
Integrating Model Development Across Computational
Neuroscience, Cognitive Science and Machine Learning

Padraig Gleeson*
Department of Neuroscience, Physiology and Pharmacology

University College London

Sharon Crook
School of Mathematical and Statistical Sciences

Arizona State University

David Turner
Princeton Institute for Computational Science & Engineering

Princeton University

Katherine Mantel
Princeton Neuroscience Institute

Princeton University

Mayank Raunak
Intel Labs
Intel Corp

Ted Willke
Intel Labs
Intel Corp

Jonathan D. Cohen*
Princeton Neuroscience Institute

Princeton University

* Corresponding authors: p.gleeson@ucl.ac.uk, jdc@princeton.edu

mailto:p.gleeson@ucl.ac.uk
mailto:jdc@princeton.edu


Abstract

Neuroscience, cognitive science, and computer science are benefitting increasingly through their
interactions. This could be accelerated by direct sharing of computational models across
disparate modeling software used in each. We describe a Model Description Format designed to
meet this challenge.

Background

Research in neuroscience, cognitive science, and the areas of artificial intelligence (AI) and
machine learning (ML) in computer science has long shared common questions concerning the
mechanisms underlying intelligence, and progress in each field has been driven profoundly by
interactions with the others. For example, McCulloch and Pitts1, as well as Hebb2, were inspired
in their work on the brain by that of Turing in defining the principles of computation, and in turn,
their work inspired Rosenblatt’s Perceptron. Work in neuroscience and psychology provided the
foundations for breakthroughs in ML for reinforcement learning, which in turn transformed our
understanding of neuromodulatory mechanisms such as the brain’s dopamine system, while the
development of the backpropagation learning algorithm and convolutional neural networks, jointly
by psychologists and computer scientists, provided the foundation for the explosion of modern
work on deep learning. Most recently, insights into specific brain subsystems (such the
hippocampus) have inspired the development of new forms of external memory (such as the
Neural Turing Machine), while, conversely, the development of algorithms for recurrent neural
networks has guided models of how working memory is implemented in brain structures such as
the prefrontal cortex and basal ganglia.

We are now at a critical juncture. On the one hand, as suggested above, neuroscience and
cognitive science have generated mechanistically explicit models of critical brain subsystems, as
well as many higher level cognitive functions. At the same time, machines designed by computer
scientists now match or surpass humans in tasks long considered to be the unique province of
the human brain, such as visual object recognition and game playing (e.g., Jeopardy, chess, Go),
and are making rapid strides in natural language processing. On the other hand, despite this
progress, the flexibility and efficiency of processing in the human brain remain unique. No
existing machine exhibits the scope of capabilities that are as diverse as an adult human, or the
ability to acquire these through training, no less with the efficiency or processing that it exhibits
(while relying on approximately 20 watts of power). Understanding how the brain achieves this,
and how it can be achieved in artificial form, remains one of the greatest challenges facing
science and technology. It seems inevitable that, as in the past, progress will require the fluid
exchange of ideas, discoveries, and methods across the relevant disciplines. However, the
dramatic increase in sophistication of modeling efforts required to address this challenge has
brought with it a new set of issues that threaten the exchange of innovations and advances
across these disciplines, and thereby their continued potential for transformative impact.

Current Obstacles to Model and Knowledge Exchange

Historically, the exchange of ideas across scientific disciplines in a precise form has relied on
mathematical expressions that are readily interpretable. However, as the focus of research has
progressed to increasingly complex mechanisms and capabilities, progress has come to rely
increasingly on numerical methods — that is, computational modeling. This poses two closely
related, and rapidly increasing, challenges to the acceleration of progress: i) siloing of

https://paperpile.com/c/2B4lNr/1hu3
https://paperpile.com/c/2B4lNr/rkCZ


communities: the proliferation of domain-specific software tools for building, executing and
analyzing increasingly complex computational models; and ii) hardware optimization: the need to
make the execution of such models tractable at scale.

Siloing of communities. Reflecting a “Tower of Babel” problem, many of the powerful software
tools for constructing and executing computational models have been developed independently,
within and across different (sub)fields, posing substantial barriers to the exchange of such
technology and the insights that can emerge from them3. For example, investigators interested in
how response properties of individual neuronal cell types may impact learning at the circuit level
must choose between developing their models in neuroscience-specific environments such as
NEURON [https://neuron.yale.edu/neuron] that support the creation of biophysically realistic
models of neuronal function, and ones from ML such as PyTorch [https://pytorch.org] and
TensorFlow [https://tensorflow.org] that support computationally efficient network-level algorithms
for learning. At present there are no automated means for translating models between these
environments. Understandably, this has been driven by differences in phenomena of interest,
levels of analysis, and approaches to modeling. However, computational approaches and tools
developed in one domain or for one purpose often are found to have fundamental value in others
(e.g., Bayesian methods, deep learning). Similarly, advances in the tools for developing and
evaluating models (e.g., hyper-parameterization and data fitting) are proving useful across
domains. Unfortunately, the development of software tools that exploit this convergence has not
kept pace. Some widely used tools have emerged for modeling in particular domains (e.g.,
NEURON for computational neuroscience and PyTorch and TensorFlow for ML). However, rarely
do tools created for computational modeling in one domain interoperate with those in other
domains, even when the fundamental constructs — and the insights that can be gained from
them — are closely related or the same. This imposes inefficiencies at best; and, at worst, it
obscures opportunities for sharing ideas and technologies that can generate new insights and
drive progress. Even where there are close parallels in the approaches and tooling needs across
domains, often each uses its own application-specific software, making it difficult to see shared
opportunities; and, even where those are recognizable, translating individual models or adapting
tools developed in one environment for use in another is not considered to be worth the cost.
Anyone involved in computational modeling is painfully familiar with the burden of porting code
for a model from another laboratory (and sometimes even from individuals within their own
laboratory!), often requiring translation into a different language, and/or lacking clear
documentation. At best this costs many hours of effort, and at worst reimplementation is prone to
errors and corresponding replication failures. Furthermore, when deemed worthwhile, such
efforts usually focus on translating a specific model between two particular environments, which
does not solve the problem for other models or environments. Creating a means by which
models generated in one software environment can be automatically translated into a common
format, examined, validated, and then shared with and/or integrated into other environments
would have a transformative impact on the ability for interdisciplinary interactions and
cross-fertilization going forward, as discussed further below.

Hardware optimization. As models become increasingly sophisticated, whether to
accommodate the complexity of mechanisms in the brain, and/or to address the complexity of
functions required to achieve natural intelligence in machines, the need for optimization of
execution (ensuring the model runs as efficiently as possible in the chosen software/hardware
environment) has become critical. This, in turn, has carried with it the “Tower of Babel” problem
described above: tools for optimization are typically specialized for specific software and/or
hardware environments, presenting a barrier to their use with others.

https://paperpile.com/c/2B4lNr/HMust
https://neuron.yale.edu/neuron
https://pytorch.org
https://tensorflow.org


One approach to this has been the development of “intermediate representations” (IRs) —
standard formats into which models created using higher level software tools (such as PyTorch
and TensorFlow) can be translated, and then optimized for different hardware platforms. For
example, this is the approach being taken with formats such as ONNX (Open Neural Network
Exchange; https://onnx.ai). However, such efforts have been designed largely for the optimization
of applications in ML, and are not as easily accessed by or adapted to environments used in
other domains, such as NeuroML4 in neuroscience, or ACT-R5 in cognitive science. Other
approaches that take a more general purpose approach (such as LLVM; https://llvm.org) are
usually at too low a level to be practical for those constructing computational models in
neuroscience and cognitive science. Limitations in the number and effectiveness of tools for
acceleration of models developed in those scientific disciplines, and the expertise required to use
them, has substantially limited the scope and sophistication of such modeling efforts, and their
interactions with similar efforts in AI and ML. The ability to translate models created in those
domains into a standard format, and from there into existing IRs, would open up a tremendous
opportunity for neuroscientists and cognitive scientists to leverage the considerable efforts being
put into optimization by the ML community. A fully general standard would also open other novel
opportunities for optimization. Existing ML IRs have targeted traditional computing hardware,
such as CPUs and GPUs, but have not yet exploited emerging technologies, such as quantum
computing. Such hardware may have particular value for a broad class of models that —
complementary to those that use deep learning methods — address the dynamics of constraint
satisfaction and decision making (see below). Such models often involve highly interdependent,
fine-grained interactions among processing units and multiple time scales of interaction, factors
that are not addressed by current approaches in AI or ML. They are also not well served by
standard techniques such as loop vectorization, and may be more effectively addressed by novel
(e.g. polyhedral) approaches to optimization and hardware implementation (e.g. quantum
approaches). These, in turn, may be most suitable for a graph-based format that preserves
access to higher-level model structure and operations.

A Standardized Model Description Format

The goal of enhancing interactions of computational neuroscientists and cognitive scientists with
ML and AI researchers prompted the formation of the Model Exchange and Convergence
Initiative (ModECI; https://modeci.org). The aim of this effort is to define, implement and maintain
a standard Model Description Format (MDF; https://github.com/ModECI/MDF) that can be used
to exchange models across disparate modeling software environments in machine readable
form, and/or lower them to IRs for machine optimization, in a manner that fully preserves a
model’s structure and functionality. Upon formation, ModECI carried out a series of workshops to
engage with and get direction from the diverse communities it is intended to serve. This involved
representatives from academia, industry, and non-profit organizations devoted to the support of
open science and interdisciplinary exchange (https://modeci.org/#communityPage). These
workshops reaffirmed the potential value of developing an MDF and provided a clear set of
desiderata, priorities, and challenges for its development, outlined here. 1) The effort should
focus specifically on translation between existing programming and execution environments (Fig.
1A), and not the creation of a new, general purpose simulation and/or programming environment.
2) Accordingly, the format should prioritize model translation (in a way that preserves model
structure) over efficiency of execution — that is, transpilation rather than compilation — a tradeoff
that favors the expression of a model as a computational graph. 3) The format should support
arbitrary patterns of control flow, which presents a challenge for standard forms of computational
graphs. 4) The initial focus should be on standardizing the specification of the structure and

https://onnx.ai
https://paperpile.com/c/2B4lNr/46om
https://paperpile.com/c/2B4lNr/94G0
https://llvm.org/
https://modeci.org
https://github.com/ModECI/MDF
https://modeci.org/#communityPage


execution of the model itself, rather than procedures for its use (e.g., parameterization, training
protocols, data-fitting), with the latter as a subsequent target for further development.

Figure 1. A) Overview of potential scope of ModECI effort, with MDF as a “hub” that allows the
translation and exchange of computational models over “spokes” that connect to modeling
environments at multiple levels of analysis and in diverse domains. B) Schematic example of MDF
showing a model represented as a graph, in which nodes represent computational elements, edges
the transmission of data and flow of execution. Inset shows internal components of a node. C,D,E)
Examples of models at different levels of analysis and of different forms, all of which can be
represented using MDF.

Based on these considerations, ModECI contributors have developed an initial specification for
MDF (https://mdf.readthedocs.io/specification). This expresses models in a serialized format as a

https://mdf.readthedocs.io/specification


computational graph (Fig. 1B), in which nodes carry out mathematical operations, with ports that
are used to receive input for those operations and provide the output to other nodes, and edges
that transmit information between ports on different nodes. The formal specification of the format
includes a control flow syntax that can specify arbitrary orders of node execution (based on
defined conditions), including nodes with different times scales of computation, cyclic graphs,
and hierarchically structured patterns of execution. The standard is augmented with a function
ontology (https://mdf.readthedocs.io/functions) that includes all non-conditional operators in the
ONNX function library (https://onnx.ai/onnx/operators), and can be extended with additional
functions that may be of broad use or of use within specific scientific domains (e.g. FitzHugh
Nagumo integrator in neuroscience or the drift diffusion integration in cognitive science). MDF
also has detailed online documentation (https://mdf.readthedocs.io), and an open source Python
library of tools (https://github.com/ModECI/MDF) that includes a reference importer and exporter
of models serialized in JSON, YAML or binary formats, visualization tools for structural validation,
and an execution engine that can be used to validate expected behavior of models. This Python
package is intended to be used as the basis for other libraries that employ MDF for the
automated exchange of models across existing tools for the analysis, optimisation, and
visualization of models from multiple disciplines.

MDF supports specification of models at many levels of analysis (Fig. 1C-E), from biophysically
detailed individual neurons and synapses, to neural populations, and abstract tensor-based
models, such as those widely used in ML. To demonstrate this flexibility, prototype interpreters
have been developed, with corresponding demonstration examples that translate models
between MDF and widely used domain-specific exchange formats (e.g. NeuroML in
neuroscience and ONNX in ML), as well as model design and execution environments (e.g.,
PyTorch in ML).

Conclusion and future work

The current version of MDF, while functional, should still be considered a prototype intended to
highlight the practicality and potential of such a format, and to serve as a foundation for further
development. ModECI, responsible for the continued development of MDF, is an effort in support
of an open-source, community-driven software project. Current efforts are focused on maturing
existing interfaces between MDF and widely used resources, such as NeuroML and PyTorch,
broadening its scope to include others (such as The Virtual Brain6, Emergent7, Nengo8, ACT-R5,
and TensorFlow), expanding MDF capabilities to include the specification of model execution
environments (such as training and hyper-parameterization protocols), and interfacing with data
sharing efforts such as Neurodata Without Borders9 and the Brain Imaging Data Structure,
BIDS10. A guide to the current status of the specification, the prototype implementation,
supported import/export environments and examples of models and datasets in the format can
be found here: https://modeci.org/quickstart.

ModECI welcomes the participation of anyone interested in these efforts to broaden the
capabilities and scope of MDF and, more generally, its goal of promoting the fluid exchange of
models across levels of analysis and disciplines involved in computational modeling of the
functioning of the human brain, and reproducing its capabilities in synthetic systems. In these
ways, ModECI promises not only to provide a medium for interdisciplinary research, but also to
serve as a model for how this can be effectively pursued in a community-based manner.

https://mdf.readthedocs.io/functions
https://onnx.ai/onnx/operators
https://mdf.readthedocs.io
https://github.com/ModECI/MDF
https://paperpile.com/c/2B4lNr/lZHo
https://paperpile.com/c/2B4lNr/E122
https://paperpile.com/c/2B4lNr/KRFF
https://paperpile.com/c/2B4lNr/94G0
https://paperpile.com/c/2B4lNr/uk6y
https://paperpile.com/c/2B4lNr/u85f
https://modeci.org/quickstart


Acknowledgements

The idea for the MDF standard described here initially arose from a workshop sponsored by the
Center for Reproducible Neuroscience held at Princeton in July 2019, and its initial development
– as well as formation of ModECI – was supported by a grant from the NSF Convergence
Accelerator program. We are grateful to the following individuals for their considerable
contributions to the ModECI effort: Abhishek Bhattachargee, Pranav Gokhale, Samyak Gupta,
Nichol Killian, Jeremy Lee, Raghav Pothuguchi, Terry Stewart, Patrick Stock, Tal Yarkoni, as well
as all of the participants in the ModECI supported community workshops
(https://modeci.org/#communityPage). We are also grateful to the Outreachy organization
(https://www.outreachy.org) which has organized software development internships to contribute
to the MDF implementation. PG acknowledges research funding support from Wellcome
(212941).

References

1. McCulloch, W.S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133.

2. Hebb, D.O. (1949). The organization of behavior: A neuropsychological theory (Wiley).

3. Poldrack, R.A., Feingold, F., Frank, M.J., Gleeson, P., de Hollander, G., Huys, Q.J.M., Love,
B.C., Markiewicz, C.J., Moran, R., Ritter, P., et al. (2019). The Importance of Standards for
Sharing of Computational Models and Data. Computational Brain & Behavior 2, 229–232.

4. Cannon, R.C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.A.
(2014). LEMS: A language for expressing complex biological models in concise and
hierarchical form and its use in underpinning NeuroML 2. Front. Neuroinform. 8.
10.3389/fninf.2014.00079.

5. Lebiere, C., and R Anderson, J. (1993). A connectionist implementation of the ACT-R
production system.

6. Sanz Leon, P., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., McIntosh, A.R.,
and Jirsa, V. (2013). The Virtual Brain: a simulator of primate brain network dynamics. Front.
Neuroinform. 7, 10.

7. Aisa, B., Mingus, B., and O’Reilly, R. (2008). The emergent neural modeling system. Neural
Netw. 21, 1146–1152.

8. Bekolay, T., Bergstra, J., Hunsberger, E., Dewolf, T., Stewart, T.C., Rasmussen, D., Choo,
X., Voelker, A.R., and Eliasmith, C. (2014). Nengo: a Python tool for building large-scale
functional brain models. Front. Neuroinform. 7, 48.

9. Teeters, J.L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., Asari, H., Peron, S.,
Li, N., Peyrache, A., et al. (2015). Neurodata Without Borders: Creating a Common Data
Format for Neurophysiology. Neuron 88, 629–634.

10. Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin, G.,
Ghosh, S.S., Glatard, T., Halchenko, Y.O., et al. (2016). The brain imaging data structure, a
format for organizing and describing outputs of neuroimaging experiments. Sci Data 3,
160044.

https://modeci.org/#communityPage
https://www.outreachy.org
http://paperpile.com/b/2B4lNr/1hu3
http://paperpile.com/b/2B4lNr/1hu3
http://paperpile.com/b/2B4lNr/rkCZ
http://paperpile.com/b/2B4lNr/HMust
http://paperpile.com/b/2B4lNr/HMust
http://paperpile.com/b/2B4lNr/HMust
http://paperpile.com/b/2B4lNr/46om
http://paperpile.com/b/2B4lNr/46om
http://paperpile.com/b/2B4lNr/46om
http://dx.doi.org/10.3389/fninf.2014.00079
http://paperpile.com/b/2B4lNr/46om
http://paperpile.com/b/2B4lNr/94G0
http://paperpile.com/b/2B4lNr/94G0
http://paperpile.com/b/2B4lNr/lZHo
http://paperpile.com/b/2B4lNr/lZHo
http://paperpile.com/b/2B4lNr/lZHo
http://paperpile.com/b/2B4lNr/E122
http://paperpile.com/b/2B4lNr/E122
http://paperpile.com/b/2B4lNr/KRFF
http://paperpile.com/b/2B4lNr/KRFF
http://paperpile.com/b/2B4lNr/KRFF
http://paperpile.com/b/2B4lNr/uk6y
http://paperpile.com/b/2B4lNr/uk6y
http://paperpile.com/b/2B4lNr/uk6y
http://paperpile.com/b/2B4lNr/u85f
http://paperpile.com/b/2B4lNr/u85f
http://paperpile.com/b/2B4lNr/u85f
http://paperpile.com/b/2B4lNr/u85f

