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Covariate-adjusted indirect comparisons are increasingly used in health technology assessment (HTA) to compare treatments that
have not been trialed against each other.1,2 Matching-adjusted indirect comparison (MAIC)3 is the most popular methodology.4

MAIC weights the subjects in one of the studies by the odds of being assigned to another study, conditional on a set of baseline
covariates, without explicitly requiring an outcome model. The estimated weights enforce balance in selected covariate moments
between studies.

Recently, alternatives based on estimating the conditional outcome expectation given treatment and baseline covariates have
been proposed. In an article published in this journal, we develop an adaptation of parametric G-computation.5 This involves
fitting a parametric outcome model to patient-level data for one of the studies to predict and contrast potential outcomes in
another study. When assumptions hold, parametric outcome modeling offers greater statistical precision and efficiency than
MAIC.5 Nevertheless, this does not imply that the former is inherently superior to the latter.

Where there is limited overlap between covariate distributions across studies, outcome modeling methods extrapolate the
association between covariates and outcome. In an insightful commentary, Vo warns of the dangers of extrapolating a mis-
specified outcome model.6 Valid model-based extrapolation depends on strong assumptions and relies on accurately capturing
the true covariate-outcome relationships. Vo advocates for the use of MAIC over G-computation because the former does not
extrapolate, and outlines the pitfalls of using data-adaptive methods to estimate the outcome model.6

We congratulate Vo on his excellent editorial and thank the Editor for arranging this exchange. In this counter-response, we
examine four important considerations for the development of covariate adjustment methodologies in the context of indirect
treatment comparisons. Firstly, we consider potential advantages of weighting versus outcome modeling, placing focus on bias-
robustness. Secondly, we outline why model-based extrapolation may be required and useful, in the specific context of indirect
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treatment comparisons with limited overlap. Thirdly, we describe challenges for covariate adjustment based on data-adaptive
outcome modeling. Finally, we offer further perspectives on the promise of doubly-robust covariate adjustment frameworks.

1 BIAS-ROBUSTNESS: THE CASE FOR WEIGHTING

Insofar, covariate-adjusted indirect comparison methods have relied on parametric assumptions for unbiased estimation. In
practice, these assumptions will fail to some extent. Therefore, we must think about the bias-robustness of different approaches.
In parametric G-computation, bias arising from model misspecification cannot be easily verified in the data. As highlighted by
Vo in his first simulated example, an outcome model that seems approximately correct when fitted to the patient-level data would
not necessarily fit well in extrapolated regions.6 In practice, candidate models are compared using diagnostic plots, information
criteria or predictive performance measures such as the mean squared prediction error. These measures cannot detect model
misspecification in extrapolated regions. Most model performance measures average over the observed covariate distribution,
and are not necessarily transportable between different covariate distributions.7

In weighting approaches, evaluating the reduction in bias due to covariate adjustment is more straightforward. Weighting
methods do not necessarily require knowledge of the trial assignment process. They seek weights that attain cross-study balance
in the distributions of measured covariates. By checking for adequate balance after weighting, one can assess whether bias due
to differences in observed covariates has been mitigated.

Vo suggests adopting the individual-level covariate generation step proposed by Remiro-Azócar et al.5 to fit the trial
assignment model, typically a logistic regression, using maximum-likelihood estimation.6 This approach explicitly models the
conditional probability of trial assignment as a function of the baseline covariates, with odds weights derived from the estimated
probabilities.8 The typical model-building strategy is outcome-blind and evaluates different specifications on a trial-and-error
basis. One may begin with a model containing additive terms for the relevant covariates, and consider including non-linear
transformations or higher-order terms, e.g. polynomials, interactions, if imbalances remain.9

MAIC follows a different paradigm for weighting. It directly enforces balance in covariate moments without explicitly mod-
eling the conditional probability of trial assignment. Covariate balance is viewed as a convex optimization problem and the
weights are solutions to such problem. MAIC is an entropy balancing technique.10,11 Entropy balancing approaches are more
stable, efficient and robust to model specification than the standard “inverse weighting” modeling approaches.10,12

Recent results imply that MAIC, balancing for covariate means, is asymptotically unbiased if covariates have a linear rela-
tionship with the mean difference (in the anchored scenario) or the absolute outcome means (in the unanchored scenario), even
if the implicit trial assignment model is incorrectly specified.10,12 Nevertheless, MAIC may be subject to bias if there are non-
linearities that are not accounted for by the, also implicit, outcome model. MAIC remains biased in Vo’s first simulated example,
partly because there is a squared covariate-by-treatment product term in the outcome-generating model, and only first-order
moments (sample means) and not second-order moments (sample variances) are balanced for.6 Because second-order balance
is enforced by balancing the means of the squared covariates,1 balancing both first- and second-order moments would have pro-
vided some protection against bias. However, there is a risk that MAIC is unable to find a solution to the convex optimization
problem, and there may also be a substantial cost in terms of precision.13

In summary, model misspecification bias is not easily diagnosed for outcome modelling, particularly when there is extrap-
olation. Conversely, balance diagnostics for weighting offer some indication on the level of bias reduction due to covariate
adjustment. It is important to make a distinction between modeling and balancing approaches to weighting. Generally, the latter
are less susceptible to bias and offer greater stability and precision than the former.

2 MODEL-BASED EXTRAPOLATION: UNDESIRABLE BUT NECESSARY

Where overlap is poor, weighting is inefficient. Effective sample sizes are low and results may be sensitive to the inordinate
influence of a few extreme weights. A drop in precision is expected for all covariate adjustment methods as overlap decreases. In
our original simulation study, such reduction is more marked for MAIC than for parametric G-computation.5 When modeling
assumptions hold, the latter is more precise and efficient than the former across all scenarios.5 The increase in precision is
achieved by extrapolating into non-overlapping regions of the covariate space. The extrapolation is made using strong parametric
assumptions, which may be unfeasible. In our original simulation study, variance estimates and coverage rates are valid for G-
computation with a correctly specified outcome model.5 Even so, the interval estimates do not typically reflect the extrapolation
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uncertainty. This could be problematic when modeling assumptions fail, particularly given that the appropriate characterization
of uncertainty is a central objective of HTA.14

Vo argues that weighting approaches reflect uncertainty more honestly.6 This point is also raised in the discussion of our
article,5 following Vansteelandt and Keiding.15 The degree of extrapolation made by parametric G-computation is implicit;
it cannot be controlled and may hide any underlying lack of overlap. Conversely, the presence of extreme weights in MAIC
explicitly manifests the high estimation uncertainty in data-sparse regions.

Vo recommends reducing the impact of extreme weights without resorting to extrapolation.6 A suggested approach is weight
truncation. Remiro-Azócar has explored truncation in combination with MAIC, and shown that it can produce substantial pre-
cision and efficiency improvements when sample sizes are low and the extremity of the weights is high.16 However, truncation
induces asymptotic bias and is prone to ad hoc heuristics, e.g. deciding on cutoff thresholds.16 Given the arbitrary nature of such
decisions, weight truncation is arguably not “honest” in quantifying uncertainty.

Weight stabilization is also recommended by Vo.6 The version of MAIC in our original article fits a weighted marginal model
of outcome on a time-fixed binary treatment.5 Because this model is “saturated” — there is a parameter for each unique predictor
combination —- stabilized and unstabilized weights yield identical results.17 Jackson et al. have developed an adaptation to
MAIC that minimizes the dispersion of the weights, improving precision but inducing some bias.18 Remiro-Azócar recently
proposes a modular extension to MAIC, which improves precision and efficiency without resorting to bias-variance trade-offs,
particularly when sample sizes are low and covariates are highly prognostic.16 It does so by estimating the treatment assignment
mechanism in the study with patient-level data, and is therefore not applicable in the unanchored case.

The aforementioned approaches are useful for variance reduction, yet depend on weighting solutions being available in the
first place. Where there is no common support, feasible weighting solutions providing satisfactory balance may not exist.19

If the observed range of a covariate in the study with patient-level data does not cover the respective mean published for the
comparator study, MAIC suffers from convergence failures and cannot even produce an estimate.18 According to Vo, “we might
need to accept that the difference between populations is too large to be adjustable”.6 Nevertheless, treatment effect estimates
are needed for HTA and, in many jurisdictions, to populate the economic models required to make reimbursement decisions. Vo
views model-based extrapolation as a flaw.6 In our view, extrapolation beyond the overlapping regions of the covariate space
may be necessary when the study samples are divergent.

Finally, in the anchored scenario, Vo suggests excluding covariates that overlap poorly but are not effect modifiers from the
MAIC adjustment,6 as indicated by current guidance.2 Our simulation study assumes a best-case situation where these covariates
can be identified. However, this is challenging in practice, due to the scale dependence of effect modification and to limited
knowledge on the drivers of treatment effect heterogeneity, particularly for novel therapies. As highlighted by Vo in his second
simulated example, excluding weak effect modifiers in order to reduce standard errors may induce bias.6 There is a tension
between satisfying the conditional constancy or transportability of effects across studies and maintaining overlap. Accounting
for a greater number of covariates increases the plausibility of the former but decreases the likelihood of the latter.

In conclusion, parametric G-computation relies on model-based extrapolation to overcome limited overlap and improve preci-
sion with respect to MAIC. Model-based extrapolation depends on strong assumptions and is typically viewed as an undesirable
feature. Nevertheless, it may be necessary in practice to generate the treatment effect estimates that are required for HTA
decision-making.

3 THE PERILS OF DATA-ADAPTIVE G-COMPUTATION

For asymptotically unbiased estimation, parametric G-computation relies on the correct specification of the outcome model.
Parametric models impose restrictive assumptions on functional forms; for instance, that effects are linear and additive on some
transformation of the conditional outcome mean. These assumptions may not be plausible where there are multiple continuous
covariates and complex non-linear relationships, particularly if background theory is weak. Making strong parametric assump-
tions has a cost. If the parametric model is incorrectly specified, the G-computation estimator is subject to bias and this bias does
not decrease with sample size, at any rate. This may lead to substantial undercoverage: as the sample size grows, the probability
that the interval estimates contain the target estimand shrinks to zero.

To reduce the risk of bias resulting from parametric model misspecification, one may consider using data-adaptive methods,
e.g. non-parametric techniques or machine learning, to estimate the conditional outcome expectations.20 These approaches make
weaker modeling assumptions, but the flexibility also comes at a cost. From a frequentist perspective, that is a slower rate of
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convergence than the parametric rate.21 A misspecified parametric estimator attains fast n1∕2 convergence, but to the wrong
target value. Data-adaptive estimators are more likely to converge to the true expectations, but converge more slowly. This may
lead to larger-than-desirable bias and poor coverage in finite samples.

Consider the naive use of lasso-based G-computation in the setting explored by Vo.6 The lasso is a regularization estimator
that trades off variance for bias to avoid overfitting and improve out-of-sample predictive performance. This results in slow con-
vergence rates, with bias and mean square error diminishing slowly with sample size, particularly in high-dimensional settings.
In Vo’s second simulated example,6 the lasso dismisses various covariates that are weak effect modifiers but are correlated with
study assignment, ultimately leading to bias.

In addition to slower than parametric convergence rates, data-adaptive G-computation estimators also have non-normal sam-
pling distributions.22 When using parametric outcome models, the central limit theorem and the law of large numbers can be
applied to obtain convenient asymptotic approximations. This enables one to readily construct variance and interval estimates,
e.g. through resampling methods such as the bootstrap and Wald normal interval equations. Conversely, the asymptotic distri-
bution of data-adaptive estimators often is irregular and cannot be derived. This makes uncertainty quantification difficult. Even
where one can establish the asymptotic distribution, the use of the bootstrap to compute interval estimates is not supported by
theoretical results as it requires certain convergence rate conditions to hold.23

We propose moving away from a frequentist framework and exploring the use of Bayesian G-computation. Non-parametric
outcome models such as Bayesian additive regression trees (BART)24,25,26 are very flexible and well-suited to capture complex
functional forms. Because BART directly samples from the posterior distribution of the treatment effect, principled variance
and interval estimation are possible without having to resort to the bootstrap. Bayesian methods naturally integrate the analysis
into a probabilistic formulation that is desirable for HTA,14 and allow the incorporation of substantive prior information.

BART is implemented in many software packages, requires little parameter tuning, and has performed excellently in causal
inference applications.25,27 Nevertheless, BART is not a panacea. As per the lasso, it regularizes heavily to penalize overfitting,
which may induce non-negligible bias into the estimation of treatment effects.26 Little is known theoretically about BART’s
asymptotic (frequentist) properties. In the causal inference literature, the method has exhibited poor coverage in scenarios with
limited overlap because it does not extrapolate well.28 Regression trees are piecewise step functions that partition the covariate
space into disjoint cuts. Consequently, they extrapolate beyond the overlap region using a constant value.28

In conclusion, the blind use of data-adaptive estimation together with G-computation may lead to bias in finite samples and
is constrained by limited theoretical justification for valid statistical inference. Data-adaptive G-computation estimators are
more flexible than their parametric counterparts. Nevertheless, flexible estimators still extrapolate where overlap is limited. The
extrapolations of very flexible models may be intrinsically flawed, impairing point and interval estimation under poor overlap.

4 THE APPEAL OF DOUBLY-ROBUST ADJUSTMENT

Vo proposes the use of doubly-robust approaches such as augmented weighting estimators,6 in conjunction with the individual-
level covariate simulation step by Remiro-Azócar et al.5 Augmented weighting methods apply two working models: a model
for trial assignment conditional on covariates, and another for the outcome conditional on treatment and covariates. Only one
of the two models needs to be correctly specified to achieve asymptotically unbiased estimation. In general, doubly-robust
estimators should be less prone to model misspecification bias than singly-robust estimators; they offer two opportunities for
valid adjustment instead of one, mitigating the risks of applying the wrong outcome model. Nevertheless, the two working
models are typically parametric. In practice, there is seldom adequate background knowledge on the true trial assignment and
outcome-generating processes. Therefore, both parametric models may be incorrect, in which case doubly-robust adjustment is
subject to bias.

A valuable suggestion by Vo is the application of data-adaptive methods within a doubly-robust framework.6 An oft-ignored
advantage of such framework is that it allows for the slower convergence of working models.29,30 Augmented weighting
approaches combine two singly-robust estimators, such that the overall convergence rate is as fast or faster than the convergence
rate of each separate estimator. Consider that a flexible non-parametric regression or machine learning technique is used to fit
both working models. Even if each working model converges at a rate slower than the optimal parametric n1∕2 rate, the product
of the individual rates may still be n

1∕2 or faster.29,30 Cross-validation based ensembles of data-adaptive techniques (e.g. Super
Learner) also satisfy the rate condition if one of the candidate estimators does.31
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Valid inference for data-adaptive doubly-robust estimators remains a challenge. Their asymptotic normality, which allows for
simple approaches to construct variance and interval estimates, relies on an unverifiable “Donsker” condition from empirical
process theory.32 Such condition may be inappropriate in high-dimensional settings, restricting the complexity of the data-
adaptive methods that are permitted.

The Donsker condition can be relaxed using sample-splitting procedures such as cross-fitting.29,33 These create an additional
source of variation in finite samples, and need to be iterated repeatedly to remove seed-dependence.29,33 This is computationally
burdensome if there is no closed-form expression for the variance, as bootstrapping would incur considerable run-time. The
asymptotic distribution of estimators can be learned by characterizing their efficient influence function, as suggested by Vo.6

Nevertheless, we suspect that finding tractable approximations is not trivial with limited access to patient-level data.
In summary, doubly-robust approaches require the correct specification of either a trial assignment or an outcome model

to obtain consistent estimation. While singly-robust data-adaptive estimators may suffer from slow convergence rates, doubly-
robust estimators can accommodate the use of slower-converging data-adaptive models. Nevertheless, their asymptotic normality
relies on an unverifiable Donsker condition, which restricts the complexity of the models that are permitted. Such condition could
be overcome through the use of sample-splitting, but this may require substantial computational resources when closed-form
expressions for the variance are unavailable.

5 CONCLUSIONS

Weighting is the most popular approach for covariate adjustment in the context of indirect treatment comparisons with limited
patient-level data. Recently, alternatives based on outcome modeling have been developed. Such methods enable the estimation
of treatment effects in “limited overlap” settings where MAIC cannot be applied. Under no failures of assumptions, parametric
outcome modeling increases precision and efficiency with respect to weighting, particularly when overlap is poor. It does so
by extrapolating outside the overlap region, which involves untestable and potentially untenable parametric assumptions. While
functional forms may hold approximately in the overlap region, this is not necessarily the case when extrapolating beyond it.

Specifying an appropriate outcome model – one that seems approximately correct in the overlap region but that also extrapo-
lates well – is challenging in many settings, and can quickly become an overwhelming process. Analysts are typically drawn to
simple but restrictive models, assuming linear effects to be the norm. Subject-matter knowledge about the outcome-generating
process is often fragile. Data-adaptive outcome modeling techniques are attractive to mitigate the risk of bias arising from para-
metric model misspecification. These may not require the pre-specification of functional forms and can provide some automation
to the model selection process. Nevertheless, the slow convergence rates of flexible models may also lead to bias. In addition,
flexible estimators can extrapolate poorly and may offer limited theoretical justification for valid uncertainty propagation.

Precision and efficiency under no failures of assumptions should not be the only characteristics determining the choice of
a suitable estimator. In general, the level of bias reduction due to covariate adjustment is easier to assess for weighting than
for outcome modeling. Several authors argue that entropy balancing approaches to weighting such as MAIC are more bias-
robust than outcome modeling methods.6,10,12 Doubly-robust methods that combine a trial assignment model with a model for
the conditional outcome expectation offer two opportunities for correct model specification, and are likely more bias-robust
than both MAIC and parametric G-computation. The doubly-robust framework also allows for the use of slower-converging
data-adaptive models, although adequate variance and interval estimation may have its challenges.

Standard (unadjusted) indirect treatment comparisons rely on a very strong assumption: the unconditional constancy or trans-
portability of relative effects across studies. Covariate-adjusted indirect comparisons seek to relax this assumption by adjusting
for baseline covariates. In doing so, they rely on the correct specification of parametric models. The selection of an appropriate
model is challenging and subject to many “researcher degrees of freedom”. The development of innovative covariate adjustment
methods that help to reduce these degrees of freedom is imperative. The valid characterization of uncertainty, a key requirement
of HTA,14 is another important factor in determining the suitability of these methods for decision-making. The performance
of novel covariate adjustment methods should be examined in simulation studies reflecting typical scenarios in the context of
indirect treatment comparisons with limited patient-level data.

Finally, innovative methodologies may not overcome aspects such as limited overlap and the unavailability (or inconsistent
definition) of influential covariates. The former may require model-based extrapolation, which always calls for a leap of faith.
The latter can be addressed through the development of core patient characteristic sets that define important prognostic covariates
to be measured and reported among specific therapeutic areas.34
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