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Abstract
In this work, we set up a model Hamiltonian to study the excited state quantum dynamics of 1,1-difluoroethylene, a molecule

that has equivalent atoms exchanged by a torsional symmetry operation leading to equivalent minima on the potential energy
surface. In systems with many degrees of freedom where the minimum energy geometry is not unique, the ground state wave-
function will be delocalised among multiple minima. In this small test system, we probe the excited state dynamics considering
localised (in a single minimum) and delocalised (spread over among multiple minima) wavefunctions and check whether this
choice would influence the final outcome of the quantum dynamics calculations. Our molecular Hamiltonian comprises seven
electronic states, including valence and Rydberg states, computed with the MS-CASPT2 method and projected onto the vi-
brational coordinates of the twelve normal modes of 1,1-difluoroethylene in its vibrational ground state. This Hamiltonian
has been symmetrised along the torsional degree of freedom to make both minima completely equivalent and the model is
supported by the excellent agreement with the experimental absorption spectrum. Quantum dynamics results show that the
different initial conditions studied do not appreciably affect the excited state populations or the absorption spectrum when
the dynamics is simulated assuming a delta pulse excitation.
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1. Introduction
Symmetry is a powerful tool used to simplify problems

and predict properties in a wide range of physical systems.
In the context of quantum mechanics applied to molecules,
symmetry operations must leave the molecular Hamiltonian
invariant, that is, it always belongs to the totally symmet-
ric irreducible representation. For small molecules belong-
ing to non-Abelian symmetry groups, the probability of find-
ing the system in a particular conformation must be exactly
the same as finding it in a conformation equivalent by sym-
metry. The nuclear wavefunction and potential energy sur-
faces (PES) must then be constructed taking the permutations
of the symmetry group into account. The global delocalised
wavefunction can be expressed as a superposition of localised
wavefunctions at the single minima transformed via symme-
try operations. These superpositions have been detected in
the laboratory since the Young double slit experiment1 and
much later in buckyballs,2 and in systems up to 800 atoms.3

As soon as the system moves away from this relaxed state (i.e.,
stops being an eigenstate), the expectation values of observ-
ables and the wavefunction itself change with time. A ques-
tion would be whether parts of the superposition might inter-
act differently, maybe due to their relative phase sign, when
compared to wavefunctions that are localised in a single min-
ima.

One interesting application where nuclear superpositions
are invoked is the theoretical description of nuclear spin iso-
mers (NSIs). The 1920s brought NSIs into the limelight, when
the theory about the existence of two different species of
the hydrogen molecule (ortho and para) was developed.4,5

However, even now the separation, identification, and con-
version mechanisms between NSIs is a challenging problem
and only a few polyatomic molecules (CH3F,6–9 13CH3F,10–12

H2CO,13 13CCH4,14 CH3OH,15 H2O,16–20 and C2H4
21,22) have

been separated in their isomeric forms. In the last 10 years,
theories connecting NSIs with superpositions of wavepack-
ets have been developed.23–31 Using reduced dimensionality
models, an association between the nuclear spin and an inter-
molecular torsion has been made23,24,27,32–35 and interference
of torsional wavepackets within these reduced models leads
to different excited state dynamics that can be associated to
one or the other NSI, allowing their differentiation.25,26,36

Even though the connection between NSIs and rotational
levels has been extensively reported, the relation to torsional
superpositions (as part of the vibrational wavefunction) has
been mostly studied from the theoretical point of view. In
this work we will focus on torsional superpositions as initial
conditions for the dynamics, without making further connec-
tions to NSIs. To the best of our knowledge, every study that
has been done using torsional superpositions in the excited
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state has used reduced dimensionality models. This is the first
time that a full dimensional system is considered, using the
case of the 1,1-difluoroethylene (1,1-DFE) molecule in the gas
phase, which possesses twelve internal degrees of freedom.

In excited state dynamics, the choice of the initial condi-
tions can critically affect the outcome of a simulation.37–39

For mixed quantum-classical trajectory methods, such as
Tully surface hopping40 or ab initio multiple spawning,41 in
gas phase simulations geometries and velocities are usually
selected from a Wigner distribution that mimics the low-
est eigenstate of the ground state quantum harmonic os-
cillator. In direct dynamics variational multiconfigurational
Gaussian (DD-vMCG)42 methods, a single multi-dimensional
Gaussian function that is the solution for the ground state
quantum harmonic oscillator carries the initial popula-
tion. Grid methods like multiconfigurational time depen-
dent Hartree (MCTDH)43 are very flexible and almost any
type of initial wavefunction can be formed and used in the
propagation.

For this reason, here dynamics simulations were carried
out using the MCTDH method,44,45 treating explicitly all de-
grees of freedom at a quantum level. Three different initial
conditions were considered: two superpositions, one with a
positive relative phase and one negative, and a wavefunction
localised in a single minimum, that is, without applying any
symmetry operations on it. The deactivation of the popula-
tion from the valence ππ∗ state towards the Rydberg state
is found to be not particularly affected by the choice of the
initial conditions, that is, superpositions give the same out-
come as starting the dynamics in a localised minima. If this
behaviour can be extrapolated to larger systems with multi-
ple minima, this result implies an enormous saving in com-
puter time, since only a small part of the configuration space
needs to be initially covered.

To describe the full-dimensional PES of 1,1-DFE, we use a vi-
bronic coupling model46 up to sixth order and fitted to high
level ab-initio quantum chemistry calculations at different
geometries. Since torsional angles of 90◦ are needed to ar-
rive at the conical intersections present in this system, the
corresponding normal mode needs to be transformed to the
actual dihedral angle, and high-order coupling terms (up to
the sixth order) need to be included to describe the processes
involving this motion with accuracy. In an earlier study on
1,1-DFE using multistate complete active space perturbation
theory up to second order (MS-CASPT2) in MOLCAS, we found
that a number of Rydberg states must be included to correctly
describe the non-adiabatic dynamics starting from the bright
valence state.47

To prove that our Hamiltonian is indeed a good model,
we calculate the absorption spectrum after excitation to the
excited-state manifold. The excellent agreement between the-
oretical and experimental spectrum supports our choice of a
Hamiltonian and allows the assignment of the spectral bands.
Using a localised initial condition and starting the excited
state dynamics from the zwitterionic π∗2 and Rydberg π -3s,
π -3px, π -3py, and π -3pz states, reduced dimensionality mod-
els allow us to theoretically unravel the origin of the spectral
progression of bands detected in the experimental absorp-
tion spectrum of 1,1-DFE.48

2. Methods

2.1. Construction of the nuclear Hamiltonian
To analytically describe the PES, we used a vibronic cou-

pling Hamiltonian.46,49 This method, diabatic by ansatz, ex-
presses the PES as a Taylor expansion around a given point,
normally the optimised geometry (Franck-Condon (FC) point).
The Hamiltonian H can be thus defined as

H = H (0)1 + W (0) + W (1) + W (2) + W (3) + ...,(1)

where each matrix has a dimension of 7, the number of elec-
tronic states involved. As a coordinate basis to express the
Hamiltonian, we choose the mass-frequency scaled ground-
state normal vibrations, which in the case of 1,1-DFE means
12 normal modes. The zero-order Hamiltonian H(0) corre-
sponds to the kinetic energy operator. For the normal modes
q1–q3 and q5–q12, the kinetic energy operator T̂q reads

T̂q = −
12∑

α=1

ωα

2
∂2

∂Q 2
α

,(2)

where ωα is the ground-state normal mode frequency and
α=4 (the torsional degree of freedom) is omitted.

The normal mode q4 is replaced by the torsion angle θ be-
tween the CH2 group and the molecular plane, considering
the fluoride atoms to be fixed due to the large difference in
atomic masses. Since a torsional degree of freedom implies a
complete rotation along the symmetry axis whereas the nor-
mal mode is a harmonic back and forth motion, we trans-
formed the kinetic energy operator following Ref. 50. The ki-
netic energy operator T̂ for this degree of freedom now reads

T̂θ = − 1
2μr2

∂2

∂θ2
,(3)

where μr2 corresponds to the moment of inertia with a mass
μ = 2 amu, and r is the ground-state equilibrium distance
from the hydrogen atoms to the inertial axis (along the CC
bond), which is 0.974 Å. The total zero-order Hamiltonian,
H(0), is then described as

H (0) (Q ) = T̂θ + T̂q,(4)

the sum of both terms.
The matrices W form the diabatic potentials and couplings.

Following the standard vibronic coupling model scheme, for
modes that are close to harmonic (q1, q3, q5, q7, q8, q9, and
q12), the zeroth order potential energy matrix W (0)

i j is diagonal
and formed by the ground-state harmonic oscillator potential
shifted by the vertical energies:

W (0)
i j (Q ) = (Ei + V ) δi j = Ei +

∑
α

1
2

ωαQ 2
α ;

α = 1, 3, 5, 7, 8, 9, 12.

(5)

Higher order terms then enter the appropriate higher order
diabatic potential matrices.
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Going back to eq. 1, the order of the expansion gives
the name for the model: linear vibronic coupling model
for expansions truncated at W (1), quadratic vibronic cou-
pling model for truncations at W (2), quartic vibronic cou-
pling model for truncations at W (4), etc. These terms are non-
diagonal matrices and are responsible for the coupling, medi-
ated by vibrations, between pairs of electronic states, hence
the name of vibronic coupling model. In the 1,1-DFE model,
we included expansion terms up to sixth order. The terms up
to second order are

W (1)
ii (Q ) =

∑
α

κ (i)
α Qα

W (1)
i j (Q ) =

∑
α

λ(i, j)
α Qα , i �= j

W (2)
ii (Q ) =

∑
α,β

1
2

γ
(i)
α,βQαQβ

W (2)
i j (Q ) =

∑
α,β

1
2

μ
(i, j)
α,β QαQβ , i �= j

(6)

showing how the dependence with the degrees of freedom is
linear for the first term, quadratic for the second, etc. Higher-
order terms were also required for the diabatic potentials
of some modes, in particular for the on-diagonal (intra-state)
mode coupling, and are written

W (m)
i j (Qα ) = 1

m!
Cm,(i, j)

α Q m
α

W (m+n)
i j (Q ) = 2

(m + n)!
Cm,n,(i, j)

α,β Q m
α Q n

β .

(7)

Since 1,1-DFE belongs to the C2v symmetry point group we
can apply symmetry to neglect the terms that would make
the molecular Hamiltonian antisymmetric. Since the Hamil-
tonian must be invariant under the symmetry operations
of the C2v symmetry point group, some of the Hamiltonian
terms are zero by definition. The terms up to second order
which are nonzero obey the following product rules for the
irreps of the vibrations, �α, �β , and the irreps of the elec-
tronic wavefunctions, �i, �j

κ (i)
α �= 0 : �α ⊃ �A1

λ(i, j)
α �= 0 : �α ⊗ �i ⊗ � j ⊃ �A1

γ
(i)
α,β �= 0 : �α ⊗ �β ⊃ �A1

μ
(i, j)
α,β �= 0 : �α ⊗ �β ⊗ �i ⊗ � j ⊃ �A1 .

(8)

This means that the excited state gradients, κ, are only non-
zero for totally symmetric modes, while the linear vibronic
coupling between states, λ, is due to modes with the correct
symmetry that when multiplied by the symmetry of the pair
of states leads to a totally symmetric irreducible represen-
tation. The diagonal γ terms will be non-zero if the direct
product of both modes involved is totally symmetric, whereas
for the off-diagonal quadratic coupling terms, μ, the product
must also include the symmetry of the electronic states. Sym-
metry rules for the higher order terms follow as straighfor-
ward extensions of these.

Some modes with strong anharmonicity require diabatic
potential functions in place of the Taylor expansions de-
scribed above in order to go to higher orders without dras-
tically increasing the number of parameters to fit. The
off-diagonal coupling, however, always follows the scheme
above. These anharmonic functions were chosen purely on
how well they fitted the ab initio data. Modes q2 and q11 are
described by Morse potentials:

WMor,ii (Qα ) = D(i)
0

{
1 − exp

[
−a(i)

α

(
Qα − Q (i)

0,α

)]}2
+ ε(i)

α(9)

and modes q6 and q10 used a Lennard-Jones form

WLJ,ii (Qα ) = −D(i)
0

⎡
⎢⎢⎣

⎛
⎜⎝

(
α

(i)
α

)12

Qα − Q (i)
0,α

⎞
⎟⎠

12

−

⎛
⎜⎝ 2

(
α

(i)
α

)6

Qα − Q (i)
0,α

⎞
⎟⎠

6
⎤
⎥⎥⎦ + ε(i)

α .(10)

The torsional q4 mode, as explained above, is replaced by an
angle, θ . Potentials for this mode are periodic and were fitted
as a function of the cosine of the torsion angle:

Wii (θ ) = κ
(i)
4 cos (θ ) + 1

2
γ

(i)
4 cos2 (θ ) ,(11)

where κ
(i)
4 and γ

(i)
4 are fitting constants. Any diabatic coupling

and higher order terms coupling q4 to the other modes used
expressions of the form in eqs. 6 and 7, using cos (θ ) in place
of Q, and taking into account that this function is symmetric
at θ = 0 and anti-symmetric at θ = π .

The parameters for the functions were obtained using
the VCHam tool in the Quantics suite51 to match the cal-
culated ab-initio data. The 1,1-DFE normal modes were ob-
tained at the planar C2v optimised ground state geome-
try at the MP2/aug-cc-pVDZ level of theory using the Gaus-
sian 09 program.52 The normal modes and the correspond-
ing symmetry labels in the C2v point group are depicted
in Fig. 1. A comparison between the optimised MP2 geo-
metrical parameters and the experimental values is shown
in Table 1. A table with frequencies and description of the
motions can be found in the Supporting Information in
SI-Table 1.

The electronic state energies of the lowest seven singlet
states at torsion angles of 0◦ and 90◦ calculated at the
SA(11)-MS-CAS(2,6)PT2/aug-cc-pvDZ level of theory are listed
in Table 2. The active space includes the Rydberg orbitals 3s,
3px, 3py, and 3pz, and the π and π∗ orbitals. The state-average
procedure is performed over eleven roots to account for ev-
ery single and double excitation related to the chosen active
space (as explained in Ref. 47), even if here we were only in-
terested in the dynamics in the lowest seven states. A picture
of the active space and further details about the electronic
structure can be found in Ref. 47.

The full dimensional PES consists of twelve nuclear degrees
of freedom and 7 electronic states: N, V, Z, π -3s, π -3px, π -3py,
and π -3pz. N stands for neutral, V for valence and Z for zwit-
terionic using the Mulliken notation for ethylene.54 These la-
bels represent the character of the wavefunction at the FC
point and are thus used to label the diabatic states of our
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Fig. 1. Normal mode coordinate basis with symmetry labels belonging to the C2v point group. The torsional normal mode q4

is replaced by the full torsion θ in the model Hamiltonian.

Table 1. Bond lengths (in Ångstrom) and angles (in degrees)
for the geometries obtained from the optimisation of the
ground state of 1,1-DFE employing MP2/aug-cc-pVDZ in com-
parison with experimental data from Ref. 53.

Exp53 MP2

r(CC) 1.315 1.335

r(CF) 1.323 1.337

r(CH) 1.078 1.087

∠(FCF) 109.1 109.6

∠(HCH) 121.8 121.5

∠(CCF) 125.5 125.2

∠(HCC) 119.1 119.3

model. Since we need two minima equivalent by torsion to
construct the initial wavefunction as a torsional superposi-
tion, we transformed our potentials using an orbital diabatic
basis. In this basis, the N and V potentials cross and inter-
change character (see Fig. 2b). In this new basis, we rename
the states as π1 and π2, since they are now completely equiv-
alent. The rest of the states mentioned above keep their orig-
inal character and thus their labels do not change. The 7 dia-
batic potential energy curves along the torsion were fitted to
ab-initio calculations using the SA(11)-MS-CAS(2,6)PT2/aug-cc-
pVDZ level of theory performed at different geometries. Adi-
abatic curves and single ab-initio points are plotted in Fig. 2a.
The corresponding diabats are plotted in Fig. 2b. The poten-
tials along the original normal mode q4 can be seen in Fig. 2c
showing the need of transforming the torsional coordinate
in order to describe the crossing to the ground state. The two
lowest states cross at 90◦ of torsion.

To provide data for the fitting, calculations at the FC geom-
etry and at 90◦ of torsion were performed along every nor-
mal mode providing 3234 data points, corresponding to 462
single point electronic structure calculations. The model has
553 parameters to fit which are not independent and so the
fitting was done in a series of steps to allow control of the
procedure. The diabatic potentials for the torsional degree of
freedom were fitted first, using the planar geometry at 0◦ as
the initial point for the Taylor expansion. Next, for every nor-
mal mode a 1D fit to the ab-initio data was performed, start-
ing the expansion at 90◦ of torsion. Explicit couplings to the
torsional degree of freedom were then included to force the
two minima at planar geometries (0◦ and 180◦) to be equiv-
alent. For every 1D fit, the configuration interaction vector
of the electronic structure calculation was monitored, to en-
sure that the diabats correctly follow their electronic char-
acter. For the states π1 and π2, however, the same diabatic
functions must be used to impose symmetry, which caused
some deviations between the ab-initio data and the fitted
curves.

After the initial guesses for every diabatic 1D potential
were found, a global fit was performed including couplings
up to sixth order for specific coordinates (especially couplings
that involved the torsional motion). The total standard devi-
ation with respect to the ab-initio points was 0.257 eV, with
the largest errors being associated with high energy points
that are not well fitted by the model potentials and do not
play a role in the dynamics. The 1D adiabatic potential en-
ergy curves and the corresponding ab-initio points for three
key modes (q3, q6, and q10) are plotted in Fig. 3. Cuts along
the other degrees of freedom can be found in the Supporting
Information. The middle column shows the potential curves
at 90◦ of torsion, where the fit was performed. Note that to
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Table 2. Vertical excitations (�E, in eV) of 1,1-DFE at the SA(11)-MS-CAS(2,6)PT2/aug-
cc-pvDZ level of theory. Three electronic states are labelled following the Mulliken
notation for ethylene,54 N for the closed shell π2, V for the ππ∗ and Z for the π∗2 state.
The energies are calculated at the optimised geometry (FC, for Franck-Condon) and
at 90◦ of torsion. The experimental (exp) values are taken from Ref. 48.

State �E at FC Exp48 Symmetry �E at 90◦

N 0.00 A1 3.30

V 7.45 7.49 A1 3.47

π -3s 7.07 7.06 B2 7.91

π -3px 8.10 A2 9.03

π -3py 8.20 B1 9.26

π -3pz 8.93 8.97 A1 10.03

Z 13.77 A1 9.27

Fig. 2. Potential energy curves as a function of the torsional angle θ of 1,1-DFE with all other coordinates at the equilibrium
geometry. Fit made using the VCHam tool in the Quantics51 suite to ab-initio points calculated with SA(11)-MS-CAS(2,6)PT2/aug-
cc-pvDZ. (a) Adiabatic curves and ab-initio points. (b) Diabatic curves. The orbital-diabatic potentials π1 and π2 (purple and blue
respectively) cross at π /2 radians and have two equivalent minima at 0 and π radians, each one from a different diabat. (c) Ab-
initio calculated energy points as a function of the torsional normal mode q4.

its right and its left, at both 0◦ and 180◦ of torsion, the po-
tentials are equivalent, conserving the symmetry. However,
these two minima correspond to different diabatic potentials
(π1 and π2) which switch energetic order at 90◦. To preserve
the symmetry, these diabatic potentials thus need to be fitted
with the same analytical functions and parameters for each
normal mode.

All parameters obtained for the model Hamiltonian are
listed in the Supporting Information, along with cuts like
that in Fig. 3 for all modes showing the quality of the
fit.

2.2. Initial conditions
Calculations were performed on different size systems (2D,

5D, and 12D). The initial wavefunction in each calculation
was constructed as the Hartree product of the harmonic os-
cillator ground state for every normal mode and the torsional

ground state wavefunction in the π1 minimum. This was fol-
lowed by propagation in imaginary time (energy relaxation)55

to get the ground-state vibrational eigenfunction. The barrier
between the minima is high enough that on the timescale of
the relaxation (100 fs) there is no transfer of population to
the π2 minimum. Three different initial conditions for the
torsional wavefunction were then constructed from this lo-
calised wavefunction obtained by relaxation; taken directly
as the eigenstate of the π1, or as positive and negative su-
perpositions to form approximate eigenstates of the π1 and
π2 diabatic potential energy curves. A scheme can be seen in
Fig. 4.

These multidimensional initial wavefunctions created in
this way for one or two torsional minima corresponding to
states π1 and π2 were consequently stored, and read in to be
further electronically excited to the π2 and π1 states, respec-
tively. This way, either a localised torsional wavefunction or
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Fig. 3. Adiabatic potential energy curves along key normal mode coordinates of 1,1-DFE calculated with SA(11)-MS-
CAS(2,6)PT2/aug-cc-pvDZ. The right and left columns correspond to torsional angles of π (180◦) and 0◦, respectively. The middle
column corresponds to a torsional angle of π /2 (90◦), where the fit was performed. All other coordinates are at equilibrium
values. The labels qi correspond to the normal mode coordinate along which the ab-initio energies were calculated and fitted.
The corresponding normal modes can be seen in Fig. 1.

a superposition of them was created in the S2 adiabatic state
(blue state in Fig. 2a). In the case of the localised initial condi-
tion, the wavefunction carried the whole population, while
for the superposition each half was given an amplitude of
1/

√
2.

3. Results

3.1. Dynamics started on the ππ∗ valence state
Quantum dynamics simulations of 1,1-DFE were per-

formed for symmetric and antisymmetric superpositions as
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Fig. 4. Scheme depicting the initial conditions used in this
work. Either the symmetric (blue), the antisymmetric (or-
ange), or the localised (just the eigenstate of the left side min-
ima with positive amplitude) were vertically excited to initi-
ate the dynamics.

well as for a system localised in one single minima. For each
case, a propagation using the MCTDH method was performed
for 150 fs, using the multiset formalism, that is, different sin-
gle particle functions (SPFs) are optimised for each electronic
state. The mean fields were calculated at each integration
step and integrated with the Adams–Bashforth–Moulton56

predictor-corrector method. The torsional coordinate was de-
scribed using a Fast Fourier Transform (FFT) collocation grid,
while the other degrees of freedom used harmonic oscilla-
tor discrete variable representations (DVRs) as primitive basis
functions.

Since convergence of the MCTDH method depends on how
the modes are combined within a SPF, on the number of
them and on the primitive grid size, we first started converg-
ing calculations on a reduced system, to steadily increase the
number of degrees of freedom. We performed calculations
with two (torsion θ and CC stretching q10), five (torsion θ , CC
stretching q10, CF2 pyramidalization q3, CF symmetric stretch
q6 and a combination of asymetric CF2 stretch and CH2 bend,
q7) and twelve degrees of freedom, that is, full dimensional-
ity (the motions are depicted in Fig. 1). Calculations for the
three different initial conditions in all sized systems (2, 5, or
twelve degrees of freedom) used the same primitive grids, but
were converged individually with respect to the SPF basis. The
number of primitive basis functions, along with mode com-
binations and the number of SPFs per state for the largest
calculations performed is found in Table 3.

The dynamics including only two degrees of freedom, q10

and θ , shows no interchange of population between the π1-
π2 states and the π -3px state during 150 fs (Fig. 5a), indicating
that the CC double bond vibration is not enough to drive the
system away from the FC region or excite the torsional mo-
tion to reach the conical intersections. This agrees with previ-
ous work on ethene which showed that for population trans-

fer to occur the pyramidalization motion also needs to be in-
cluded59. The populations of the π1 and π2 states have been
summed up in the superposition calculations to allow com-
parison with the localised initial condition that started the
dynamics with 100% of its population in π2. The differences
of using or not using a superposition as initial condition are
unnoticeable. As we can see in Fig. 5b, at least five modes are
needed to drive the dynamics, which are qualitatively similar
to the full dimensionality result shown in Fig. 5c. The popu-
lation, initially excited to the V state, is very quickly trans-
ferred to the π -3s and π -3px Rydberg states. This transfer is
initially mediated by q7, a combination of asymmetric CF2

stretch and CH2 bend, and the torsional degree of freedom
q4 with the same symmetry as the electronic states and it is
driven by the gradient created by the CF symmetric (q6) and
the CC double bond (q10) stretches. In the 5D and 12D cases,
the π -3px state traps the population during the first 30 fs, af-
ter which it slowly relaxes to the π1-π2 states and the π -3s.
In the 12D case (Fig. 5c), the population transferred to the π -
3s state is larger than in the reduced dimensionality system,
indicating that other degrees of freedom play a role in the
excited state dynamics. When comparing the localised and
delocalised initial condition 12D runs, we can observe small
differences in the populations, probably due to the difficulty
of converging the SPF basis in the larger systems.

During the dynamics, the autocorrelation function (over-
lap of wavefunctions at time=t and time=0) was stored ev-
ery 0.5 fs and later Fourier transformed to obtain the absorp-
tion spectrum. In Fig. 6, the spectrum for the localised initial
condition (local) and superpositions with positive (sym) and
negative (anti) relative phase are shown for the full system
with twelve degrees of freedom. The small differences that
can be observed are again probably due to lack of basis set
convergence. The main spacing is due to the CC stretching
mode (q10) with a harmonic frequency of 0.2192 eV and the
shoulder peaks next to the main progression are due to the
CF2 symmetric stretch (q6, harmonic frequency 0.1132 eV). By
comparing to the spectra from reduced dimensionality calcu-
lations, the overall width and shape comes from the torsional
degree of freedom and the CF symmetric stretches which cou-
ple the electronic states, driving the initial wavepacket away
from the FC region.

In contrast to a linear vibronic coupling model, our high-
order Hamiltonian makes the assignment of which modes
couple which states and drive the dynamics impossible af-
ter a few femtoseconds. To aid in this task, we performed ex-
cited state dynamics based on the 5D propagation shown in
Fig. 5b, but using only the localised initial condition and re-
moving one degree of freedom each time. The populations
and the absorption spectra are depicted in Fig. 7. These sim-
ulations show clearly that the torsion and the CF symmet-
ric and CC stretches are crucial to obtain population trans-
fer to any state on the ultrafast timescale, since removing
any of these DoFs inhibits the deactivation of the bright
state. The CF2 pyramidalization is needed to allow a trans-
fer to the π -3s state. Although q7, a combination of asymmet-
ric CF2 stretch and CH2 bend, was initially thought to cou-
ple the valence and the π -3s state for symmetry reasons, its
presence does not affect the outcome of the dynamics. The
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Table 3. Basis used for the largest multiconfigurational time dependent Hartree (MCTDH) cal-
culations starting with localised and delocalised (symmetric and antisymmetric) wavefunctions
on the ππ∗ state. The primitive basis was the harmonic oscillator DVR57 for every mode except
the torsion, which used a periodic Fast Fourier Transform grid.58 Ni is the number of primitive
basis functions for each degree of freedom in the particles, while ni is the number of single
particle functions used for each of the seven electronic states. Config is the total number of
configurations in the MCTDH wavefunction.

Type of WF Particle Ni ni Config.

2mode

Local el 7 7

θ , q10 100, 55 (1, 1, 1, 1, 1, 1, 1)

Sym/anti el 7 7

θ , q10 100, 55 (1, 1, 1, 1, 1, 1, 1)

5mode

Local el 7 35278

θ , q7 100, 27 (10, 29, 26, 8, 3, 3, 4)

q10 55 (16, 20, 20, 7, 3, 3, 4)

q3, q6 31, 27 (10, 30, 20, 10, 3, 3, 4)

Sym/anti el 7 54269

θ , q7 100, 27 (23, 32, 32, 10, 4, 3, 4)

q10 55 (19, 23, 28, 8, 3, 3, 4)

q3, q6 31, 27 (10, 30, 30, 10, 4, 3, 4)

12mode

Local el 7 229112

θ , q10 100, 55 (17, 27, 37, 11, 4, 3, 3)

q1, q2, q5, q8 11 (5, 9, 10, 6, 3, 3, 3)

q3, q6, q7 31, 27, 27 (17, 29, 30, 9, 4, 3, 4)

q9, q11, q12 11 (10, 11, 12, 6, 4, 3, 3)

Sym/anti el 7 619117

θ , q10 100, 55 (30, 40, 40, 20, 4, 3, 4)

q1, q2, q5, q8 11 (11, 10, 12, 9, 3, 3, 3)

q3, q6, q7 31, 27, 27 (30, 40, 40, 20, 4, 3, 4)

q9, q11, q12 11 (13, 13, 13, 9, 4, 3, 3)

spectra shown in Fig. 7e supports the assumption that the
torsion dominates the spectrum, since without it we obtain a
vibrational progression where the maximum is the 0-0 band.
The CF symmetric stretch is responsible for the shoulder
peaks and the pyramidalization narrows down the general
shape of the spectra when allowing the transfer to the π -3s
state.

In our previous work on 1,1-DFE using on-the-fly dynam-
ics,47 the π -3s state acted as a doorway state, keeping pop-
ulation from the V state trapped for a while before trans-
ferring it back. This process was essential for the deactiva-
tion of the molecule to its electronic ground state. Using our
parametrised potentials and quantum dynamics, we do not
see any trapping of the population on this Rydberg state. In-
stead, its population keeps growing and after 150 fs it is the
most populated state. To distinguish between the π1-π2 state
populations we calculated the adiabatic populations for the
5D localised system integrating the transformed wavefunc-
tion over the primitive grids. The electronic ground state
population was found to never exceed the value of 0.6%.
Therefore, the outcome of the dynamics is substantially dif-

ferent in the two cases and deserves a closer look why this
could be.

A quantum dynamics method (like MCTDH) is fully quan-
tum and thus expected to provide a better description of the
nuclear motion than that obtained by propagating indepen-
dent classical trajectories, as done in surface hopping. An im-
portant difference in the two calculations is that in surface
hopping, the trajectories were selected from a Wigner distri-
bution, which is a quasiprobability function that provides an
approximation for the lowest eigenstate of the quantum har-
monic oscillator; instead, the MCTDH simulations use the ac-
tual lowest energy “localised” eigenfunction of the Hamilto-
nian for the initial wavefunction. However, to use the MCTDH
method, one must pre-compute the PES in advance and fit
them to an analytical potential form on a base of nuclear co-
ordinates. This procedure potentially restricts the system as
the choice of coordinates and the fitted function may not al-
low the system to evolve in the same way as with on-the-fly
dynamical simulations. As an example, one could think of
the different MCTDH dynamics that would result if we had
used the torsional normal mode in the model potential and
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Fig. 5. Diabatic time-dependent electronic state populations for calculations including (a) two nuclear degrees of freedom:
torsion and CC stretch, (b) five nuclear degrees of freedom: torsion, CC stretch and scissoring, and pyramidalization of CH2

and CF2 fragments, and (c) twelve degrees of freedom, that is, full dimensionality. In solid lines the population after exciting
a localised initial wavefunction (local) is depicted. In dashed and in dotted lines the populations after exciting the symmetric
superposition (sym) and the antisymmetric (anti), respectively, are shown.

Fig. 6. Absorption spectra calculated as the Fourier transform
of the autocorrelation function from full dimensionality dy-
namics with a damping time (phenomenological broadening)
of τ=100 fs comparing an initial condition localised in one
minimum (local) a symmetric superposition (sym) and an an-
tisymmetric superposition (anti) started on the V state.

not substituted it by the full dihedral angle, as depicted in
Fig. 2. While the quality of the potential used in the MCTDH
simulations is supported by the calculated spectrum, the lat-
ter only samples the PES around the FC point and does not
say anything about the surfaces in general. Furthermore, due
to its construction the vibronic coupling model does not in-
clude any coupling between modes that requires high-order
polynomials.

Further work is thus needed to see which of the two sets of
dynamical simulations is correct. A possible protocol would
be to run on-the-fly quantum dynamics with the DD-vMCG
method,60,61 but this would require calculating frequencies,
gradients, couplings and energies at the CASPT2 level for
seven states and each pair of states, which would be compu-
tationally very expensive.

3.2. Localised dynamics started on the Rydberg
states

In order to extend our excited state dynamics study be-
yond the the valence ππ∗ state, we investigate the dynam-
ics of the system including the manifold of electronic states
that couple and affect the behaviour after light irradiation. In
Fig. 8a, the transition dipole matrix elements that couple the
ground state and excited state electronic wavefunctions are
plotted at different torsional angles. The values, calculated at
the same level of theory as the potentials, refer to the adi-
abatic electronic states. However, at the ground state opti-
mised geometry the V and π -3s states switch character (see for
example Fig. 2) and we accommodated that change switching
the values of the matrix elements μ12 and μ13 at the planar
geometry. Since at the FC region the transition dipole mo-
ment only has negligible values for the coupling with the
π -3px state, we started 5D dynamics using the localised ini-
tial condition on every other electronic state and calculated
the absorption spectra from the autocorrelation function
(Fig. 8b). Every spectrum has been weighted by the corre-
sponding matrix element of the transition dipole moment
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Fig. 7. Simulations corresponding to the five mode dynamics in figure 5 with a localised initial condition, after removing one
degree of freedom. (a) Diabatic time-dependent populations after removing the torsional θ mode (solid line) and after removing
the CF symmetric stretch q6 (dashed), (b) without including the CF2 pyramidalization q3, (c) ignoring the CC stretch mode q10

and (d) ignoring q7, a combination of asymmetric CF2 stretch and CH2 bend. (e) Absorption spectra computed as the Fourier
transform of the autocorrelation function for each of these cases.

Fig. 8. (a) Elements of the adiabatic state transition dipole moment matrix along the torsional degree of freedom calculated
with MS-CASPT2. The sub-indices reflect the pair of electronic states involved in the transition. (b) Absorption spectra calcu-
lated as the Fourier transform of the autocorrelation function from dynamics including five degrees of freedom (except for
the V case, where the full dimensionality result was taken), as specified in Table 4 with a damping of τ = 50 fs. Separate calcu-
lations were made used a localised initial wavefunction started on the valence, zwitterionic and Rydberg electronic states. The
amplitude has been weighted by the transition dipole moments. The experimental spectrum shown in grey was taken from
Ref. 48.
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Table 4. Basis used for the multiconfigurational time dependent Hartree (MCTDH) simulations
starting with a localised wavepacket on the Rydberg and zwitterionic states. The primitive
basis was the harmonic oscillator discrete variable representation for every mode except the
torsion, which uses a periodic Fast Fourier Transform grid. Ni is the number of primitive basis
per dimension in every particle, while ni is the number of single particle functions used per
electronic state. Config is the total number of configurations in the MCTDH wavefunction.

Initial state Particle Ni ni Config.

π -3s el 7 7130

θ , q7 100, 27 (5, 12, 15, 3, 3, 3, 3)

q10 55 (10, 14, 12, 4, 4, 3, 3)

q3, q6 10, 27 (7, 20, 20, 4, 4, 3, 3)

π -3px el 7 46519

θ , q7 100, 27 (12, 32, 32, 10, 4, 3, 3)

q10 55 (19, 22, 23, 9, 4, 3, 4)

q3, q6 10, 27 (10, 30, 30, 10, 4, 3, 4)

π -3py el 7 45105

θ , q7 100, 27 (9, 32, 31, 10, 4, 3, 4)

q10 55 (16, 22, 23, 10, 4, 3, 4)

q3, q6 10, 27 (10, 30, 30, 10, 4, 3, 4)

π -3pz el 7 26490

θ , q7 100, 27 (7, 13, 28, 10, 4, 4, 3)

q10 55 (11, 19, 25, 10, 4, 3, 4)

q3, q6 10, 27 (10, 23, 27, 10, 4, 3, 4)

Z el 7 68355

θ , q7 100, 27 (24, 32, 32, 10, 4, 3, 4)

q10 55 (24, 32, 32, 10, 4, 3, 4)

q3, q6 10, 27 (10, 30, 30, 10, 4, 3, 4)

at the FC point. The spectrum starting in the V state has
been computed from dynamics in full dimensionality (it is
the same as Fig. 6) and therefore has been shifted in energy
by the difference in the zero point energies due to the extra
degrees of freedom. In Ref. 48, the first band is concluded
to be a mixture of the Rydberg π -3s and the valence ππ∗

states. The vibrational progression observed at higher ener-
gies starts with peaks from the π -3py state, followed by the
π -3pz and probably higher lying Rydberg states. The Z state
modulates the intensity of these peaks with a broad gaussian-
like shape.

4. Conclusions
We set out to investigate the importance of superpositions

due to symmetrically equivalent minima to describe the ini-
tial wavepacket in photo-excited quantum dynamics simula-
tions. The answer is found to be in the negative and no sig-
nificant difference was seen in the excited state quantum dy-
namics of the 1,1-DFE molecular system using either localised
(single minimum) or delocalised (symmetry-adapted) initial
conditions. We observe that a qualitative correct behaviour
of the deactivation of the V state is achieved with five de-
grees of freedom from the total of twelve. The torsion, CC
and CF symmetric stretches, combination of asymmetric CF2

stretch and CH2 bend, and the CF2 pyramidalization drive the
excited state dynamics on this system and explain the peaks

observed in the absorption spectra after Fourier transforming
the autocorrelation function.

In contrast to previous Tully surface hopping dynamics,47

the current simulations find that there is barely population
transfer to the electronic ground state, flowing into the Ry-
dberg π -3s instead. This outcome is consistent for all three
initial conditions investigated, illustrating that using a lo-
calised nuclear wavefunction is perfectly reasonable and the
relative phases on the parts of the symmetric and antisym-
metric superpositions do not affect the dynamics, leading to
numerically identical results. There are minor differences for
the full-dimensional system when starting with a localised
wavefunction which is maybe due to convergence. As a way
of validating our parameterised Hamiltonian, we performed
dynamics using a localised initial condition on the valence,
zwitterionic, and Rydberg electronic states and calculated ab-
sorption spectra weighted by the oscillator strengths that
couple those states with the electronic ground state. An excel-
lent agreement with the experimental spectrum measured in
Ref. 48 supports our model.
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