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Abstract—Ninety percent of the world’s cargo is 
transported by sea, and the fatigue of ship officers of 
the watch (OOWs) contributes significantly to maritime 
accidents. The fatigue detection of ship OOWs is more 
difficult than that of vehicles drivers owing to an 
increase in the automation degree. In this study, 
research progress pertaining to fatigue detection in 
OOWs is comprehensively analysed based on a 
comparison with that in vehicle drivers. Fatigue 
detection techniques for OOWs are organised based on 
input sources, which include the 
physiological/behavioural features of OOWs, 
vehicle/ship features, and their comprehensive features. 
Prerequisites for detecting fatigue in OOWs are 
summarised. Subsequently, various input features 
applicable and existing applications to the fatigue 
detection of OOWs are proposed, and their limitations 
are analysed. The results show that the reliability of the 
acquired feature data is insufficient for detecting fatigue 
in OOWs, as well as a non-negligible invasive effect on 
OOWs. Hence, low-invasive physiological information pertaining to the OOWs, behaviour videos, and multisource 
feature data of ship characteristics should be used as inputs in future studies to realise quantitative, accurate, and 
real-time fatigue detections in OOWs on actual ships.  

 
Index Terms—Detection methods, fatigue detection, maritime safety, OOWs’ fatigue. 

 

I.  INTRODUCTION 

INETY percent of the world’s cargo is transported by sea. 

A marine accident involving a large ship at sea is likely 

to result in significant casualties and property damage, and oil 

spills from ships are detrimental to the marine environment.  
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A. Importance 

Fatigue can result in reduced alertness and deteriorated 

work performance in ship crew, and is a primary cause of 

accidents, such as ship groundings, collisions, and reefing [1]. 

Additionally, fatigue occurs on board fishing ships and 

contributes significantly to human errors and accidents [2, 3]. 

A study conducted by the US Coast Guard Research and 

Development Centre showed that fatigue is the primary cause 

of 16% of ship casualties and 33% of board injuries [4]. One-

third of ship groundings is due to fatigue in OOWs and 

performing night duties solitarily at the bridge, according to a 

study by the UK Department for Transport involving 1,647 

collisions, groundings, and other accidents between 1994 and 

2003 [5]. The International Maritime Organization (IMO) has 

prioritised the issue of crew fatigue and has thus developed 

“Guidance on Fatigue”, which defines fatigue as “a state of 

physical and/or mental impairment resulting from factors such 

as inadequate sleep, extended wakefulness, work/rest 

requirements out of sync with circadian rhythms and physical, 

mental or emotional exertion that can impair alertness and the 

Fatigue Detection for Ship OOWs Based on 
Input Data Features, from The Perspective 

of Comparison with Vehicle Drivers：A 

Review 
Hongguang Lyu, Jingwen Yue, Wenjun Zhang, Tao Cheng, Yong Yin, Xue Yang, Xiaowei Gao, 

Zengrui Hao, & Jiawei Li 

N 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3281068

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on June 12,2023 at 15:15:13 UTC from IEEE Xplore.  Restrictions apply. 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

ability to safely operate a ship or perform safety-related 

duties” [6]. 

Low sleep quality tends to cause fatigue and reduces the 

driving ability of professional drivers [7]. This is more likely 

to occur on board a ship because ship OOWs may encounter 

more difficult and challenging working conditions, as follows 

[8]: 

1)  24/7 working patterns, changing time zones, and shifts 

(e.g., four- and six-hour shifts [9]), which result in 

irregular circadian rhythms and working hours, as well 

as disruption to the biological clock [10, 11]. 

2) Severe weather, rough seas, seasickness, vibrations, 

noise, prolonged loneliness, tension, and stress, which 

result in low sleep quality [12, 13].  

3) Frequent port calls and the associated cargo work, 

excessive workloads, and reduced sleep duration [14]. 

The IMO requires shipping companies to implement active 

measures to avoid or prevent crew fatigue and has issued clear 

regulations pertaining to crew rest time, shift handover 

requirements, and duty hours. However, monitoring whether 

these rules are enforced on board is an ex-post investigation 

mechanism that does not significantly prevent fatigue and 

accidents. Some crew would falsify questionnaires due to a 

sense of job insecurity and the principle of “ship first” adopted 

by them [15]. Meanwhile, monitoring fatigue symptoms 

during surgery has been verified as an effective method for 

detecting controlling the risk of fatigue [16]. Therefore, 

detecting fatigue at an early stage is extremely important for 

the implementation of proactive interventions to avoid the 

consequences of fatigue and improve the safety of navigation. 

B. Urgency 

Owing to the increase in autonomous driving technology, 

vehicle and ship drivers tend to use watch systems, which 

require vigilance and can easily cause fatigue. Körber et al. 

[17] performed a validation experiment in which 20 

participants drove for 42.5 min using a car driving simulator 

via automated driving. The participants’ passive fatigue was 

confirmed by monitoring their eye-tracking parameters and 

conducting a questionnaire that assessed their thoughts. The 

results showed that the monotonous operation of autonomous 

driving is more likely to cause driver fatigue. Matthews & 

Desmond [18] suggested that “passive fatigue” caused by a 

low-task demand model with more environmental monitoring 

and less intervention will become increasingly prevalent in 

intelligent vehicle-road systems as control is shifted from the 

driver to the vehicle. This topic is particularly pertinent to the 

investigation of fatigue in ship OOWs, as ships typically 

navigate via an autopilot in open waters and require only 

observation by ship OOWs. In future smart ships, the working 

patterns of ship OOWs or remote monitors are likely to induce 

fatigue [19]. 

Marine transportation is an important mode of 

transportation and tends to be intelligent. However, studies 

regarding fatigue detection in ship OOWs are significantly 

fewer than those of road traffic [20]. Many well-established 

automobile companies such as Toyota, Volkswagen, and 

Nissan have developed relatively mature driver fatigue 

detection systems [21], which can detect driver fatigue based 

on vehicle handling and driving characteristics such as lane 

deviation, pedalling, and steering wheel actions, or on the 

physical characteristics of drivers such as yawning, blink 

frequency, blink duration, and head movement. By contrast, 

most methods for detecting fatigue in ship OOWs are limited 

to questionnaire surveys [22] [23, 24] and the analysis of 

fatigue causes [25] [26], which are not real-time, practical, and 

effective methods. Current legislations and guidance 

pertaining to crew fatigue have not resulted in the expected 

effect; thus, solutions from other transportation industries 

should be considered [27].  

Additionally, since the Corona Virus Disease 2019 outbreak, 

crew fatigue has worsened owing to difficulties in shift 

changes, increased work duration on board, and increased 

mental stress [28, 29]. Pauksztat et al. [30] analysed 

questionnaires from 622 seafarers and showed that the 

epidemic had significantly increased their fatigue and mental 

health problems, which can severely affect ship safety.  

Therefore, the detection of crew fatigue is particularly 

urgent, and further investigations are required. 

C. Difficulty 

Measuring fatigue is difficult as it involves the integration 

of physiological functioning, performance, and subjective 

perceptions [31]. In particular, fatigue detection in ship OOWs 

is difficult as it is determined by their professional 

characteristics and working environment.  

Meanwhile, owing to the large bridge working space and 

the watchkeeping requirements imposed on OOWs, 

electrooculography and pupillometry [23] for measuring 

physiological functioning are difficult to adopt on board 

because they are highly invasive and likely to interfere with 

the OOWs’ watchkeeping activities. 

Additionally, long-period separation from family, loneliness 

at sea, nationality differences, limited recreational activities, 

and insufficient sleep on board contribute to an increased risk 

of stress among crew members [32]. Ship OOWs may indicate 

diverse performances and subjective perceptions under the 

same physiological conditions. However, these individual 

differences have not been investigated much [33], and 

experimental samples related to driving tasks are few, which 

increases the difficulty of fatigue detection in OOWs.  

Therefore, multiple data sources should be used for fatigue 

detection to alleviate the consequences of these differences. 

According to [34], at least three sources of data, i.e. driver 

physical variables, driving ability variables, and information 

from interactive video information systems, must be combined 

in addition to driver physiological and behavioural features as 

well as vehicle features to reduce driving risks. 

The multidimensional complexity of these considerations 

renders fatigue detection more difficult for detecting fatigue in 

ship OOWs. Identifying an appropriate and real-time method 

for detecting fatigue in ship OOWs is important yet extremely 

difficult. Hence, the following are provided herein: 

1)  Based on literature review, a comprehensive summary 

of the status pertaining to fatigue detection in ship 

OOWs is presented. 

2)  Fatigue detection methods are systematically organised 

and explained, based on various data features and their 
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corresponding feasibility. 

3)  The prerequisites for detecting fatigue in ship OOWs 

are discussed comprehensively based on two aspects:         

the detection environment and data acquisition methods.   

The literature search of drivers’ fatigue field studies 

covering the observation period from the beginning to March 

2023 was conducted using the Web of Science, ScienceDirect, 

and PubMed, etc, database. Studies on fatigue in two types of 

drivers were identified the following search topics:(fatigue OR 

sleepiness) AND (seafarer OR sailor OR seaman), (fatigue OR 

sleepiness) AND (driver). 

Among them, the literatures about vehicle drivers were 

selected with high representativeness or citations. Compared 

with vehicles, there are few literatures on shipboard fatigue 

research. Therefore, we analyzed all literatures on shipboard 

fatigue, including publication titles and literatures’ topics 

association, as shown in Fig. 1, and Fig. 2, respectively, and 

chose to focus on fatigue detection rather than fatigue analysis 

as much as possible. 

 
 
Fig. 1. According to the time, the topic words appeared in the literature 
were divided into five categories and the node size was determined 
according to the frequency of occurrence. Finally, the connection 
between the topic words was displayed to expand the research. 

 

 
 
Fig. 2. Summarize the publication titles of all literatures and determine 
the size of publication titles according to the quantity to compare 
various publications. Among them, MARINE POLICY and MARITIME 
POLICY MANAGEMENT were the most, with 9 papers each. 

 

The remainder of this paper is organised as follows: Section 

II presents the typical fatigue detection methods based on 

various input data features, as well as analysis of their 

availability for fatigue detection in ship OOWs. Section III 

presents the prerequisites for fatigue detection in ship OOWs. 

Section IV describes the features used in the fatigue detection 

of ship OOWs and analyzes their feasibility. Section V 

provides a discussion pertaining to the engineering 

requirements for conducting fatigue detection in ship OOWs. 

Section VI presents the conclusions. 

II. FATIGUE DETECTION DETHODS BASED ON VARIOUS 

INPUT FEATURES 

Data are the basis for fatigue detection. When selecting 

various input data to detect fatigue, the corresponding 

acquisition methods, detection methods, internal mechanisms, 

and accuracy degree differ significantly. Fatigue detection 

methods are classified based on various data sources in 

numerous studies [35], where an understanding of their 

respective characteristics and application limitations can 

provide an important reference for fatigue detection in ship 

OOWs. Additionally, a comparative study with fatigue 

detection methods for vehicle drivers is performed in this 

study, where physiological, behavioural, vehicle/ship, and 

mixed features are investigated to detect fatigue, including the 

respective application contents available, as shown in Fig. 3.  

 

 
 
Fig. 3. Physiological, behavioural, vehicle/ship, and mixed features are 
investigated to detect fatigue, including the respective application 
contents available. 

 

A. Fatigue Detection Based on Physiological Features 

Physiological trait-based detection methods can be used to 

prevent accidents via early or real-time detections of fatigue, 

including, but not limited, to signals from breathing as well as 

from the heart, brain, eyes, and skin.  
1) Fatigue Detection Based on Heart Signals 

Electrocardiography (ECG) and photoelectric volumetric 

pulse tracing (PPG) can be regarded as suitable methods for 

detecting fatigue accurately. Cherian et al. [36] proposed a 

real-time fatigue-detection approach based on heart rate 

variability (HRV) obtained from ECG preprocessing. They 

developed a deep-learning network model comprising an 

autoencoder network based on unsupervised learning to 

classify HRV features (frequency and time domains). The 

accuracy of the model was 85% but can be improved via 
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unorthodox approaches, such as by increasing the training 

datasets and including people with various physiques. 

Compared with obtaining ECG data, obtaining PPG data is 

more convenient for actual driving situations as it can be 

performed by attaching smart bands to the body; however, 

PPG data contain more noise. Therefore, Lee et al. [37] 

proposed a noise replacement method that enables improved 

correlations to be obtained in terms of the power spectral 

density between ECG and PPG data to extract the HRV 

features of PPG data for detecting driver fatigue; this method 

is superior to the noise filtering method. Meanwhile, owing to 

the development of smart bracelets in recent years, heart rate 

(HR) [38] and HRV [39] have become feasible feature 

detection signals. Wearable smart ECG devices have been 

used to detect mental fatigue via a K-Nearest Neighbour [40]. 

The use of cardiac signals for crew fatigue detection has only 

been investigated briefly in a study by Jaipurkar et al. [41] that 

investigates the effect of sleep duration on crew performance 

on board naval ships. In that study, HR and blood pressure 

were measured and compared between underway and non-

underway cases. The results showed that both the HR and 

blood pressure (2 mmHg increase in blood pressure and 3 

beats per minute increase in HR) increased significantly 

during underway. However, this may not be clinically relevant 

as it does not offer clinical significance. 
2) Fatigue Detection Based on Brain Signals   

Electroencephalogram (EEG) is the preferred method for 

measuring brain activity and is an excellent indicator of 

fatigue as well as the transition from wakefulness to sleep. 

Several entropies can be used to enhance the features of EEG 

signals for fatigue detection [42, 43]. Zhang et al. [44] used 

the deviations of EEG indicators between vigilant and fatigue 

states in the time and frequency domains. A clustering 

algorithm was used to extract spatial nodes with distinct 

connectivity attributes; the temporal features of the wavelet 

entropy were transformed to spatio–temporal images, and 

pulse-coupled neural networks were used to distinguish 

different stages of fatigue. The results showed that fatigue was 

detected in 21 among 29 accidents in a simulated driving task, 

which proved the effectiveness of the method. 
3) Fatigue Detection Based on Skin Signals  

Driver fatigue detection based on skin signals primarily 

utilises electromyographic signals and electrodermal activity 

(EDA). Electromyography (EMG) is used to record muscle 

bioelectrical signals, where features extracted from time- and 

frequency-domain signals can be used to predict muscle 

fatigue. Katsis et al. [45] evaluated three EMG metrics, i.e., 

the mean frequency (MNF), median frequency (MDF), and 

signal RMS amplitude. After performing a statistical analysis 

and two statistical tests (T and F), they discovered that the 

MDF and MNF decreased and the RMS increased, which 

indicates their reliability as fatigue indicators. However, the 

applicability of EMG is limited because of the considerable 

intrusion associated with EMG acquisition. The EDA [46] was 

utilised to extract the mean and standard deviation of the EDA 

signal in stress, fatigue, sleepiness, and normal states with a 10 

s window interval; however, the EDA signal acquisition was 

limited by the ambient temperature and acquisition site. 

4) Fatigue Detection Based on Electrooculographic Signals of 
The Eye  

Electrooculography (EOG) measures the difference in 

corneal retinal potential between the front and back of the eye 

via electrodes connected to the left and right sides of the eye. 

Alpha wave changes in EOG signals are related to 

wakefulness, fatigue, and sleepiness. To monitor the changes 

in alpha waves, Jiao et al. [47] adopted a continuous wavelet 

transform to extract features in both time and frequency 

domains and used a long short-term memory network to 

accommodate temporal information; meanwhile, they 

augmented the training dataset using a generative adversarial 

network (GAN) and improved the classifier performance using 

the conditional Wasserstein GAN. The accuracy yielded using 

for detecting changes in alpha waves was approximately 95%. 

Although EOG is invasive and limits the operation of the 

operator, it has been used to reflect crew fatigue and 

sleepiness laterally on-board ships. Lützhöft et al. [48] 

investigated the effects of the shift system on crew fatigue and 

sleep; they acquired EOG data, which were automatically 

scored in 10 min intervals using a MATLAB program to 

obtain the sleepiness level of the crew at different times to 

analyse crew fatigue and its effect on sleep. However, the 

result was merely a reflection of fatigue, i.e., the method does 

not detect fatigue. 
5) Fatigue Detection Based on Respiratory Signals   

Respiratory signals are often associated with fatigue and 

sleepiness, and the respiratory rate is a typical feature of 

respiratory signals. Solaz et al. [49] used the respiratory rate to 

detect the fatigue and sleepiness of drivers. The authors 

proposed a non-invasive method for detecting the driver’s 

chest using image enhancement, filters, and short-time Fourier 

transform, which achieved an accuracy exceeding 97% in the 

forward and lateral directions and offered high brightness. 

This method requires a camera positioned near the driver as 

well as a highly illuminated environment.  The activity area of 

the ship OOWs is large, and the camera cannot capture the 

chest and abdomen movements sufficiently close to obtain the 

respiration rate.  

Fatigue detection methods based on physiological features 

are summarised in Table I. 

B. Fatigue Detection Based on Behavioural Features 

The drivers’ behaviour is the most direct feature that 

reflects their fatigue state and includes the blinking frequency, 

time elapsed with eyes closed, percentage of time elapsed with 

eyes closed (PERCLOS), body and head postures, gaze 

position, and head-nodding frequency. Fatigue detection based 

on the features of the eye, mouth, and head is typically used.  
1) Fatigue Detection Based on Eye Features 

Blink frequency, eyelid distance, and PERCLOS have been 

used extensively to detect fatigue in drivers. Savaş and Yaşar 

[50] used OpenCV and Dlib libraries to detect the facial 

expressions of drivers. Subsequently, they used an SVM to 

train facial expressions and showed that the maximum 

accuracy of fatigue detection was 97.93% based on tests 

performed using live videos. In another study, eye status was 

used to detect fatigue in crew members [51]. Zhang [52] 

proposed a modified PERCLOS criterion for monitoring the 

fatigue state by detecting the face-eye state of watchmen on 
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TABLE I 
FATIGUE DETECTION IN SHIP OOWS BASED ON PHYSIOLOGICAL FEATURES. 

 

Physiological 

signals 
Ref Features Parameters Methods Results Limitations 

Availability 

to OOWs 
Ref OOWs Applications 

Heart signals 

2021[36] ECG HRV 

Deep neural 

networks, 

autoencoder 

network 

Acc=85% but can 

be improved in 

various ways 

Intrusiveness and 

data reliability 
Medium 

2019[41] 
Heart rate and blood 

pressure 

2017[37] PPG HRV 
Noise handling, 

noise filtering 

Obtain the 

improved 

correlation in PSD 

between ECG and 

PPG 

Intrusiveness and 

data reliability 
Medium 

Brain signals 2020[44] EEG 

Time and 

frequency 

domains 

Clustering 

algorithm, 

pulse-coupled 

neural networks 

21 of 29 accidents 

detected fatigue in 

laboratory 

Intrusiveness and 

laboratory 

environment 

Low   

Skin signals 

2018[46] EDA 

Mean and 

standard 

deviation 

Analysis of 

variance 

Identify stress, 

fatigue, sleepiness, 

and normalcy 

Intrusiveness and 

varies from 

person to person 

Low   

2004[45] EMG 

Three 

metrics 

(MDF, 

MNF, 

RMS) 

of EMG 

Statistical 

analysis and tests 

MDF increase, 

MNF increase, 

RMS decrease 

Intrusiveness and 

varies from 

person to 

persondata 

reliability 

Low   

Electrooculographic 

signals 
2020[47] EOG 

The start 

and end 

points of 

alpha waves 

Continuous 

wavelets 

transform, 

LSTM, GAN, 

CWGAN 

Acc=95% in 

detecting the 

changes of alpha 

waves 

Intrusiveness and 

data reliability 
Low 2010[48] EOG 

Respiratory signals 2016[49] 
Breathing 

rate 

Chest and 

abdominal 

exercises 

Image 

enhancement, 

the Filters, 

Short Time 

Fourier 

Transform 

Acc=97% in the 

frontal position in 

laboratory with 

high brightness 

Camera position 

and ambient 

light. 

Low   

 

 

board ships. The driver's eye fixation location can also be used 

for driver status analysis [53]. Oldenburg & Jensen [54] 

conducted pupillary measurements 396 times on all crew 

members to investigate the general sleepiness of day labourers 

and watchmen on board. The results showed that those who 

were watchkeeping slept less and experienced lower sleep 

quality than those working during the day. Additionally, 

sleepiness was prevalent among those on duty. 
2) Fatigue Detection Based on Mouth Features 

Among the mouth features, yawning and mouth opening 

have been shown to be good indicators of fatigue detection 

[55]. Knapik & Cyganek [56] performed thermal imaging to 

detect fatigue based on yawning. Eye-corner detection was 

performed to align the face, whereas the yawning thermal 

model was used to detect yawns. Experiments were performed 

under both laboratory and actual car conditions, and the F-

values obtained were 0.71 and 0.87 for cold and hot voxels, 

respectively. Mouth features were utilised for fatigue detection 

in ship OOWs, and the PERCLOS criterion was used to 

determine their fatigue state [57]. 
3) Fatigue Detection Based on Body Features 

Ansari et al. [58] developed a semi-supervised approach to 

identify cognitive fatigue patterns based on driver posture. 

Unsupervised clustering based on a Gaussian mixture model 

was applied to display the driver’s head, neck, and sternum, 

and a labelling algorithm was developed to automatically 

mark normal and fatigued postures to establish a dataset for 

the body posture. Gaussian support vector machines and 

bootstrap aggregating-based ensemble classifiers were trained 

on the dataset for real-time driver fatigue detection. The 

accuracies obtained were 93% and 90% for two test subjects 

in various driving postures. Yang [59] performed skin colour 

modelling and used OpenCV to detect facial features 

dynamically, followed by the Haar feature classifier to 

accurately and dynamically identify faces to determine 

whether a ship’s bridge watchman is unmanned or in an 

unsatisfactory watchkeeping condition because of fatigue 

caused by the state of his head. The system demonstrated 

excellent real-time performance. Unlike the vehicle driver, the 

ship OOWs has a larger activity area, and the full-body 

features of the ship OOWs, including his body pose and gait 

features, can be captured using a camera. Therefore, the body 

pose was applied to the fatigue status of the ship OOWs, 

which yielded excellent real-time performances, based on 

video sequences [60]. 
4) Fatigue Detection Based on Hand Features 

Hand movement features can be used to analyse fatigue. 

Wristbands are typically used to measure the driver’s hand 

activity and are equipped with accelerometers to measure the 

three-axis acceleration information of the wrist. Choi et al. [46] 

proposed using a wristband-based system to detect driver 

stress, fatigue, and sleepiness via the ANOVA, followed by 

using sequential floating forward selection algorithms to 

obtain the best feature set data, and then classifying the 

driver’s state using an SVM. Youn & Lee [61] used 

wristbands to investigate the effects of ocean voyages on the 

typical physical activities and sleep patterns of crew members. 

Three scenarios (berthing and sailing, sailing and non-sailing, 

and day and night sailing) were examined for various exercise 

and sleep indicators; the results showed low levels of physical 

activity and short sleep times of the crew members. 
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TABLE II 
FATIGUE DETECTION IN SHIP OOWS BASED ON BEHAVIOURAL FEATURES 

 

Behavioral features Ref Parameters Methods Results Limitations 
Availability 

to OOWs 
Ref 

OOWs 

Applications 

Eye features 2018[50] PERCLOS OpenCV, Dlib and SVM 
Acc=97.93% 

from live videos 

The environment and 

specific training dataset 
High 

2019[52] PERCLOS 

2019[54] 
Pupil 

measurements 

Mouth features 2019[56] Yawning detection 

Thermal imaging, face, 

and eye corners 

detection, yawning 

thermal model 

F=0.71 and 0.87 

for cold voxels 

and hot voxels 

The environment and 

specific training dataset 
High 2022[57] Mouth 

Body features 2022[58] 
Head, neck, and 

sternum offset 

GMM clustering, 

Gaussian Support Vector 

Machines, Bootstrap-

Aggregating based 

Ensemble Classifiers 

Acc=93% and 

90% for two 

various driving 

postures 

Driver’s driving habits 

and the environment. 
High 

2017[60] Postural features 

2010[59] Facial features 

Hand features 2018[46] 
Tri-axial 

acceleration 

Analysis of variance, the 

sequential floating 

forward, selection 

algorithms, the 

SVM 

Acc=98.43% for 

five-fold cross-

validation of data 

Each person’s hand 

habits and laboratory 

environment 

Medium 2020[61] 
Hand 

movements 

 

 

Fatigue detection methods based on behavioural features are 

summarised in Table II.  

C. Fatigue Detection Based on Vehicle and Ship 
Features 

Fatigue reduces a driver’s ability to perform. Deviations 

from normal values in features such as the state of driving in a 

lane and the steering wheel angle are important indicators of 

the deterioration in the driving ability of a driver. Additionally, 

abnormalities in the pressure changes on the brakes and 

throttle, load distribution on the driver’s seat, and vehicle 

speed highly suggest driver fatigue. Vehicle features can be 

categorised into the steering wheel angle, lane deviation 

variousial, speed variation, and pedal features. The fine 

adjustment frequency of the steering wheel is reduced during 

driver fatigue [62]. 

Therefore, the steering wheel features can be used to detect 

driver fatigue in vehicles. The steering wheel angle (SWA) 

[63] and steering wheel movement [64] are the most typically 

used steering wheel features. Compared with the PERCLOS, 

the SWA combined with the random forest is a more accurate 

method for detecting driver fatigue and can predict fatigue 6 s 

earlier. 

The lane, speed, and pedal features can be correlated with 

driver fatigue. Yang et al. [65] designed a testbed using a 

driving simulator and performed an experiment using sleep 

differences as the only independent variable. The response 

time of subjects with less sleep deteriorated significantly, as 

reflected by the mean and standard deviation of lane bias. 

Campagne et al. [66] investigated driving operation errors 

caused by the fatigue in drivers of various ages based on the 

vehicle speed. Sahayadhas et al. [67] reviewed the sensors 

used to detect driver sleepiness, including pedal features 

obtained using pressure sensors. Results of highway driving 

tests indicated that changes in the pedal pressure typically 

showed minor high-frequency corrections related to driver 

alertness. In addition, the Bayesian network and SVM were 

combined with other features to achieve the state classification 

of vehicle drivers [68]. 

However, it was demonstrated that vehicle features alone 

are not a reliable indicator of driver fatigue. Krajewski et al. 

[69] reviewed the significant inter- and intra-individual 

variations in fatigued driving and discovered the unreliability 

of using vehicle features alone to detect driver fatigue. 

Various ships may exhibit similar features, such as 

deviations from their course or track, abnormal rudder 

schemes, and irregular speeds. However, these features are 

determined by personal driving habits and do not necessarily 

reflect crew fatigue [51]. Hence, these features should only be 

used to facilitate fatigue detection. Liu et al. [70] investigated 

the relationship between crew visual features and fatigue 

driving behaviour by establishing a function between the 

amplitude of rudder shift and a set of variables. They 

concluded that the gaze time ratio exerted the most prominent 

effect on fatigue driving behaviour. Ships are generally steered 

according to a set course at a constant speed in open waters; 

hence, no explicit relationship related to fatigue driving can be 

established based on the ship speed. When manoeuvring in 

restricted waters or operating in port areasor channels, the 

OOWs must perform frequent speed adjustments. In this 

regard, the OOWs’ reaction speed and the adjustment pattern 

to the ship’s speed may reflect their fatigue in the 

manoeuvring process. 

Fatigue detection methods based on vehicle and ship 

features are summarised in Table III.   

D. Fatigue Detection Based on Mixed Data 

In fatigue detection based on mixed data, the latter can be a 

mixed signal with a single feature or a mixture of unique 

features.  
1) Fatigue Detection Based on A Single Feature Mixed With 
Multiple Signals  

Fatigue detection based on a single feature mixed with 

multiple physiological features is a typical detection method  
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TABLE III 
FATIGUE DETECTION IN SHIP OOWS BASED ON SHIP FEATURES 

Vehicle 

features 
Ref Parameters Methods Results Limitations 

Availability 

to OOWs 
Ref 

OOWs 

Applications 

Steering 

wheel 

features 

2019[64] SWM Random Forest 
Acc=94.6% for five-fold 

cross-validation 
Driving habits and 

increased automation 
Medium 2013[70] 

Joystick 

Features 

2014[63] SWA Random Forest 

More correct than 

PERCLOS and 6 seconds 

earlier to predict fatigue 

Pedal 

features 
2004[68] 

Pressure 

changes 
Bayesian networks, SVM 

Typical small high-

frequency corrections related 

to alertness in practical road 

tests 

Driving habits and the 

real-time lag 
Low  

Engine 

Telegraph 

Driveway 

features 
2009[65] 

Standard 

deviation and 

mean values of 

lane deviations 

Bayesian network 

paradigm, stimulus-

response task 

Significantly less resistant to 

interference when fatigued 

Critical situation when 

driving behavioral 

errors occur 

Low  
Course and 

track features 

Speed 

features 
2004[66] 

Over speed, 

slow speed 

Electroencephalographic 

analysis 

Older drivers’ decline in 

driving performance 

associated with the evolution 

of low-frequency waking 

EEG 

Critical situation when 

driving behavioral 

errors occur 

Low  Speed features 

 

 

[71]. Sun & Yu [72] acquired EEG, ECG, and 

EOGinformation and used the Wierwille and Ellsworth criteria 

(fatigue-based visual cues) as a baseline for fatigue assessment 

to detect fatigued driving. Their results showed that the 

transient time and frequency increased with fatigue; the alpha 

and beta wave power densities decreased with fatigue; the 

low-/high-frequency of the SDNN decreased with fatigue, 

while the RMSSD increased with fatigue. 

The accuracy of fatigue detection can be improved 

effectively by mixing behavioural features [73]. Xing et al. [74] 

obtained the three-dimensional head rotation angle and joint 

positions of the upper human body using feedforward neural 

networks. The results showed that the fatigue detection 

accuracy yielded by mixed features was much higher than that 

yielded by single features. Owing to the differences between 

the driving environments of ships and other vehicles, utilising 

the mixed behavioural features of ships is preferable. In 

studies of ship bridge watchkeeping using mixing multiple 

behavioural features, Wang et al. [57] combined eye and 

mouth features to detect fatigue in OOWs. Whereas Zhao [60]  

proposed a vector angle-based human pose recognition 

algorithm to detect body pose features. Meanwhile, an 

improved DTW (dynamic time warping) algorithm to identify 

gait features while performing fatigue detection in ship OOWs. 

Wakita et al. [75] used the vehicle speed, brake pedal, 

accelerator pedal, and distance to the front vehicle as inputs to 

the Gaussian mixture and Helly models. After performing 

comparative tests, they discovered that the Gaussian mixture 

model was more effective than the Helly model, and that the 

fatigue detection accuracy based on a simulator was 81%. 

Meanwhile, the accuracy of fatigue detection based on an 

actual vehicle driving environment was 73%. 
2) Fatigue Detection Based on Multifeature Mixing 

A combination of multiple features was used in recent 

studies to detect fatigue. Behavioural/vehicle [76], 

behavioural/physiological [77], and physiological/vehicle 

features [78] have been used for fatigue detection. Compared 

with single or similar fatigue feature detection schemes, a 

combination system offers higher detection efficiency and 

anti-interference ability. Samiee et al. [79] combined 

behavioural, vehicle, and physiological features to detect 

fatigue and used a decision module to combine the decisions 

of three neural networks. Various features were used in each 

to detect fatigue, including the eye state, lateral position, SWA, 

as well as ECG, EEG, and sEMG signals. Additionally, the 

KSS (karolinska sleepiness scale), whose accuracy was 

94.63%, was used as a benchmark. Meanwhile, anthropometry, 

muscular performance, subjective wellness, and salivary 

cortisol in professional sailors were to analyze fatigue [80]. 

Ship and behavioural features were used to detect fatigue in 

ship OOWs [70]. 

Detection methods based on mixed data are summarised in 

Table IV. 

These findings show that fatigue detection based on mixed 

data has been performed and will be further developed in the 

future for detecting fatigue in ship OOWs. However, the 

highly invasive nature of the mixed data method limit fatigue 

detection in ship OOWs. Wearable devices may overcome this 

limitation. Additionally, mixed behavioural features for 

detecting fatigue in ship OOWs require a combination of the 

ship-specific environment and OOWs’ navigation condition to 

accurately identify the behavioural features of ship OOWs. 

Currently, methods based on mixed ship features are not 

applicable to highly automated ships. 

III. PREREQUISITES FOR FATIGUE DETECTION 

Fatigue detection in OOWs is a systematic and complex 

problem. Some prerequisites are important, including, but not 

limited to, establishing the detecting environment, and 

determining the data acquisition method. 

A. Fatigue Detection Environment 

The fatigue detection environment significantly affects the 

results of fatigue detection, and its applications vary. The 

more realistic the fatigue detection environment, the higher is 

the fatigue detection accuracy, and the better is the application 

in maritime practice. Currently, laboratory- and simulator-

based fatigue detection environments exist, in addition to 

realistic environments. Driver fatigue detection studies have 

primarily been conducted in laboratories. However, 

Chowdhury et al. [33] discovered that drivers in a laboratory  
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TABLE IV 
FATIGUE DETECTION IN SHIP OOWS BASED ON MIXED DATA 

 

Mixed data Ref Parameters Methods Results Limitations 
Availability 

to OOWs 
Ref 

OOWs 

Applications 

Mixed 

multiple 

signals 

with a 

single 

feature 

Mixed 

behavioral 

features 

2018[74] 
Head angle, upper 

limb joint position 

Feed-forward 

neural networks 

Acc=80% in the 

laboratory 

environment’s 

background 

complexity, 

brightness, etc. 

High 

2022[57] 
Eye and 

mouth features 

2017[60] 

Human 

posture and 

gait features 

Mixed 

physiological 

features 

2014[72] 
HR, HRV, alpha, 

and beta waves 

Digital Signal 

Processing 

Transient time and 

frequency increase, alpha 

and beta wave power 

density decrease with, 

LF/HF and SDNN 

decrease, while RMSSD, 

LF, and HF increase 

Highly intrusive 

data acquisition and 

driver specificity. 

Low   

Mixed vehicle 

features 
2006[75] 

Speed, pedal 

pressure, distance 

from the vehicle 

in front 

Gaussian 

mixture model 

ACC=81% on the 

simulator and 73% in a 

real car driving 

environment 

Critical situation 

when driving 

behavioral errors 

occur but not to 

predict fatigue. 

Low   

Mixed multi-features 2014[79] 

Eye status, 

laterality, SWA, 

ECG, EEG, and 

sEMG 

Data fusion，

Artificial 

Neural 

Networks 

Acc=94.63% in the 

laboratory and robustness 

to the absence of input 

features 

Requires the 

cooperation of 

multiple feature 

systems and the 

processing of 

individual 

applications. 

High 2013[70] 

Rudder 

features and 

eye features 

 

 

environment were significantly less concerned with driving 

safety and were more relaxed. Thus, the features acquired in 

laboratory and realistic environments are various. 

Simulators used in a laboratory are typically set up in the 

same manner as an actual vehicle, including various ancillary 

facilities, and typically use multi-angle screens to display 

driving scenes [49]. However, the development of technology 

has resulted in the use of head-mounted VR devices for 

displaying driving scenes [81]. The equipment to be used must 

be selected based on the features acquired for fatigue detection 

or must not interfere with the acquisition of feature 

information. Meanwhile, some driving tasks use simpler 

driving simulation software [46], although it is used less 

frequently in detecting driver fatigue via simulators. However, 

for detecting fatigue in ship OOWs, the application of ship 

driving simulation software is necessary as ship simulators are 

not universally equipped. Researchers have attempted to 

detect fatigue in drivers on duty using ship simulators or the 

corresponding videos of activities on the bridge to establish 

important datasets. Previous vehicle-driver fatigue detection 

experiments involved driving in an actual environment as well 

as data testing. 

Nadai et al. [82] evaluated drivers who drove 30 km per day 

along a single route in an actual open urban road environment. 

And they conducted a driving test for 10 d to detect the 

drivers’ ECG signal and investigate the relationship between 

the drivers’ ECG features and fatigue. In those 10 d of actual 

driving, any circumstances that would affect the normal 

driving of the driver were avoided. Vehicle control data and 

eye movement data are used for driver fatigue detection and 

can be used to distinguish drivers in various scenarios [83, 84]. 

Similarly, in detecting fatigue in ship OOWs, ship driving 

tasks have been conducted on actual ships, and data pertaining 

to the features of fatigue in OOWs have been acquired. Liu et 

al. [70] performed an experiment based on a straight line 

between two piers under good weather conditions; the ship 

traversed naturally, and the observation conditions facilitated 

the acquisition of the visual response data and fatigue driving 

behaviour data of the ship OOWs at various times. However, 

the experimental conditions of the ship were limited 

significantly, and the effects of the external environment and 

other factors on the acquisition of feature data should be 

avoided. 

B. Data Acquisition Methods  

A significant amount of correct and targeted data is required 

for fatigue detection; therefore, an appropriate data acquisition 

method must be used.  

Data acquisition methods differ depending on the feature 

data required for fatigue detection. Currently, many methods 

are available for acquiring the features of vehicle drivers as 

well as advanced acquisition methods. They integrate the data 

of many features simultaneously, such as ECG and respiration 

signal measurements integrated into clothing [82]. However, 

these methods are still being investigated in the laboratory, 

and further research is required to determine whether they are 

applicable to driver fatigue detection. In conclusion, new data 

acquisition methods are being developed to allow the 

simultaneous, efficient, non-intrusive, and optimal acquisition 

of data. Currently, the camera is the primary method for 

acquiring ship data to detect fatigue in OOWs [49], whereas 

the wristband bracelet is primarily used for detecting fatigue in 

vehicle drivers [46]. Meanwhile, extensions of the available 

smart band/watch [85], which offers low invasiveness, can be 

used to acquire the physiological/behavioural feature data of 

OOWs. Additionally, based on the results of vehicle driver 

fatigue detection, combining both physiological and 

behavioural features results in favourable driver fatigue  
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TABLE V 
DATA ACQUISITION METHODS FOR DETECTING FATIGUE IN SHIP OOWS 

Equipments Ref Collection features Placement Invasive Placement on the ship 
Availability to 

OOWs 

Camera (Kinect) 2016[49] Behavioral features 
In front of the 

vehicle's driver's seat 
None 

Ship bridge’s top 

In front of the ship bridge 
High 

Smart bracelet/watch, 

Wristbands 

2021[85] 
Behavioral features/ 

Physiological features 
Vehicle driver's wrist Low Ship OOWs’ wrist Medium 

2018[46] 

Specialized 

instruments (Biopac 
MP00 ECG) 

2009[86] Physiological features 
Vehicle driver's 

head, hands, etc. 
High 

Head, eye, and upper arm 

muscles of ship OOWs 
Low 

Sensors (pedal 

pressure values, GPS, 
etc.) 

2006[75] Vehicle and ship features 
Pedals, steering 

wheel 
None Steering wheel Low 

 

 

detection. Other customised measuring instruments [86] are 

not suitable for detecting fatigue in ship OOWs because of 

their price and high invasiveness. Owing to the current high 

level of automation in ship driving, the use of various sensors 

to capture vehicle features for detecting driver fatigue [75] 

cannot be migrated easily to the detection of driver fatigue on 

ships. Besides, the detection of driver fatigue using sensors 

placed at other locations, such as the steering wheel, is not 

applicable. Data acquisition methods for detecting fatigue are 

summarised in Table V. 

IV.  APPLICATIONS 

Various subjective questionnaires, reports, objective survey 

reports, and general models are the quickest and most direct 

way to analyze and detect ship OOWs’ fatigue. Meanwhile, 

they obtain a more correct picture of ship OOWs’ fatigue 

status or other fatigue-related manifestations at a fraction of 

the cost. But the inability to detect ship OOWs’ fatigue in real-

time is its big-gest drawback [87]. 

At present, the subjective reports commonly used in the 

fatigue detection of ship OOWs include KSS [88], ESS 

(epworth sleepiness scale) [89] and many other detection 

scales [54, 90-92]. Commonly used objective reports include 

the RTT (reaction time tests) [48] and the PVT (psychomotor 

vigilance task) [41]. And biomathematic models are often used 

to study ship OOWs’ fatigue [93]. 

From the above subjective and objective reports, the 

detection of fatigue, drowsiness, and sleep behavior of crew 

and ship OOWs is still qualitative or simply quantitative. 

There isn’t a real-time detection method, so the current 

requirements for real-time detection and prevention of ship 

OOWs’ fatigue are far from being met. 

Additionally, physiological features have been used in 

fatigue detection of ship OOWs but few [41, 48]. Certain 

parameters and fatigue detection methods can be used to 

detect fatigue in ship OOWs; however, the current data 

acquisition methods are unsuitable, which necessitates the use 

of less invasive data acquisition methods. Smart wristband is a 

low invasive means of physiological data collection. By letting 

OOWs wear a smart wristband and collecting the wristband 

data through a Bluetooth router, not only the sleep condition 

of OOWs can be monitored for a long time, but also the 

triaxial acceleration of their hand features can be monitored in 

real time to judge the real-time status of OOWs. This method 

has high feasibility in OOWs fatigue detection.  

The video-based fatigue detection method is also a low 

invasive method, which is the primary method for detecting 

OOWs’ fatigue on board ships [54, 57, 61]. However, the 

camera shooting distance, face shooting angle, ambient 

brightness, complex shooting background, and OOWs’ 

movement in the bridge all affect the video-based fatigue 

detection.  

Ship features have also been applied, but the application 

analysis of vehicle features in vehicle driver fatigue detection 

shows that driving errors caused by fatigue are not suitable for 

real-time fatigue detection [70]. Compared with vehicles, large 

ships have the characteristics of large mass, large inertia, and 

large steering radius. When the ship turns, the change range of 

Joystick is generally small (the maximum is about 35°), and 

there is a certain delay from the operation of joystick to the 

obvious change of the ship's actual heading. This is very 

different from vehicle steering, which is based on a large 

rotation of the steering wheel and the vehicle's faster response 

to action. Therefore, it is difficult to identify fatigue through 

the behavior of OOWs operation joystick. It may be a feasible 

method to identify the reaction speed and operational rhythm 

of OOWs operating the vessel in restricted waters, where 

OOWs will frequently use rudder and propeller. 

The current methods for detecting fatigue of ship OOWs 

rely on a combination of multiple features [57, 70, 80]. While 

the acquisition of physiological signals presents limitations in 

detecting OOWs fatigue at sea, it is preferred to utilize 

physiological features. Valuable research will focus on 

integrating multiple features for more effective detection of 

OOW fatigue onboard. A typical framework showing steps of 

a typical research work in this area is shown in Fig. 4. The 

appropriate data acquisition methods, such as camera, smart 

bracelet, etc. were selected to collect data according to the 

onboard environment, and the dataset including heart rate, 

sleep, triaxial acceleration, yawning, eye closing, etc. was 

established based on the fatigue judgment benchmark. Public 

datasets related to ship OOWs fatigue detection are scarce. 

Dataset based on ship simulation bridge [57] may be requested 
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from the authors. More datasets can be migrated and used 

according to vehicle drivers fatigue detection [96], including 

physiological data and video data, etc. Real-time fatigue 

detection was achieved through machine learning techniques 

and multi-source data features, with final deployment and 

early warning taking place on an actual ship rather than being 

limited to laboratory settings. 

 

 
 
Fig. 4. According to the actual ship environment, the multi-source data 
of ship OOWs are collected with the help of appropriate data 
acquisition equipment, and the dataset is established based on the 
fatigue judgment benchmark and the machine learning methods are 
used to realize real-time fatigue detection. Finally, the system is 
deployed on the real ships and early waring. 

 

V. DISCUSSION 

Based on a comprehensive analysis, classification, and 

comparison of studies pertaining to fatigue detection in 

vehicle drivers and ship OOWs, we discuss the key 

similarities and differences between the two as well as future 

research directions for detecting fatigue in ship OOWs. In 

addition, the data acquisition methods and experimental 

environment for driver fatigue detection are discussed to 

provide a foundation for investigating fatigue detection in ship 

OOWs. Finally, the advantages and disadvantages of the 

current methods used for detecting fatigue in OOWs are 

discussed, and issues that must be urgently addressed are 

highlighted. 

A. Similarities and Differences in Fatigue Detection for 
Ship OOWs and Vehicle Drivers 

The development of fatigue detection technology for ships 

OOWs is lagging that for vehicle drivers. The present study 

focuses on the method to use the existing practices and apply 

them to the unique operating environment of ship OOWs. 

Most studies pertaining to fatigue detection in ship OOWs 

are conducted in a laboratory, and the participant being tested 

is aware that his/her level of fatigue is being evaluated. 

Therefore, the results can differ significantly from those 

obtained from an actual environment [23]. This is because 

OOWs lives and works on board a ship, which differs the life 

of a person being tested in a laboratory [94]. However, for the 

OOWs, there is an advantage, i.e., because the ship OOWs 

must live on board for a long time, the sensor data can be 

obtained continuously, which may be more effectively than 

the data of a vehicle driver. 

The current data acquisition methods for detecting fatigue 

in vehicle drivers might not be optimal in some cases. For 

example, EEG, EOG, and other physiological information 

acquisition methods are invasive; although they can be applied 

(theoretically) to detect fatigue in vehicle drivers in a 

laboratory environment, their feasibility in a practical driving 

environment is yet to be verified [44]. Similar data acquisition 

methods are less suitable for ship OOWs. Because of the high 

activity level of ship OOWs, a more invasive data acquisition 

method will affect their ability to work and drive [48]. 

Therefore, selecting suitable data features as inputs for fatigue 

detection is more difficult for ship OOWs than for vehicle 

drivers. 

B. Low-intrusive, Multisource Approach to Data 
Acquisition 

Multiple data features and low-intrusive data acquisition 

methods are the typical methods for detecting fatigue in 

vehicle drivers, particularly for fatigue detection in ship 

OOWs. The unique operating environment of ship OOWs 

necessitates the use of multiple features and low-intrusive data 

acquisition methods to achieve fatigue detection systems of 

high reliability and stability [54]. Currently, fatigue in ship 

OOWs is primarily detected using a camera that captures the 

facial and posture features of the ship OOWs [57, 61], and the 

wristband is used to obtain the features of the ship OOWs [95]. 

In addition, when using the corresponding feature information 

acquired using a smart bracelet for fatigue detection, the 

information pertaining to physiological and behavioural 

features such as the HR and tri-axial acceleration, respectively, 

as well as the sleep duration and sleep quality can be used for 

data fusion, thus avoiding the low accuracy of single-feature 

fatigue detection. Owing to the emphasis on non-invasive 

fatigue detection methods, the smart bracelet can only be worn 

with the consent of the ship OOWs; otherwise, relevant 

feature information cannot be acquired. However, the quality 

and usefulness of the feature information must be further 

confirmed based on the driving environment of the ship 

OOWs. 

C. Detection Environment Must Be Shifted from The 
Laboratory to The Actual Environment 

Shifting from the laboratory to the actual environment is 

necessitated for driver fatigue detection, particularly for ship 

OOWs on duty in certain environments because of the special 

effects on sleep [94]. 

Owing to technological developments, machine learning-

based data analysis and classification methods are being used 

increasingly. The selection of suitable models for deep 

learning and their continuous optimisation is a stepwise 

process. To improve the algorithm model, the actual efficiency 

of fatigue detection should be determined after validating the 
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algorithm model based on an actual operating ship scenario 

and not based solely on the laboratory environment [96]. This 

is because the non-existence of a complex dataset in an actual 

driving environment renders it difficult to obtain the complex 

variability of the driver’s features and does not provide 

sufficient information regarding the physiological and 

behavioural processes of the ship OOWs during actual driving 

[13]. Hence, the accuracy of fatigue detection in ship OOWs 

in actual driving environments is low. 

D. Detection and Early Warning 

The purpose of fatigue detection should be to remind the 

driver in time to realize early warning and avoid the danger 

caused by fatigue [36, 42]. For ship OOWs, fatigue detection 

and timely warning are the current and future research focus. 

Simply analyzing the fatigue problem can not meet the needs 

of the current marine departments. Therefore, referring to the 

research on vehicle drivers fatigue detection, it is equally 

important to select the real-time fatigue detection method and 

the timely warning, and select the appropriate features. When 

the driving errors result caused by fatigue is taken as the 

features, they cannot be used for real-time fatigue detection 

[65, 70]. Due to the huge difference between vehicles and 

ships, such features are not suitable for real-time detection and 

early warning of ship OOWs’ fatigue. 

The direction of ship OOWs fatigue detection is to combine 

the special working environment of ship and ship OOWs and 

select the methods and features that can be detected in real 

time. When the ship OOWs are in or about to be in fatigue 

state, timely warning is issued to remind the ship OOWs to 

pay attention to the state, so as to avoid danger. 

VI. CONCLUSION 

Currently, shipping companies, owners, the IMO, and other 

maritime organisations are focusing primarily on crew fatigue 

problems, particularly fatigue in ship OOWs. Crew fatigue 

affects the safety of ships and lives at sea, as well as the 

cleanliness of the ocean. In this study, the importance, urgency, 

and difficulty in detecting fatigue in ship OOWs were 

comprehensively analysed. Subsequently, based on vehicle 

driver fatigue detection, the progress, limitations, and 

universality of fatigue detection in ship OOWs based on 

various features were analysed. Consequently, the 

prerequisites for fatigue detection in ship OOWs were 

determined. 

Owing to the limitations of onboard conditions, few 

features can be acquired for detecting fatigue in ship OOWs. 

Based on existing studies pertaining to vehicle driver fatigue 

detection, the technology based on vehicle and ship features is 

the least invasive in terms of product invasiveness, detection 

accuracy, and practical application. Video-based detection 

technology is superior in terms of user acceptability and 

usability. Fatigue detection based on physiological signals 

offered the highest accuracy [97]. The fatigue detection of 

ship OOWs lags that of vehicle drivers. The ship environment 

significantly affects the acquisition of various data features of 

ship OOWs. For example, the background of the environment 

is complex, which complicates the acquisition of the facial and 

physical features of a ship OOW. The distance of the camera 

from the target and the number of detected personnel affects 

the accuracy of the data features captured by the camera. 

Meanwhile, the physiological features obtained using the 

wristband and other devices result in errors owing to the wide 

range of activities or high workload of ship OOWs. Other 

sophisticated feature acquisition devices (e.g., 

electroencephalographs) are more unsuitable for ship OOWs 

because of their high intrusiveness, which restricts operation. 

Therefore, based on the characteristics of ships and OOWs, 

combining multiple features with physiological and 

behavioural features is the current direction for detecting 

fatigue in ship OOWs. Additionally, multisource data fusion 

processing is a key issue in the construction of robust and 

stable fatigue detection systems. 
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