impossible) to predetermine
(see e.g., [75], [76] for general discussions of the history and
semantic depth of this problem). As pointed out in [77], a
context change x 7→ y is semantically problematic if for
a fixed set {oi} of observations, the conditional probability
distributions P(oi|x) and P(oi|y) are well defined, but the joint
distribution P(oi|x∨ y) is not [78]. This occurs whenever the
QRFs for x and y do not commute [79, Th 7.1]. As suggested
by Part I, Diagram 3, this context-switching problem affects
deep learning using VAEs [80]; see e.g., the application to
antimicrobial peptides in [81]. In general, the structure of
Part I, Diagram 3 can serve as a convenient benchmark for
distinguishing signal transduction networks that incorporate
co-deployable versus non-co-deployable QRFs [79].

“Quantum” context effects due to non-commutativity have,
interestingly, been reported even at the scale of human lan-
guage use. The “Snow Queen” experiment [82] challenged
subjects with distinct, mutually-inconsistent meanings of terms
such as ‘kind’, ‘evil’, or ‘beautiful’ in different contexts, and
detected statistically-significant context effects using the CbD
formalism [83], [84]. Such effects cannot be explained by
linguistic ambiguity, misreading, etc. Such language-driven
contextuality is taken up in the setting of psycholinguistics
and distributional semantics in [85], which combines CbD and
the sheaf theoretic [86], [87] methods to systematically study
semantic ambiguity as creating meaning/sense discrepancies
in statements like “It was about time”, “She had time on her
hands to win the heat”, “West led with a queen”, etc.

While the notion of “languages” has thus far been ap-
plied to cells, tissues, and even non-vertebrates in a mostly
metaphorical way, we can speculate that linguistic approaches
to understanding the interplay between context dependence
and semantic ambiguity may be useful to biology in general.
Immune cells (e.g., T cells) are, for example, “programmed” or
“trained” by their progenitor cells to respond to local cellular
signals and ambient conditions in particular ways. Unexpected
context changes may induce dysfunctional (at the organism
scale) responses, including chronic disorders [88]; these can be
considered consequenes of discrepancies between the “actual”
semantics of incoming signals and the semantics expected by
the immune system’s “language.” This suggestion of possi-
ble “linguistic” contextuality seems in consonance with the
hypothesis of [89] that the immune system is a cognitive
(living) system implementing its exclusive system of language-
grammar, which may be prone to analogous disorders of com-
munication as those discussed in [85]. Similar context effects
have been observed in microbiological systems [90]; here
discrepancies in experimentally derived classical probabilities
arising from lactose-glucose interference signaling in E. Coli
can only be explained in terms of non-classical probabilities.
We note that the expression ‘quantum-like’ [91] is often used
for such effects; however, their formal structure is exactly that
given by quantum theory.

We expect that further research into quantum biology will
unfold significant perspectives on human/mammalian physiol-
ogy and cognitive capabilities along the lines suggested in the

present article. For example, allostatic maintenance, as briefly
alluded to in Part I, can be seen as a process regulating a
body’s physiological conditions relative to costs and benefits
while dynamically allocating resources for the purpose of
overall adaptability of an organism within its internal envi-
ronment. Implementing the allostatic and anticipatory mech-
anisms are the visceromotor cortical regions generating auto-
nomic, hormonal, and immunological predictions leading to
interoceptive inference [92]–[94], [96]–[99], [102]. This pro-
cess of inference in humans and mammals putatively utilizes
predictive coding for the processes of homeostasis-allostasis
through a hierarchy of cellular to organ-level systems, in turn
connecting interoception to the processes of extercoception
and proprioception [92], [99]–[102]. The basic principles
follow from how allostasis provides protection against po-
tential surprise by utilizing a framework somewhat beyond
the error signaling necessary for homeostatic maintenance (it
is essentially through minimizing the free energy of internal
state trajectories towards combatting surprise, as discussed in
Part I). The net effect of the process is consonant with the
Good Regulator theorem of [95], showing how regulation of
a given system requires an internal model of that system. A
further perspective is to emphasize the predictive nature of
an integrated, complex, allostatic-interoceptive cortical system
capable of supporting a spectrum of psychological phenomena
including memory and emotions [99] (cf. [102]). Accordingly,
cognitive conditions such as depression and autism have been
described as abnormalities of allostatic-interoceptive inference,
so impairing predictive coding mechanisms due to aberrant
assimilation and mistuning of prediction errors (putatively a
connectivity issue), conceivably leading to a root cause of
many known cognitive conditions [92], [100], [102].

We anticipate that this fully general, context sensitive
model of control flow will be important for understanding
morphogenesis, which is not simply a feed-forward emergent
system, but rather a highly context-sensitive error-minimizing
process [103]. Specifically, the collective intelligence of cells
during embryonic development, organ regeneration, and meta-
morphosis can create and repair specific complex structures
despite a wide range of perturbations [104]. Changes in the
genome, the number of cells, or the starting configuration can
often be overcome: bisected embryos result in normal twins,
amputated salamander limbs re-grow back to normal, and
planarian fragments result in perfect little worms [105]. The
competency of cellular collectives to reach the correct target
morphology despite even drastic interventions requires an
understanding of how they navigate, via context-sensitive con-
trol flow, problem spaces including anatomical morphospace
[106], physiological, and transcriptional spaces [68], [107].
Understanding the navigation policies used by unconventional
collective intelligences can help not only understand creative
problem-solving on rapid timescales (such as the ability to
regulate genes to accommodate an entirely novel stressor [108]
without evolutionary adaptation), but may also have implica-
tions for predicting and managing the goals and behavioral
repertoires of synthetic beings [109].
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V. CONCLUSION

We have shown here how the problem of defining control
flow arises in active inference systems, and provided three
formal representations of the problem. We have proved that
control flow in such systems can always be represented by
a tensor network, provided illustrative examples, and shown
how the general formalism of topological quantum neural
networks can be used to implement a general model of control
flow. These results provide a general formalism with which to
characterize context dependence in active inference systems
at any scale, from that of macromolecular pathways to that of
multi-organism communities. They suggest that the concept
of communication by language is not just metaphorical when
applied to biological systems in general, but rather an appro-
priate and productive description of interactional dynamics.

We view these results as a further step toward fully
integrating the formal models, concepts, and languages of
physics, biology, and cognitive science. This integration is not
reductive. It rather allows us to classify systems using natural
measures of organizational and computational complexity, and
to understand how interactions between simpler systems can
implement the more complex behavior of the larger systems
that they compose.
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and quantum error-correcting codes from the perspective of topological
quantum field theory.” Preprint arxiv:2303.16461 [hep-th].

[28] B. Swingle, “Entanglement renormalization and holography,” Phys. Rev.
D, vol. 86, art. 065007, 2012.

[29] S. R. White, “Density matrix formulation for quantum renormalization
groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, 1992.

[30] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected
entangled pair states, and variational renormalization group methods for
quantum spin systems,” Adv. Phys., vol. 57, pp. 143–224, 2008.

[31] D. P. DiVincenzo, et al., “Entanglement of assistance,” in Quantum
Computing and Quantum Communications. Berlin, Springer, pp. 247–
257, 1999.

[32] G. Vidal, “Class of quantum many-body states that can be efficiently
simulated,” Phys. Rev. Lett., vol. 101, art. 110501, 2008.

[33] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic
quantum error-correcting codes: Toy models for the bulk/boundary cor-
respondence,” J. High Energy Phys., vol. 2015, art. 149, 2015.

[34] Z. Yang, P. Hayden, and X.-L Qi, “Bidirectional holographic codes and
sub-AdS locality,” J. High Energy Phys., vol. 2016, art. 175, 2016.

[35] P. Hayden, et al., “Holographic duality from random tensor networks,”
J. High Energy Phys., vol. 2016, art. 9, 2016.

[36] M. Han and S. Huang, “Discrete gravity on random tensor network and
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