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Impact Statement

Abstract

Successfully computing the rovibrational spectrum of a polyatomic molecule requires
the consideration of several factors. Among them is the representation of the kinetic
energy operator (KEO), the choice of body-fixed (BF) frame, and the use of the molecular
symmetry group. The work detailed in this thesis develops all three and forms a part of
the ExoMol project which is concerned with the calculation of molecular line lists of
astronomical significance.

For the first factor, we enhanced one of the main programs of the ExoMol project,
trove, by enabling the use of externally programmed and analytic KEOs in variational
calculations. We utilised this approach in the marvelised line list calculation of H2CS
which covers the 0 cm−1 to 8000 cm−1 range for states up to 𝐽 = 120. We also collated all
experimentally available transitions and, with the marvel program, converted them to
highly accurate experimental energy levels. The energies of the calculated line list were
then replaced by marvel energies when available.

The states of all such line lists in trove have an assigned symmetry label according
to their appropriate molecular symmetry group. A robust symmetrisation procedure is
one of the main features in trove. We further exploited group theory by constructing
and implementing an artificial symmetry group for use in trove’s 3𝑁 − 6 approach for
the variational calculations of linear molecules. This allowed much of the pre-existing
infrastructure to be used with minimal changes.

An analytic KEO complicates matters by necessitating a BF frame alternative to
the usual Eckart frame. We elucidate the choice of BF frames which permit rotational
symmetrisation and suggest example alternative frames.

Finally, one of the suggested frames is used for the analytic KEO of C2H6. The
preliminary work on this molecule is described, with a focus of our implementation of
its molecular symmetry group in trove.
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Impact Statement

Impact Statement

The work in this thesis advances rovibrational calculations of molecules and the
production of their associated spectra on two main fronts. The first is through the use of
exact nuclear kinetic energy operators (KEOs) expressed in curvilinear coordinates, and
in particular valence coordinates. An analytic KEO, in geometrical coordinates, holds
the promise of improving the accuracy of the results due to the more natural description
of the system.

This was made evident in the line list calculation of thioformaldehyde (H2CS). There,
the calculations converged quickly and, with the use of a refined potential energy surface
as well as a marvel dataset, ensured the resulting line list is of high quality. This line
list can by used by astronomers quantifying thioformaldehyde’s presence in various
astronomical bodies, it having been already detected in star-forming regions, molecular
clouds, comets, and distant galaxies.

While analytic KEOs are certainly not new, their use has so far been restricted to
smaller molecules owning to the expression explosion. In our script which calculates
KEOs for general molecules, we have constructed a KEO for ethane (C2H6), a relatively
large and symmetric molecule, for use in ExoMol’s rovibrational programs. The
exact KEO is far more compact than an approximate one, where the latter only has a
comparable number of terms to the former when restricted to a second order expansion.

The molecular symmetry (MS) group of ethane 𝒢36 and its extended counterpart
𝒢36(EM) has also been fully described by providing explicit irreducible representations
for the first time. We also describe in detail how it can be implemented practically in
a rovibrational code. Both the KEO and MS group ExoMol implementation will be
needed for future line list calculations, which, as with thioformaldehyde, are of interest
to astronomers.

MS groups in general is the second main front in this work. Aside from their use in
ethane, their effect on Cartesian and curvilinear coordinates and functions thereof is
precisely defined. This makes their application less ambiguous and more systematic
and greatly assisted in the work for ethane. It also allowed the exploration of molecular
frames which enable rotational symmetrisation, and explained why Eckart and Sayvetz
frames have this property. Alternative frames for CH3Cl and ethane were provided, the
latter once again a necessity when an analytic KEO is used. This work could potentially
help researchers move away from purely Eckart frames which (usually) can only be
solved numerically and are less suitable for non-rigid molecules.

Finally, MS groups were exploited in the rovibrational calculations of heteronuclear
triatomics in an 3N−6 implementation. This minimised the necessary code modifications.
It provided one example of using a designing a symmetry group for practical purposes
rather than being based on the system. The ideas will be further applied to triatomics of
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𝒞𝑠 symmetry.
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1. Introduction

Chapter 1

Introduction

Since the launch of the Kepler space telescope in 2009 [9], there has been an explosion in
the number of verified planets beyond our solar system (“exoplanets”) [10]. Characteris-
ing the atmosphere of an exoplanet – the molecular composition, the temperature, and
the pressure, ideally as a function of the altitude – is of enormous interest to astronomers.
This information can be inferred only from the spectrum produced when the light from
the star interacts with the planet’s atmosphere: roughly speaking, the proportion of
light absorbed by the atmosphere as a function of the light’s frequency. Astronomers
use statistical methods to find the most likely atmospheric properties from the observed
data [11].

The confidence in the predicted properties largely depends on the quality of the
underlying molecular spectra. While laboratory measurements are immensely valuable,
experiments could never provide all the necessary data due to the sheer quantity needed.
They must be heavily supplemented by theoretical calculations. Although less accurate
than experiment, theoretical calculations are more straightforward and safer.

Molecular spectroscopy – the study of the interaction of matter with electromagnetic
(EM) radiation – is what allows us to simulate the spectra. As a molecule is a quantum
mechanical system, its bound states have discrete energy levels. Transitions between
energy levels are achieved through the absorption or the emission of a photon, whose
energy given by ℎ𝜈 where ℎ is Planck’s constant and 𝜈 the photon’s frequency.

The complexity of the quantum systems, consisting of several interacting bodies,
precludes any sort of analytic solution to the associated Schrödinger equation; numerical
approaches are necessary. Still, performing the necessary calculations is a daunting
task as one must solve a set of coupled second order differential equations. Thankfully,
well-chosen assumptions can simplify things considerably. Of chief importance is to
approximate a molecular state as a product of an electronic state, a rotational state of
the nuclei, and a vibrational state of the nuclei. Transitions between molecular states are
then combinations of transitions between the sub-states. The energy of the sub-state
transition follows the inequality

𝐸rotational < 𝐸vibrational < 𝐸electronic (1.0.1)

which, for polyatomic molecules, are in the microwave, infrared (IR), and ultraviolet
regions of the EM spectrum, respectively. The work in this thesis is limited to IR energies
or below, so only rovibrational (rotational vibrational) transitions will be discussed.
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Thus, only the lowest lying electronic state is required. The rotational and vibrational
states are further sub-classified by various labels (quantum numbers), both rigorous
and approximate.

This thesis forms part of the ExoMol project, which is concerned with the production
of calculated line lists of molecules of astronomical importance [12]. A line list contains
information about the rovibrational states of a molecule, as well as transition information.
Figure 1.0.1 shows the work flow for the generation of a generic line list in ExoMol. The
electronic problem is solved first and the electronic state is represented by the potential
energy surface (PES). Initially, this is purely theoretical, or ab initio, and, when added to
the kinetic energy operator (KEO), is the rovibrational Hamiltonian used to calculate the
rovibrational states. For the rovibrational energies to be of the required spectroscopic
accuracy, the PES is then further “refined” from the available experimental data which
feeds back into the rovibrational state calculations. Calculating the transitions requires
both the rovibrational wavefunctions and a dipole moment surface (DMS). An ab initio
DMS is adequate in this case1.

Ab initio calculations

PES DMS

Variational
calculations

Accurate
rovibrational

energies?

Re
fin

em
en

t

Intensities

Line list

no yes

Figure 1.0.1: The generic work flow for the creation of a line list in ExoMol.

ExoMol’s research forms a small part of the so-called “fourth age of quantum
chemistry” [13] in which a greater emphasis has been made on accurate nuclear motion
calculations [14, 15] while maintaining state-of-the-art electronic structure (motion)
theory [16]. In rovibrational calculations, there are several factors to consider, and
they have been studied by many researchers and research groups including Atilla
Császár, Joel Bowman, Tucker Carrington, Vladimir Tyuterev, Vincent Boudon, Jonathan
Tennyson, Peter Bernath, Edit Mátyus, Per Jensen, Philip Bunker, Hans-Dieter Meyer,
Joseph Hodges, Robert Gamache, Laura McKemmish, and others.

The focal points in this thesis will be the representation of the KEO – in terms of
the choice of coordinates and the axis used – and the use of symmetry to reduce the

1The work in this thesis used coupled cluster single-double.
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computational load and to more precisely classify the rovibrational states. Besides
these, there are many others. Among them: the choice of basis functions [17–19] and
the pruning of the basis set to a manageable size [20, 21]; the diagonalisation of the
Hamiltonian matrix [22–24]; and improving the rovibrational energies by utilising
experimental data [25].

With the current level of theory and computational capabilities available to re-
searchers, it is theoretically possible to perform rovibrational calculations – of the
required spectroscopic accuracy and precision – on five- to ten-atom molecules. In
practice, that number is closer to six atoms: increasing the molecule’s size results in
an exponential scaling in the number of functions required for a complete basis set
and the computations necessary to accurately sample the PES across different nuclear
geometries. Six is approximately the current maximum found in the hitran [26] and
geisa [27] databases, which form a collection of spectroscopic parameters derived from
experimental measurements. Six is also the current maximum of the ExoMol database.

As for the line positions themselves, purely ab initio calculations are typically accurate
to within 1 cm−1 to 10 cm−1. The error is a consequence of the separation of the electronic
and nuclear motion, and can be corrected by incorporating known experimental data,
such as the refinement procedure mentioned above. This brings the calculations to
sub-wavenumber accuracy.

The choice of functions and the structure of the KEO has a long and rich history.
KEOs expressed in Cartesian coordinates, while easily written down, are ill-suited to
solving the problem. The Eckart-Watson Hamiltonian [28] separates the rotational
and vibrational coordinates in parametrising the nuclear geometry, the first important
step in the nuclear motion problem. The vibrational motion is parametrised by linear
combinations of Cartesian coordinates, defined in such a way that the quadratic part
of the PES is diagonal in those coordinates. These are the normal coordinates. The
Hamiltonian expressed in this form is then an expansion in terms of the normal
modes while being quadratic in the operators. Other linear combinations of Cartesian
coordinates (linearised coordinates) exist, such as deriving them from the derivatives of
bonds and angles at equilibrium [29].

While these Hamiltonians are relatively simple and can be formed with standard
procedures, making them “black box” type, their general structure also comes with the
disadvantage of not being particularly well adapted to any given problem. Moreover, the
linearised coordinates become less suitable as the system moves away from equilibrium.
Systems without a well defined equilibrium and high energy levels are thus are not as
well described. For molecules with one large amplitude internal motion (motion far away
from equilibrium, also known as non-rigid motion), one can also use Hougen-Bunker-
Johns Hamiltonians which treats the non-rigid coordinate exactly while expanding
about the other coordinates for each value of the non-rigid coordinate [30, 31].

More recent approaches use geometrically-defined curvilinear coordinates. There
have been several studies on KEOs expressed in bond-angle (valence) coordinates [32–38].
Valence coordinates are non-orthogonal as the purely vibrational part of the KEO is not
diagonal with them. Orthogonal coordinates, such as Jacobi [39–43] and Radau [42–45]
do not exhibit this problem and are preferable. These are further generalised with the
polyspherical coordinates [46–49].

With all the possible approaches come also many codes to do these calculations,
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such as: multimode, which uses normal coordinates and an 𝑛-mode representation
of the potential [50]; geniush, which numerically evaluates the KEO and then solves
the rovibrational problem for arbitrary internal coordinates [51]; mcdth, which solves
time-dependent multi-dimensional Schrödinger equations for dynamical systems made
up of distinguishable particles [52]; DVR3D, which uses a DVR representation to solve
problems for triatomics [53]; everest, which can calculate rovibronic levels for Renner-
Teller triatomic molecules [54]; and WAVR4, which is designed for tetraatomics [55]. It
should be made clear (if it was not already) that this list is by no means exhaustive, and
neither was the above discussion.

For the work covered in this thesis, there are two broad aims. The first is the
development of an exact and analytic KEO approach. An analytic KEO is more compact
than the standard Taylor expanded KEO of (the ExoMol program) trove [29]. Moreover,
as the Hamiltonian and the eigenfunctions are expressed in valence coordinates, the
eigenenergies should be expected to converge with a smaller basis set compared to
trove’s usual linearised coordinates. The analytic KEO implementation was tested in
the calculation of an H2CS line list.

The second broad aim of this thesis is to further exploit molecular symmetry in
rovibrational calculations. Generally speaking, molecular symmetry is invaluable. This
assisted in the 3N − 6 implementation for calculating line lists of triatomic molecules.
It also allowed us to determine how molecular symmetry restricts the choice of a
body-fixed (BF) frame.

Finally, much of the necessary preliminary work for the line list calculation of C2H6
was completed. C2H6 distinguishes itself from other ExoMol molecules in two ways:
first, as it contains eight atoms, it is much larger than a typical ExoMol molecule and
therefore prone to the effects of the “curse of dimensionality”. Second, and somewhat
related to the first, is that C2H6 has many symmetries. For rovibrational calculations,
this is a two way sword: although the symmetries can be exploited, and thus a greater
number of them is advantageous, they also come with idiosyncrasies which must be
properly addressed.

With these difficulties in mind, an analytic KEO for C2H6 was derived. The KEO
should go some way towards combatting the dimensionality issue due to its more
compact nature. The symmetries of C2H6 were also utilised substantially in trove’s
symmetrisation procedure.

The structure of this thesis is as follows: Chapter 2 reviews the necessary background
knowledge required for the other Chapters. It contains a more thorough description of
the work flow of Figure 1.0.1 and, in particular, the unique steps in trove. There is also
a focus on the calculation of a KEO in general, with the analytic KEO implementation in
trove detailed in Chapter 3. Finally, basic results from the theory of finite groups and
how they pertain to rovibrational calculations are provided. Following those chapters,
Chapter 4 discusses the marvelised H2CS line list recently computed. The H2CS marvel
project and the line list were covered in Refs. [1] and [2], respectively, and form the
basis of the chapter. An application of group theory for trove’s triatomic molecule
implementation is described in Chapter 5. It is predominately based on the work in
Ref. [3]. Chapter 6, taken primarily from Ref. [4], examines the possible BF frames
needed to utilise the symmetry of the rotational coordinates, with the example of
CH3Cl. Next, Chapter 7 centres on the C2H6 molecule and describes the application
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of molecular symmetry onto it. It also builds on the work of the previous chapter by
stating alternative BF frames for C2H6. The work is mainly derived from Ref. [5]. Finally,
Chapter 8 concludes this thesis and outlines the next steps in the line list calculation of
C2H6.
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2. Background

Chapter 2

Background

2.1 The rovibronic Hamiltonian

The first step in any line list calculation is the determination of the eigenfunctions and
their eigenenergies. These are found by solving the rovibronic Schrödinger equation

𝐻̂rveΨrve = 𝐸rveΨrve (2.1.1)

where 𝐻̂rve is the rovibronic (rotational-vibrational-electronic) molecular Hamiltonian,
that is, one that ignores the interactions arising from the spins of the particles. In the
lab frame, the rovibronic molecular Hamiltonian for 𝓁 electrons of mass 𝑚e and charge
−𝑒 with coordinates R𝑖 ≡ (R𝑖𝑥 , R𝑖𝑦 , R𝑖𝑧) and N nuclei of charge 𝐶𝛼𝑒 and mass 𝑚𝛼 with
coordinates R𝛼 ≡ (R𝛼𝑥 ,R𝛼𝑦 ,R𝛼𝑧) is given by

𝐻̂rve = − ℏ2

2𝑚e

𝓁∑
𝒾

∇2
𝒾
− ℏ

2

2

N∑
𝛼

∇2
𝛼

𝑚𝛼
+

𝓁∑
𝒾<𝒿

𝑒2

4𝜋𝜀0R𝒾𝒿
+

N∑
𝛼<𝛽

𝐶𝛼𝐶𝛽𝑒2

4𝜋𝜀0R𝛼𝛽
−

𝓁∑
𝒾

N∑
𝛼

𝐶𝛼𝑒2

4𝜋𝜀0R𝒾𝛼
(2.1.2)

where 𝜀0 is the vacuum permittivity, ∇𝒾 is

∇𝒾 = (𝜕/𝜕R𝒾𝑋 , 𝜕/𝜕R𝒾𝑌 , 𝜕/𝜕R𝒾𝑍 ), (2.1.3)

and R𝒾𝒿 is the distance between electrons 𝒾 and 𝒿 and similarly for ∇𝛼 and R𝛼𝛽 and
R𝒾𝛼. The first two terms are the kinetic energy of the electrons and nuclei, respectively,
and the last three are the electron-electron Coulomb interactions, the nucleus-nucleus
Coulomb interactions, and the nucleus-electron Coulomb interactions, respectively.

To separate out the translational motion of the entire molecule with all other motion,
we shift the origin to the nuclear centre of mass Rcm ≡ (Rcm

𝑋 ,Rcm
𝑌 ,Rcm

𝑍 ), whose 𝑋
component is defined by

Rcm
𝑋 =

N∑
𝛼

𝑚𝛼R𝛼𝑋

Mnu
(2.1.4)

where Mnu =
∑

𝛼 𝑚𝛼. The 𝑌 and 𝑍 components are defined similarly. We also define
coordinates relative to the nuclear centre of mass

𝑅𝛼𝑋 = R𝛼𝑋 − Rcm
𝑋 , ℜ𝒾 = R𝒾𝑋 − Rcm

𝑋 (2.1.5)
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where 𝛼 and 𝒾 range over the nuclei and electrons, respectively. The𝑌 and 𝑍 components
are defined similarly.

We can now express the Hamiltonian in terms of the coordinates (Rcm, 𝑅2, . . ., 𝑅N, ℜ1,
. . ., ℜ𝓁) ≡ (Rcm, 𝑅,ℜ) and inter-particle distances. Note that 𝑅1 is eliminated through
the relation

𝑅1 = − 1
𝑚1

N∑
𝛼=2

𝑚𝛼𝑅𝛼 . (2.1.6)

Using the chain rule, the operators 𝜕/𝜕R𝒾 , 𝜕/𝜕R1 , and 𝜕/𝜕R𝛼 (where 𝛼 ≠ 1) can be
expressed in the new coordinates by

𝜕

𝜕R𝒾𝑋
=

𝓁∑
𝒿

𝜕ℜ𝒿𝑋
𝜕R𝒾𝑋

𝜕R𝒾𝑋
𝜕ℜ𝒿𝑋

=
𝜕

𝜕ℜ𝒾𝑋
,

𝜕

𝜕R1𝑋
=

𝓁∑
𝒿

𝜕ℜ𝒿𝑋
𝜕R1𝑋

𝜕

𝜕ℜ𝒿𝑋
+

N∑
𝛽=2

𝜕𝑅𝛽𝑋

𝜕R1𝑋

𝜕

𝜕𝑅𝛽𝑋
+ 𝜕Rcm

𝑋

𝜕R1𝑋

𝜕

𝜕Rcm
𝑋

= − 𝑚1
Mnu

©­«
𝓁∑
𝒿

𝜕

𝜕ℜ𝒿𝑋
+

N∑
𝛽=2

𝜕

𝜕𝑅𝛽𝑋
− 𝜕

𝜕Rcm
𝑋

ª®¬ , (2.1.7)

𝜕

𝜕R𝛼𝑋
=

∑
𝒿

𝜕ℜ𝒿𝑋
𝜕R𝛼𝑋

𝜕

𝜕ℜ𝒿𝑋
+

N∑
𝛽=2

𝜕𝑅𝛽𝑋

𝜕R𝛼𝑋

𝜕

𝜕𝑅𝛽𝑋
+ 𝜕Rcm

𝑋

𝜕R𝛼𝑋

𝜕

𝜕Rcm
𝑋

= − 𝑚𝛼

Mnu

©­«
𝓁∑
𝒿

𝜕

𝜕ℜ𝒿𝑋
+

N∑
𝛽=2

𝜕

𝜕𝑅𝛽𝑋
− 𝜕

𝜕Rcm
𝑋

ª®¬ + 𝜕

𝜕𝑅𝛼𝑋
.

The second order derivatives are

𝜕2

𝜕R2
𝒾𝑋

=
𝜕2

𝜕ℜ2
𝒾𝑋︸︷︷︸

1

,

𝜕2

𝜕R2
1𝑋

=
(
𝑚1
Mnu

)2

©­­­­­­­­­«
𝓁∑
𝒿,𝓀

𝜕2

𝜕ℜ𝒿𝑋𝜕ℜ𝓀𝑋︸              ︷︷              ︸
2

+
N∑

𝛽,𝜂=2

𝜕2

𝜕𝑅𝛽𝑋𝜕𝑅𝜂𝑋︸              ︷︷              ︸
4

+ 𝜕2

𝜕Rcm
𝑋 𝜕Rcm

𝑋︸       ︷︷       ︸
5
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− 2
𝓁∑
𝒿

𝜕2

𝜕ℜ𝒿𝑋𝜕Rcm
𝑋︸               ︷︷               ︸

8

− 2
N∑
𝛽=2

𝜕2

𝜕𝑅𝛽𝑋𝜕R
cm
𝑋︸              ︷︷              ︸

6

+ 2
𝓁∑
𝒿

N∑
𝛽=2

𝜕2

𝜕ℜ𝒿𝑋𝜕𝑅𝛽𝑋︸                    ︷︷                    ︸
7

ª®®®®®®®®®¬
,

𝜕2

𝜕R2
𝛼𝑋

=
(
𝑚𝛼

Mnu

)2

©­­­­­­­­­«
𝓁∑
𝒿,𝓀

𝜕2

𝜕ℜ𝒿𝑋𝜕ℜ𝓀𝑋︸              ︷︷              ︸
2

+
N∑

𝛽,𝜂=2

𝜕2

𝜕𝑅𝛽𝑋𝜕𝑅𝜂𝑋︸              ︷︷              ︸
4

+ 𝜕2

𝜕Rcm
𝑋 𝜕Rcm

𝑋︸       ︷︷       ︸
5

(2.1.8)

− 2
𝓁∑
𝒿

𝜕2

𝜕ℜ𝒿𝑋𝜕Rcm
𝑋︸               ︷︷               ︸

8

− 2
N∑
𝛽=2

𝜕2

𝜕𝑅𝛽𝑋𝜕R
cm
𝑋︸              ︷︷              ︸

6

+2
𝓁∑
𝒿

N∑
𝛽=2

𝜕2

𝜕ℜ𝒿𝑋𝜕𝑅𝛽𝑋︸                  ︷︷                  ︸
7

ª®®®®®®®®®¬
+ 𝜕2

𝜕𝑅2
𝛼𝑋︸︷︷︸

3

− 2𝑚𝛼

Mnu

©­­­­­­­­­«
𝓁∑
𝒿

𝜕2

𝜕𝑅𝛼𝑋𝜕ℜ𝒿𝑋︸             ︷︷             ︸
7

+
N∑
𝛽=2

𝜕2

𝜕𝑅𝛼𝑋𝜕𝑅𝛽𝑋︸             ︷︷             ︸
4

− 𝜕2

𝜕𝑅𝛼𝑋𝜕R
cm
𝑋︸       ︷︷       ︸

6

ª®®®®®®®®®¬
When substituting this into Eq. (2.1.2), terms 1 to 5 appear in the final result and
terms 6 and 7 all sum to zero. Working in the nuclear centre of mass has the
unfortunate effect of introducing term 8 which represent the coupling between the
centre of mass motion and the electronic motion. These terms are dropped, as shall be
explained shortly. With that approximation, the centre of mass terms 5 are decoupled
from the remaining terms and can be omitted in what follows.

The Hamiltonian then becomes

𝐻̂rve = − ℏ2

2𝑚e

𝓁∑
𝒾

∇2
𝒾︸           ︷︷           ︸

𝑇̂0
e

− ℏ2

2Mnu

𝓁∑
𝒾,𝒿

∇𝒾 · ∇𝒿︸                  ︷︷                  ︸
𝑇̂′e
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−ℏ
2

2

N∑
𝛼=2

∇2
𝛼

𝑚𝛼
+ ℏ2

2Mnu

N∑
𝛼,𝛽=2
∇𝛼 · ∇𝛽︸                                     ︷︷                                     ︸

𝑇̂nu

(2.1.9)

+
𝓁∑
𝒾<𝒿

𝑒2

4𝜋𝜀0R𝒾𝒿
−

𝓁∑
𝒾

N∑
𝛼

𝐶𝛼𝑒2

4𝜋𝜀0R𝛼𝒾︸                                       ︷︷                                       ︸
𝑉e,nu

+
N∑

𝛼<𝛽

𝐶𝛼𝐶𝛽𝑒2

4𝜋𝜀0R𝛼𝛽︸          ︷︷          ︸
𝑉nu

where ∇𝒾 is
∇𝒾 = (𝜕/𝜕ℜ𝒾𝑋 , 𝜕/𝜕ℜ𝒾𝑌 , 𝜕/𝜕ℜ𝒾𝑍 ) (2.1.10)

and similarly for ∇𝛼 The underbraced terms 𝑇̂0
e + 𝑇̂′e , 𝑇̂nu,𝑉e, nu, and𝑉nu are the electronic

kinetic energy, nuclear kinetic energy, electron-electron and electron-nucleus Coulomb
interactions, and the nucleus-nucleus Coulomb interactions, respectively.

2.2 The Born-Oppenheimer approximation

Note from Eq. (2.1.9) that, by working in the nuclear centre of mass, 𝑇̂nu and 𝑇̂e are
decoupled and there are no terms which contain derivatives for both types of coordinates.
The only electronic and nuclear coupling is through 𝑉e, nu. Besides that advantage,
however, the current Schrödinger equation remains intractable being a coupled set of
differential equations for 3N + 3𝓁 − 3 coordinates and therefore further transformations
and approximations are necessary.

Since the electronic masses are of the order of 10−3 to 10−4 times the nuclear masses,
the electronic time scales of motion should be 10−3 to 10−4 that of nuclei with comparable
momentum to the electrons. This means that on the electronic time scales of motion,
the nuclei can be considered stationary. This is the essence of the Born-Oppenheimer
(BO) approximation [56]. Quantitatively, the rovibronic Hamiltonian’s eigenfunction Ψrve
is expressed as a product of two terms Ψrve = Ψe(ℜ;𝑅)Ψnu(𝑅) where the electronic
component Ψe is a function of the electronic coordinates ℜ explicitly and a function of
the nuclear coordinates 𝑅 only parametrically.

Applying the rovibronic Hamiltonian to this function, we obtain

Ψnu(𝑇̂0
e + 𝑇̂′e +𝑉e +𝑉e, nu)Ψe +Ψe(𝑇̂nu +𝑉nu)Ψnu = 𝐸rveΨrve. (2.2.1)

The action of 𝑇̂nu on Ψe(ℜ;𝑅) is omitted as this is the term arising due to the nuclear
motion on the electronic solution of the Schrödinger equation and by the above discussion
should be zero. Moreover, the term in 𝑇̂′e contains a factor 1/Mnu compared to the first
whose is 1/𝑚e. Their ratio is the same as the ratio of electronic and nuclear time scales
of motion, so the second term can be neglected under the BO approximation ordinarily.
Likewise, the coupling between the centre of mass and the electronic motion contained
the same factor so was dropped in 8 Eq. (2.1.9). On the other hand, the first and second
terms in 𝑇̂nu have a ratio of 10−1 to 10−2 and therefore both terms should be included.
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From the nuclei’s perspective, a change in their position results in a virtually
instantaneous adjustment of the electronic position. Because the only coupling the
nuclei have with the electrons is through the Coulomb interaction, this effectively results
in a potential experienced by the nuclei. The first term in brackets in Eq. (2.2.1) is a
Hamiltonian which can be solved for different nuclear positions to find the electronic
eigenenergy 𝑉e(𝑅) as a function of nuclear positions. That is, the solution satisfies

(𝑇̂e +𝑉e +𝑉e, nu)Ψe = 𝑉e(𝑅)Ψe. (2.2.2)

Many methods exist for solving these equations, such as coupled-cluster [57],
configuration interaction [58], multi-reference configuration interaction [59], and Møller-
Plesset perturbation theory [60]. All expand on the Hartree-Fock method [61, 62], and
are iterative solutions, known as self-consistent field approaches, which take an initial
guess for the eigenfunctions and use a derived equation to create a new solution. This
solution is then the new starting function and the process is repeated until it converges
to a stable solution. Further details for these methods can be found in the provided
references.

Once a sufficiently large set of energies – which arise from the nucleus-nucleus
interactions plus the electronic potential – is found on the grid of nuclear positions, the
energies can be fitted to an analytic function. This fit is known as the ab initio potential
energy surface (PES) which is denoted here by 𝑉e(𝑅) +𝑉nu. After substituting this into
Eq. (2.2.1) and integrating out Ψe, it becomes the nuclear Schrödinger equation:

(𝑇̂nu +𝑉e(𝑅) +𝑉nu)Ψnu = 𝐸rveΨnu. (2.2.3)

trove uses a variational approach to solve this equation. Briefly, a Hamiltonian
matrix is built from a suitable (symmetry-adapted) basis set and then diagonalised. The
matrix’ eigenvectors are the rovibrational states and the eigenvalues are their energies.
Section 2.7 discusses this in more detail. For the molecules in question in this thesis, the
ground state potential energy surfaces and also the dipole moment surfaces, defined in
Eq. (2.3.8), were calculated with the coupled cluster method.

2.3 Intensity calculations

2.3.1 Line intensity

In the presence of a weak external electromagnetic (EM) field, there is a probability
that a molecule in state Ψ𝑖 with energy 𝐸𝑖 will absorb a photon of frequency 𝜈𝑖 𝑓 and
transition to state Ψ 𝑓 with energy 𝐸 𝑓 . This section will derive the equations for various
quantities related to the interaction of a weak EM field with matter, most crucially the
well-defined Einstein A coefficients which give the probability of spontaneous decay per
unit time from Ψ 𝑓 to Ψ𝑖 .

To begin [63], in thermodynamic equilibrium, the upper state occupancy is static,
i.e. d𝒩𝑓

/
d𝑡 = 0, where𝒩𝑓 is the number of molecules in state Ψ 𝑓 . For the transition

between Ψ𝑖 and Ψ 𝑓 there are three possibilities: the EM field stimulates a transition
from Ψ𝑖 to Ψ 𝑓 , or vice versa, and the molecule in state Ψ 𝑓 spontaneously decays to
Ψ𝑖 . We assume that the rate of stimulated emission/absorption is proportional to the
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field’s energy density at the frequency 𝜈𝑖 𝑓 of the emitted/absorbed photon. The above
is expressed by the equation

d𝒩𝑓

d𝑡 = 𝜌𝜈(𝜈𝑖 𝑓 )𝒩𝑖𝐵𝑖 𝑓 − 𝜌𝜈(𝜈𝑖 𝑓 )𝒩𝑓 𝐵 𝑓 𝑖 −𝒩𝑓𝐴 𝑓 𝑖 = 0 (2.3.1)

where 𝜌𝜈(𝜈𝑖 𝑓 ) is the radiation’s spectral energy density (energy density per frequency),
and 𝐴 𝑓 𝑖 is the aforementioned Einstein A coefficient while 𝐵𝑖 𝑓 and 𝐵 𝑓 𝑖 are the Einstein B
coefficients for stimulated absorption and emission, respectively. The spectral energy
density is assumed to be due to a black body. Solving for 𝜌𝜈(𝜈𝑖 𝑓 ) and noting that 𝒩𝑓
and𝒩𝑖 follow the Boltzmann distribution, we obtain

𝜌𝜈(𝜈𝑖 𝑓 ) =
𝐴 𝑓 𝑖

𝐵𝑖 𝑓 𝑒 ℎ𝜈𝑖 𝑓 /𝑘𝐵𝑇 − 𝐵 𝑓 𝑖
(2.3.2)

which, when compared to Planck’s radiation law, provides us with the relations 𝐵𝑖 𝑓 = 𝐵 𝑓 𝑖
and

𝐴 𝑓 𝑖 =
8𝜋ℎ𝜈3

𝑖 𝑓

𝑐3 𝐵 𝑓 𝑖 . (2.3.3)

Next we will determine the Einstein B coefficients. In a weak EM field [64], so that
the vector potential 𝑨 is small and so 𝑨 ·𝑨 can be neglected, the perturbing Hamiltonian
on a particle of charge 𝐶𝑒 is given by (assuming the Coulomb gauge)

𝐻̂′ = −𝐶𝑒
𝑚

𝑷̂ · 𝑨 (2.3.4)

where 𝑷̂ is the momentum operator. We set the vector potential 𝑨 as a sum over waves,
i.e. to the form

𝑨(𝑹, 𝑡) =
∑
𝑗

𝑨0(𝜔 𝑗) cos
(
𝒌 𝑗 · 𝑹 − 𝜔 𝑗𝑡

)
=

∑
𝑗

𝑨0(𝜔 𝑗)
2 [𝑒 𝑖(𝒌 𝑗 ·𝑹−𝜔 𝑗 𝑡) + 𝑒−𝑖(𝒌 𝑗 ·𝑹−𝜔𝑗 𝑡)]. (2.3.5)

where the sum is over amplitudes 𝑨0(𝜔 𝑗) and wavenumbers 𝒌 𝑗 . In the so-called electric
dipole approximation, the transition wavelength is assumed to be much larger than the
particle’s size so that 𝒌 ·𝑹 is approximately constant along the atomic size and can be set
to zero. Coupled with Fermi’s Golden Rule, the average transition rateℛ𝑖 𝑓 is given by

ℛ𝑖 𝑓 =
∑
𝑗

(
𝜋2

ℎ2

����𝐶𝑒𝑚 ⟨Ψ 𝑓 |𝑨0(𝜔 𝑗) · 𝑷̂ |Ψ𝑖⟩
����2 (𝛿(𝜈𝑖 𝑓 − 𝜈𝑗) + 𝛿(𝜈𝑖 𝑓 + 𝜈𝑗))

)
. (2.3.6)

where, as the light is incoherent, it is the sum of squared amplitudes rather than the
square of the sum of amplitudes. The squared amplitudes are known as transition
moments.

Consider the first half of term 𝑗 of Eq. (2.3.6). With 𝑷̂ = −𝑖𝑚[𝐻̂0,𝑹]/ℏ we can write
it as

𝜋2

ℎ2

��⟨𝜓 𝑓 |𝜔 𝑗𝑨0 · 𝐶𝑒𝑹 |𝜓𝑖⟩
��2 𝛿(𝜈𝑖 𝑓 − 𝜈𝑗). (2.3.7)
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where, due to the delta function, we made the substitution 2𝜋𝜈𝑖 𝑓 = 𝜔𝑖 𝑓 = 𝜔 𝑗 . Using
that 𝑬 = − 𝜕𝑨/𝜕𝑡 we have 𝜔 𝑗𝑨0(𝜔 𝑗) = 𝑬0(𝜔 𝑗). The interaction Hamiltonian becomes
𝑬0(𝜔 𝑗) · 𝐶𝑒𝑹. Generalised to a molecule, the interaction is

𝑬0(𝜔 𝑗) ·
∑
𝑖

𝐶𝑖𝑒𝑹𝑖︸     ︷︷     ︸
𝝁

= 𝑬0(𝜔 𝑗) · 𝝁 (2.3.8)

where 𝝁 is called the dipole moment as it is reminiscent of the classical dipole moment.
The sum is over all electrons and nuclei, temporarily pausing our notation that 𝑅 stands
for nuclei only.

As the light is incoherent, 𝑬0(𝜔 𝑗) has a random polarisation vector 𝑷. The transition
moment will contain factors such as 𝑃𝑋𝑃𝑌 whose average over a uniform distribution is
zero and 𝑃𝑋𝑃𝑋 whose average is 1/3. The average transition rate for this term therefore
becomes

𝜋2𝑬0(𝜔 𝑗) · 𝑬0(𝜔 𝑗)
3ℎ2

∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2𝛿(𝜈𝑖 𝑓 − 𝜈𝑗) (2.3.9)

where the sum 𝐹 is over the three Cartesian coordinate components of the dipole
moment. We desire to substitute the squared electric field amplitude for the spectral
energy density 𝜌𝜔(𝜔 𝑗). The energy density of the full field, given by ⟨𝜀0𝑬 ·𝑬⟩ [65], where
𝜀0 is the vacuum permittivity and the average is over time, is

⟨𝜀0𝑬 · 𝑬⟩ =
〈∑
𝑗𝑘

𝜀0
𝑬0(𝜔 𝑗) · 𝑬0(𝜔𝑘)

2
(
cos

(
𝜔 𝑗𝑡 − 𝜔𝑘𝑡

) + cos
(
𝜔 𝑗𝑡 + 𝜔𝑘𝑡

) )〉
=

∑
𝑗𝑘

𝜀0
𝑬0(𝜔 𝑗) · 𝑬0(𝜔𝑘)

2
( 1

2𝛿 𝑗 ,𝑘 + 1
2𝛿 𝑗 ,−𝑘

)
=

∑
𝑗

𝜀0
𝑬0(𝜔 𝑗) · 𝑬0(𝜔 𝑗)

2 using 𝑬0(𝜔 𝑗) = 𝑬0(−𝜔 𝑗)

=
∑
𝜔𝑗>0

𝜀0𝑬0(𝜔 𝑗) · 𝑬0(𝜔 𝑗)

=
∑
𝜔𝑗>0

𝜀0𝑬0(𝜔 𝑗) · 𝑬0(𝜔 𝑗)
Δ𝜔

Δ𝜔 =
∑
𝜔𝑗>0

𝜌𝜔(𝜔 𝑗)Δ𝜔.

(2.3.10)

The spectral energy density is thus 𝜀0𝑬0(𝜔 𝑗) ·𝑬0(𝜔 𝑗)/Δ𝜔. Substituting this into Eq. (2.3.9)
and restricting the sum to 𝜔 𝑗 > 0 by doubling the value, we obtain

ℛ𝑖 𝑓 =
∑
𝜔𝑗>0

2𝜋2𝜌𝜔(𝜔 𝑗)Δ𝜔
3ℎ2𝜀0

∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2(𝛿(𝜈𝑖 𝑓 − 𝜈𝑗) + 𝛿(𝜈𝑖 𝑓 + 𝜈𝑗))

=
∑
𝜈𝑗>0

2𝜋2𝜌𝜈(𝜈𝑗)Δ𝜈
3ℎ2𝜀0

∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2𝛿(𝜈𝑖 𝑓 − 𝜈𝑗) + 𝛿(𝜈𝑖 𝑓 + 𝜈𝑗)).
(2.3.11)
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Taking the limit limΔ𝑣→0
∑
𝑖 Δ𝜈 =

∫
d𝜈 and performing the integral, the rateℛ𝑖 𝑓 is

ℛ𝑖 𝑓 =
2𝜋2𝜌𝜈(𝜈𝑖 𝑓 )

3ℎ2𝜀0

∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2. (2.3.12)

This is the rate of absorption. The rate of emission is the same except 𝜔𝑖 𝑓 is replaced by
𝜔 𝑓 𝑖 , and we therefore must take the second term of Eq. (2.3.6). We deduce the Einstein
A coefficient [66]

𝐴𝑖 𝑓 =
16𝜋3𝜈3

𝑖 𝑓

3ℎ𝜀0𝑐3

∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2. (2.3.13)

The term
∑
𝐹 |⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2 is known as the line strength.

Now we can determine the line intensity. According to the theory of radiative transfer
[67], for the isotropic field the reduction in the spectral intensity 𝐼𝜈(𝜈) (the energy per
unit area per unit time per unit frequency) when the radiation crosses a distance d𝑧
through a molecular gas is given by

d𝐼𝜈(𝜈) = −𝜎(𝜈)𝐼𝜈(𝜈)d𝑧 (2.3.14)

where 𝜎(𝜈) is the cross section with dimension length squared and has the interpretation
as the “area” of molecules which impede the radiation transfer. Solving this equation
for 𝐼𝜈(𝜈) gives

𝐼𝜈(𝜈) = 𝐼0𝑒−𝜎(𝜈)𝑧 = 𝐼0𝑒−𝑐
∗𝛼(𝜈)𝑧 . (2.3.15)

where 𝑐∗ is the molecular concentration and 𝛼(𝜈) is the absorption coefficient.
All that remains is to find the function 𝛼(𝜈). d𝐼𝜈(𝜈) has units of energy per area and

is the amount of energy lost when the radiation crosses a distance d𝑧. The amount
lost from the 𝑖 to 𝑓 transition will be the energy per transition ℎ𝜈𝑖 𝑓 multiplied by the
number of molecules in the initial state and the probability of a transition. The latter
will be 𝜌𝜈(𝜈)𝐵𝑖 𝑓 𝑔(𝜈 − 𝜈𝑖 𝑓 )where 𝑔(𝜈 − 𝜈𝑖 𝑓 ) is a lineshape function peaked at 𝜈𝑖 𝑓 and is
unity under integration. It specifies the “spread” of the line width. The origin of this
probability is explained in Section 2.3.2. The spectral energy density can be replaced by
the spectral intensity with 𝜌𝜈(𝜈) = 𝐼𝜈(𝜈)/𝑐 [68] so that

d𝐼𝜈(𝜈) = 1
A

ℎ𝜈𝑖 𝑓
𝑐
𝐼𝜈(𝜈)(𝒩𝑓 −𝒩𝑖)𝐵𝑖 𝑓 𝑔(𝜈 − 𝜈𝑖 𝑓 ) (2.3.16)

where A is the area under consideration. 𝒩𝑓 can be written as 𝑐∗A𝑒−𝐸 𝑓 /𝑘𝐵𝑇/𝑄(𝑇)d𝑧
where 𝑄(𝑇) is the partition function; likewise for𝒩𝑖 . The line intensity for the transition
is defined as

𝐼(𝑖 → 𝑓 ) =
∫

𝛼(𝜈)d𝜈 =
2𝜋2𝜈𝑖 𝑓 𝑒−𝐸𝑖/𝑘𝐵𝑇

3ℎ𝑐𝜀0𝑄(𝑇)
∑
𝐹

|⟨Ψ 𝑓 |𝜇𝐹 |Ψ𝑖⟩|2
[
1 − exp

(−ℎ𝜈𝑖 𝑓
𝑘𝐵𝑇

)]
. (2.3.17)

2.3.2 Line broadening

As mentioned above, absorption lines include the lineshape profile. Lines are never
sharp as there are various mechanisms which broaden them in reality. Intrinsic to the
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system is the lifetime or natural broadening from the spontaneous decay. The lines take on
the characteristic Lorentz profile. The origin of this can be glimpsed by modifying the
derivation of Fermi’s golden rule by using the equation

¤𝑐 𝑓 (𝑡) = − 𝑖ℏ ⟨Ψ 𝑓 |𝐻̂′|Ψ𝑖⟩𝑒 𝑖(𝜔 𝑓 𝑖−𝜔)𝑡 − Γ𝑁
2 𝑐 𝑓 (𝑡) (2.3.18)

where 𝑐 𝑓 (𝑡) is the (time dependant) coefficient of Ψ 𝑓 for the eigenfunction Ψ(𝑡). A
term −Γ𝑁

2 𝑐 𝑓 (𝑡) is added to represent spontaneous decay of rate Γ𝑁/2 proportional to the
upper state’s “occupancy” 𝑐 𝑓 (𝑡). This can be solved for the probability 𝑃 𝑓 for 𝑡 → ∞
where we obtain

𝑃 𝑓 =
1
ℏ2 |⟨Ψ 𝑓 |𝐻̂′(𝑡)|Ψ𝑖⟩|2 1

(Γ𝑁/2)2 + (Δ𝜔)2 (2.3.19)

where Δ𝜔 = (𝜔 𝑓 𝑖 − 𝜔) and the probability distribution has the expected Lorentz profile.
In fact, Γ𝑁 = 𝐴 𝑓 𝑖 and the division by two in Eq. (2.3.19) was because we anticipated the
necessity to square an exponential to obtain the probability from the coefficient.

In practice, lifetime broadening’s effect on the profile can be neglected as it is dwarfed
by two other effects, the first of which is collisional broadening. The perturbing interactions
between neighbouring molecules can reduce the upper state lifetime (increasing 𝐴 𝑓 𝑖)
and thus further broaden the line profile. Moreover, the interactions may also shift the
line peak to 𝜈𝑖 𝑓 + Δ = 𝜈̃𝑖 𝑓 . Both effects can be expressed by the (normalised) profile

𝐿(𝜔 − 𝜔̃ 𝑓 𝑖) = 1
𝜋

Γ𝐶/2
(Γ𝐶/2)2 + (𝜔 − 𝜔̃ 𝑓 𝑖)2 (2.3.20)

where Γ𝐶 is the collisionally broadened decay rate.
The other major type, Doppler broadening, is of a different origin and has a different

concomitant profile. This arises as the frequency of the incident light onto the molecule
is modulated by the molecule’s motion relative to the radiation source. If we consider
only the effect in one dimension, the frequency and velocity distributions are related by

𝑃𝜈(𝜈)d𝜈 = 𝑃𝑣(𝑣)d𝑣d𝜈d𝜈 (2.3.21)

where 𝑣 is the molecule’s relative velocity. As the molecular velocities are non-relativistic,
the incident and observed frequencies are related to the velocity via

𝜈 = 𝜈𝑖 𝑓
(
1 + 𝑣

𝑐

)
(2.3.22)

which, when solved for 𝑣 and substituted into Eq. (2.3.21), and noting that the velocity
distribution 𝑃𝑣(𝑣) is given by the Maxwell distribution, results in

𝑃𝜈(𝜈 − 𝜈𝑖 𝑓 ) = 𝐷(𝜈 − 𝜈 𝑓 𝑖) = 𝑐
𝜈 𝑓 𝑖

√
𝑚

2𝜋𝑘𝑇 exp

(
−𝑚𝑐

2(𝜈 − 𝜈 𝑓 𝑖)2
2𝑘𝑇𝜈2

𝑖 𝑓

)
(2.3.23)

which is a Gaussian of full width at half maximum

Γ𝐷 =

√
8𝑘𝑇 ln 2
𝑚𝑐2 𝜈𝑖 𝑓 . (2.3.24)
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To combine the two effects, they are approximated as independent processes. In
this way, once the perturbing interactions which cause the collisional broadening are
accounted for, further broadening due to the Doppler shift is applied. Mathematically,
this is a convolution of the two profiles, defined by

𝑉(𝜈) =
∫ ∞

−∞
𝐷(𝜈′)𝐿(𝜈 − 𝜈′)d𝜈′ (2.3.25)

called a Voigt profile. To derive this, consider a collisionally broadened transition with
frequency in the range [𝜈′𝑗 + 𝜈̃𝑖 𝑓 , 𝜈′𝑗 + 𝜈̃𝑖 𝑓 + Δ𝜈′]. In the absence of Doppler broadening,
this transition has a probability 𝐿(𝜈′𝑗)Δ𝜈′. With Doppler broadening, the transition is
spread so that the probability 𝑉𝑖(𝜈) of a transition at 𝜈 + 𝜈̃𝑖 𝑓 becomes

𝑉𝑗(𝜈) = 𝐷(𝜈 − 𝜈′𝑗)𝐿(𝜈′𝑗)Δ𝜈′. (2.3.26)

Summing over all 𝑗 and taking the limit limΔ𝜈′→0
∑
𝑗 Δ𝜈

′ =
∫

d𝜈′ we obtain

𝑉(𝜈) =
∫ ∞

−∞
𝐷(𝜈 − 𝜈′)𝐿(𝜈′)d𝜈′. (2.3.27)

Changing the integration variable to 𝜈 − 𝜈′ and using that 𝐿 is symmetric about 0, one
obtains Eq. (2.3.25).

2.4 The kinetic energy operator in curvilinear coordinates

2.4.1 General form

As explained in Section 2.2, within the BO approximation, deriving the nuclear Hamil-
tonian involves building both the PES and the kinetic energy operator (KEO). For the
molecules considered in this work, the construction of the PESs was performed by
others, and they will not be discussed in any substantial detail. As described in this
thesis, trove was significantly updated to enable rovibrational calculations in other
coordinates types. In particular, valence coordinates were utilised and were used in
transforming Eq. (2.2.3) expressed in Cartesian coordinates to the desired form.

This section is a lengthy one, and contains a comprehensive derivation of Sørensen’s
KEO expressed with arbitrary vibrational coordinates [69]. Much of the material also
uses Ref. [70], but here those results are in the context of Ref. [69]. The aim is for the
procedure to be totally self contained, bridge the gap between the two publications, and
(hopefully) illuminate some of the choices made in these transformations. Appendix 2.A
lists some of the frequently used results in the derivation, and in fact elsewhere in this
thesis.

The most significant first step is to express the Hamiltonian in Eq. (2.2.3) in terms
of coordinates which separate the molecule’s rotational orientation with the nuclei’s
internal or vibrational motion. The is because the Coulomb terms are invariant under an
overall molecular rotation and translation but this is not evident in 𝑉nu. The potential is
a function of the 3N coordinates; only 3N−6 are required. Consequently, the original 3N
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nuclear Cartesian coordinates R ≡ (R1, . . . ,RN) are replaced by the three nuclear centre
of mass coordinates Rcm, 3N − 6 vibrational coordinates 𝑞 ≡ (𝑞1, . . . , 𝑞3N−6), and three
angular coordinates Ξ ≡ (𝜙, 𝜃, 𝜒). Collectively, these shall be called the generalised
coordinates with symbol 𝜉 ≡ (Rcm,Ξ, 𝑞). The potential energy is only a function of
the vibrational coordinates. The angular coordinates effectively specify the overall
orientation of the nuclei.

Before pressing forward, we must backtrack somewhat: in its present form, the
term 𝑇̂nu is inconvenient as the sum begins at 𝛼 = 2. The vibrational coordinates 𝑞
are easier to express in terms of the entire set of Cartesian coordinates R. We will
therefore go back to the nuclear kinetic energy in the R coordinates and transform it to
the vibrational, angular, and centre of mass coordinates simultaneously. If the nuclear
kinetic energy alone in R (the second term in Eq. (2.1.2)) were expressed in the (𝑅,Rcm)
coordinates by essentially ignoring the electronic coordinates, then the result would be
𝑇̂nu + 1/Mnu∇2

cm, or terms 3 to 5 of Eq. (2.1.8). In Section 2.2, term 5 was omitted.
It is restored and the nuclear kinetic energy is transformed back into the second term in
Eq. (2.1.2). It is then transformed into the generalised coordinates without regard for the
electronic coordinates. This transformation into generalised coordinates inadvertently
introduces coupling terms involving the electronic coordinates. However, they, like the
other coupling terms which are ignored, have coefficients containing 1/𝑚𝛼 and can be
dropped for the same reasons. Appendix 2.I provides a justification for this, but we
advise that this be read after Section 2.4.

Accompanying the various coordinates used are several molecular frames from
which the Cartesian coordinates are measured. The position vector of nucleus 𝛼 from
the nuclear centre of mass will be denoted 𝑹𝛼. We use a rotationally-fixed (RF) frame
whose origin is at the nuclear centre of mass (COM) and whose axes have a fixed
direction in space and a body-fixed (BF) frame whose axes rotate with the molecule in
some predetermined fashion. The RF and BF unit vectors will be denoted by 𝒆̂𝐹 and
𝒆̂𝑔 , that is, upper-case subscripts are RF unit vectors and lower-case are BF unit vectors.
Then, the coordinates of a position vector in each frame are

𝑅𝛼𝐹 = 𝑹𝛼 · 𝒆̂𝐹 , 𝑟𝛼𝑔 = 𝑹𝛼 · 𝒆̂𝑔 . (2.4.1)

and 𝑅𝛼 is the set of Cartesian coordinates (𝑅𝛼𝑥 , 𝑅𝛼𝑦 , 𝑅𝛼𝑧) for nucleus 𝛼. A list of
components will be denoted as (𝑅1, . . . , 𝑅N) ≡ 𝑅.

The position vectors at the COM are expressed in terms of the vibrational and
angular coordinates, i.e. 𝑹𝛼(𝜙, 𝜃, 𝜒, 𝑞1, . . . , 𝑞3N−6) ≡ 𝑹𝛼(Ξ, 𝑞). The first three angular
coordinates are in fact the Euler angles which specify the orientation of the BF frame
with respect to the RF frame [71]. We use the standard definition of the Euler angles
which involves first rotating the BF frame by 𝜙 about the BF 𝑧 axis (which is also the RF
𝑍 axis initially), then rotating the BF frame by 𝜃 about the BF 𝑦 axis, and finally by 𝜒
about the BF 𝑧 axis. All rotations are counter-clockwise (right handed). See Figure 2.4.1.
With this definition the coordinates 𝑅𝛼 in the RF frame are given by

𝑅𝛼(𝜙, 𝜃, 𝜒, 𝑞1, . . . , 𝑞3N−6) = 𝑀𝑧(𝜙)𝑀𝑦(𝜃)𝑀𝑧(𝜒)𝑟𝛼(𝑞1, . . . , 𝑞3N−6) ≡ 𝑀𝑟𝛼(𝑞) (2.4.2)
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where

𝑀𝑧(𝜙) = ©­«
cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

ª®¬ ,
𝑀𝑦(𝜃) = ©­«

cos𝜃 0 sin𝜃
0 1 0

− sin𝜃 0 cos𝜃

ª®¬ ,
𝑀𝑧(𝜒) = ©­«

cos 𝜒 − sin 𝜒 0
sin 𝜒 cos 𝜒 0

0 0 1

ª®¬ ,
(2.4.3)

and 𝑟𝛼 are the coordinates of 𝑹𝛼 in the BF frame.

𝜙
𝑥

𝑦

𝑧

𝜃

𝑥′

𝑦′𝑧′

(a) The first two Euler angles 𝜙 and 𝜃
which are essentially angles defining
the spherical coordinates. The first
rotation of 𝜙 is about the 𝑧 axis of both
the RF and BF frame which initially
coincide. The BF frame is then rotated
by 𝜃 about the BF 𝑦 axis or the 𝑦′ axis
of the figure.

𝑥
𝑦

𝑧

𝜒
𝑥′′

𝑦′′

𝑧′

(b) The final Euler angle 𝜒 is due to a
rotation about the BF 𝑧 axis or the 𝑧′
axis of the figure.

Figure 2.4.1: A visual representation of the Euler angles.

The KEO, under the change of coordinates, transforms as

𝑇̂nu = −ℏ
2

2

∑
𝛼𝐹

1
𝑚𝛼

𝜕2

𝜕R2
𝛼𝐹

= −ℏ
2

2

∑
𝑎,𝑏

∑
𝛼𝐹

1
𝑚𝛼

𝜕𝜉𝑎
𝜕R𝛼𝐹

𝜕

𝜕𝜉𝑎

𝜕𝜉𝑏
𝜕R𝛼𝐹

𝜕

𝜕𝜉𝑏
. (2.4.4)

We will adopt the notation 𝜕𝑎 = 𝜕/𝜕𝜉𝑎 , 𝜕𝛼𝐹𝜉𝑎 = 𝜕𝜉𝑎/𝜕R𝛼𝐹 , and 𝜋̂𝑎 = −𝑖ℏ𝜕𝑎 . We will
also assume that summation over repeated indices – besides the nuclear masses – is
implied. Then Eq. (2.4.4) is more concisely

𝑇̂nu = −ℏ
2

2

∑
𝛼

1
𝑚𝛼
(𝜕𝛼𝐹𝜉𝑎)𝜕𝑎(𝜕𝛼𝐹𝜉𝑏)𝜕𝑏

= 1
2

∑
𝛼

1
𝑚𝛼
(𝜕𝛼𝐹𝜉𝑎)𝜋̂𝑎(𝜕𝛼𝐹𝜉𝑏)𝜋̂𝑏 ,

(2.4.5)
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where 𝑎, 𝑏, and 𝐹 are summed over. A more convenient expresion for the Laplacian in
generalised coordinates is:

𝑇̂nu = 1
2J
−1𝜋̂𝑎JG𝑎𝑏𝜋̂𝑏 (2.4.6)

where
G𝑎𝑏 =

∑
𝛼

1
𝑚𝛼

𝜕𝜉𝑎
𝜕R𝛼𝐹

𝜕𝜉𝑏
𝜕R𝛼𝐹

=
∑
𝛼

1
𝑚𝛼
(𝜕𝛼𝐹𝜉𝑎)(𝜕𝛼𝐹𝜉𝑏). (2.4.7)

and is called the G matrix, while

J =

����det
({

𝜕R𝛼𝐹

𝜕𝜉𝑎

})���� = | det({𝜕𝑎R𝛼𝐹})|, (2.4.8)

is the Jacobian of the coordinate transformation. Again we have the notation 𝜕𝑎R𝛼𝐹 =
𝜕R𝛼𝐹/𝜕𝜉𝑎 . The equivalence of the two expressions is shown in Appendix 2.B.

This can be written in terms of Hermitian operators 𝜋̂H
𝑎 defined by

𝜋̂H
𝑎 = 1

2(𝜋̂𝑎 + 𝜋̂†𝑎) (2.4.9)

where 𝜋̂†𝑎 is the adjoint of 𝜋̂𝑎 . Now, 𝜋̂†𝑎 = J−1𝜋̂𝑎J. This is demonstrated using integration
by parts as follows: if we assume that, for the functions 𝜓∗ (the complex conjugate of 𝜓)
and 𝜑, J𝜓∗𝜑 vanishes on the boundary, then∫

J𝜓∗(𝜋̂𝑎𝜑)d𝜉 = −
∫

𝜑(𝜋̂𝑎J𝜓∗)d𝜉

=
∫

J𝜑(J−1𝜋̂𝑎J𝜓)∗ d𝜉
(2.4.10)

where 𝜋̂∗𝑎 = −𝜋̂𝑎 was used. By definition, the adjoint is defined by∫
J𝜓∗(𝜋̂𝑎𝜑)d𝜉 =

∫
J𝜑(𝜋̂†𝑎𝜓)∗ d𝜉 (2.4.11)

from which we identify 𝜋̂†𝑎 = J−1𝜋̂𝑎J and

𝑇̂nu = 1
2 𝜋̂
†
𝑎G𝑎𝑏𝜋̂𝑏 . (2.4.12)

With this,
𝜋̂†𝑎 = 𝜋̂𝑎 +Λ𝑎 where Λ𝑎 = (J−1𝜋̂𝑎J), (2.4.13)

the brackets signifying that 𝜋̂𝑎 only acts on J. Then

𝜋̂𝑎 = 𝜋̂H
𝑎 − 1

2Λ𝑎 ,

𝜋̂†𝑎 = 𝜋̂H
𝑎 + 1

2Λ𝑎
(2.4.14)

and the Eq. (2.4.6) is more symmetrically written as

𝑇̂nu = 1
2(𝜋̂H

𝑎 + 1
2Λ𝑎)G𝑎𝑏(𝜋̂H

𝑏 − 1
2Λ𝑏). (2.4.15)

and 𝜋̂H
𝑎 can also be expressed as

𝜋̂H
𝑎 = J−1/2𝜋̂𝑎J1/2. (2.4.16)
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2.4.2 𝑠 and 𝑡 vectors

To progress further, we must delve more deeply into the structure of the G matrix. It is
constructed from the derivatives into our chosen coordinates

𝜕

𝜕R𝛼𝐹
=

𝑚𝛼

Mnu

𝜕

𝜕Rcm
𝐹
+

∑
𝑘

𝜕𝑞𝑘
𝜕R𝛼𝐹

𝜕

𝜕𝑞𝑘
+

∑
𝑔

𝜕Ξ𝑔

𝜕R𝛼𝐹

𝜕

𝜕Ξ𝑔

=
𝑚𝛼

Mnu

𝜕

𝜕Rcm
𝐹
+ (𝜕𝛼𝐹𝑞𝑘)𝜕𝑘 + (𝜕𝛼𝐹Ξ𝑔)𝜕𝑔

(2.4.17)

where Ξ𝑔 labels the Euler angles and the second line used the previously introduced
notation. We label vibrational coordinates with {𝑘, 𝑘′} and rotational coordinates with
several letters including 𝑔, ℎ, 𝑙, and 𝑓 . Summation over the vibrational and rotational
coordinates is implied and separate.

While the vibrational coordinates are defined in terms of the Cartesian coordinates
(both R and 𝑅), the Euler angles are not. This leads to a difficulty in evaluating the
derivatives of the Euler angles. One possibility, based on the matrix 𝜕𝜉𝑎/R𝛼𝐹 with
indices 𝑎 and 𝛼𝐹, is to construct the matrix 𝜕R𝛼𝐹/𝜕𝜉𝑎 , which satisfies, by the chain rule

(𝜕𝑎R𝛼𝐹)(𝜕𝛼𝐹𝜉𝑏) = 𝛿𝑎𝑏 , (𝜕𝛼𝐹𝜉𝑎)(𝜕𝑎R𝛽𝐺) = 𝛿𝛼𝛽𝛿𝐹𝐺 , (2.4.18)

i.e. it is the inverse of 𝜕𝜉𝑎/𝜕R𝛼𝐹 and contains derivatives which can all be evaluated. This
3N by 3N matrix is inverted to obtain the desired one. However, that is computationally
intensive, and does not take advantage of the derivatives 𝜕𝑞𝑘/𝜕R𝛼𝐹 = 𝜕𝑞𝑘/𝜕𝑅𝛼𝐹 which
can be evaluated.

The Sørensen approach resolves this dilemma with a clever method that constructs
the required derivatives and only involves inverting a much smaller 3 by 3 matrix. To
outline it, we adopt his notation. The derivatives of the Cartesian coordinates with
respect to generalised coordinates are known as the 𝑡 vectors, while the derivatives of
the generalised coordinates with respect to the Cartesian coordinates are the 𝑠 vectors.
Specifically,

𝑠𝑘,𝛼𝐹 =
𝜕𝑞𝑘
𝜕R𝛼𝐹

=
𝜕𝑞𝑘
𝜕𝑅𝛼𝐹

(vibrations), (2.4.19)

𝑡𝑘,𝛼𝐹 =
𝜕R𝛼𝐹

𝜕𝑞𝑘
=

𝜕𝑅𝛼𝐹

𝜕𝑞𝑘
= 𝑀𝐹 𝑓

𝜕𝑟𝛼 𝑓
𝜕𝑞𝑘

(vibrations), (2.4.20)

𝑠𝐹,𝛼𝐺 =
𝜕Rcm

𝐹

𝜕R𝛼𝐺
=

𝑚𝛼

Mnu
𝛿𝐹𝐺 (translations), (2.4.21)

𝑡𝐹,𝛼𝐺 =
𝜕R𝛼𝐹

𝜕Rcm
𝐺

= 𝛿𝐹𝐺 (translations), (2.4.22)

where, in Eq. (2.4.19), we used the property that the derivative of 𝑞𝑘 with respect to the
COM Cartesian coordinates and the lab Cartesian coordinates is the same, shown in
Appendix 2.E, while in Eq. (2.4.20) it is immaterial whether the lab position vectors or
the COM position vectors are differentiated. As vectors, they are

𝒔𝑎,𝛼 = 𝑠𝑎,𝛼𝐹 𝒆̂𝐹 (2.4.23)
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with summation over 𝐹 implied, and likewise for the 𝑡 vectors.
As indicated above, the rotational 𝑠 vectors are more difficult to work with. We can

simplify the expressions for the rotational 𝑡 vectors substantially with some work:

𝜕𝑹𝛼

𝜕Ξℎ
=

𝜕𝑀𝐹𝑔

𝜕Ξℎ
𝑟𝛼𝑔 𝒆̂𝐹

=
𝜕𝑀𝐹ℎ′

𝜕Ξℎ
𝑀𝐺ℎ′𝑀𝐺𝑔𝑟𝛼𝑔 𝒆̂𝐹

=
𝜕𝑀𝐹ℎ′

𝜕Ξℎ
𝑀𝑇

ℎ′𝐺︸        ︷︷        ︸
Ωℎ
𝐹𝐺

𝑅𝛼𝐺 𝒆̂𝐹

= Ωℎ
𝐹𝐺𝑅𝛼𝐺 𝒆̂𝐹 (2.4.23)

= 𝜀𝐹𝐺𝐻w
ℎ
𝐺𝑅𝛼𝐻 𝒆̂𝐹

= wℎ𝐺 𝒆̂𝐺 × 𝑹𝛼

= wℎ𝐺𝑀𝐺𝑔︸  ︷︷  ︸
𝑤ℎ
𝑔

𝒆̂𝑔 × 𝑹𝛼

= 𝑤ℎ
𝑔 𝒆̂𝑔 × 𝑹𝛼

where Ωℎ is an antisymmetric matrix defined by

Ωℎ = ©­«
0 −wℎ𝑧 wℎ𝑦
wℎ𝑧 0 −wℎ𝑥
−wℎ𝑦 wℎ𝑥 0

ª®¬ , (2.4.24)

and the fifth line used Eq. (2.A.8). The terms 𝑤ℎ
𝑔 = wℎ𝐺𝑀𝐺𝑔 can be written as the matrix

𝑊ℎ𝑔 where the rows correspond to the Euler angles while the columns correspond to
the BF components. For the choice of 𝑀 of Eq. (2.4.2),𝑊 is

𝑊 = ©­«
− cos 𝜒 sin𝜃 sin𝜃 sin 𝜒 cos𝜃

sin 𝜒 cos 𝜒 0
0 0 1

ª®¬ . (2.4.25)

For reasons that shall become clear, we desire the 𝑠 and 𝑡 vectors to be independent of
the Euler angles. To achieve this, the rotational 𝑡 vectors are defined as

𝒕𝑔,𝛼 = 𝒆̂𝑔 × 𝑹𝛼 , (2.4.26)

that is, without multiplying by𝑊 .
There are a few relations from the definitions of the 𝑠 and 𝑡 vectors and Eq. (2.4.18):∑

𝛼

𝒕𝑘,𝛼 · 𝒔𝑘′,𝛼 = 𝛿𝑘𝑘′ ,∑
𝛼

𝒔𝑘,𝛼 · 𝒕𝐹,𝛼 =
∑
𝛼

𝒔𝑘,𝛼 · 𝒆̂𝐹 = 𝒆̂𝐹 ·
(∑

𝛼

𝒔𝑘,𝛼𝐹

)
= 0, (2.4.27)
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∑
𝛼

𝒔𝑘,𝛼 ·𝑊𝑔ℎ𝒕ℎ,𝛼 =𝑊𝑔ℎ

(∑
𝛼

𝒔𝑘,𝛼 · 𝒕ℎ,𝛼
)
= 0,

so that 𝒕ℎ,𝛼 is also an “inverse” of 𝒔𝑘,𝛼. By the same token, it is an inverse for 𝒔𝐹,𝛼 too.
We now construct the rotational 𝑠 vectors 𝒔𝑔,𝛼 to be the inverses of the 𝑡 vectors. The
approach, motivated in Ref. [69], is to define three conditions which are always zero for
a given choice of BF frame. These are functions of the BF coordinates 𝑟:

𝐶(𝑔)(𝑟1, . . . , 𝑟N) ≡ 𝐶(𝑔)(𝑟) = 0 (2.4.28)

where 𝑔 ∈ {𝑥, 𝑦, 𝑧}, although the ordering of the conditions is irrelevant. We shall
see simple examples later. Differentiating with respect to a vibrational coordinate and
applying the chain rule, we have

0 =
𝜕𝐶(𝑔)

𝜕𝑞𝑘
=

N∑
𝛼

𝜕𝐶(𝑔)

𝜕𝑟𝛼𝑔′
𝜕𝑟𝛼𝑔′

𝜕𝑞𝑘

=
∑
𝛼

𝒄𝑔,𝛼 · 𝒕𝑘,𝛼
(2.4.29)

where we used that 𝒕𝑘,𝛼 = 𝒆̂𝐹𝑀𝐹𝑔𝜕𝑘𝑟𝛼𝑔 = 𝒆̂𝑔𝜕𝑘𝑟𝛼𝑔 and defined a new set of vectors given
by

𝒄𝑔,𝛼 = 𝒆̂ 𝑓
𝜕𝐶(𝑔)

𝜕𝑟𝛼 𝑓
. (2.4.30)

The 𝑐 vectors are an inverse to the vibrational 𝑡 vectors. Any linear combination
of 𝑐 vectors is also an inverse. We want the rotational 𝑠 vectors to be some linear
combination of 𝑐 vectors such that they form the correct inverse with the rotational 𝑡
vectors:

𝛿𝑔𝑔′ =
∑
𝛼

𝜂𝑔ℎ𝒄ℎ,𝛼 · 𝒕𝑔′,𝛼

= 𝜂𝑔ℎ

(∑
𝛼

𝒄ℎ,𝛼 · 𝒕𝑔′,𝛼
) (2.4.31)

and therefore by constructing the matrix:

𝔍𝑔𝑔′ =
∑
𝛼

𝒄𝑔,𝛼 · 𝒕𝑔′,𝛼 (2.4.32)

the rotational 𝑠 vectors are given by

𝒔𝑔,𝛼 = 𝔍−1
𝑔𝑔′𝒄𝑔′,𝛼 . (2.4.33)

One further point to note is that the 𝑐 vectors must satisfy the requirement that∑
𝛼

𝒄𝑔,𝛼 = 0. (2.4.34)
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This arises because ∑
𝛼

𝒔𝑔,𝛼 · 𝒕𝐹,𝛼 =
∑
𝛼

𝒔𝑔,𝛼 · 𝒆̂𝐹 = 𝒆̂𝐹 ·
(∑

𝛼

𝒔𝑔,𝛼

)
= 0 (2.4.35)

which, because 𝔍 is invertible, imposes it on the 𝒄𝑔,𝛼 vectors also. If they do not satisfy
this condition, they can be readily adjusted to 𝒄′ via

𝒄′𝑔,𝛼 = 𝒄𝑔,𝛼 − 𝑚𝛼

Mnu

∑
𝛽

𝒄𝑔,𝛽 . (2.4.36)

This does not affect the other necessary conditions.

2.4.3 Angular momentum operators

We can now rewrite Eq. (2.4.1) as

𝜕

𝜕R𝛼𝐹
= 𝑠𝐺,𝛼𝐹

𝜕

𝜕Rcm
𝐺
+ 𝑠𝑘,𝛼𝐹𝜕𝑘 +𝑊−1

ℎ𝑔 𝑠ℎ,𝛼𝐹𝜕𝑔 . (2.4.37)

We define the generalised (quasi-momentum) operators 𝐽 = −𝑖ℏ𝑊−1
ℎ𝑔 𝜕

/
𝜕Ξ𝑔 , which, for

our choice of 𝑀 in Eq. (2.4.2), is

©­«
𝐽𝑥
𝐽𝑦
𝐽𝑧

ª®¬ = −𝑖ℏ
©­­­«
−cos 𝜒

sin𝜃
sin 𝜒 cos 𝜒 cot𝜃

sin 𝜒
sin𝜃

cos 𝜒 − sin 𝜒 cot𝜃
0 0 1

ª®®®¬
©­­«

𝜕
𝜕𝜙
𝜕
𝜕𝜃
𝜕
𝜕𝜒

ª®®¬ (2.4.38)

and substitute these into Eq. (2.4.37). The name quasi-momentum is because they are
not conjugate to any coordinates, i.e. 𝐽𝑔 ≠ −𝑖ℏ 𝜕/𝜕Θ for some Θ. The 𝐽 ≡ (𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧)
operators are in fact the BF components of the RF angular momentum (demonstrated in
Appendix 2.D), and can be shown to satisfy the commutation relations

[𝐽𝑔 , 𝐽ℎ] = −𝑖ℏ𝜀 𝑓 𝑔ℎ 𝐽 𝑓 (2.4.39)

(see Appendix 2.G). The eigenfunctions for the (𝐽2, 𝐽𝑧) operators are well known making
this choice far more useful than the original angular coordinates. The atypical minus
sign on the right hand side of Eq. (2.4.39) is a consequence of working in a rotating
frame. Finally, it is analogously shown that [𝐽𝐻 , 𝐽𝑔] = 0, where 𝐽𝐻 are the RF angular
momentum components, and thus (𝐽2, 𝐽𝑧 , 𝐽𝑍) are a set of commuting operators. We
label their eigenfunctions as |𝐽𝑘𝑚⟩ where 𝑘 and 𝑚 are the 𝑧 and 𝑍 axis projections,
respectively.

The vibrational momentum operators 𝜋̂𝑘 = −𝑖ℏ𝜕𝑘 and angular momentum operators
𝐽𝑔 will be given the collective symbol Π̂𝑎 . We can now substitute in the 𝑠 vectors and
momentum and generalised momentum operators into Eq. (2.4.12) with the intention of
replacing the G matrix with the 𝐺 matrix:

𝐺𝑎𝑏 =
∑
𝛼

1
𝑚𝛼

𝒔𝑎,𝛼 · 𝒔𝑏,𝛼 . (2.4.40)
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Following the line of reasoning of Eq. (2.4.10) the adjoint of 𝐽ℎ is,

𝐽†ℎ = J−1𝐽ℎJ + (𝜋̂𝑔𝑊−1
ℎ𝑔 ) = 𝐽ℎ + (J−1𝐽ℎJ) + (𝜋̂𝑔𝑊−1

ℎ𝑔 )︸                   ︷︷                   ︸
Λ̃ℎ

= 𝐽ℎ + Λ̃ℎ (2.4.41)

and therefore, since 𝜋̂𝑔𝑊−1
ℎ𝑔 = 𝐽ℎ + (𝜋̂𝑔𝑊−1

ℎ𝑔 ), Eq. (2.4.12) can be written as

𝑇̂nu = 1
2Π̂
†
𝑎𝐺𝑎𝑏Π̂𝑏 , (2.4.42)

or – following the same steps as before –

𝑇̂nu = 1
2(Π̂H

𝑎 + 1
2Λ̃𝑎)𝐺𝑎𝑏(Π̂H

𝑏 − 1
2Λ̃𝑏) (2.4.43)

where now 𝐽H𝑔 = J−1/2𝐽𝑔J1/2 + 1
2(𝜋̂ℎ𝑊−1

𝑔ℎ ). For the vibrational coordinates, Λ̃𝑘 = Λ𝑘 .
Eq. (2.4.21), Eq. (2.4.27), and Eq. (2.4.35) imply that the 𝐺 matrix elements between

vibrations/rotations and the centre of mass coordinates are zero. A note at the end of
Appendix 2.E also shows that the 𝐺 matrix is independent of the angular coordinates.

2.4.4 Non-Euclidean volume element

The only explicit reference to the angular coordinates Eq. (2.4.43) is through 1
2(𝜋̂ℎ𝑊−1

𝑔ℎ ).
It would be helpful to eliminate it and work fully with the angular momentum operators
𝐽. Moreover, the original operators are more practical to work with than the Hermitian
counterparts. By changing the integration volume weight it is possible to deal with both
these shortcomings. We continue with the Sørensen method which implicitly uses a
non-Euclidean volume weight | det(𝑊)| as opposed to J. In our case, it is given by

𝜌d𝜃 d𝜙 d𝜒 d𝑞1 . . . d𝑞3N−6 = sin𝜃 d𝜃 d𝜙 d𝜒 d𝑞1 . . . d𝑞3N−6 . (2.4.44)

The choice 𝜌 = | det(𝑊)| = sin𝜃 results in an exact cancellation of the 1
2(𝜋̂ℎ𝑊−1

𝑔ℎ ) terms.
With an arbitrary volume weight 𝜌, we must replace all operators to preserve matrix
elements and eigenvalues with the substitution:

𝐴̂→ J1/2𝜌−1/2𝐴̂𝜌1/2J−1/2. (2.4.45)

so that, by Eq. (2.4.16), the vibrational momentum operators become

J1/2𝜌−1/2𝜋̂H
𝑘 𝜌

1/2J−1/2 = 𝜌−1/2𝜋̂𝑘𝜌1/2 = 𝜋̂𝑘 . (2.4.46)

as our 𝜌 only depends on the angular coordinates. For the angular momentum operators,
we have

J1/2𝜌−1/2𝐽H𝑔 𝜌1/2J−1/2 = 𝜌−1/2𝐽𝑔𝜌1/2 + 1
2(𝜋̂ℎ𝑊−1

𝑔ℎ ) = 𝐽𝑔 + 1
2(𝜌−1𝐽𝑔𝜌) + 1

2(𝜋̂ℎ𝑊−1
𝑔ℎ )︸                       ︷︷                       ︸

=0

. (2.4.47)
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It is shown in Appendix 2.F that the underbraced terms of Eq. (2.4.47) are identically
zero. The kinetic energy operator is now written

𝑇̂nu = 1
2 𝜋̂𝑘𝐺𝑘𝑘′𝜋̂𝑘′ + 1

2 𝐽𝑔𝐺𝑔𝑘𝜋̂𝑘 + 1
2 𝜋̂𝑘𝐺𝑘𝑔 𝐽𝑔 + 1

2 𝐽𝑔𝐺𝑔ℎ 𝐽ℎ
−1

4Π̂𝑎(𝐺𝑎𝑏Λ̃𝑏) − 1
8Λ̃𝑎Λ̃𝑏𝐺𝑎𝑏︸                             ︷︷                             ︸

𝑈

. (2.4.48)

The first line splits the operator part of the KEO into several components. The first
term is the purely vibrational operator, the second and third the rovibrational or
Coriolis operators, and the fourth the rotational operator. The second line of Eq. (2.4.48)
contains purely multiplicative terms known collectively as the pseudo potential. It
can be simplified. For brevity, the Λ̃𝑎 = Λ𝑎 + (𝜋̂𝑏W−1

𝑎𝑏 )where W−1 =𝑊−1 for rotational
coordinates and W−1 = 𝐼 for vibrational coordinates. First, we see that Λ̃𝑎𝑠𝑎,𝛼𝐹 can be
written

Λ̃𝑎𝑠𝑎,𝛼𝐹 = [(J−1Π̂𝑎J) + (𝜋̂𝑏W−1
𝑎𝑏 )]𝑠𝑎,𝛼𝐹

= [W−1
𝑎𝑖 (𝜋̂𝑖W𝑏𝑐𝑡𝑐,𝛽𝐺)W−1

𝑑𝑏 𝑠𝑑,𝛽𝐺 + (𝜋̂𝑏W−1
𝑎𝑏 )]𝑠𝑎,𝛼𝐹

= (𝜋̂𝑏W𝑖𝑐𝑡𝑐,𝛽𝐺)W−1
𝑎𝑖 𝑠𝑎,𝛼𝐹W

−1
𝑑𝑏 𝑠𝑑,𝛽𝐺 + (𝜋̂𝑏W−1

𝑎𝑏 )𝑠𝑎,𝛼𝐹
= −(𝜋̂𝑏W−1

𝑎𝑖 𝑠𝑎,𝛼𝐹)W𝑖𝑐𝑡𝑐,𝛽𝐺W−1
𝑑𝑏 𝑠𝑑,𝛽𝐺︸                ︷︷                ︸

𝛿𝑖𝑏

+(𝜋̂𝑏W−1
𝑎𝑏 )𝑠𝑎,𝛼𝐹 (2.4.48)

= −(𝜋̂𝑏W−1
𝑎𝑏 𝑠𝑎,𝛼𝐹) + (𝜋̂𝑏W−1

𝑎𝑏 )𝑠𝑎,𝛼𝐹
= −W−1

𝑎𝑏 (𝜋̂𝑏𝑠𝑎,𝛼𝐹) = −(Π̂𝑎𝑠𝑎,𝛼𝐹).
where in the third line we switched the order of differentiation of the first term and in
the fourth line we used the inverse matrix derivative rule.

The pseudo-potential is then simplified to

𝑈 = 1
4

∑
𝛼

1
𝑚𝛼

(
(𝑠𝑎,𝛼𝐹Π̂𝑎(Π̂𝑏𝑠𝑏,𝛼𝐹)) + 1

2(Π̂𝑎𝑠𝑎,𝛼𝐹)(Π̂𝑏𝑠𝑏,𝛼𝐹)
)

= 1
4

∑
𝛼

1
𝑚𝛼

(
𝒔𝑎,𝛼 · Π̂𝑎(Π̂𝑏𝒔𝑏,𝛼)) + 1

2(Π̂𝑎𝒔𝑎,𝛼) · (Π̂𝑏𝒔𝑏,𝛼)
) (2.4.49)

From the form of the kinetic energy operators 𝜋̂𝑘 = −𝑖ℏ𝜕𝑘 , and from the relation

𝐽𝑔𝒔𝑎,𝛼 = −𝑖ℏ𝒆̂𝑔 × 𝒔𝑎,𝛼 (2.4.50)

(see Appendix 2.H), one can separate 𝑈 into vibrational and rotational terms. The
rotational terms are:

𝑈rot = −ℏ
2

4

∑
𝛼

1
𝑚𝛼

(
𝒔𝑔,𝛼 · (𝒆̂𝑔 × (𝒆̂𝑔′ × 𝒔𝑔′,𝛼)) + 1

2(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼)
)

= −ℏ
2

4

∑
𝛼

1
𝑚𝛼

(−(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼) + 1
2(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼)

)
=

ℏ2

8

∑
𝛼

1
𝑚𝛼
(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼)

(2.4.51)
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where the second line used the vector triple product and Binet-Cauchy identity. The
Coriolis terms are:

𝑈cor = −ℏ
2

4

∑
𝛼

1
𝑚𝛼

©­­­«𝒔𝑘,𝛼 · 𝜕𝑘(𝒆̂𝑔 × 𝒔𝑔,𝛼) + 𝒔𝑔,𝛼 · (𝒆̂𝑔 × 𝜕𝑘𝒔𝑘,𝛼) + (𝜕𝑘𝒔𝑘,𝛼) · (𝒆̂𝑔 × 𝒔𝑔,𝛼)︸                                                ︷︷                                                ︸
=0

ª®®®¬
=

ℏ2

4

∑
𝛼

1
𝑚𝛼

((𝜕𝑘𝒔𝑔,𝛼) · (𝒆̂𝑔 × 𝒔𝑘,𝛼)
)
.

(2.4.52)

Finally, the vibrational part is:

𝑈vib = −ℏ
2

4

∑
𝛼

1
𝑚𝛼

(
𝒔𝑘,𝛼 · 𝜕𝑘(𝜕𝑘′𝒔𝑘′,𝛼)) + 1

2(𝜕𝑘𝒔𝑘,𝛼) · (𝜕𝑘′𝒔𝑘′,𝛼)
)

(2.4.53)

In summary, the nuclear KEO in curvilinear coordinates using angular momentum
operators is given by:

𝑇̂nu =
ℏ2

2 𝜕𝑘𝐺𝑘𝑘′𝜕𝑘′ + −𝑖ℏ2 𝐽𝑔𝐺𝑔𝑘𝜕𝑘 + −𝑖ℏ2 𝜕𝑘𝐺𝑘𝑔 𝐽𝑔 + 1
2 𝐽𝑔𝐺𝑔ℎ 𝐽ℎ

+ ℏ2

8

∑
𝛼

1
𝑚𝛼
(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼)

+ ℏ2

4

∑
𝛼

1
𝑚𝛼
(𝜕𝑘𝒔𝑔,𝛼) · (𝒆̂𝑔 × 𝒔𝑘,𝛼) (2.4.53)

− ℏ2

4

∑
𝛼

1
𝑚𝛼

𝒔𝑘,𝛼 · 𝜕𝑘(𝜕𝑘′𝒔𝑘′,𝛼) − ℏ2

8

∑
𝛼

(𝜕𝑘𝒔𝑘,𝛼) · (𝜕𝑘′𝒔𝑘′,𝛼)

2.5 Group theory and Molecular Symmetry groups

A running theme throughout this thesis is exploiting a molecule’s symmetry to assist in
the calculation of its spectrum. Indeed, the so-called irreducible representation (irrep) of
an eigenfunction is essential in determining its spin-statistical weight 𝑔ns which affects the
intensity of a transition it is involved in. In particular, a 𝑔ns of zero means the one can
skip the calculation of the line strength. And, while not being essential for rovibrational
energy calculations, a symmetry-adapted basis set {Ψ} (that is, one where each basis
function belong to an irrep of the group) greatly assists in the diagonalisation of the
rovibrational Hamiltonian matrix; it is block diagonal with the form

⟨ΨΓ𝑠 ,𝐽
𝜇,𝑛𝑠 |𝐻̂rv |ΨΓ𝑡 ,𝐽′

𝜇′,𝑛𝑡 ⟩ = 𝐻𝜇𝜇′𝛿𝑡𝑠𝛿𝑛𝑠𝑛𝑡𝛿𝐽𝐽′ (2.5.1)

where the indices 𝜇 and 𝜇′ label the basis functions, 𝐽 and 𝐽′ are the rotational quan-
tum numbers, Γ𝑠 and Γ𝑡 denote irreps of the symmetry group, and 𝑛𝑠(𝑛𝑡) labels the
components of the irrep Γ𝑠(Γ𝑡).

In this section, we shall review the basic aspects of finite groups and the representation
of such groups to properly understand the meaning of Eq. (2.5.1) and how molecular
symmetry emerges as the Molecular Symmetry (MS) group.
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2.5.1 The definition of a group

In mathematics, a group [72] is defined as a set of elements𝒢 equipped with a binary
operation ∗ such that the set is closed under ∗ and that ∗ satisfies the following

• Associativity: for all 𝒶, 𝒷, and 𝒸 in𝒢, (𝒶 ∗ 𝒷) ∗ 𝒸 = 𝒶 ∗ (𝒷 ∗ 𝒸).
• Identity element: there exists an elementℰ ∈ 𝒢 such that, for every 𝒶 ∈ 𝒢, one

hasℰ ∗𝒶 = 𝒶 ∗ℰ = 𝒶.

• Inverse element: for each 𝒶 ∈ 𝒢, there exists a unique element 𝒶−1 ∈ 𝒢 such that
𝒶 ∗𝒶−1 = 𝒶−1 ∗𝒶 =ℰ.

Collectively, these are the group axioms.
For brevity, the notation ∗ for the operation will be dropped as it is implicit when

two elements in𝒢 are written as a pair. Groups naturally arise when considering the
symmetries of an object. Colloquially, the elements of a group are operations on an
object which leave the object unchanged or invariant. For example, the rotation of an
equilateral triangle by 2𝜋/3 with an axis of rotation through its centre and perpendicular
to the triangular plane leaves it indistinguishable from before the rotation. Combining
this rotation (and its inverse which is a rotation by −2𝜋/3 or 4𝜋/3) with the rotations
and reflections through an axes parallel to the triangular plane and running from a
vertex of the triangle to the midpoint of the opposite side, one forms the so-called point
group of the triangle,𝒟3ℎ .

Although the idea of a point group can be extended to three dimensions and applied
to molecules in equilibrium, with a particularly useful application for linear molecules,
these are not “true” symmetry groups of molecules. For non-linear molecules, the
point group is isomorphic to the “true” symmetry group if all the coordinates can be
considered rigid, that is, they do not deviate too far from equilibrium. This isomorphism
is broken for molecules containing non-rigid or large amplitude motion with multiple
minima. Since Chapter 7 describes the symmetry group of C2H6, a non-rigid molecule,
we must understand the “true” symmetry groups, the subject of the next section.

2.5.2 Molecular Symmetry group

Longuet-Higgins [73] elucidated the concept of molecular symmetry in his construction
of the Molecular Symmetry (MS) groups. There are two types of MS operations. The
first type permutes the labels of identical nuclei. Consider the atoms 1, 2, and 3 which
have position vectors (𝑹1,𝑹2,𝑹3). The MS operations that permute the atomic labels in
turn permute the position vectors. The operation (123), for example, which is shown by
Figure 2.5.1, and which relabels atom 1 as atom 2, atom 2 as atom 3, and so on, changes
the position vectors by

(𝑹1,𝑹2,𝑹3) → (𝑹3,𝑹1,𝑹2) (2.5.2)
as now atom 2 has position vector 𝑹1, and so on. The other type of operation is the
inversion which changes the position vector 𝑹𝛼 to −𝑹𝛼.

Any operation in the MS group is formed by a feasible (in the language of Longuet-
Higgins) combination of these operations. To construct the irreps of Eq. (2.5.1), we
must understand the more general theory of representations of finite groups, the topic
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𝑹1 1

3

2

𝑹1 2

1

3

Figure 2.5.1: The transformation (123) on a hypothetical molecule.

of Section 2.5.4. We must also understand how the MS group is manifested through
the transformation of the Hamiltonian and its eigenfunctions, which means, in effect,
the transformation of functions (and derivatives) of the coordinates. This question is
addressed in the next two sections and will prove important later to correctly transform
functions of the C2H6 vibrational coordinates under MS operations. It will also be used
to rigorously define how the Hamiltonian is transformed under MS operations as well,
and therefore demonstrate its invariance.

MS operations on functions

We’ll only need to consider functions of the Cartesian coordinates, for the moment in
the RF frame. The behaviour of the functions under MS operations is then essentially
the same as that of the position vectors. The operation (123) on 𝑓 (𝑅1, 𝑅2, 𝑅3) transforms
it to

𝑓 (𝑅1, 𝑅2, 𝑅3) → 𝑓 (𝑅3, 𝑅1, 𝑅2) = 𝑓 (𝒫(𝑅1, 𝑅2, 𝑅3))
= 𝑓 ◦𝒫(𝑅1, 𝑅2, 𝑅3) (2.5.3)

where𝒫 represents the permutation operation. The meaning of Eq. (2.5.3) is that the
function 𝑓 is evaluated at the transformed Cartesian coordinates.

A vibrational coordinate is just a specific type of function of the Cartesian coordinates,
again in the RF frame for the time being. For example, 𝑞1(𝑅1, 𝑅2, 𝑅3) is transformed
to 𝑞′1 = 𝑞1(𝑅3, 𝑅1, 𝑅2) for coordinate 𝑞1. Typically, one can express 𝑞′1 in terms of the
original coordinates, for example 𝑞1(𝑅3, 𝑅1, 𝑅2) = 𝑞2(𝑅1, 𝑅2, 𝑅3) for coordinate 𝑞2 [5].
For the inversion operation, the vibrational coordinate may have positive parity, as
in the case of bond lengths, or negative parity, in the case of dihedral angles. Thus,
many results for Cartesian coordinates can be translated to curvilinear coordinates
(and functions thereof) which have an effective definition for their change under MS
operations.

MS operations on derivatives

In either representation of the Hamiltonian, differential operators are present. In
our approach, they have no meaning in isolation – that is, without a function being
differentiated – and instead we consider the derivative of the function as itself a function
which is changed by MS operations in the same way as any other function defined
above. In other words, when applying MS operations to functions being differentiated,
first the derivative is performed, and then the permutation is applied. In mathematical
language this means that 𝜕𝛼𝐹 𝑓 (𝑅1, 𝑅2, 𝑅3) is transformed to 𝜕𝛼𝐹 𝑓 (𝑅3, 𝑅1, 𝑅2), where the
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derivative is with respect to the 𝛼𝐹th parameter. In this approach, the derivative 𝜕𝛼𝐹 is
just a label to partially differentiate 𝑓 by its 𝛼𝐹th parameter. It is only the coordinates at
which the derivative is evaluated which are transformed by the MS operation.

If one desires to keep the operator form of the Hamiltonian where the derivative is
manifestly present, the order of the steps has to be reversed such that the expression is
of the form

𝜕𝛼𝐺( 𝑓 ◦𝒫)(𝑅). (2.5.4)
In this form, one transforms the function 𝑓 to 𝑓 ◦𝒫 instead of evaluating the derivative
of 𝑓 at the new coordinate. The term 𝜕𝛼′𝐺( 𝑓 ◦𝒫)(𝑅) is given by

𝜕𝛼′𝐺( 𝑓 ◦𝒫)(𝑅) =
∑
𝛽

𝜕𝛼′𝐺𝒫
𝛽𝐹(𝑅)𝜕𝛽𝐹 𝑓 (𝒫(𝑅)) (2.5.5)

due to the chain rule, where 𝜕𝛼′𝐺𝒫𝛽𝐹 is the 𝛼′𝐺th derivative of the 𝛽𝐹th component of
𝒫. Summation over 𝐹 is assumed. If 𝑅𝛼 → 𝑅𝛼′ then,

𝜕𝛼′𝐹( 𝑓 ◦𝒫)(𝑅) =
∑
𝛽

𝜕𝛼′𝐹𝒫
𝛽𝐺(𝑅)𝜕𝛽𝐺 𝑓 (𝒫(𝑅))

=
∑
𝛽

𝛿𝐹𝐺𝛿𝛼𝛽𝜕𝛽𝐺 𝑓 (𝒫(𝑅)) = 𝜕𝛼𝐹 𝑓 (𝒫(𝑅)).
(2.5.6)

A more succinct form of this equation is

𝜕𝛼′𝐹( 𝑓 ◦𝒫) = (𝜕𝛼𝐹 𝑓 ) ◦𝒫. (2.5.7)

Thus, one can maintain the operator form by permuting the derivative parameter with
the same rule as the coordinate permutation. The second derivative works the same
way:

𝜕2
𝛼′𝐹( 𝑓 ◦𝒫) = (𝜕2

𝛼𝐹 𝑓 ) ◦𝒫. (2.5.8)
For the inversion operationℰ∗, we apply the same reasoning

𝜕𝛼𝐹( 𝑓 ◦ℰ∗)(𝑅) =
∑
𝛽

𝜕𝛼𝐹ℰ
∗𝛽𝐺(𝑅)𝜕𝛽𝐺 𝑓 (ℰ∗(𝑅))

= −𝜕𝛼𝐹 𝑓 (ℰ∗(𝑅))
= −𝜕𝛼𝐹 𝑓 (−𝑅)

(2.5.9)

so that in this case also the operators transform the same way.
There may be an added complication in transforming derivatives of functions of

the vibrational coordinates when the transformation’s effect on the coordinates is not a
permutation but instead an affine transformation. As a typical example, consider the
transformation of (𝑞1, 𝑞2) to be of the form(

𝑞′1
𝑞′2

)
=

(
𝑎 𝑏
−𝑏 𝑎

) (
𝑞1
𝑞2

)
(2.5.10)

where 𝑎2 + 𝑏2 = 1. Then we have
𝜕1( 𝑓 ◦𝒫)(𝑞1, 𝑞2) = 𝑎𝜕1 𝑓 (𝒫(𝑞1, 𝑞2)) − 𝑏𝜕2 𝑓 (𝒫(𝑞1, 𝑞2)),
𝜕2( 𝑓 ◦𝒫)(𝑞1, 𝑞2) = 𝑏𝜕1 𝑓 (𝒫(𝑞1, 𝑞2)) + 𝑎𝜕2 𝑓 (𝒫(𝑞1, 𝑞2)) (2.5.11)
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which can be rearranged to give
𝜕1 𝑓 (𝒫(𝑞1, 𝑞2)) = 𝑎𝜕1( 𝑓 ◦𝒫)(𝑞1, 𝑞2) + 𝑏𝜕2( 𝑓 ◦𝒫)(𝑞1, 𝑞2),
𝜕2 𝑓 (𝒫(𝑞1, 𝑞2)) = −𝑏𝜕1( 𝑓 ◦𝒫)(𝑞1, 𝑞2) + 𝑎𝜕2( 𝑓 ◦𝒫)(𝑞1, 𝑞2). (2.5.12)

This can also be recovered using the chain rule where we find
𝜕

𝜕𝑞′1
= 𝑎

𝜕

𝜕𝑞1
+ 𝑏 𝜕

𝜕𝑞2
(2.5.13)

and likewise for 𝜕
/
𝜕𝑞′2 . So, again, the derivatives transform as the coordinates.

2.5.3 Hamiltonian invariance

The MS operations are based on the indistinguishability of identical nuclei and arise
when looking at the structure of the BO Hamiltonian. In general, a symmetry of a
system is exhibited by the Hamiltonian’s invariance under the group operation. Using
the rules of Section 2.5.2, it is evident from the structure of the Hamiltonian of Eq. (2.1.9)
that it is invariant under MS operations.

In the context of the rovibrational calculations, the invariance of the symmetry
operation 𝒪 on the nuclear Hamiltonian 𝐻̂’s action on the wavefunction Ψ can be
expressed as

𝒪𝐻̂Ψ = 𝐻̂𝒪Ψ. (2.5.14)
Since the Hamiltonian contains differential operators, the meaning of the left hand
side of Eq. (2.5.14) is that the derivatives are evaluated first, then the permutation is
applied. On the right hand side, the original Hamiltonian is applied to the transformed
wavefunction. When the order of the operations on the left hand side is swapped,
one obtains an expression of the form 𝐻̂′𝒪Ψ where 𝐻̂′ is a transformed Hamiltonian.
Because 𝐻̂ is invariant, 𝐻̂′ = 𝐻̂.

2.5.4 Representation of MS groups

Consider the action of 𝒪ℊ on 𝐻̂Ψ where Ψ is an eigenfunction of 𝐻̂. The result is

𝒪ℊ𝐻̂Ψ = 𝒪ℊ𝐸Ψ

𝐻̂𝒪ℊΨ = 𝐸𝒪ℊΨ
(2.5.15)

where 𝐸 is Ψ’s eigenvalue. Therefore, 𝒪ℊΨ is also an eigenfunction of 𝐻̂ with the
same eigenvalue. Since the eigenfunctions with eigenvalue 𝐸 form an 𝑛-dimensional
subspace of the full eigenspace, 𝒪ℊΨ must be a linear combination of the degenerate
eigenfunctions (Ψ1, . . . ,Ψ𝑛). Thus, when 𝒪ℊ is applied to the eigenfunctions, the result
is ©­«

𝒪ℊΨ1
...

𝒪ℊΨ𝑛

ª®¬ =ℳ(ℊ) ©­«
Ψ1
...

Ψ𝑛

ª®¬ (2.5.16)

whereℳ(ℊ) is a matrix for the degenerate subspace. The set of all such matrices along
with the eigenfunctions form an 𝑛-dimensional representation Γ of𝒢 for the degenerate
subspace.
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Equivalent, direct sum, and irreducible representations

If we transformℳ(ℊ) by the unitary operator U to Uℳ(ℊ)U−1 =ℳ′ and also transform
the degenerate eigenfunctions Ψ = (Ψ1, . . . ,Ψ𝑛) to UΨ we obtain a new representation.
Representations connected in this way are known as equivalent.

For any representation, which in general is reducible, we want to transform to an
equivalent representation where each operation matrix ℳ′ is block diagonal with
blocks ℳ𝑖 and each block cannot be decomposed into smaller blocks. The matrices
ℳ𝑖 appear 𝑎𝑖 times in ℳ′ for all group operations ℊ. This is shown in Figure 2.5.2.
The representation formed by those blocks are then known as irreducible representations
(irreps) and a representation Γ is decomposed into

Γ = 𝑎1Γ1 ⊕ . . . ⊕ 𝑎𝓈Γ𝓈 (2.5.17)

where each irrep Γ𝑖 occurs 𝑎𝑖 times in the representation Γ. That is, each matrix for Γ𝑖
is repeated 𝑎𝑖 times as blocks in each matrix of Γ. The decomposition of Eq. (2.5.17) is
known as a direct sum.

ℳ1

ℳ1

· · ·
ℳ1

· · ·

ℳ𝓈

· · ·

ℳ𝓈

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

𝑎1 𝑎𝓈

ℳ
′ =

Figure 2.5.2: The matrixℳ transformed to block diagonal form by U to UℳU−1. Each
matrixℳ𝑖 appears 𝑎𝑖 times on the diagonal. 𝑎𝑖 is the same for every group operation ℊ.
Collectively, theℳ𝑖 matrices are part of the Γ𝑖 representation of the group.

Orthogonality relations and characters

Arguably the most important results for our purposes are Schur’s orthogonality relations.
If Γ𝑖 and Γ𝑗 are irreps of dimensions 𝑙𝑖 and 𝑙 𝑗 , respectively, with matrix representations
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ℳ
Γ𝑖 (ℊ) andℳΓ𝑗 (ℊ) for operation ℊ ∈ 𝒢, respectively, then the following identity holds∑

ℊ∈𝒢
ℳ

Γ𝑖 (ℊ)∗𝑚𝑛ℳΓ𝑗 (ℊ)𝑚′𝑛′ = |𝒢|𝑙𝑖 𝛿𝑖 𝑗𝛿𝑚𝑚′𝛿𝑛𝑛′ (2.5.18)

where |𝒢| is the size of𝒢 andℳΓ𝑖 (ℊ)∗ is the complex conjugate ofℳΓ𝑖 (ℊ).
A special case of this relation is found by taking 𝑛 = 𝑚 and 𝑛′ = 𝑚′ and summing

over 𝑚 and 𝑚′: ∑
ℊ∈𝒢

Tr(ℳΓ𝑖 (ℊ))∗Tr(ℳΓ𝑗 (ℊ)) =∑
ℊ∈𝒢

𝜒Γ𝑖 (ℊ)∗𝜒Γ𝑗 (ℊ) = |𝒢|𝛿𝑖 𝑗 (2.5.19)

where 𝜒Γ𝑖 (ℊ) is the trace ofℳΓ𝑖 (ℊ) and is known as the irrep’s character. The property
Tr(𝐴𝐵) = Tr(𝐵𝐴) dictates that equivalent irreps have the same characters. Because of
this, and because of the decomposition of Eq. (2.5.17), we also have

𝜒Γ(ℊ) = 𝑎1𝜒
Γ1(ℊ) + . . . + 𝑎𝓈𝜒Γ𝓈(ℊ). (2.5.20)

Moreover, the coefficients 𝑎𝑖 can be found with the orthogonality relation:

𝑎𝑖 =
1
|𝒢|

∑
ℊ∈𝒢

𝜒Γ(ℊ)𝜒Γ𝑖 (ℊ)∗. (2.5.21)

Using the decomposition of Eq. (2.5.20), we have

1
|𝒢|

∑
ℊ∈𝒢

𝜒Γ(ℊ)∗𝜒Γ(ℊ) = 𝑎2
1 + . . . + 𝑎2

𝓈
(2.5.22)

so that Γ is irreducible if and only if the above sum equals 1.

Conjugacy classes and character tables

Group elements can be partitioned according to conjugacy classes. Two elements ℊ and
𝒽 are in the same conjugacy class if there exists an element 𝒸 such that ℊ = 𝒸𝒽𝒸−1.
This is an equivalence relation and hence is a partition on the set of group elements.
The matricesℳ(ℊ) have the same characters for all elements in a conjugacy class. One
can prove the second orthogonality relations: if ℊ and 𝒽 are elements in the conjugacy
classes 𝒞 and 𝒞′, respectively, then we have

𝓈∑
𝑖

𝜒Γ𝑖 (ℊ)𝜒Γ𝑖 (ℎ)∗ =
{
|𝒢|/|𝒞 | 𝒞 = 𝒞′

0 𝒞 ≠ 𝒞′
(2.5.23)

where the sum is over all possible irreps 𝓈 of the group which is also the number of the
group’s conjugacy classes. This also satisfies

𝑙21 + . . . + 𝑙2𝓈 = |𝒢| (2.5.24)
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where the 𝑙𝑖 is the dimension of irrep Γ𝑖 .
The above discussion can be summarised in a character table where the rows are the

irreps while the columns represent the conjugacy classes of the group. As the number
of the two is equal, it is a square table. A 𝑖 𝑗th entry is then the character for the 𝑗th
conjugacy class of the 𝑖th irrep. The rows and columns also are orthogonal as per
Eq. (2.5.19) and Eq. (2.5.23). Table 2.5.1 shows an example character table for the 𝒞3v(M)
group whose elements are {ℰ, (123), (132), (23)∗, (13)∗, (12)∗}.

Table 2.5.1: Character table of the 𝒞3v(M) group. The rows labels are the irreps while
the columns label representative members of the conjugacy classes. The characters of
these elements for the given irrep is shown in the table.

Γ ℰ (123) (23)∗

𝒜1 1 1 1

𝒜2 1 1 −1

ℰ 2 −1 0

Projection operators

Once the irreps have be found, we can obtain, from a set of degenerate eigenfunctions, the
decomposition into the irreps by applying so-called projection operators onto a degenerate
eigenfunction [74]. The projection onto the 𝑚th component of the 𝑖th irrep is given by

𝒫
Γ𝑖
𝑚𝑚′ =

𝑙𝑖
|𝒢|

∑
ℊ∈𝒢

ℳ
Γ𝑖 (ℊ)∗𝑚𝑚′𝒪ℊ. (2.5.25)

To show this works as a projection operator1, first observe that any function 𝜓𝑛
is related to a set of irrep functions 𝜙

Γ𝑗
𝑘 via 𝜓𝑛 = U𝑛,𝑗𝑘𝜙

Γ𝑗
𝑘 , where U𝑛,𝑗𝑘 is the 𝑛, 𝑗𝑘

component of the unitary U and 𝑗𝑘 corresponds to the 𝑘th component of the irrep
Γ𝑗 . Applying the projection operator to 𝜓𝑛 in this form and using that 𝜙Γ𝑗

𝑘 transforms
irreducibly, along with the orthogonality relation of Eq. (2.5.18), we can obtain

𝒫
Γ𝑖
𝑚𝑚′𝜓𝑛 = 𝑈𝑛,𝑖𝑚𝜙

Γ𝑖
𝑚′ (2.5.26)

which is the desired function up to the multiplicative factor 𝑈𝑛,𝑖𝑚 . The result can be
normalised, and the remaining functions can be obtained with the transfer operators

𝒫
Γ𝑖
𝑚𝑡 =

𝑙𝑖
|𝒢|

∑
ℊ∈𝒢

ℳ
Γ𝑖 (ℊ)∗𝑚𝑡𝒪ℊ. (2.5.27)

Through similar steps as in the case of the projection operator, we find that𝒫Γ𝑖
𝑚𝑡𝜙

Γ𝑖
𝑚 = 𝜙Γ𝑖

𝑡 .

1Customarily, 𝑚 = 𝑚′.
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Product representations

It is commonplace in rovibrational calculations to multiply functions which have known
transformation properties into a new function. The problem then is in determining the
combined function’s transformation properties. If 𝜙Γ𝑖

𝑘 and 𝜓
Γ𝑗
𝑙 transform as the 𝑘th and

𝑙th components of the Γ𝑖 and Γ𝑗 irreps, respectively, then the function 𝜙Γ𝑖
𝑘 𝜓

Γ𝑗
𝑙 transforms

as follows
𝒪ℊ𝜙

Γ𝑖
𝑘 𝜓

Γ𝑗
𝑙 =ℳΓ𝑖 (ℊ)𝑘𝑚ℳΓ𝑗 (ℊ)𝑙𝑛𝜙Γ𝑖

𝑚𝜓
Γ𝑗
𝑛 (2.5.28)

so that the 𝑘𝑙, 𝑚𝑛 component of the transformation matrix for group element ℊ is given
byℳΓ𝑖 (ℊ)𝑘𝑚ℳΓ𝑗 (ℊ)𝑙𝑛 . This way of multiplying matrices is known as the outer product
and the generated representation is known as the product representation. The product
representation is denoted Γ𝑖 ⊗ Γ𝑗 . One can also straightforwardly see that the trace
of the combined representation (given by summing over the 𝑘𝑚, 𝑘𝑚 components) is
equal to the product of the characters of the individual representations. In general, this
representation will be reducible and can be reduced through the projection operator
technique described above.

2.5.5 Vanishing matrix elements and selection rules

The orthogonality rules have further uses. One example is establishing when the Hamil-
tonian matrix elements between symmetrised product functions are zero. Eq. (2.5.1)
told us that the Hamiltonian matrix element is only non-zero if the irreps and the
components of those irreps are the same for each function. In the following we prove
this result.

First, let us note that the definite integral 𝐼( 𝑓 ) of a representation function 𝑓 should be
invariant under MS operations as the result is a number. Also, as long as the integration
range is symmetric for coordinates which are transformed into each other, the integral
of the transformed function should be the same as the untransformed function. Thus,
𝐼( 𝑓 ) = 𝒪ℊ𝐼( 𝑓 ) = 𝐼(𝒪ℊ 𝑓 ). We may apply the sum over all symmetry operations to find

𝐼( 𝑓 ) = 𝐼

(
1
|𝒢|

∑
ℊ∈𝒢

𝒪ℊ 𝑓

)
= 𝐼(𝒫Γ𝑠 𝑓 ) (2.5.29)

where Γ𝑠 is the fully symmetric representation. The integral is non-zero only if 𝑓
contains the symmetric representation.

For the example of the Hamiltonian matrix integrand, given by ΨΓ𝑖
𝑙′
∗
𝐻̂rvΨ

Γ𝑗
𝑙 , we have

1
|𝒢|

∑
ℊ∈𝒢

𝒪ℊΨ
Γ𝑖
𝑙′
∗
𝐻̂rvΨ

Γ𝑗
𝑙 =

1
|𝒢|

∑
ℊ∈𝒢

ℳ
Γ𝑖 (ℊ)∗𝑙′𝑚ℳΓ𝑗 (ℊ)𝑙𝑛ΨΓ𝑖

𝑚
∗
𝐻̂rvΨ

Γ𝑗
𝑛

=

(
1
|𝒢|

∑
ℊ∈𝒢

ℳ
Γ𝑖 (ℊ)∗𝑙′𝑚ℳΓ𝑗 (ℊ)𝑙𝑛

)
ΨΓ𝑖
𝑚
∗
𝐻̂rvΨ

Γ𝑗
𝑛

(2.5.30)

where the first line is due to 𝐻̂rv’s invariance under symmetry operations. The term
in brackets is only non-zero if 𝑖 = 𝑗 and 𝑙 = 𝑙′. Thus, the irrep and the component of
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the irrep must be the same for both functions, which is precisely the result stated at the
outset of Section 2.5.

The other example to consider is that of the dipole moment transition elements,
which contain the matrix elements

⟨ΨΓ𝑖
𝑚 |𝜇𝐹 |ΨΓ𝑗

𝑛 ⟩ (2.5.31)

where 𝜇𝐹 is the dipole moment operator whose components are given by

𝜇𝐹 =
∑
𝑎

𝐶𝑎𝑒𝑅𝑎𝐹 (2.5.32)

which is a sum over the particles and 𝐶𝑎𝑒 is the charge of particle 𝑎. The dipole moment is
invariant under permutations but changes sign under permutation-inversion operations.
This is a one dimensional irrep Γ∗. The multiplication of Γ∗ ⊗ Γ𝑗 is another irrep (due
to Eq. (2.5.22)). Using the same argument as for the Hamiltonian matrix element, the
dipole moment matrix element is non-zero only if Γ𝑖 = Γ∗ ⊗ Γ𝑗 and 𝑚 = 𝑛. This means
that the irrep Γ𝑖 must have the same behaviour as the irrep Γ𝑗 except for a sign change
due to MS operations containing the inversion operation. This is known as the parity
selection rule which must change for dipole allowed transitions. If the character Γ𝑗 for an
operation is zero the character of Γ𝑖 for the same operation will also be zero.

Another selection rule can be found by considering the rotation group where it can
be shown that the principal rotational quantum number 𝐽 (for non-hyperfine transitions)
satisfies Δ𝐽 = 0 (for 𝐽 ≠ 0) or Δ𝐽 = ±1 [75].

2.6 Spin-statistical weights

The discussion so far has omitted the nuclear spins. Instead, the focus has been on
the nuclear and electronic coordinates as well electronic spins. An internal molecular
wavefunction must be a function of all degrees of freedom. This segues into the
spin-statistics theorem, which states that the internal wavefunction is symmetric under
the exchange of identical integer-spin particles (bosons) and antisymmetric under the
exchange of half-integer-spin particles (fermions) [76]. Thus, the internal wavefunction
is an irrep which is one-dimensional and whose behaviour under permutations is
fully specified by the nuclear spins. Under the behaviour of a permutation-inversion
operation, the inversion part of the operation can also change the wavefunction’s sign
(or not): the wavefunction’s parity.

The above implies that there are two possible one-dimensional irreps the internal
molecular wavefunction can be, which we label as Γ+ and Γ− following the notation of Ref.
[74]. Γ+ has positive parity due to the inversion operation while Γ− has negative parity.
The internal wavefunction Ψint is a product of the rovibronic Ψrve and nuclear spin Ψns
wavefunctions. The combined symmetry Γint is given by Γint = Γrve ⊗ Γns ⊃ Γ±, that is,
either of the symmetries Γ+ or Γ−must be contained in Γrve ⊗Γns. For each Ψrve, we want
to know how many nuclear spin functions Ψns have one of these symmetries. This is
the spin-statistical weight 𝑔ns. It is a multiplicative factor on the intensity of Eq. (2.3.17):
since the nuclear spins only very weakly couple to the dipole moment, the line strength
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for the internal wavefunctions |Ψ 𝑓
int⟩ = |Ψ𝑏

rve⟩|Ψns⟩ and |Ψ𝑖
int⟩ = |Ψ𝑎

rve⟩|Ψns⟩ is well
approximated by

𝑆( 𝑓 ← 𝑖) =
∑
𝐹

|⟨Ψ 𝑓
int |𝜇𝐹 |Ψ𝑖

int⟩|2 = |⟨Ψ𝑏
rve |𝜇𝐹 |Ψ𝑎

rve⟩ ⟨Ψns |Ψns⟩︸      ︷︷      ︸
=1

|2 =
∑
𝐹

|⟨Ψ𝑎
rve |𝜇𝐹 |Ψ𝑏

rve⟩|2

(2.6.1)
and thus, for a given rovibronic transition 𝑎 to 𝑏, there are 𝑔ns possible spin functions
that can participate in it.

To establish which irreps are contained in the spin functions, consider the product
basis for each nucleus 𝛼 with spin 𝑆𝛼 and 𝑧 axis projection 𝑘𝛼, where −𝑆𝛼 ≤ 𝑘𝛼 ≤ 𝑆𝛼 in
steps of 1 (2𝑆𝛼 + 1 functions), given by

|𝑆1, 𝑘1⟩ . . . |𝑆N , 𝑘N⟩. (2.6.2)

The nuclear spin basis contains all such functions. The inversion operation has no effect
on the spin functions. The permutation operation swaps spins of identical nuclei. One
obtains an invariant function (which would be on the diagonal of the transformation
matrix, and thus contribute to the character) only if each 𝑚𝛼 for the nuclei permuted
into each other are all identical. Thus, for each set a of 𝑛𝑎 permuted nuclei, there are
(2𝑆𝛼 + 1) possible functions, where 𝛼 ∈ 𝑎. The set may be of size one. The character of
the operation is thus ∏

𝑎
𝛼∈𝑎
(2𝑆𝛼 + 1) (2.6.3)

where the product is over all the sets of separately permuted nuclei. Performing this
for all operations, where the permutation-inversion characters are the same as the
counterpart permutation characters, results in the representation of the entire product
basis set. The irreps can be found with the same standard reduction techniques. The
result is therefore

Γtot ns = 𝑎1Γ1 ⊕ . . . ⊕ 𝑎𝑚Γ𝑚 (2.6.4)

as usual. Multiplying each nuclear spin irrep Γns with every rovibronic irrep Γrve and
determining how many contain the Γ± representation (±means + or − here) provides
the spin-statistical weights. For example, if Γns = Γ𝑖 and Γ𝑖 ⊗ Γrve ⊃ Γ± then the
spin-statistical weight of Γrve is 𝑎𝑖 . In general, for each Γns there will be only one irrep
Γrve = Γ𝑗 such that Γ𝑖 ⊗ Γ𝑗 ⊃ Γ±, as we shall now show. This will also provide a more
straightforward method to find the spin statistical weight. Assume the decomposition
of Eq. (2.6.4). Then, for each Γ𝑗 we want to know the value of

𝑎± =
1
|𝒢|

∑
ℊ∈𝒢

𝜒Γ𝑖⊗Γ𝑗 (ℊ)𝜒Γ±(ℊ)∗

=
1
|𝒢|

∑
ℊ∈𝒢

𝜒Γ𝑖 (ℊ)𝜒Γ𝑗 (ℊ)𝜒Γ±(ℊ)
(2.6.5)

where in the second line we used the character of a product and that the characters of
Γ± are real. The representation generated by Γ𝑖 ⊗ Γ± is an irrep, and thus there is only
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one irrep Γ𝑗 which ensures that 𝑎± = 1 for each Γ±. Moreover, Γ𝑗 must have characters
𝜒Γ𝑖 (ℊ)∗𝜒Γ±(ℊ), so that Γ𝑗 = Γ𝑖∗ ⊗ Γ±.

The spin-statistical weights 𝑎𝑖 can be written in terms of the rovibronic irreps
Γ𝑗 = Γ𝑖∗ ⊗ Γ±. That is, they can be written in the decomposition

𝑎1(Γ1
∗ ⊗ Γ+) ⊕ 𝑎1(Γ1

∗ ⊗ Γ−) ⊕ . . . ⊕ 𝑎𝑚(Γ𝑚∗ ⊗ Γ+) ⊕ 𝑎𝑚(Γ𝑚∗ ⊗ Γ−). (2.6.6)

The characters of this decomposition structure can be found as follows. For a permutation
ℊ (with no inversion), we must have 𝜒Γ𝑗 (ℊ) = 𝜒Γ𝑖 (ℊ)∗ for even permutations of fermions
as in these cases 𝜒±(ℊ) = 1 and 𝜒Γ𝑗 (ℊ) = −𝜒Γ𝑖 (ℊ)∗ for odd permutations as in these
cases 𝜒Γ±(ℊ) = −1. Thus, there are two irreps for each Γ± each contributing 𝜒Γ𝑖 (ℊ)∗ and
−𝜒Γ𝑖 (ℊ)∗ to the decomposition character for the even and odd permutations, respectively.
For operations with an inversion ℊ∗, we have 𝜒Γ𝑗 (ℊ∗) = 𝜒Γ𝑗 (ℊ) for the irrep Γ𝑗 which is
combined with Γ𝑖 to make Γ+ and 𝜒Γ𝑗 (ℊ∗) = −𝜒Γ𝑗 (ℊ) for the irrep Γ𝑗 which is combined
with Γ𝑖 to make Γ−.

The character of Eq. (2.6.6) must be zero for operations containing inversion as
the characters for the Γ𝑖∗ ⊗ Γ± pairs cancel. The permutation operations will have the
character

2
∏
𝑎

𝛼∈𝑎
(2𝑆𝛼 + 1)(−1)(2𝑆𝛼)(𝑛𝑎−1) (2.6.7)

where 𝑛𝑎 is the number of nuclei in the set [74]. A product of two numbers is only odd
if the two constituents are odd. So, 𝑛𝑎 must be even (an odd permutation) and 2𝑆𝑎 must
be odd. The latter occurs for fermions. There is therefore an overall negative factor for
an odd permutation of fermions. The factor 2 at the front is from the two contributions
of the Γ∗𝑖 ⊗ Γ± pairs. Since Γtot ns is real as are the decomposition coefficients, the 𝑎𝑖s are
the same for complex conjugated representations, and therefore complex conjugation
can be dropped from Eq. (2.6.6).

In the expression for the line strength, given by

𝑆(f← i) =
∑
𝐹

���⟨Ψ 𝑓
int |𝜇𝐹 |Ψ𝑖

int⟩
���2 , (2.6.8)

we see that, since the nuclear spin functions Ψns of the eigenfunction Ψint = ΨnsΨrve
are orthogonal, the line strength will only be zero if the nuclear spin functions are the
same for the initial and final states. Due to Eq. (2.6.6), and the parity selection rule, for
each pair of rovibronic eigenfunctions that produce a non-zero line strength, there will
be only 𝑔ns nuclear spin functions of the correct symmetry.

2.7 Rovibrational calculations using trove

2.7.1 Introduction

The ExoMol program trove (Theoretical RO-Vibrational Energies) [29, 77] was employed
for the work described in this thesis. It is a general variational program for computing
rovibrational spectra and properties for small- to medium-sized polyatomic molecules
of arbitrary structure and it has been applied to a large number of polyatomic species
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[78–97], most of which have considerable symmetry (e.g., with molecular symmetry
groups [74] such as 𝒞3v(M),𝒟𝑛h(M) and𝒯d(M)). In this section we shall detail trove’s
automatic approach for constructing a symmetry-adapted basis set which solves the
rovibrational Hamiltonian.

The philosophy for trove is that it be a black-box program capable of generating
the rovibronic states and Einstein A coefficients of any polyatomic molecule, and many
strides have been made in that regard. Currently, trove requires an externally inputted
PES, the molecular structure, the nuclear masses, the parametrisation of the vibrational
coordinates, the MS group of the molecule, and the coordinate transformation under
the MS group operations. The MS group itself, including the irreps, is programmed in a
separate part of trove. trove uses an automatic procedure with the provided input to
generate an expansion of the KEO in linearised coordinates to a chosen order. However,
since the KEOs for the molecules in this thesis were generated externally and were
analytic, the details of this procedure will not be discussed here. More information can
be found in Ref. [29].

trove’s method to build a symmetry-adapted basis set happens in stages, with each
stage incorporating more coordinates. This procedure is summarised below.

2.7.2 One-dimensional primitives

The utility of a symmetry-adapted basis is clear from Eq. (2.5.1). In trove, vibrational
eigenfunctions are built up from a sum-of-products of one-dimensional primitive
functions of the vibrational coordinates 𝜑𝑛𝑘 (𝑞𝑘). To construct these, one-dimensional
vibrational Hamiltonians, given by,

1
2 𝜋̂𝑘𝐺

1D
𝑘𝑘 𝜋̂𝑘 +𝑈(𝑞𝑘)1D +𝑉(𝑞𝑘)1D (2.7.1)

where 𝐺1D
𝑘𝑘 ,𝑈(𝑞𝑘)1D, and 𝑉(𝑞𝑘)1D are formed by setting all the coordinates except 𝑞𝑘 in

𝐺𝑘𝑘 , the pseudo potential, and the PES to their equilibrium values. The eigenfunctions
of this Hamiltonian are then found either through the Numerov-Cooley method [98, 99],
or by diagonalisation of the matrix constructed from a specific set of basis functions,
such as Hermite polynomials or a Fourier basis set. The advantage of primitive functions
adapted from the Hamiltonian is that a more compact basis set can be expected to
reproduce the eigenfunctions.

Recently, trove was updated to be able to perform rovibrational calculations on
triatomic molecules whose KEO was analytic and expressed in terms of the valence coor-
dinates. To deal with the singularity which occurs at linearity, specially designed basis
sets were used based on the associated Laguerre or associated Legendre polynomials
which contained a prefactor of

√
sin 𝜌, where 𝜌 is the angular deviation from linearity,

that killed the singularity. Details can be found in Ref. [7].
Regardless of the method used to generate the 1D eigenfunctions, the result is, for

each coordinate 𝑞𝑘 , a set of 𝑁𝑘 functions 𝜑𝑛𝑘 (𝑞𝑘), where 𝑁𝑘 is an input parameter. It
may vary for different vibrational coordinates but should be the same for subsets of the
vibrational coordinates which transform into each other under MS operations. These
subsets are called coordinate “classes” in trove.
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2.7.3 Reduced Hamiltonians

The next step is to produce reduced Hamiltonians each of which are only functions
of a coordinate class. By averaging the Hamiltonian over the “ground state” (𝑛𝑖 = 0;
𝜑0(𝑞𝑖) ≡ |0⟩𝑞𝑖 ) primitives associated with the coordinates in all subsets not under
consideration, i.e.

⟨0|𝑞1 . . . ⟨0|𝑞𝑘−1 ⟨0|𝑞𝑘′+1 . . . 𝐻̂rv . . . |0⟩𝑞𝑘′+1 |0⟩𝑞𝑘−1 . . . |0⟩𝑞1 (2.7.2)

where (𝑞𝑘 . . . 𝑞𝑘′) are the coordinates in the class of interest, one obtains the reduced
Hamiltonian which depends only on these coordinates; it commutes with the operations
in the MS group. The products 𝜑𝑛𝑘 (𝑞𝑘) . . . 𝜑𝑛𝑘′ (𝑞𝑘′) are the basis functions for the
diagonalisation of this reduced Hamiltonian.

2.7.4 Rigid-symmetric-rotor function representations

For the rotational coordinates, trove uses the rigid-rotor functions |𝐽𝑘𝑚⟩ [74] as primitive
basis functions. For 𝐾 ≠ 0 (where 𝐾 = |𝑘 |), the symmetrised functions are defined as

|𝐽𝐾𝑚𝜂⟩ = 𝑖𝜂(−1)𝜎√
2
(|𝐽𝑘𝑚⟩ + (−1)𝐽+𝐾+𝜂 |𝐽−𝑘𝑚⟩) (2.7.3)

where {
𝜎 = 𝐾 mod 3 𝜂 = 1
𝜎 = 0 𝜂 = 0,

(2.7.4)

while for 𝐾 = 0 it is |𝐽00𝜂⟩ = 𝑖𝜂 |𝐽 , 0, 0⟩ where 𝜂 = 𝐽 mod 2.

2.7.5 Symmetrisation of the vibrational basis set

Once a set of eigenfunctions of the reduced Hamiltonian is constructed for a subset
mentioned above, the degenerate eigenfunctions (which in general transform reducibly)
are symmetrised by a sampling and projection procedure elaborated in Sections 4 and 5
of Ref. [100]. Briefly, a set of𝓂 geometries is sampled, typically around 50. That is, the
coordinates (𝑞𝑘 , . . . , 𝑞𝑘′) are assigned to randomly generated values 𝑞𝑝 ≡ (𝑞𝑘,𝑝 , . . . , 𝑞𝑘′,𝑝)
where 𝑝 ∈ {1, . . . ,𝓂}. Each MS operation is then applied to the eigenfunctions to obtain
an overdetermined set of linear equations which are solved for the transformation matrix
effecting the operation on the degenerate eigenfunctions. Symbolically, if Ψ𝑖𝑙(𝑞𝑙) is the
𝑖th eigenfunction evaluated at the 𝑙th geometry, then it transforms as Ψ𝑖𝑙

′ =ℳ𝑖 𝑗(ℊ)Ψ𝑗𝑙
for operation ℊ. The matrix equation for C𝑖𝑙 = Ψ𝑖𝑙 is C′ =ℳ(ℊ)C and one can find the
Moore-Penrose right inverse C+ [101] such that C′C+ =ℳ(ℊ).

Using these matrices’ characters and the irrep matrices, one can obtain the irreducible
coefficients of the reducible matrix as well as projection operators onto the irreps. These
operators are then applied to the eigenfunctions to generate the symmetrised basis
functions.

One then produces the basis functions for the complete trove calculation as all
products of the reduced Hamiltonian eigenfunctions, one eigenfunction from each class.
In general, these total basis functions do not transform irreducibly, and so a further
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application of the symmetrisation procedure is required, although the sampling step
can be omitted as the transformation properties of the “factor” functions are already
known.

2.7.6 PES symmetrisation

The structure of the analytical PES must be ensured to be invariant under MS operations
before being fit to the ab initio energies. Each potential term has the structure

𝑉 initial
𝔭 (Q) =

3N−6∏
𝑘=1

Q
𝔭𝑘
𝑘 , (2.7.5)

where Q𝑘 is, in general, a function of 𝑞𝑘 , and the maximum expansion order
∑
𝑘 𝔭𝑘 is an

input parameter. Here, 𝔭 denotes the 3N − 6-dimensional hyper-index (𝔭1, . . . , 𝔭3N−6)
and Q denotes (Q1, . . . ,Q3N−6). Each MS group operation 𝒪ℊ is independently applied
to 𝑉 initial

𝔭 , i.e.,

𝑉
𝒪ℊ

𝔭 = 𝒪ℊ𝑉 initial
𝔭 (Q) = 𝒪ℊ

(
3N−6∏
𝑘=1

Q
𝔭𝑘
𝑘

)
(2.7.6)

to create |𝒢| new terms. The results are summed up to produce a final term

𝑉final
𝔭 =

∑
ℊ∈𝒢

𝑉
𝒪ℊ

𝔭 , (2.7.7)

which is itself subjected to the |𝒢| MS group symmetry operations 𝒪ℊ to check its
invariance. The total potential function is then given by the expression

𝑉total(Q) =
∑
𝔭

𝑓𝔭𝑉final
𝔭 (Q) (2.7.8)

where 𝑓𝔭 are the expansion coefficients determined through a least-squares fitting to the
generated ab initio data. The ab initio data points are themselves implicitly symmetric
under MS operations.

2.7.7 Rovibrational basis set

The symmetrised vibrational basis set is then used to calculate the ground rotational
(𝐽 = 0) eigenfunctions Ψ𝐽=0,Γvib

𝑖vib
with symmetry label Γvib. The final rovibrational basis

set for 𝐽 > 0 computations is then formed as a contracted product of these vibrational
functions and symmetrised rigid-rotor wavefunctions |𝐽𝐾Γrot⟩ as given by

|Ψ𝐽 ,Γ
𝑖vib ,𝐾
⟩ =

{
|Ψ𝐽=0,Γvib

𝑖vib
⟩ ⊗ |𝐽𝐾Γrot⟩

}Γ
, (2.7.9)

where Γ, Γvib and Γrot are the total, vibrational, and rotational symmetries, and 𝑖vib is a
trove vibrational index to count the |Ψ𝐽=0,Γvib

𝑖vib
⟩ functions regardless of their symmetry.

For further details of the trove symmetry-adaptation and contraction procedure, see
Ref. [100].
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2.8 PES refinement

Purely ab initio calculations are insufficient to calculate spectra with line positions of the
required accuracy for high resolution applications. In particular, the ab initio PES needs
to be updated or “refined” to experimental data in practice [102]. The trove approach
to accomplish this is to use the ab initio PES as the starting point and assume a refined
structure given by

𝑉′ = 𝑉0 +
∑
𝑚

𝛽𝑚 𝑓
Γ𝑠
𝑚 (Q) (2.8.1)

where the 𝛽𝑚 are the refinement parameters and 𝑓 Γ𝑠𝑚 are various (totally symmetric)
functions of the vibrational coordinates. We drop the Γ𝑠 for clarity. To compute
the newer refined energies one must diagonalise this Hamiltonian. The ab initio
Hamiltonian eigenfunctions {Ψ0} are an obvious choice for the basis set. Then, the
refined Hamiltonian’s eigenfunctions can be found by solving the matrix equation

⟨Ψ0
𝑖 |𝐻̂′|Ψ0

𝑗 ⟩ = ⟨Ψ0
𝑖 |𝐻̂0 |Ψ0

𝑗 ⟩ +
∑
𝑚

𝛽𝑚 ⟨Ψ0
𝑖 | 𝑓𝑚(Q)|Ψ0

𝑗 ⟩ = 𝛿𝑖 𝑗𝐸0
𝑖 +

∑
𝑚

𝛽𝑚 ⟨Ψ0
𝑖 | 𝑓𝑚(Q)|Ψ0

𝑗 ⟩.
(2.8.2)

It is only necessary to calculate the integrals ⟨Ψ0
𝑖 | 𝑓𝑚(Q)|Ψ0

𝑗 ⟩ once. Eigenfunctions for
updated parameter values can be found by diagonalising the updated matrix.

The aim in refinement is to construct a PES which produces eigenenergies as close
to experiment as possible: a minimisation problem. One straightforward way to
accomplish this is to minimise the quadratic residuals given by

𝑆(𝛽𝔫) =
∑
𝑖

𝑤𝑖(𝐸𝔫
𝑖 (𝛽𝔫) − 𝐸me

𝑖 )2 (2.8.3)

where𝑤𝑖 are the weights, typically based on the uncertainty of the measured energy 𝐸me
𝑖 ,

and 𝐸𝔫
𝑖 (𝛽𝔫) are the 𝔫th calculated energies for the parameter set 𝛽𝔫. The updated set 𝛽𝔫+1

is found from 𝛽𝔫 using the Newton-Guess algorithm as follows. First, the eigenenergies
around the parameter values are approximated by the linear expansion

𝐸𝔫
𝑖 (𝛽𝔫 + Δ𝛽) ≃ 𝐸𝔫

𝑖 (𝛽𝔫) +
∑
𝑗

𝜕𝐸𝔫
𝑚

𝜕𝛽𝑚
Δ𝛽𝑚 . (2.8.4)

Inserting this approximation into Eq. (2.8.3), differentiating with respect to Δ𝛽𝑚 , and
equating to zero, we obtain

−
∑
𝑖

𝑤𝑖(𝐸𝔫
𝑖 − 𝐸me

𝑖 )
𝜕𝐸𝔫

𝑖

𝜕𝛽𝑚
=

∑
𝑖𝑚′

𝑤𝑖
𝜕𝐸𝔫

𝑖

𝜕𝛽𝑚

𝜕𝐸𝔫
𝑖

𝜕𝛽𝑚′
Δ𝛽𝑚′ (2.8.5)

which has the structure of the matrix equation 𝐴𝑚𝑚′𝑥𝑚′ = 𝑏𝑚 and can be solved for Δ𝛽
to obtain 𝛽𝔫+1 = 𝛽𝔫 + Δ𝛽.

The remaining problem is to find the derivatives 𝜕𝐸𝔫
𝑖

/
𝜕𝛽𝑚 . Ordinarily, one would

need to calculate the energies at at least the neighbouring values of 𝛽𝑚 to estimate
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the derivatives. Fortunately there is a useful result, known as the Hellmann-Feynman
theorem [103], which states that

𝜕𝐸𝔫
𝑖

𝜕𝛽𝑚

����
𝛽𝔫

= ⟨Ψ𝔫
𝑖 | 𝜕𝐻̂′/𝜕𝛽𝑚

��
𝛽𝔫
|Ψ𝔫

𝑖 ⟩ (2.8.6)

where Ψ𝔫
𝑖 are the eigenfunctions with eigenenergies 𝐸𝔫

𝑖 . The right hand side is simply

⟨Ψ𝔫
𝑖 | 𝑓𝑚(𝑄)|Ψ𝔫

𝑖 ⟩ (2.8.7)

and can be found from the ⟨Ψ0 | 𝑓𝑚(𝑄)|Ψ0⟩ integrals and the eigenfunction coefficients.
Although we could use Eq. (2.8.3) as the objective function, it is potentially not ideal.

First, we can only invert Eq. (2.8.5) if the number of measured energies is greater than
the number of parameters. Second, we may want to maintain the overall structure of the
ab initio PES which should be relatively close to the actual potential; there is a danger of
overfitting with Eq. (2.8.3). To address both these problems, we use an objective function
of the form ∑

𝑖

𝑤𝑖(𝐸me
𝑖 − 𝐸𝔫

𝑖 )2 +
∑
𝑗

𝑧(𝐸0
𝑗 − 𝐸𝔫

𝑗 )2 (2.8.8)

where the second term is the sum of squares of the difference between the ab initio
energies and the 𝔫th refined energies, weighted by 𝑧, which essentially controls the bias
of the refinement toward the ab initio or experimental energies. The ratios 𝑧/𝑤𝑖 can be
varied, starting from a large value, and decreased until an optimal result is found. It
prevents the refined PES to deviate too severely from the ab initio PES.

Appendix 2.A Frequently used mathematical results

Below are results frequently used throughout this thesis. Summation over repeated
indices is implied.

1. Derivative of an inverse matrix 𝐴−1:
𝜕𝐴−1

𝜕𝑢
𝐴 = −𝐴−1 𝜕𝐴

𝜕𝑢
(2.A.1)

2. Determinant identity for matrix 𝐴:

𝐴𝑖𝑖′𝐴 𝑗 𝑗′𝐴𝑚𝑚′𝜀𝑖 𝑗𝑚 = det(𝐴)𝜀𝑖′ 𝑗′𝑚′ . (2.A.2)

where 𝜀𝑖 𝑗𝑚 is the Levi-Civita symbol.

3. Jacobi’s formula for matrix 𝐴:

𝜕det(𝐴)
𝜕𝑢

= det(𝐴)Tr
(
𝐴−1 𝜕𝐴

𝜕𝑢

)
. (2.A.3)

4. Levi-Civita product:
𝜀𝑖 𝑗𝑚𝜀𝑖 𝑗′𝑚′ = 𝛿 𝑗 𝑗′𝛿𝑚𝑚′ − 𝛿 𝑗𝑚′𝛿𝑚𝑗′ (2.A.4)

and
𝜀𝑖 𝑗𝑛𝜀𝑖 𝑗𝑚 = 2𝛿𝑛𝑚 (2.A.5)
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2.B. Proof of the generalised expression for the Laplacian 2. Background

5. Action of antisymmetric matrix 𝐴: If

𝐴 = ©­«
0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

ª®¬ (2.A.6)

and

𝑎 = ©­«
𝑎𝑥
𝑎𝑦
𝑎𝑧

ª®¬ , 𝑏 = ©­«
𝑏𝑥
𝑏𝑦
𝑏𝑧

ª®¬ (2.A.7)

then
𝐴𝑏 = 𝑎 × 𝑏 or 𝐴𝑖 𝑗𝑏 𝑗 = 𝜀𝑖𝑚𝑛𝑎𝑚𝑏𝑛 (2.A.8)

Appendix 2.B Proof of the generalised expression for the

Laplacian

We desire to show that Eq. (2.4.4) and Eq. (2.4.6) are equivalent. This is achieved by
rewriting Eq. (2.4.6) into the form of Eq. (2.4.4). We use Jacobi’s formula Eq. (2.A.3) (see
Appendix 2.B.1) and can assume without loss of generality that det({𝜕𝑎R𝛼𝐹}) > 0. Since
the right hand factors of Eq. (2.4.4) and Eq. (2.4.6) are the same, it suffices to show

J−1𝜕𝑎J(𝜕𝛼𝐹𝜉𝑎) = (𝜕𝛼𝐹𝜉𝑎)𝜕𝑎 (2.B.1)

as then applying 1/𝑚𝛼(𝜕𝛼𝐹𝜉𝑏)𝜕𝑏 to the right side and summing over 𝛼 and 𝐹 leads to
Eq. (2.4.6) and Eq. (2.4.4), respectively. Applying the operators 𝜕/𝜕𝜉𝑎 to each J and
(𝜕𝛼𝐹𝜉𝑎), we have

J−1𝜕𝑎J(𝜕𝛼𝐹𝜉𝑎) =
∑
𝛽

(𝜕𝑎𝜕𝑐R𝛽𝐺)(𝜕𝛽𝐺𝜉𝑐)(𝜕𝛼𝐹𝜉𝑎) + (𝜕𝑎𝜕𝛼𝐹𝜉𝑎) + (𝜕𝛼𝐹𝜉𝑎)𝜕𝑎 . (2.B.2)

The last term is the right hand side of Eq. (2.B.1), so we must show the first and second
terms cancel. The first term can be written as∑

𝛽

(𝜕𝑎𝜕𝑐R𝛽𝐺)(𝜕𝛽𝐺𝜉𝑐)(𝜕𝛼𝐹𝜉𝑎) =
∑
𝛽

(𝜕𝑐𝜕𝑎R𝛽𝐺)(𝜕𝛽𝐺𝜉𝑐)(𝜕𝛼𝐹𝜉𝑎)

=
∑
𝛽

−(𝜕𝑐𝜕𝛽𝐺𝜉𝑐) (𝜕𝑎R𝛽𝐺)(𝜕𝛼𝐹𝜉𝑎)︸             ︷︷             ︸
𝛿𝐹𝐺𝛿𝛼𝛽

= −(𝜕𝑐𝜕𝛼𝐹𝜉𝑐)

(2.B.3)

where in the first line we switched the order of the derivatives and in the second we
used the inverse matrix derivative rule.
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2.B.1 Proof of Jacobi’s formula

To prove Jacobi’s formula Eq. (2.A.3), we write the general expression for the determinant
of an 𝑛 × 𝑛 matrix 𝐴:

det(𝐴) =
∑
𝑝

𝜀𝑖1...𝑖𝑛𝐴𝑖11 . . . 𝐴𝑖𝑛𝑛 (2.B.4)

where 𝜀𝑖1...𝑖𝑛 is a generalised Levi-Civita symbol which is 1 for an even permutation of
{1 . . . 𝑛} and −1 for an odd permutation. The sum is over all permutations 𝑝 of {1 . . . 𝑛}.
Differentiating with respect to 𝑢, the result can be written as

𝜕det(𝐴)
𝜕𝑢

=
𝑛∑

𝑚′=1

∑
𝑝

𝜀𝑖1...𝑖𝑛
𝜕𝐴𝑖𝑚′𝑚′

𝜕𝑢
𝐴𝑖11 . . . 𝐴𝑖𝑚′−1𝑚′−1𝐴𝑖𝑚′+1𝑚′+1 . . . 𝐴𝑖𝑛𝑛 . (2.B.5)

Rewriting this

𝜕det(𝐴)
𝜕𝑢

=
𝑛∑

𝑚′=1

∑
𝑚𝑙

∑
𝑝

𝜀𝑖1...𝑖𝑛
𝜕𝐴𝑚𝑚′
𝜕𝑢

𝐴𝑖11 . . . 𝐴𝑖𝑚′−1𝑚′−1𝐴𝑖𝑚′ 𝑙𝐴
−1
𝑙𝑚𝐴𝑖𝑚′+1𝑚′+1 . . . 𝐴𝑖𝑛𝑛

=
𝑛∑

𝑚′=1

∑
𝑚𝑙

𝜕𝐴𝑚𝑚′
𝜕𝑢

𝐴−1
𝑙𝑚

(∑
𝑝

𝜀𝑖1...𝑖𝑛𝐴𝑖11 . . . 𝐴𝑖𝑚′−1𝑚′−1𝐴𝑖′𝑚 𝑙𝐴𝑖𝑚′+1𝑚′+1 . . . 𝐴𝑖𝑛𝑛

)
(2.B.6)

where the term in brackets is, for a given 𝑙, the determinant of the matrix 𝐴 with the
𝑚′th column replaced by the 𝑙th column, and hence is zero unless 𝑙 = 𝑚′, at which point
it is det(𝐴). With that restriction, we have the desired result.

Appendix 2.C Explicit expression for𝑊

Following the steps of Eq. (2.4.23), we have the relations

𝜕𝑀𝐹𝑔

𝜕Ξℎ
𝑀𝐺𝑔 = 𝜀𝐹𝐻𝐺w

ℎ
𝐻 = 𝜀𝐹𝐻𝐺𝑊ℎ𝑔𝑀𝐻𝑔 (2.C.1)

from which we can obtain

𝜕𝑀𝐹 𝑓

𝜕Ξℎ
= 𝜀𝐹𝐻𝐺𝑊ℎ𝑔𝑀𝐻𝑔𝑀𝐺 𝑓 = 𝜀𝑔′𝑔 𝑓𝑊ℎ𝑔𝑀𝐹𝑔′ (2.C.2)

so that, using 𝜀𝑔 𝑓 𝑔′𝜀 𝑓 ′ 𝑓 𝑔′ = 2𝛿𝑔 𝑓 ′, we have

𝑊ℎ𝑔 =
1
2
𝜕𝑀𝐹 𝑓

𝜕Ξℎ
𝑀𝐹𝑔′𝜀𝑔 𝑓 𝑔′ . (2.C.3)
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2.D. Proof 𝐽𝑔 are the RF angular momentum BF components 2. Background

Appendix 2.D Proof 𝐽𝑔 are the RF angular momentum BF

components

We want to show that 𝐽𝑔 are the BF components of the RF angular momentum, or that
𝑀𝐹𝑔 𝐽𝑔 are the RF angular momentum components. With the same techniques as before,
𝑀𝐹𝑔 𝐽𝑔 can rewritten as:

−𝑖ℏ𝑀𝐹ℎ𝑊−1
ℎ𝑔

𝜕

𝜕Ξ𝑔
= −𝑖ℏ

N∑
𝛼

𝑀𝐹ℎ𝑊−1
ℎ𝑔

𝜕𝑀𝐻ℎ′

𝜕Ξ𝑔
𝑟𝛼ℎ′

𝜕

𝜕R𝛼𝐻
+ electronic part

= −𝑖ℏ
N∑
𝛼

𝑀𝐹ℎ𝑊−1
ℎ𝑔 𝜀𝐻𝐼𝐺𝑊𝑔𝑔′𝑀𝐼 𝑔′𝑀𝐺ℎ′𝑟𝛼ℎ′

𝜕

𝜕R𝛼𝐻
+ electronic part

= −𝑖ℏ
N∑
𝛼

𝑀𝐹ℎ𝑀𝐼ℎ𝜀𝐻𝐼𝐺𝑅𝛼𝐺
𝜕

𝜕R𝛼𝐻
+ electronic part (2.D.1)

= −𝑖ℏ
N∑
𝛼

𝜀𝐻𝐹𝐺𝑅𝛼𝐺
𝜕

𝜕R𝛼𝐻
+ electronic part

= −𝑖ℏ
N∑
𝛼

𝜀𝐹𝐺𝐻𝑅𝛼𝐺
𝜕

𝜕R𝛼𝐻
− 𝑖ℏ

𝓁∑
𝒾

𝜀𝐹𝐺𝐻ℜ𝒾𝐺
𝜕

𝜕R𝒾𝐻

where we assume that the electronic coordinates are measured in the BF frame (Eq. (2.I.1))
and in the second line used Eq. (2.C.2). This almost correct, except the derivative is
𝜕/𝜕R𝛼𝐻 and not 𝜕/𝜕𝑅𝛼𝐻 , and likewise for the electronic part. We transform to the latter
using Eq. (2.1.7) so that substituting this into Eq. (2.D.1) and using that the

∑
𝛼 𝑚𝛼𝑅𝛼 = 0,

we have

−𝑖ℏ𝑀𝐹ℎ𝑊−1
ℎ𝑔

𝜕

𝜕Ξ𝑔
= −𝑖ℏ

N∑
𝛼=2

𝜀𝐹𝐺𝐻𝑅𝛼𝐺
𝜕

𝜕𝑅𝛼𝐻
− 𝑖ℏ

𝓁∑
𝒾

𝜀𝐹𝐺𝐻ℜ𝒾𝐺
𝜕

𝜕ℜ𝒾𝐻
. (2.D.2)

It is also true that

− 𝑖ℏ
N∑
𝛼

𝜀𝐹𝐺𝐻R𝛼𝐺
𝜕

𝜕R𝛼𝐻
− 𝑖ℏ

𝓁∑
𝒾

𝜀𝐹𝐺𝐻R𝒾𝐺
𝜕

𝜕R𝒾𝐻
=

− 𝑖ℏ𝜀𝐹𝐺𝐻Rcm
𝐺

𝜕

𝜕Rcm
𝐻
− 𝑖ℏ

N∑
𝛼=2

𝜀𝐹𝐺𝐻𝑅𝛼𝐺
𝜕

𝜕𝑅𝛼𝐻
− 𝑖ℏ

𝓁∑
𝒾

𝜀𝐹𝐺𝐻ℜ𝒾𝐺
𝜕

𝜕ℜ𝒾𝐻
. (2.D.3)

and we can identify the first term on the right hand side as the centre of mass angular
momentum. What remains, and thus is the left hand side of Eq. (2.D.2), is the RF angular
momentum.

Appendix 2.E BF frame 𝑠 and 𝑡 vector components

This section will demonstrate that BF frame components of the 𝑠 and 𝑡 vectors can be
found by evaluating their functions using the BF coordinates 𝑟(𝑞).
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2.E. BF frame 𝑠 and 𝑡 vector components 2. Background

First, the vibrational 𝑠 vectors in any frame are found by evaluating 𝜕𝛼𝑖𝑞𝑘 in the
Cartesian coordinates of that frame. To show this, we use the property that the value of
𝑞𝑘 does not depend on which frame it is evaluated in, i.e.

𝑞𝑘(𝑀𝑅1 + 𝑑, . . . , 𝑀𝑅N + 𝑑) = 𝑞𝑘(𝑅1, . . . , 𝑅N). (2.E.1)

where 𝑀𝑅𝛼 + 𝑑 are the coordinates of 𝑹𝛼 when the frame is rotated and translated.
Calling 𝑇(𝑅) = 𝑀𝑅 + 𝑑, we want to determine 𝜕𝛼𝐹𝑞𝑘(𝑇(𝑅1), . . . , 𝑇(𝑅N)) in terms of
𝜕𝛼𝐹𝑞𝑘(𝑅1, . . . , 𝑅N). Let us define the function 𝑇̃ as

𝑇̃(𝑅) = (𝑇(𝑅1), . . . , 𝑇(𝑅N)). (2.E.2)

Then, the translational and rotational invariance can be expressed as

𝑞𝑘 ◦ 𝑇̃(𝑅) = 𝑞𝑘(𝑅). (2.E.3)

Differentiating both sides, and using the chain rule, we obtain

𝜕𝛼𝐹𝑞𝑘(𝑅) = 𝜕𝛼𝐹(𝑞𝑘 ◦ 𝑇̃)(𝑅) (2.E.4)

=
∑
𝛽

𝜕𝛼𝐹(𝑇̃)𝛽𝐺(𝑅)𝜕𝛽𝐺𝑞𝑘(𝑇̃(𝑅)) (2.E.5)

Here 𝜕𝛼𝐹(𝑇̃)𝛽𝐺 is the 𝛽𝐺 component of the derivative of 𝑇̃, which is non-zero only when
𝛽 = 𝛼 and is given by 𝑀𝐺𝐹. We thus have

𝜕𝛼𝐹𝑞𝑘(𝑅) = 𝑀𝐺𝐹𝜕𝛼𝐺𝑞𝑘(𝑇(𝑅)). (2.E.6)

Thus
𝒔𝑘,𝛼 = 𝒆̂𝐹𝜕𝛼𝐹𝑞𝑘(𝑅) = 𝑀𝐺𝐹 𝒆̂𝐹𝜕𝛼𝐺𝑞𝑘(𝑇(𝑅))

= 𝒆̂𝐺𝜕𝛼𝐺𝑞𝑘(𝑇(𝑅)) (2.E.7)

where 𝒆̂𝐺 = 𝑀𝐺𝐹 𝒆̂𝐹. Since the Cartesian components in the new frame are given by
𝑀𝐺𝐹𝑅𝛼𝐹 + 𝑑, 𝒆̂𝐺 are the unit vectors in the same frame, which tells us the component of
𝒔𝑘,𝛼 is the derivative of 𝑞𝑘 evaluated at the Cartesian coordinates of that frame. This
gives a computational way to determine the components of 𝒔𝑘,𝛼 in any frame that
does not involve first evaluating the components in the RF frame and applying the
rotation matrix. In particular, it provides a way to find the BF components. In short, the
vibrational 𝑠 vectors are

𝒔𝑘,𝛼 = 𝒆̂ 𝑓 𝜕𝛼 𝑓 𝑞𝑘(𝑟) (2.E.8)
The remaining vectors are easier. The translation 𝑡 vector is

𝒕𝐹,𝛼 = 𝒆̂𝐹 = 𝑀𝐹𝑔 𝒆̂𝑔 (2.E.9)

so that the BF frame components are 𝑀𝐹 = (𝑀𝐹𝑥 , 𝑀𝐹𝑦 , 𝑀𝐹𝑧). The translational 𝑠 vector
is similar.

For the rotational 𝑡 vector, we have

𝒕𝑔,𝛼 = 𝒆̂𝑔 × 𝑹𝛼

= 𝒆̂𝑔 × 𝑟𝛼ℎ 𝒆̂ℎ
= 𝑟𝛼ℎ𝜀𝑔ℎ 𝑓 𝒆̂ 𝑓

(2.E.10)
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2.F. Proof (𝜌−1𝐽𝑔𝜌) + (𝜋̂ℎ𝑊−1
ℎ𝑔 ) = 0 2. Background

so 𝑡𝑔,𝛼 𝑓 = 𝜀𝑔ℎ 𝑓 𝑟𝛼ℎ . Finally, the rotational 𝑠 vector components are defined in the BF
frame.

The upshot of this result is that the 𝐺 matrix in Eq. (2.4.40) is independent of the
angular coordinates: as an 𝑠 vector can be written as 𝑠𝑎,𝛼 𝑓 𝒆̂ 𝑓 , the only reference to
the angular coordinates is in 𝒆̂ 𝑓 (as shown in the main text, the 𝐺 matrix components
between the vibrations/rotations and centre of mass are also zero). Since the 𝐺 matrix
elements can be expressed as

𝐺𝑎𝑏 =
∑
𝛼

1
𝑚𝛼

𝑠𝑎,𝛼 𝑓 𝑠𝑏,𝛼 𝑓 (2.E.11)

they do not dependent on the angular coordinates.

Appendix 2.F Proof (𝜌−1𝐽𝑔𝜌) + (𝜋̂ℎ𝑊−1
ℎ𝑔 ) = 0

With the choice 𝜌 = | det(𝑊)|, where without loss of generality we can assume that
det(𝑊) > 0, (𝜌−1𝐽𝑔𝜌) + (𝜋̂ℎ𝑊−1

ℎ𝑔 ) becomes

(𝐽𝑔𝑊𝑔′ℎ′)𝑊−1
ℎ′𝑔′ + (𝜋̂ℎ𝑊−1

𝑔ℎ ) =𝑊−1
𝑔ℎ (𝜋̂ℎ𝑊𝑔′ℎ′)𝑊−1

ℎ′𝑔′ −𝑊−1
𝑔𝑔′(𝜋̂ℎ𝑊𝑔′ℎ′)𝑊−1

ℎ′ℎ (2.F.1)

where for the second term the inverse derivative formula was used.
For the derivative of𝑊 in the first term of Eq. (2.F.1), we have

𝜕𝑊𝑔′ℎ′

𝜕Ξℎ
=

1
2

𝜕

𝜕Ξℎ

(
𝜕𝑀𝐹 𝑓

𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝜀ℎ′ 𝑓 𝑓 ′

)
(2.F.2)

and we will first focus on the derivative of 𝑀. Using Eq. (2.C.2), we have

1
2
𝜕𝑀𝐹 𝑓

𝜕Ξ𝑔′

𝜕𝑀𝐹 𝑓 ′

𝜕Ξℎ
𝜀ℎ′ 𝑓 𝑓 ′ = 1

2(𝜀𝐹𝐻𝐺𝑊𝑔′𝑝𝑀𝐻𝑝𝑀𝐺 𝑓 )(𝜀𝐹𝐻′𝐺′𝑊ℎ𝑝′𝑀𝐻′𝑝′𝑀𝐺′ 𝑓 ′)𝜀ℎ′ 𝑓 𝑓 ′

= 1
2(𝛿𝐻𝐻′𝛿𝐺𝐺′ − 𝛿𝐻𝐺′𝛿𝐻′𝐺)(𝑊𝑔′𝑝𝑀𝐻𝑝𝑀𝐺 𝑓𝑊ℎ𝑝′𝑀𝐻′𝑝′𝑀𝐺′ 𝑓 ′)𝜀ℎ′ 𝑓 𝑓 ′

= 1
2(𝑊𝑔′𝑝𝑊ℎ𝑝𝜀ℎ′ 𝑓 𝑓︸           ︷︷           ︸

=0

−𝑊𝑔′ 𝑓 ′𝑊ℎ 𝑓 𝜀ℎ′ 𝑓 𝑓 ′)

(2.F.3)

The second term, when combined with𝑊−1
𝑔ℎ𝑊

−1
ℎ′𝑔′, gives

−1
2𝑊
−1
𝑔ℎ𝑊

−1
ℎ′𝑔′𝑊𝑔′ 𝑓 ′𝑊ℎ 𝑓 𝜀ℎ′ 𝑓 𝑓 ′ = −1

2𝜀ℎ′𝑔ℎ′ = 0. (2.F.4)

Doing the same for the second term of Eq. (2.F.1) leaves 1
2𝜀ℎ′ℎ′𝑔 = 0.
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2.G. Angular momentum commutation relations 2. Background

The remaining terms are

1
2

(
𝑊−1
𝑔ℎ

𝜕2𝑀𝐹 𝑓

𝜕Ξℎ𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝑊−1

ℎ′𝑔′𝜀ℎ′ 𝑓 𝑓 ′ −𝑊−1
𝑔𝑔′

𝜕2𝑀𝐹 𝑓

𝜕Ξℎ𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝑊−1

ℎ′ℎ𝜀ℎ′ 𝑓 𝑓 ′

)
=

1
2

(
𝑊−1
𝑔ℎ

𝜕2𝑀𝐹 𝑓

𝜕Ξ𝑔′𝜕Ξℎ
𝑀𝐹 𝑓 ′𝑊−1

ℎ′𝑔′𝜀ℎ′ 𝑓 𝑓 ′ −𝑊−1
𝑔𝑔′

𝜕2𝑀𝐹 𝑓

𝜕Ξℎ𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝑊−1

ℎ′ℎ𝜀ℎ′ 𝑓 𝑓 ′

)
=

1
2

(
𝑊−1
𝑔𝑔′

𝜕2𝑀𝐹 𝑓

𝜕Ξℎ𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝑊−1

ℎ′ℎ𝜀ℎ′ 𝑓 𝑓 ′ −𝑊−1
𝑔𝑔′

𝜕2𝑀𝐹 𝑓

𝜕Ξℎ𝜕Ξ𝑔′
𝑀𝐹 𝑓 ′𝑊−1

ℎ′ℎ𝜀ℎ′ 𝑓 𝑓 ′

)
= 0

(2.F.5)

where in the second line the derivatives in the first term were swapped and in the third
line the indices ℎ and 𝑔′ were substituted in the first term.

Appendix 2.G Angular momentum commutation relations

We want to show that
[𝐽𝑔 , 𝐽ℎ] = −𝑖ℏ𝜀 𝑓 𝑔ℎ 𝐽 𝑓 . (2.G.1)

Using the expressions for 𝐽𝑔 , this is

[𝐽𝑔 , 𝐽ℎ] = −𝑖ℏ𝑊−1
𝑔𝑔′

𝜕𝑊−1
ℎℎ′

𝜕Ξ𝑔′
𝜋̂ℎ′ + 𝑖ℏ𝑊−1

ℎℎ′
𝜕𝑊−1

𝑔𝑔′

𝜕Ξℎ′
𝜋̂𝑔′ (2.G.2)

where the other terms cancel. Using the methods of Appendix 2.F, this is

[𝐽𝑔 , 𝐽ℎ] = −𝑖ℏ𝑊−1
𝑔𝑔′𝑊

−1
ℎ 𝑓

𝜕𝑊𝑓 𝑓 ′

𝜕Ξ𝑔′
𝑊−1

𝑓 ′ℎ′𝜋̂ℎ′ + 𝑖ℏ𝑊−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕𝑊𝑓 𝑓 ′

𝜕Ξℎ′
𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′ . (2.G.3)

This time first we look at the second order derivatives of 𝑀:

𝑖ℏ
2 𝑊

−1
𝑔𝑔′𝑊

−1
ℎ 𝑓

𝜕2𝑀𝐹𝑝

𝜕Ξ 𝑓 𝜕Ξ𝑔′
𝑀𝐹𝑝′𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′ℎ′𝜋̂ℎ′ −
𝑖ℏ
2 𝑊

−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕2𝑀𝐹𝑝

𝜕Ξ 𝑓 𝜕Ξℎ′
𝑀𝐹𝑝′𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′ =

𝑖ℏ
2 𝑊

−1
𝑔 𝑓𝑊

−1
ℎℎ′

𝜕2𝑀𝐹𝑝

𝜕Ξ 𝑓 𝜕Ξℎ′
𝑀𝐹𝑝′𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′ −
𝑖ℏ
2 𝑊

−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕2𝑀𝐹𝑝

𝜕Ξ 𝑓 𝜕Ξℎ′
𝑀𝐹𝑝′𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′ = 0

(2.G.4)

where in the second line we switched the order of the derivatives of the first term then
made the cyclic substitution 𝑔′→ 𝑓 → ℎ′.

As for the derivatives of 𝑀, these are

𝑖ℏ
2 𝑊

−1
𝑔𝑔′𝑊

−1
ℎ 𝑓

𝜕𝑀𝐹𝑝

𝜕Ξ 𝑓

𝜕𝑀𝐹𝑝′

𝜕Ξ𝑔′
𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′ℎ′𝜋̂ℎ′ −
𝑖ℏ
2 𝑊

−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕𝑀𝐹𝑝

𝜕Ξ 𝑓

𝜕𝑀𝐹𝑝′

𝜕Ξℎ′
𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′ =

− 𝑖ℏ𝑊−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕𝑀𝐹𝑝

𝜕Ξ 𝑓

𝜕𝑀𝐹𝑝′

𝜕Ξℎ′
𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′

(2.G.5)
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2.H. Angular momentum operator applied to an 𝑠 vector 2. Background

where in the second line we made the cyclic substitution 𝑓 → ℎ′→ 𝑔′ and 𝑝 ↔ 𝑝′ in
the first term. Using Eq. (2.F.3), this is

[𝐽𝑔 , 𝐽ℎ] = −𝑖ℏ𝑊−1
ℎℎ′𝑊

−1
𝑔 𝑓

𝜕𝑀𝐹𝑝

𝜕Ξ 𝑓

𝜕𝑀𝐹𝑝′

𝜕Ξℎ′
𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′

= 𝑖ℏ𝑊−1
ℎℎ′𝑊

−1
𝑔 𝑓𝑊𝑓 𝑝′𝑊ℎ′𝑝𝜀 𝑓 ′𝑝𝑝′𝑊−1

𝑓 ′𝑔′𝜋̂𝑔′

= 𝑖ℏ𝜀 𝑓 ′ℎ𝑔𝑊−1
𝑓 ′𝑔′𝜋̂𝑔′ = −𝑖ℏ𝜀 𝑓 ′𝑔ℎ 𝐽 𝑓 ′

(2.G.6)

as required.

Appendix 2.H Angular momentum operator applied to

an 𝑠 vector

Eq. (2.4.50) applies when 𝒔𝑎,𝛼 is a rotational or vibrational 𝑠 vector. By Appendix 2.E,
the vibrational 𝑠 vectors are

𝒔𝑘,𝛼 =
𝜕𝑞𝑘
𝜕𝑟𝛼 𝑓

𝒆̂ 𝑓 =
𝜕𝑞𝑘
𝜕𝑟𝛼 𝑓

𝑀𝐹 𝑓 𝒆̂𝐹 (2.H.1)

where the only angular dependence is due to the rotation matrix 𝑀: 𝜕𝑞𝑘
/
𝜕𝑟𝛼 𝑓 is

independent of it. Form Eq. (2.4.28) to Eq. (2.4.33), the rotational 𝑠 vectors have the
structure

𝒔𝑔,𝛼 = 𝑠𝑔,𝛼 𝑓 𝒆̂ 𝑓 = 𝑠𝑔,𝛼 𝑓𝑀𝐹 𝑓 𝒆̂𝐹 (2.H.2)

where the components 𝑠𝑔,𝛼 𝑓 are again independent of the angular coordinates. It
therefore suffices to find the result 𝐽𝑔 𝒆̂ 𝑓 . This is

𝐽𝑔 𝒆̂ 𝑓 = −𝑖ℏ𝑊−1
𝑔ℎ

𝜕𝑀𝐹 𝑓

𝜕Ξℎ
𝒆̂𝐹

= −𝑖ℏ𝑊−1
𝑔ℎ 𝜀𝑔′ℎ′ 𝑓𝑊ℎℎ′𝑀𝐹𝑔′ 𝒆̂𝐹

= −𝑖ℏ𝜀𝑔′𝑔 𝑓 𝒆̂𝑔′
= −𝑖ℏ(𝒆𝑔 × 𝒆̂ 𝑓 ).

(2.H.3)

As desired. Notice from the penultimate line that 𝐽𝑔 𝒆̂ 𝑓 also has an angular dependence
from the rotation matrix, and thus further applications of 𝐽ℎ introduces further cross
products in the same fashion.

Appendix 2.I Separation of electronic, centre of mass, and

rovibrational motion

Here we provide more justification for the separation of the kinetic energy operator
terms. Let us start with Eq. (2.4.4) but this time retain the electronic part as well. We
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2.I. Separation of electronic, centre of mass, and rovibrational motion 2. Background

define the coordinates 𝓇𝒾𝑔 which is the 𝑔 BF component of the 𝒾th electron. That is, we
have the relation

R𝒾𝐹 = Rcm
𝐹 +𝑀𝐹𝑔𝓇𝒾𝑔 (2.I.1)

or
𝓇𝒾𝑔 = 𝑀𝐹𝑔(R𝒾𝐹 − Rcm

𝐹 ) (2.I.2)
We want to know the 𝑠 vectors to write an expression for the full KEO and then drop
terms accordingly. The coordinates are functions of each other as follows:

R(Rcm,Ξ, 𝓇)
𝑅(Rcm,Ξ, 𝑞)
Rcm(R)
Ξ(R)
𝑞(R)
𝓇(R, R)

(2.I.3)

from which we can automatically say that

𝑠𝑘,𝒾𝐹 = 𝑠𝑔,𝒾𝐹 = 𝑠𝐺,𝒾𝐹 = 0
𝑡𝑘,𝒾𝐹 = 𝑡𝒾,𝛼𝐹 = 0

(2.I.4)

so that, retaining the same 𝑠 vectors as defined for the nuclear coordinates, the majority
of 𝑠 and 𝑡 vectors remain inverses of each other. The ones that do not are∑

𝑎

𝑠𝒿,𝑎𝐹𝑡𝑘,𝑎𝐹 =
∑
𝛼

𝑠𝒿,𝛼𝐹︸︷︷︸ 𝑡𝑘,𝛼𝐹∑
𝑎

𝑠𝒾,𝑎𝐹𝑡𝒿,𝑎𝐹 =
∑
𝓀

𝑠𝒾,𝓀𝐹︸︷︷︸ 𝑡𝒿,𝓀𝐹︸︷︷︸∑
𝑎

𝑠𝒾,𝑎𝐹𝑡𝐺,𝑎𝐹 =
∑
𝒿

𝑠𝒾,𝒿𝐹︸︷︷︸ 𝑡𝐺,𝒿𝐹︸︷︷︸+∑
𝛼

𝑠𝒾,𝛼𝐹︸︷︷︸ 𝑡𝐺,𝛼𝐹︸︷︷︸∑
𝑎

𝑠𝒾,𝑎𝐹𝑡𝑔,𝑎𝐹 =
∑
𝒿

𝑠𝒾,𝒿𝐹︸︷︷︸ 𝑡𝑔,𝒿𝐹︸︷︷︸+∑
𝛼

𝑠𝒾,𝛼𝐹︸︷︷︸ 𝑡𝑔,𝛼𝐹︸︷︷︸
(2.I.5)

where the under braced terms are new with the addition of electronic coordinates. The
relations in the other direction are∑

𝜉𝑎

𝑠𝜉𝑎 ,𝛼𝐹𝑡𝜉𝑎 ,𝒾𝐺 = 𝑠𝑔,𝛼𝐹 𝑡𝑔,𝒾𝐺︸︷︷︸+∑
𝒿

𝑠𝒿ℎ,𝛼𝐹︸︷︷︸ 𝑡𝒿ℎ,𝒾𝐺︸︷︷︸+𝑠𝐻,𝛼𝐹 𝑡𝐻,𝒾𝐺︸︷︷︸∑
𝜉𝑎

𝑠𝜉𝑎 ,𝒿𝐹𝑡𝜉𝑎 ,𝒾𝐺 =
∑
𝓀

𝑠𝓀ℎ,𝒿𝐹︸︷︷︸ 𝑡𝓀ℎ,𝒾𝐺︸︷︷︸ (2.I.6)

Eq. (2.I.1) gives

𝑠𝒿𝑔,𝒾𝐺 =
𝜕𝓇𝒿𝑔

𝜕R𝒾𝐺
= 𝛿𝒾𝒿𝑀𝐺𝑔

𝑠𝒾𝑔,𝛼𝐹 =
𝜕𝓇𝒿𝑔

𝜕R𝛼𝐹
=

𝜕𝑀𝐹𝑔

𝜕Ξℎ

𝜕Ξℎ

𝜕R𝛼𝐹
[R𝒾𝐹 − Rcm

𝐹 ] −𝑀𝐺𝑔
𝑚𝛼

Mnu
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𝑡𝑔,𝒾𝐻 =
𝜕R𝒾𝐻
𝜕Ξ𝑔

=
𝜕𝑀𝐻ℎ

𝜕Ξ𝑔
𝓇𝒾ℎ (2.I.7)

𝑡𝐹,𝒾𝐻 =
𝜕R𝒾𝐻
𝜕Rcm

𝐹
= 𝛿𝐹𝐻

𝑡𝒿ℎ,𝒾𝐻 =
𝜕R𝒿𝐻
𝜕𝓇𝒾ℎ

= 𝛿𝒾𝒿𝑀𝐹ℎ

The second line can be simplified

𝜕𝑀𝐹𝑔

𝜕Ξℎ

𝜕Ξℎ

𝜕R𝛼𝐹
[R𝒾𝐹 − Rcm

𝐹 ] −𝑀𝐺𝑔
𝑚𝛼

Mnu
= 𝜀 𝑓 ′ 𝑓 𝑔𝑊ℎ 𝑓𝑀𝐹 𝑓 ′𝑊−1

ℎ′ℎ𝑠ℎ′,𝛼𝐹[R𝒾𝐹 − Rcm
𝐹 ] −𝑀𝐹𝑔

𝑚𝛼

Mnu

= 𝜀 𝑓 ′ 𝑓 𝑔𝑠 𝑓 ,𝛼𝐹𝓇𝒾 𝑓 ′ −𝑀𝐹𝑔
𝑚𝛼

Mnu
(2.I.8)

The relations are then∑
𝛼

𝑠𝒾𝑔,𝛼𝐹𝑡𝑘,𝛼𝐹 = 𝜀 𝑓 ′ 𝑓 𝑔
∑
𝛼

𝑠 𝑓 ,𝛼𝐹𝑡𝑘,𝛼𝐹︸          ︷︷          ︸
=0

𝓇𝒾 𝑓 ′ −
∑
𝛼

𝑀𝐹𝑔
𝑚𝛼

Mnu
𝑡𝑘,𝛼𝐹 =

1
Mnu

∑
𝛼

𝑚𝛼
𝜕𝑟𝛼𝑔
𝜕𝑞𝑘︸        ︷︷        ︸

=0

= 0

∑
𝑎

𝑠𝒾ℎ,𝑎𝐹𝑡𝒿𝑔,𝑎𝐹 =
∑
𝓀

𝛿𝒾𝓀𝑀𝐹ℎ𝛿𝒿𝓀𝑀𝐹𝑔 = 𝛿𝒾𝒿𝛿𝑔ℎ∑
𝑎

𝑠𝒾ℎ,𝑎𝐹𝑡𝐺,𝑎𝐹 =
∑
𝓀

𝛿𝒾𝓀𝑀𝐺ℎ︸        ︷︷        ︸
𝑀𝐺ℎ

+𝜀 𝑓 ′ 𝑓 ℎ
∑
𝛼

𝑠 𝑓 ,𝛼𝐺︸    ︷︷    ︸
=0

𝓇𝒾 𝑓 ′ −
∑
𝛼

𝑀𝐹ℎ
𝑚𝛼

Mnu
𝛿𝐺𝐹︸               ︷︷               ︸

𝑀𝐺ℎ

= 0 (2.I.9)

∑
𝑎

𝑠𝒾ℎ,𝑎𝐹𝑡𝑔,𝑎𝐹 =
∑
𝓀

𝛿𝒾𝓀𝑀𝐹ℎ
𝜕𝑀𝐹 𝑓

𝜕Ξ𝑔
𝓇𝓀 𝑓 + 𝜀 𝑓 ′ 𝑓 ℎ𝑊𝑔𝑙

∑
𝛼

𝑠 𝑓 ,𝛼𝐹𝑡𝑙 ,𝛼𝐹︸         ︷︷         ︸
𝛿 𝑓 𝑙

𝓇𝒾 𝑓 ′

−𝑀𝐹𝑔
1

Mnu

∑
𝛼

𝑚𝛼
𝜕𝑅𝛼𝐹

𝜕Ξ𝑔︸         ︷︷         ︸
=0

= 𝑀𝐹ℎ
𝜕𝑀𝐹 𝑓

𝜕Ξ𝑔︸       ︷︷       ︸
𝜀ℎ 𝑓 ′ 𝑓𝑊𝑔 𝑓 ′

𝓇𝒾 𝑓 + 𝜀 𝑓 ′ 𝑓 ℎ𝑊𝑔 𝑓 𝓇𝒾 𝑓 ′ = 0

As for the other relations, they are∑
𝜉𝑎

𝑠𝜉𝑎 ,𝛼𝐹𝑡𝜉𝑎 ,𝒾𝐺 =𝑊−1
ℎ𝑔 𝑠ℎ,𝛼𝐹

𝜕𝑀𝐺ℎ′

𝜕Ξ𝑔
𝓇𝒾ℎ′ +

∑
𝒿

𝜀 𝑓 ′ 𝑓 ℎ𝑠 𝑓 ,𝛼𝐹𝓇𝒿 𝑓 ′𝛿𝒾𝒿𝑀𝐺ℎ
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−
∑
𝒿

𝑀𝐹ℎ
𝑚𝛼

Mnu
𝛿𝒾𝒿𝑀𝐺ℎ + 𝑚𝛼

Mnu
𝛿𝐻𝐹𝛿𝐻𝐺︸                                              ︷︷                                              ︸

=0

=𝑊−1
ℎ𝑔 𝑠ℎ,𝛼𝐹𝜀 𝑓 ′ 𝑓 ℎ′𝑊𝑔 𝑓𝑀𝐺 𝑓 ′𝓇𝒾ℎ′ + 𝜀 𝑓 ′ 𝑓 ℎ𝑠 𝑓 ,𝛼𝐹𝑀𝐺ℎ𝓇𝒿 𝑓 ′

= 𝜀 𝑓 ′ 𝑓 ℎ′𝑠 𝑓 ,𝛼𝐹𝑀𝐺 𝑓 ′𝓇𝒾ℎ′ + 𝜀 𝑓 ′ 𝑓 ℎ𝑠 𝑓 ,𝛼𝐹𝑀𝐺ℎ𝓇𝒿 𝑓 ′ = 0 (2.I.10)∑
𝜉𝑎

𝑠𝜉𝑎 ,𝒿𝐹𝑡𝜉𝑎 ,𝒾𝐺 =
∑
𝓀

𝛿𝓀𝒿𝑀𝐹ℎ𝛿𝓀𝒾𝑀𝐺ℎ = 𝛿𝐹𝐺𝛿𝒾𝒿

so that the 𝑠 and 𝑡 vectors are inverses and defined correctly. The G matrix elements are
then

G𝒾𝑔𝜉𝑎 =
∑
𝓀

1
𝑚e
𝑠𝒾𝑔,𝓀𝐹𝑠𝜉𝑎 ,𝓀𝐹 +

∑
𝛼

1
𝑚𝛼

𝑠𝒾𝑔,𝛼𝐹𝑠𝜉𝑎 ,𝛼𝐹 (2.I.11)

When 𝜉𝑎 is not an electronic coordinate, the first term of Eq. (2.I.11) is zero by Eq. (2.I.4).
The second term has a 1/𝑚𝛼 dependence in each term and hence is dropped by
assumption that they are small in comparison to the 1/𝑚e terms. When 𝜉𝑎 is an
electronic coordinate, we have

G𝒾𝑔𝒿ℎ =
∑
𝓀

1
𝑚e

𝛿𝒾𝓀𝑀𝐹ℎ𝛿𝒿𝓀𝑀𝐹𝑔︸               ︷︷               ︸
𝛿𝒾𝒿𝛿ℎ𝑔

+
∑
𝛼

1
𝑚𝛼

𝑠𝒾𝑔,𝛼𝐹𝑠𝒿ℎ,𝛼𝐹 (2.I.12)

where, dropping the second term due to the 1/𝑚𝛼 dependence, we have the desired
result.

Appendix 2.J Derivation of the transformation of the va-

lence coordinates

In this section the transformation properties of the valence coordinates under MS
operations will be derived. The example used will be based on the ethane (H3

12C12CH3)
molecule (shown in Figure 2.J.1) and the generators of its MS group𝒢36. However, the
precise structure of this molecule is not relevant to the results obtained, which are merely
illustrative examples as to the procedure in obtaining these transformation properties.

a

1

32

b

4

5 6

Figure 2.J.1: The labelling of the ethane nuclei.
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2.J. Derivation of the transformation of the valence coordinates 2. Background

2.J.1 Bond lengths

The bond length between nuclei 1 and 2, R12 (with position vectors 𝑹1 and 𝑹2, respec-
tively), is defined by |𝑹1 − 𝑹2 | = R12. We see that this value is unaffected byℰ∗ and the
other operations simply result in the relabelling of the bond lengths. For example, the
H1 – Ca bond length is given by R1𝑎 = |𝑹1 − 𝑹𝑎 | and the operation (123) transforms R1𝑎
to R′1𝑎 = |𝑹3 − 𝑹𝑎 | = R3𝑎 , and we obtain, once again, an obvious result. The operation
(14)(26)(35)(𝑎𝑏)∗ yields R′1𝑎 = | − 𝑹4 + 𝑹𝑏 | = |𝑹4 − 𝑹𝑏 | = R4𝑏

2.J.2 Bond angles

To obtain the angle between nuclei 1 and 𝑏 via nucleus 𝑎 we define 𝑹1𝑎 = 𝑹1 − 𝑹𝑎 and
likewise for 𝑹𝑏𝑎 . Then, the sought angle is

𝜃1 = arccos
(
𝑹1𝑎 · 𝑹𝑏𝑎

|𝑹1𝑎 | |𝑹𝑏𝑎 |
)
. (2.J.1)

Despite the expression for 𝜃1 being more complex than the expression for R1𝑎 ,
the effect of MS group operations is analogous. ℰ∗ produces no effect and the other
operations relabel. For (123), we have

𝜃′1 = arccos
(
𝑹3𝑎 · 𝑹𝑏𝑎

|𝑹3𝑎 | |𝑹𝑏𝑎 |
)
= 𝜃3, (2.J.2)

while for (14)(26)(35)(𝑎𝑏)∗

𝜃′1 = arccos
( (−𝑹4𝑏) · (−𝑹𝑎𝑏)
| − 𝑹4𝑏 | | − 𝑹𝑎𝑏 |

)
= arccos

(
𝑹4𝑏 · 𝑹𝑎𝑏

|𝑹4𝑏 | |𝑹𝑎𝑏 |
)
= 𝜃4. (2.J.3)

2.J.3 Dihedral angles

The expressions involving the dihedral angles are the most complicated. Consider the
four nuclei labelled 1, 𝑎, 𝑏, and 4 in Figure 2.J.2. The dihedral angle between the plane
spanned by 1, 𝑎, and 𝑏 and that spanned by 𝑎, 𝑏, and 4 is shown in Figures 2.J.2 and
2.J.3. For vector 𝒗, we define ⟨𝒗⟩ as the unit vector obtained by normalisation of 𝒗, ⟨𝒗⟩ =
𝒗/|𝒗 |. The orientation of the 𝑧 axis is defined by 𝒆̂𝑧 = ⟨𝑹𝑎𝑏⟩. We need two further axes 𝑥
and 𝑦 (whose orientations are defined by the unit vectors 𝒆̂𝑥 and 𝒆̂𝑦 , respectively) which,
together with 𝑧, form a right-handed axis system.

To simplify the discussion, we take the 𝑥𝑦 plane to be horizontal and the 𝑧 axis to
be vertical. We aim at obtaining the 𝑥 and 𝑦 components of 𝑹1𝑎 in order to find the
“horizontal” angle 𝜙 it makes with 𝑹4𝑏 , as shown in Figure 2.J.3. We require the 𝑥 axis
to be directed along the horizontal component (i.e., the component perpendicular to
𝒆̂𝑧) of 𝑹4𝑏 . Thus, the 𝑦 axis is perpendicular to the plane defined by 𝒆̂𝑧 and 𝑹4𝑏 , so
that we have 𝒆̂𝑦 = ⟨𝒆̂𝑧 × 𝑹4𝑏⟩ and therefore 𝒆̂𝑥 = 𝒆̂𝑧 × 𝒆̂𝑦 = 𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩, as shown in
Figure 2.J.4. The unit vector 𝒆̂𝑥′ = 𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩ defines an 𝑥′ axis in the 1–𝑎–𝑏 plane;
this axis is analogous to the 𝑥 axis in the 4–𝑎–𝑏 plane. The dihedral angle between the
two planes is the angle between the 𝑥 and 𝑥′ axes.

70 of 191



2.J. Derivation of the transformation of the valence coordinates 2. Background

The 𝑥 and 𝑦 components of 𝒆̂𝑥′ are 𝒆̂𝑥 · 𝒆̂𝑥′ and 𝒆̂𝑦 · 𝒆̂𝑥′, respectively. To obtain the dihe-
dral angle in the range [−𝜋,𝜋] with the correct sign, we use the standard trigonometric
function arctan2 (For (𝑥, 𝑦)= (𝑟 cos 𝜑, 𝑟 sin 𝜑), the function arctan2(𝑦, 𝑥) = 𝜑 ∈ [−𝜋,𝜋])
to obtain

𝜙 = 𝜏41 = arctan2(𝒆̂𝑦 · 𝒆̂𝑥′ , 𝒆̂𝑥 · 𝒆̂𝑥′)
= arctan2(𝒆̂𝑦 · 𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩, 𝒆̂𝑥 · 𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩) (2.J.4)

which, written more explicitly, is

𝜙 = 𝜏41 = arctan2[⟨𝒆̂𝑧 × 𝑹4𝑏⟩ · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩)]

= arctan2[𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹1𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩)]

(2.J.5)

where the last expression emphasises the equivalence of nuclei 1 and 4.

4

𝑎

𝑏

1

𝑥

𝑧

𝑦

Figure 2.J.2: Four nuclei 1, 4, 𝑎, and 𝑏. The dihedral angle 𝜙 is the angle between the
1–𝑎–𝑏 and 4–𝑎–𝑏 planes. We define the positive direction of the angle by the right hand
rule with the thumb pointing in the 𝑹𝑎𝑏 direction. The axes are placed for clarity.

4

𝜙

1

Figure 2.J.3: Top down view of Figure 2.J.2 with the dihedral angle (with the defined
direction) marked as 𝜙.

𝑹1𝑎

𝑹4𝑏

𝒆̂𝑦 = ⟨𝒆̂𝑧 × 𝑹4𝑏⟩

Figure 2.J.4: The 𝑦 axis.
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We define the dihedral angles 𝜙𝑖 𝑗 and 𝜏𝑖 𝑗 in terms of Equation (2.J.5) and, by
means of this equation, we can determine their transformation properties under the
generating operations of𝒢36. We note that generallyℰ∗arctan2(𝑦, 𝑥) = arctan2(−𝑦, 𝑥) =
2𝜋 − arctan2(𝑦, 𝑥). The dihedral angle 𝜙23, for example, is defined by

𝜙23 = arctan2[𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹3𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹2𝑎⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹3𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹2𝑎⟩)] (2.J.6)

Under (123), we obtain
𝜙′23 = arctan2[𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹2𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩),

(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹2𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩)] = 𝜙12.
(2.J.7)

To obtain the effect of (14)(26)(35)(𝑎𝑏)∗, we initially apply (14)(26)(35)(𝑎𝑏)with the
result

arctan2[ − 𝒆̂𝑧 · (⟨−𝒆̂𝑧 × 𝑹5𝑏⟩ × ⟨−𝒆̂𝑧 × 𝑹6𝑏⟩),
(−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹5𝑏⟩) · (−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹6𝑏⟩)]. (2.J.8)

Applyingℰ∗ reverses 𝒆̂𝑧 , and by swapping 𝑹5𝑏 and 𝑹6𝑏 we obtain the final result:

𝜙′23 = arctan2[ − 𝒆̂𝑧 · (⟨−𝒆̂𝑧 × 𝑹6𝑏⟩ × ⟨−𝒆̂𝑧 × 𝑹5𝑏⟩),
(−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹6𝑏⟩) · (−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹5𝑏⟩)] = 𝜙56.

(2.J.9)

where the positive direction of the dihedral angle is in the sense of the proton numbering.
Finally, applying (14)(25)(36)(𝑎𝑏) to 𝜙23 gives

𝜙′23 = arctan2[ − 𝒆̂𝑧 · (⟨−𝒆̂𝑧 × 𝑹6𝑏⟩ × ⟨−𝒆̂𝑧 × 𝑹5𝑏⟩),
(−𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹6𝑏⟩) · (−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹5𝑏⟩)] = 𝜙56.

(2.J.10)

For 𝜏41, which is defined by going counterclockwise from 4 to 1, the equation is

arctan2[𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹1𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩)] = 𝜏41.

(2.J.11)

Under operation (123)(456), this becomes

𝜏′41 = arctan2[𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹3𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹6𝑏⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹3𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹6𝑏⟩)] = 𝜏63

(2.J.12)

To determine the effect of (14)(26)(35)(𝑎𝑏)∗, we first apply (14)(26)(35)(𝑎𝑏) to 𝜏41 and
obtain

arctan2[ − 𝒆̂𝑧 · (⟨−𝒆̂𝑧 × 𝑹4𝑏⟩ × ⟨−𝒆̂𝑧 × 𝑹1𝑎⟩),
(−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹4𝑏⟩) · (−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹1𝑎⟩)]. (2.J.13)

Applyingℰ∗ reverses 𝒆̂𝑧 . After swapping the order of 𝑹1𝑎 and 𝑹4𝑏 , we have

𝜏′41 = arctan2[ − 𝒆̂𝑧 · (⟨𝒆̂𝑧 × 𝑹1𝑎⟩ × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩),
(𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹1𝑎⟩) · (𝒆̂𝑧 × ⟨𝒆̂𝑧 × 𝑹4𝑏⟩)] = 2𝜋 − 𝜏41.

(2.J.14)

Finally, applying (14)(25)(36)(𝑎𝑏) to 𝜏41 gives

𝜏′41 = arctan2[ − 𝒆̂𝑧 · (⟨−𝒆̂𝑧 × 𝑹4𝑏⟩ × ⟨−𝒆̂𝑧 × 𝑹1𝑎⟩),
(−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹4𝑏⟩) · (−𝒆̂𝑧 × ⟨−𝒆̂𝑧 × 𝑹1𝑎⟩)] = 𝜏41.

(2.J.15)
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Chapter 3

Analytic KEOs in trove

3.1 Introduction

The construction of compact and, often, exact representations of KEOs is well established.
Prior to the widespread application of variational methods in diagonalisation, Watson
derived the exact kinetic energy operator in normal coordinates [28]. To enable
practical calculations of high energy states, molecules with large amplitude motion, and
complexes, exploration of curvilinear coordinate types also proved necessary [34]. Ref.
[33] provided a general form of the KEO for triatomic molecules. Handy determined
an exact kinetic energy operator for valence coordinates [32]. The valence, as well as
Jacobi [104] and Radau, coordinates can be considered to be a subset of the more general
polyspherical coordinates, pursued in Ref. [47] and emulated in Section 3.7.

This chapter describes a new trove implementation which generalises the Taylor
expansion of the KEO to a sum-of-product “expansion” in terms of arbitrary functions
of the valence coordinates, as opposed to being simply powers of the coordinates. A
special case for linear molecules has already been applied to CO2 [6] with the theoretical
aspects of the approach elaborated in Ref. [7].

3.2 The form of the KEO

We wish to express the components of 𝐺 and𝑈 as a sum-of-product of 1D functions of
the coordinates, i.e. in the form∑

𝔭

𝑎𝔭 𝑓𝔭1(𝑞1) 𝑓𝔭2(𝑞2) . . . 𝑓𝔭3N−6(𝑞3N−6) (3.2.1)

where the 𝑓 s are functions and 𝑎𝔭 is the coefficient with 𝔭 = (𝔭1, . . . , 𝔭3N−6). In this
expression, each 𝔭𝑘 denotes the 𝔭th function for the 𝑘th coordinate. The sum is over all
such possibilities.

This form generalises the current trove approach where the components have the
structure ∑

𝔭

𝑎𝔭𝒬1(𝑞1)𝔭1𝒬2(𝑞2)𝔭2 . . .𝒬3N−6(𝑞3N−6)𝔭3N−6 (3.2.2)
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where 𝒬𝑘 is a function – potentially different to that in the PES – of 𝑞𝑘 . The sum is
over all 𝔭 and 𝔭 ∈ {(𝔭1, . . . , 𝔭3N−6)|𝔭1 + . . . + 𝔭3N−6 ≤ 𝔭max} for some integer 𝔭max, i.e.
Taylor expanding the 𝐺 components and𝑈 in functions of each of the coordinates with
a maximum overall power governed by 𝔭max. Typically, the𝒬s are linearised coordinates
constructed from geometrically defined coordinates. Using the notation of the more
general expression, one can see that 𝑓𝔭𝑘 (𝑞𝑘) = 𝒬𝑘(𝑞𝑘)𝔭𝑘 .

In the new trove implementation, no restrictions are made on the form of the 𝑓 s
and the same machinery is applicable in diagonalising the Hamiltonian when using the
Taylor expansion or the arbitrary functions. For the practical implementation, however,
we have considered valence coordinates in particular, and we are able with relative
simplicity to generate exact and separable KEOs.

There are two advantages with this particular implementation. Evidently, the analytic
kinetic energy operator is exact and therefore should be expected to give more accurate
results. For larger molecules this becomes increasingly pronounced as the number of
components in the KEO grows exponentially with the molecular size at a given 𝔭max –
therefore limiting the value of a practical expansion order.

Related to this, and mentioned briefly above, is that valence coordinates, in compari-
son to linearised coordinates, are in a sense the more “natural” choice of coordinates
as their meaning is more directly physically relevant. They are more suitable for
calculating high energy states and for non rigid systems. Eigenfunctions in terms of
these coordinates should converge faster, i.e. for a smaller basis set, than those defined
using linearised coordinates [77].

To diagonalise the Hamiltonian [29], we must evaluate matrix elements
〈
𝜓𝑖

��𝐺��𝜓 𝑗
〉

and〈
𝜓𝑖

��𝑈 ��𝜓 𝑗
〉
, where |𝜓𝑖⟩ is the 𝑖th basis function. In general, these are linear combinations

of functions of the form (⊗
𝑘

|𝑛𝑘⟩
)
⊗ |𝐽𝐾𝑚𝜂⟩ (3.2.3)

where |𝑛𝑘⟩ is the 𝑛th excitation of the 𝑘th vibrational coordinate.
The former trove approach stores certain elementary integrals, namely〈

𝑛𝑘
��𝒬𝑘(𝑞𝑘)𝔭𝑘 ��𝑛′𝑘〉 ,〈

𝑛𝑘
��𝒬𝑘(𝑞𝑘)𝔭𝑘 𝜋̂𝑘 ��𝑛′𝑘〉 ,〈

𝑛𝑘
��𝜋̂𝑘𝒬𝑘(𝑞𝑘)𝔭𝑘 ��𝑛′𝑘〉 = − 〈

𝑛𝑘
��𝒬𝑘(𝑞𝑘)𝔭𝑘 𝜋̂𝑘 ��𝑛′𝑘〉 ,〈

𝑛𝑘
��𝜋̂𝑘𝒬𝑘(𝑞𝑘)𝔭𝑘 𝜋̂𝑘 ��𝑛′𝑘〉 .

(3.2.4)

This allows the matrix elements to be calculated through only algebraic manipulations
of the elementary integrals. Thus, we see that it is crucial for the terms in the newer
method to be separable so that all integrals reduce to a sum-of-products of 1D integrals.

In the next section we will see that, for a KEO in valence coordinates, there is a finite
list of possible functions that are present in 𝐺 and𝑈 and that this list is independent of
the molecule, though it does depend on the BF frame in a systematic way. The proof
uses the intermediate result detailing the relation between 𝑠 vector components under
a change of BF frame (valid for any vibrational coordinate). This will prove useful in
Chapter 6. Finally, a description of the implementation of this method in Mathematica
will be given and the necessary modifications to the trove input files needed to utilise
this KEO structure.
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3.3 𝑠 vector components under a change of BF frame

To show that the 𝐺 matrix and𝑈 have a sum-of-product form, one only needs to show
that the 𝑠 vectors of Section 2.4.2 have this structure. To demonstrate this result, we shall
state how the 𝑠 vector components relate when the BF frame definition is changed, with
the proof given in Appendix 3.A. Bear in mind that this is not the same as a rotation
of the original BF frame. Instead, only the BF coordinates in terms of the vibrational
coordinates 𝑟(𝑞) are changed, as well as the conditions 𝐶(𝑔)(𝑟) that define the frame.
With those relations, we will then calculate the 𝑠 vectors under the simplest frame
conditions and use the relations to re-express them when in the desired frame.

The translational 𝑠 vectors are invariant under a change of the BF frame. The BF
coordinates 𝑟𝛼 become

𝑟𝛼 → 𝑆𝑟𝛼 (3.3.1)

in a different BF frame, where 𝑆 is a rotation matrix. The vibrational 𝑠 vectors are
(Eq. (2.4.19))

𝒔𝑘,𝛼 = 𝒆̂𝐹𝜕𝛼𝐹𝑞𝑘(𝑅) = 𝒆̂𝑔𝜕𝛼𝑔𝑞𝑘(𝑟) (3.3.2)

where the latter is proved in Appendix 2.E and states that the vibrational 𝑠 vector
components in the BF frame are found by evaluating 𝜕𝛼𝑔𝑞𝑘 at the BF coordinates.
Appendix 3.A shows that in a different BF frame the vibrational 𝑠 vectors components
are related to the original components 𝑠𝑘,𝛼 via the 𝑆 rotation matrix as

𝑠𝑘,𝛼 → 𝑆𝑠𝑘,𝛼 (3.3.3)

which means they related as the BF coordinates in Eq. (3.3.1). We can relate the rotational
𝑠 vectors, whose BF components can also be found by evaluating their function at the
BF coordinates, by using the convenient expression

𝑆𝑇
𝜕𝑆
𝜕𝑞𝑘

= ©­«
0 −𝔰𝑘,𝑧 𝔰𝑘,𝑦
𝔰𝑘,𝑧 0 −𝔰𝑘,𝑥
−𝔰𝑘,𝑦 𝔰𝑘,𝑥 0

ª®¬ (3.3.4)

and also

𝔰𝑘 =
©­«
𝔰𝑘,𝑥
𝔰𝑘,𝑦
𝔰𝑘,𝑧

ª®¬ . (3.3.5)

The rotational 𝑠 vectors then relate as

Sr,𝛼 → 𝑆
(
Sr,𝛼 − 𝔰𝑘𝑠𝑘,𝛼𝑇

)
𝑆𝑇 (3.3.6)

where Sr,𝛼 is the matrix with 𝑔th row 𝑠𝑔,𝛼.
An arbitrary change in the BF frame can be expressed as a combination of three

rotations about three axis – here labelled 𝑒, 𝑔, and ℎ – i.e. 𝑆 = 𝑀𝑒𝑀𝑔𝑀ℎ , with the
corresponding angles 𝜃𝑒 , 𝜃𝑔 , and 𝜃ℎ . The rotational 𝑠-matrix components are related by

Sr,𝛼 → 𝑆
(
Sr,𝛼 − 𝔰𝑘𝑠𝑘,𝛼𝑇

)
𝑆𝑇 (3.3.7)
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where 𝔰𝑘,𝑙 is given by

𝔰𝑘,𝑙 =
𝜕𝜃𝑒
𝜕𝑞𝑘
(𝑀𝑔𝑀ℎ)𝑒𝑙 +

𝜕𝜃𝑔

𝜕𝑞𝑘
(𝑀ℎ)𝑔𝑙 + 𝜕𝜃ℎ

𝜕𝑞𝑘
𝛿ℎ𝑙 . (3.3.8)

For example, if the rotation is 𝑆 = 𝑀𝑥𝑀𝑦𝑀𝑧 , then 𝔰𝑘 for the new rotational 𝑠-matrix
components are

𝔰𝑘,𝑙 =
𝜕𝜃𝑥
𝜕𝑞𝑘
(𝑀𝑦𝑀𝑧)𝑥𝑙 +

𝜕𝜃𝑦

𝜕𝑞𝑘
(𝑀𝑧)𝑦𝑙 + 𝜕𝜃𝑧

𝜕𝑞𝑘
𝛿𝑧𝑙 . (3.3.9)

The rotational 𝑠-matrix relation can be expressed as

Sr,𝛼 → 𝑆Sr,𝛼𝑆𝑇 −
∑
𝑘

((
𝜕𝜃𝑧
𝜕𝑞𝑘

𝑀𝑥𝑀𝑦𝑒𝑧 +
𝜕𝜃𝑦

𝜕𝑞𝑘
𝑀𝑥𝑒𝑦 + 𝜕𝜃𝑥

𝜕𝑞𝑘
𝑒𝑥

)
𝑠𝑘,𝛼𝑇

)
𝑆𝑇 . (3.3.10)

where

𝑒𝑥 =
©­«
1
0
0

ª®¬ , 𝑒𝑦 =
©­«
0
1
0

ª®¬ , and 𝑒𝑧 =
©­«
0
0
1

ª®¬ . (3.3.11)

Ref. [105] provides the relationship between the original 𝐺 matrix and the 𝐺 matrix
in a new BF frame. The translational and vibrational parts of the 𝐺 matrix stay the same,
while the relation between the Coriolis part is evaluated to be

𝐺cor→ 𝑆𝑇𝐺cor − 𝐵𝑇𝐷𝐺vib (3.3.12)

where 𝐺cor,𝑘 are the Coriolis components (as a column vector) of the 𝐺cor matrix
corresponding to the 𝑘th vibrational mode and 𝐺vib,𝑘𝑘′ is the 𝑘𝑘′ component of the
vibrational part of the 𝐺 matrix 𝐺vib. The other variables are defined as

𝐵 = ©­«
0 0 0
0 0 0
0 0 1

ª®¬ + ©­«
0 0 0
0 1 0
0 0 0

ª®¬𝑀𝑧 + ©­«
1 0 0
0 0 0
0 0 0

ª®¬𝑀𝑦𝑀𝑧 , (3.3.13)

and1

𝐷 =
©­­­«
𝜕𝜃𝑥
𝜕𝑞1

. . . 𝜕𝜃𝑥
𝜕𝑞3N−6

𝜕𝜃𝑦
𝜕𝑞1

. . .
𝜕𝜃𝑦

𝜕𝑞3N−6
𝜕𝜃𝑧
𝜕𝑞1

. . . 𝜕𝜃𝑧
𝜕𝑞3N−6

ª®®®¬ , (3.3.14)

and 𝑆 = 𝑀𝑥𝑀𝑦𝑀𝑧 .
To compare those relations to our results, we must use our relations to calculate the

𝐺 matrix components in a new BF frame. The translational and vibrational components
are invariant, as expected. For the Coriolis components, we apply 1/𝑚𝛼𝑆𝑠𝑘′𝛼 to the right
of both sides of Eq. (3.3.10) and sum over 𝛼, to obtain

𝐺cor,𝑘′ → 𝑆𝐺cor,𝑘′ −
∑
𝑘

(
𝜕𝜃𝑧
𝜕𝑞𝑘

𝑀𝑥𝑀𝑦𝑒𝑧 +
𝜕𝜃𝑦

𝜕𝑞𝑘
𝑀𝑥𝑒𝑦 + 𝜕𝜃𝑥

𝜕𝑞𝑘
𝑒𝑥

)
𝐺vib,𝑘𝑘′ . (3.3.15)

1Technically, the 𝜃s in Ref. [105] are linear functions of the vibrational coordinates.
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This can be written as the matrix equation

𝐺cor→ 𝑆𝐺cor − 𝐵𝐷𝐺vib (3.3.16)

where our 𝐵 is given by (𝐷 is as Eq. (3.3.14)),

𝐵 = 𝑀𝑥𝑀𝑦
©­«
0 0 0
0 0 0
0 0 1

ª®¬ +𝑀𝑥
©­«
0 0 0
0 1 0
0 0 0

ª®¬ + ©­«
1 0 0
0 0 0
0 0 0

ª®¬ . (3.3.17)

Our transformation compares to Ref. [105] when it is taken to account that their 𝑆 on
the operators corresponds to our 𝑆𝑇 on the coordinates. Therefore,

𝑆 = 𝑀𝑧(−𝜃𝑧)𝑀𝑦(−𝜃𝑦)𝑀𝑥(−𝜃𝑥) = 𝑀𝑧(Θ𝑧)𝑀𝑦(Θ𝑦)𝑀𝑥(Θ𝑥) (3.3.18)

is applied to Eq. (3.3.8) instead, where Θ = −𝜃. Following the same steps as before,
Eq. (3.3.12) is obtained by bearing in mind that 𝑀(−𝜃) = 𝑀𝑇(𝜃) and that the matrix 𝐷
contains derivatives of Θ, not 𝜃.

Finally, our relation of the rotational 𝐺 matrix is given by

𝐺′rot = 𝑆𝐺rot𝑆𝑇 − 𝐵𝐷𝐺𝑇cor𝑆
𝑇 − 𝑆𝐺cor𝐷𝑇𝐵𝑇 + 𝐵𝐷𝐺vib𝐷𝑇𝐵𝑇 . (3.3.19)

which again compares with Ref. [105] with the aforementioned difference in the rotation.
The pseudo potential is known to be invariant, although this is not immediately obvious
from the form of the pseudo potential given in Eq. (3.4.12). It is shown explicitly in
Appendix 3.B.

3.4 Complete set of functions of the coordinates

As explained in Section 3.2, we wish to express the KEO as a sum-of-products of 1D
functions of the coordinates. We first must calculate the expansion functions 𝑓𝔭𝑘 for the
𝑠 vectors for the simplest choice of BF frame. The functions that appear in the KEO in an
arbitrary frame can be obtained from those 𝑠 vectors by the 𝑠 vector relations between
different choices of BF frame. In this section the bond vector frame of Figure 3.4.1 will
be used in obtaining the simplest form of example 𝑠 vectors. These are the 𝑎-𝑏 bond
length, the 𝑐-𝑎-𝑏 angle, and the dihedral angle between the planes formed by 𝑐-𝑎-𝑏 and
𝑎-𝑏-𝑑. The 𝑑 atom could have also been connected to 𝑎, but this does not change the
conclusion of the results.

For any set of four (or fewer, if it is a triatomic or diatomic) atoms, one can make this
choice of frame. In this frame, the 𝑠 vector components will look identical aside from a
substitution in the coordinate names.

Once the vibrational 𝑠 vector components are calculated, one can apply a string of
rotations 𝑆1 . . . 𝑆𝑛 as

𝑠𝑘,𝛼 → 𝑆1 . . . 𝑆𝑛𝑠𝑘,𝛼 (3.4.1)

and rotate the axes by 𝑆𝑇𝑛 . . . 𝑆𝑇1 from the initial frame to the desired frame. The desired
frame is the frame in which the rotational 𝑠 vector components are calculated. In valence
coordinates, these rotations only contain sine and cosine functions of the angles and
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dihedral angles. Therefore, as long as, in the simplest frame, the 𝑠 vector components
are in the sum-of-product form, the 𝑠 vector components in the desired frame will also.
In the following, the bond length, angle, and dihedral angle 𝑠 vector components are
explicitly shown in the simplest frame.

𝑐

𝑎

𝑏

𝑑

𝑥

𝑧

𝑦

Figure 3.4.1: The initial bond vector frame from which the simplest form of the 𝑠 vectors
of the atoms 𝑎 to 𝑑 are obtained. The origin is at the 𝑎 atom and the axes are offset for
clarity.

3.4.1 Bond length

The two atoms 𝑎 and 𝑏, with 𝑎 at the origin and 𝑏 lying along the 𝑧 axis, have BF
coordinates 𝑟𝑎 = (0, 0, 0) and 𝑟𝑏 = (0, 0,R𝑎𝑏) where R𝑎𝑏 = |𝑹𝑎𝑏 | = |𝑹𝑏 − 𝑹𝑎 |. The
equation for the bond length is given by

R𝑎𝑏 =
√
(𝑅𝑏𝑥 − 𝑅𝑎𝑥)2 + (𝑅𝑏𝑦 − 𝑅𝑎𝑦)2 + (𝑅𝑏𝑧 − 𝑅𝑎𝑧)2

=
√
(𝑟𝑏𝑥 − 𝑟𝑎𝑥)2 + (𝑟𝑏𝑦 − 𝑟𝑎𝑦)2 + (𝑟𝑏𝑧 − 𝑟𝑎𝑧)2

(3.4.2)

The required derivatives are given by, once we substitute the BF coordinates expressed
in terms of the vibrational coordinates,

∇𝑎R𝑎𝑏 = (0, 0,−1),
∇𝑏R𝑎𝑏 = (0, 0, 1) (3.4.3)

with the rest being zero, so in this case there is no function of the vibrational coordinates
in the vibrational part of 𝑠.

3.4.2 Planar angles

The formula for the angle between atoms 𝑎, 𝑏, and 𝑐 is

𝜃𝑎 = arccos
(
𝑹𝑏𝑎 · 𝑹𝑐𝑎

R𝑏𝑎R𝑐𝑎

)
(3.4.4)
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where R𝑐𝑎 = |𝑹𝑐𝑎 |. We shall assume the same coordinate values for these atoms as for
the bond length case. The substituted derivatives are

∇𝑎𝜃𝑎 =
(

1
R𝑏𝑎
− cos𝜃𝑎

R𝑐𝑎
, 0, sin𝜃𝑎

R𝑐𝑎

)
,

∇𝑏𝜃𝑎 =
(
− 1
R𝑏𝑎

, 0, 0
)
,

∇𝑐𝜃𝑎 =
(

cos𝜃𝑎
R𝑐𝑎

, 0,−sin𝜃𝑎
R𝑐𝑎

) (3.4.5)

with the rest being zero, so that 1/R𝑏𝑎 and 1/R𝑐𝑎 have to be added to the list of
possibilities.

3.4.3 Dihedral angles

The coordinates are
𝑟𝑎 = (0, 0, 0),
𝑟𝑏 = (0, 0,R𝑎𝑏),
𝑟𝑐 = (R𝑐𝑎 sin𝜃𝑎 , 0,R𝑐𝑎 cos𝜃𝑎),
𝑟𝑑 = (R𝑑𝑏 cos 𝜙 sin𝜃𝑏 ,R𝑑𝑏 sin 𝜙 sin𝜃𝑏 ,R𝑑𝑏 − R𝑑𝑏 cos𝜃𝑏)

(3.4.6)

where, R𝑑𝑏 = |𝑹𝑑𝑏 |, 𝜃𝑏 is the planar angle between 𝑎, 𝑏, and 𝑑, and 𝜙 is the dihedral
angle. The equation for the dihedral angle is given by

𝜙 = arctan2[(𝑹𝑏𝑎 × 𝑹𝑐𝑎) · (𝑹𝑏𝑎 × 𝑹𝑑𝑏)R𝑎𝑏 , (𝑹𝑏𝑎 × (𝑹𝑏𝑎 × 𝑹𝑐𝑎)) · (𝑹𝑏𝑎 × 𝑹𝑑𝑏)]
= arctan2[(𝑹𝑏𝑎 · 𝑹𝑏𝑎)(𝑹𝑑𝑏 · 𝑹𝑐𝑎) − (𝑹𝑏𝑎 · 𝑹𝑐𝑎)(𝑹𝑏𝑎 · 𝑹𝑑𝑏),

R𝑏𝑎(𝑹𝑏𝑎 · (𝑹𝑐𝑎 × 𝑹𝑑𝑏))]
(3.4.7)

and the substituted derivatives are given by

∇𝑎𝜙 =
(

sin 𝜙

R𝑎𝑏 tan𝜃𝑐
,− 1

R𝑎𝑏 tan𝜃𝑎
− cos 𝜙
R𝑎𝑏 tan𝜃𝑐

+ 1
R𝑐𝑎 sin𝜃𝑎

, 0
)
,

∇𝑏𝜙 =
(
− sin 𝜙

R𝑎𝑏 tan𝜃𝑐
+ sin 𝜙

R𝑑𝑏 sin𝜃𝑐
,

1
R𝑎𝑏 tan𝜃𝑎

+ cos 𝜙
R𝑎𝑏 tan𝜃𝑐

− cos 𝜙
R𝑑𝑏 sin𝜃𝑐

, 0
)
,

∇𝑐𝜙 =
(
0,− 1

R𝑐𝑎 sin𝜃𝑎
, 0

)
,

∇𝑑𝜙 =
(
− sin 𝜙

R𝑑𝑏 sin𝜃𝑐
,

cos 𝜙
R𝑑𝑏 sin𝜃𝑐

, 0
)
.

(3.4.8)

If 𝑑 was attached to 𝑎 rather than 𝑏, then 𝜃𝑐 in this expression is replaced by 𝜋 − 𝜃𝑐 .
It is apparent that the additional functions the dihedral angle generates are csc𝜃 and
cot𝜃 of the planar angles (but not dihedral angles). In the general case, to arrive at the
coordinate system this was calculated in, we have to transform the coordinates via a
matrix containing sin𝜃 and cos𝜃, for the analogous 𝜃 in the general case, which could
in principle generate new functions. However, all multiplications can be expressed in
terms of pre-existing functions, the most complex of which is cos𝜃 cot𝜃 = csc𝜃− sin𝜃.
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3.4.4 Rotational 𝑠 vector components

Following Sørensen’s method, we must define three conditions on the frame that are
always zero. Using our initial frame, as shown in Figure 3.4.1, the conditions are

𝐶(𝑥) = 𝑟𝑏𝑥 − 𝑟𝑎𝑥 = 0,
𝐶(𝑦) = 𝑟𝑏𝑦 − 𝑟𝑎𝑦 = 0,
𝐶(𝑧) = 𝑟𝑐𝑦 − 𝑟𝑎𝑦 = 0

(3.4.9)

where the first two conditions signify that the 𝑧 axis lies along 𝑎 to 𝑏 and the third that 𝑥
axis lies along the plane of 𝑏, 𝑎, and 𝑐. Using the method in Section 2.4.2, the rotational
𝑠 vector components are, as matrices, given by

Sr,𝑎 =
©­«

0 1/R𝑎𝑏 0
−1/R𝑎𝑏 0 0

0 cot𝜃𝑎/R𝑎𝑏 − csc𝜃𝑎R𝑐𝑎 0

ª®¬ ,
Sr,𝑏 =

©­«
0 −1/R𝑎𝑏 0

1/R𝑎𝑏 0 0
0 − cot𝜃𝑎/R𝑎𝑏 0

ª®¬ ,
Sr,𝑐 =

©­«
0 0 0
0 0 0
0 − cot𝜃𝑎/R𝑐𝑎 0

ª®¬ ,
Sr,𝑑 =

©­«
0 0 0
0 0 0
0 0 0

ª®¬

(3.4.10)

and thus we see that the rotational 𝑠 vectors do not introduce new functions of the
coordinates in this frame. For an arbitrary number of atoms, all other rotational Sr,𝛼
matrices are zero as beyond 𝛼 = 3 the vectors 𝒄𝑔,𝛼 are zero.

3.4.5 All valence coordinates

In summary, for the 𝑠 vectors, the functions for the bond lengths R, planar angles 𝜃, and
dihedral angles 𝜙 in the initial frame are:

• Bond Lengths: 1/R
• Planar Angles: cos𝜃, sin𝜃, cot𝜃, csc𝜃

• Dihedral Angles: sin 𝜙, cos 𝜙.

It is only possible to maintain the sum-of-product form with a linear combination of
coordinates for the dihedral angles, a result stated but not shown in Ref. [106]. This is
used in Chapter 7 for C2H6.

In constructing the 𝐺 matrix and pseudo potential𝑈 , we must combine expressions
of these functions. The 𝐺 matrix is given by

𝐺𝑎𝑏 =
∑
𝛼

1
𝑚𝛼

𝒔𝑎,𝛼 · 𝒔𝑏,𝛼 (3.4.11)
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so we see we must multiply each function in a set with every function of the set. The
pseudo potential𝑈 consists of four terms:

𝑈1 =
1
8

∑
𝛼

1
𝑚𝛼
(𝒆𝑔 × 𝒔𝑔,𝛼) · (𝒆𝑔′ × 𝒔𝑔′,𝛼),

𝑈2 = −1
4

∑
𝛼

1
𝑚𝛼

(
𝒆𝑔 × 𝒔𝑘,𝛼

) · 𝜕𝒔𝑔,𝛼
𝜕𝑞𝑘

,

𝑈3 = −1
4

∑
𝛼

1
𝑚𝛼

𝒔𝑘,𝛼 · 𝜕
2𝒔𝑘′,𝛼

𝜕𝑞𝑘𝜕𝑞𝑘′
,

𝑈4 = −1
8

∑
𝛼

1
𝑚𝛼

𝜕𝒔𝑘,𝛼
𝜕𝑞𝑘

· 𝜕𝒔𝑘′,𝛼
𝜕𝑞𝑘′

(3.4.12)

where 𝑈 is the sum of these terms. Thus, we must also multiply first and second
derivatives of each function in a set with every function of the set. We also must multiply
a derivative of each function with the derivative of every function of the set. However,
in practice, not all these combinations will actually be present in the Hamiltonian.

In the previous consideration the frame was oriented as in Figure 3.4.1. If a more
complex choice is required, the sum-of-product form is maintained as long as the
rotation angle 𝜃 is in the form

𝜃 = 𝑓1(𝑞1) + . . . + 𝑓3N−6(𝑞N−6). (3.4.13)

With this choice, the 𝑠 vector components also remain in the sum-of-product form, albeit
with potentially extra or alternative functions of the coordinates. We will now show an
example of an alternative frame and how this changes the 𝑠 vector components.

3.5 Example frame

The first case is the 𝑥 axis bisecting a dihedral angle 𝜙, shown in Figure 3.5.1. Using this
frame requires rotating the bond vector frame to the bisector frame with the following
matrix:

𝑆 = 𝑀𝑧(−𝜙/2) = ©­«
cos 𝜙/2 sin 𝜙/2 0
− sin 𝜙/2 cos 𝜙/2 0

0 0 1

ª®¬ . (3.5.1)

For the atoms whose positions do not depend on 𝜙, namely the first three, the vibrational
𝑠 vectors also do not contain 𝜙, so that applying the rotation matrix 𝑆 merely introduces
sin

(
𝜙/2) and cos

(
𝜙/2) . For other atoms, the matrix 𝑆1 in the list 𝑆1 . . . 𝑆𝑛 is 𝑆1 = 𝑀𝑧(𝜙),

and therefore, in the product 𝑆𝑆1, 𝜙 is replaced by 𝜙/2. Finally, when we apply the
matrix on the 𝜙 dihedral 𝑠 vectors, we find again that the expressions are combined in
such a way that the 𝑠 vectors only involve 𝜙/2 instead of 𝜙.

In practice, it is simpler to generate the 𝑠 vectors in this frame by defining the BF
coordinates of this frame in terms of the vibrational coordinates and using conditions

81 of 191



3.6. Example of formaldehyde 3. Analytic KEOs in trove

𝑐
𝜙𝑑

𝑥

𝑦

Figure 3.5.1: A Newman projection of the atoms looking down the 𝑏 to 𝑎 bond. The
bisecting frame is shown where the 𝑥 axis bisects the 𝜙 dihedral angle (illustrated by
the dashed arc in the figure). The origin of the axes is set to the 𝑎 atom for clarity.

appropriate to this frame. In that case, the conditions are

𝐶(𝑥) = 𝑟𝑏𝑦 − 𝑟𝑎𝑦 = 0,
𝐶(𝑦) = 𝑟𝑏𝑥 − 𝑟𝑎𝑥 = 0,
𝐶(𝑧) = (𝑟𝑐𝑦 − 𝑟𝑎𝑦)(𝑟𝑑𝑥 − 𝑟𝑎𝑥) + (𝑟𝑐𝑥 − 𝑟𝑎𝑥)(𝑟𝑑𝑦 − 𝑟𝑎𝑦)

(3.5.2)

where the (different) third condition stems from the observation that the tangent of the
angle between the 𝑥 axis to the bond 𝑹𝑐 − 𝑹𝑎 projected onto the 𝑥𝑦 plane (given by
(𝑟𝑐𝑦 − 𝑟𝑎𝑦)/(𝑟𝑐𝑥 − 𝑟𝑎𝑥)) is negative the angle between the 𝑥 axis and the bond 𝑹𝑐 − 𝑹𝑎
projected onto the 𝑥𝑦 plane. Thus

𝑟𝑐𝑦 − 𝑟𝑎𝑦
𝑟𝑐𝑥 − 𝑟𝑎𝑥 +

𝑟𝑑𝑦 − 𝑟𝑎𝑦
𝑟𝑑𝑥 − 𝑟𝑑𝑥 = 0 (3.5.3)

and we multiply by the denominators to simplify the condition. With this, the rotational
𝑠 vectors we obtain depend on 𝜙/2 but not 𝜙, in other words the KEO no longer depends
on 𝜙 at all. This reduces the number of 1D functions present and the KEO remains
compact, a desirable property.

A similar frame, that of the 𝑧 axis bisecting the first planar angle, can also be used.
The results for the 𝑠 vectors are analogous to the bisecting 𝑥 axis example.

3.6 Example of formaldehyde

The new implementation and underlying methodology was tested on the formaldehyde
(H2CO) molecule to compare to pre-existing trove calculations which used an expanded
KEO, detailed in Ref. [83]. Only the vibrational energies for the 𝐽 = 0 states are compared
as this was deemed sufficient to verify the program’s correctness. The structure is shown
in Figure 3.6.1. The six coordinates used are the C –O bond, the two C –H bonds, the two
H –C – O angles, and the dihedral angle of the two H –C – O planes. A bisecting frame
was chosen, with the 𝑥 axis pointing at the midpoint of the dihedral angle, and the 𝑧 axis
along the C –O bond towards O. Aside from the change in the KEO’s representation,
the trove parameters were identical to those of Ref. [83].

In Ref. [83], the KEO has an expansion order of 6. Both calculations expanded the
potential energy to order 8, although the expansions in Ref. [83] and in the present work
were performed in linearised and valence coordinates, respectively. The basis functions
(see Eq. (3.2.3)) were contracted according to the polyad rule of the 1D vibrational basis
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functions given by:

𝑃 = 2(𝑛2 + 𝑛3) + 𝑛1 + 𝑛4 + 𝑛5 + 𝑛6 ≤ 𝑃max

where 𝑛𝑘 is the 𝑛th excitation of the 𝑘th vibrational coordinate in the above order.
The trucation is set at 𝑃max = 16. Table 3.6.1 shows a comparison of the first 17 𝐴1
state energies, using the parameter values of Ref. [83]. The close agreement provides
confidence that the method was programmed correctly .

O C
H

H
Figure 3.6.1: The structure of formaldehyde (H2CO).

Table 3.6.1: Comparison of the first 17 𝐴1 state energies of Ref. [83] and the new
approach.

𝐼 𝐸(cm−1) (this work) 𝐸(cm−1)[83]
1 0000.000000 0000.000000
2 1500.100565 1500.120955
3 1746.026899 1746.045388
4 2327.438439 2327.497142
5 2494.277373 2494.322937
6 2782.368637 2782.410921
7 2998.921856 2999.006647
8 3238.844004 3238.937891
9 3471.649488 3471.719306
10 3825.530391 3825.967015
11 3935.924687 3936.435541
12 4057.853105 4058.101422
13 4083.461950 4083.490190
14 4247.422778 4247.609826
15 4256.128549 4256.314862
16 4495.183906 4495.499848
17 4529.485437 4529.635737

3.7 𝑠 vectors in polyspherical coordinates

As a further application, the KEO in polyspherical coordinates of Ref. [47] will be
re-derived, generating the 𝑠 vectors that produce the 𝐺matrix. As usual for the Sørensen
method, the 𝑠 vectors are first derived, so this approach perhaps has the advantage of
being less demanding to program. It also demonstrates the flexibility of the Sørensen
method for deriving KEOs expressed in terms of conjugate momenta.
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The polyspherical approach involves parametrising the N position vectors of an N

atom system into N− 1 vectors (the polyspherical vectors) which are linear combinations
of the position vectors. The overall translation is factored out in the polyspherical
vectors. For simplicity of notation we also denote the polyspherical vectors as 𝕽𝛽 and
the transformation matrix between the position and polyspherical vectors as 𝐴. Then
components ℜ𝛽𝐹, 𝛽 ∈ {1, . . . ,N − 1} and 𝐹 ∈ {𝑋,𝑌, 𝑍} are defined by

ℜ𝛽𝐹 =
∑
𝛼

𝐴𝛽𝛼R𝛼𝐹

where R𝛼𝐹 are the Cartesian coordinates. The standard approach is to align the BF 𝑧 axis
along 𝕽N−1 and set the BF 𝑥 axis to be in the plane of 𝕽N−1 and 𝕽N−2. The components
of each 𝕽𝛽 are then expressed as spherical coordinates relative to these axes, i.e.

𝔯𝛽 = (R𝛽 sin𝜃𝛽 cos 𝜙𝛽 ,R𝛽 sin𝜃𝛽 sin 𝜙𝛽 ,R𝛽 cos𝜃𝛽) (3.7.1)

where R𝛽 is the magnitude for 𝕽𝛽, 𝜃𝛽 is the planar angle between 𝕽N−1 and 𝕽𝛽, and
𝜙 is the dihedral angle between the plane generated by 𝕽N−1 and 𝕽N−2 and the plane
generated by 𝕽N−1 and 𝕽𝛽.

We shall now derive the expressions for the 𝑠 vectors with these coordinates. First,
𝑠R𝛽 ,𝛼𝐹 is

𝑠R𝛽 ,𝛼𝐹 =
𝜕R𝛽

𝜕R𝛼𝐹
=

∑
𝜂

𝜕
√
𝕽𝛽 ·𝕽𝛽

𝜕𝔯𝜂𝑔

𝜕𝔯𝜂𝑔
𝜕R𝛼𝐹

= 𝐴𝛽𝛼𝑀𝐹𝑔
𝔯𝛽𝑔
R𝛽

(3.7.2)

or 𝒔R𝛽 ,𝛼 = 𝐴𝛽𝛼𝕽𝛽/R𝛽, which means it has BF components

𝑠BF
R,𝛼 = 𝐴𝛽𝛼(sin𝜃𝛽 cos 𝜙𝛽 , sin𝜃𝛽 sin 𝜙𝛽 , cos𝜃𝛽). (3.7.3)

Next, 𝑠𝜃𝛽 ,𝛼𝐹 is given by

𝑠𝜃𝛽 ,𝛼𝐹 =
𝜕𝜃𝛽

𝜕R𝛼𝐹
=

∑
𝜂

𝜕

𝜕𝔯𝜂𝑔
arccos

(
𝕽𝛽 ·𝕽N−1

R𝛽RN−1

)
𝜕𝔯𝜂𝑔
𝜕R𝛼𝐹

= −𝐴𝛽𝛼𝑀𝐹𝑔

(
𝔯N−1𝑔

R𝛽RN−1
− (𝕽𝛽 ·𝕽N−1)𝔯𝛽𝑔

R3
𝛽RN−1

)
1

sin𝜃𝛽

− 𝐴N−1𝛼𝑀𝐹𝑔

(
𝔯𝛽𝑔

R𝛽RN−1
− (𝕽𝛽 ·𝕽N−1)𝔯N−1𝑔

R𝛽R
3
N−1

)
1

sin𝜃𝛽

= −𝐴𝛽𝛼𝑀𝐹𝑔

(
𝔯N−1𝑔

R𝛽RN−1
− cos𝜃𝛽𝔯𝛽𝑔

R2
𝛽

)
1

sin𝜃𝛽

− 𝐴N−1𝛼𝑀𝐹𝑔

(
𝔯𝛽𝑔

R𝛽RN−1
− cos𝜃𝛽𝔯N−1𝑔

R2
N−1

)
1

sin𝜃𝛽

(3.7.4)

so the BF components of 𝒔𝜃𝛽 ,𝛼 are given by

𝑠BF
𝜃𝛽 ,𝛼

= 𝐴𝛽𝛼
1
R𝛽
(cos𝜃𝛽 cos 𝜙𝛽 , cos𝜃𝛽 sin 𝜙𝛽 ,− sin𝜃𝛽) − 𝐴N−1𝛼

1
RN−1

(cos 𝜙𝛽 , sin 𝜙𝛽 , 0).
(3.7.5)
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The dihedral 𝑠 vectors 𝑠𝜙𝛽𝛼𝐹 are

𝑠𝜙𝛽 ,𝛼𝐹 =
𝜕𝜙𝛽

𝜕R𝛼𝐹

=
∑
𝜂𝑔

𝜕

𝜕𝔯𝜂𝑔
arctan2[(𝕽N−1 ·𝕽N−1)(𝕽𝛽 ·𝕽N−2) − (𝕽N−1 ·𝕽𝛽)(𝕽N−1 ·𝕽N−2),

RN−1(𝕽N−1 · (𝕽N−2 ×𝕽𝛽))]
𝜕𝔯𝜂𝑔
𝜕R𝛼𝐹

(3.7.6)

which can be expressed as

𝑠𝜙𝛽 ,𝛼𝐹 =
𝑀𝐹𝑔

R2
N−1R𝛽RN−2 sin𝜃𝛽 sin𝜃N−2

[

− 𝐴𝛽𝛼 sin 𝜙𝛽(R2
N−1𝔯N−2𝑔 − 𝔯N−1𝑔RN−1RN−2 cos𝜃N−2)

+ 𝐴𝛽𝛼RN−1 cos 𝜙𝛽(𝕽N−1 ×𝕽N−2)𝑔
− 2𝐴N−1𝛼 sin 𝜙𝛽𝔯N−1𝑔R𝛽RN−2(cos𝜃𝛽 cos𝜃N−2 + sin𝜃𝛽 sin𝜃N−2 cos 𝜙𝛽)
+ 𝐴N−1𝛼 sin 𝜙𝛽(𝔯𝛽𝑔RN−1RN−2 cos𝜃N−2 + 𝔯N−2𝑔RN−1R𝛽 cos𝜃𝛽)
+ 𝐴N−1𝛼 cos 𝜙𝛽(RN−1 + 𝔯N−1𝑔)(𝕽N−2 ×𝕽𝛽)𝑔)
+ 𝐴N−2𝛼(− sin 𝜙𝛽(R2

N−1𝔯𝛽𝑔 − 𝔯N−1𝑔RN−1R𝛽 cos𝜃𝛽) + cos 𝜙𝛽(RN−1𝕽𝛽 ×𝕽N−1)𝑔].
(3.7.7)

Thus, the BF components 𝑠BF
𝜙𝛽 ,𝛼

can be written as

𝑠BF
𝜙𝛽 ,𝛼

= 𝐴𝛽,𝛼
1

R𝛽 sin𝜃𝛽
(− sin 𝜙𝛽 , cos 𝜙𝛽 , 0),

+ 𝐴N−1𝛼
1

RN−1
(sin 𝜙𝛽 cot𝜃𝛽 , cot𝜃N−2 − cos 𝜙𝛽 cot𝜃𝛽 , 0),

− 𝐴N−2𝛼
1

RN−2 sin𝜃N−2
(0, 1, 0).

(3.7.8)

For the rotational 𝑠 vectors we have to define three conditions as before. The 𝑧 axis is
aligned with 𝕽N−1 and the 𝑥 axis is in the plane generated by 𝕽N−1 and 𝕽N−2, which is
the same choice of axes as in Section 3.4.4, 𝕽N−1 takes the place of 𝑹𝑎𝑏 , 𝕽N−2 of 𝑹𝑐𝑎 . The
appropriate Sørensen conditions are thus

𝐶(𝑥) = 𝔯N−1𝑥 ,

𝐶(𝑦) = 𝔯N−1𝑦 ,

𝐶(𝑧) = 𝔯N−2𝑦

(3.7.9)

and therefore the 𝑐-vectors are

𝒄𝑥,𝛼 = 𝐴N−1𝛼 𝒆̂𝑥 ,
𝒄𝑦,𝛼 = 𝐴N−1𝛼 𝒆̂𝑦 ,
𝒄𝑧,𝛼 = 𝐴N−2𝛼 𝒆̂𝑦 .

(3.7.10)
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The condition Eq. (2.4.34) for 𝒄𝑥,𝛼, given by
∑

𝛼 𝐴N−1𝛼 = 0, is automatically satisfied as
the 𝕽s are invariant under the translation of 𝑹s, and likewise for the other 𝒄s. The 𝔍
matrix turns out to be

𝔍 = ©­«
0 𝔯N−1𝑧 0

−𝔯N−1𝑧 0 𝔯N−1𝑥
−𝔯N−2𝑧 0 𝔯N−2𝑥

ª®¬ = ©­«
0 RN−1 0

−RN−1 0 0
−RN−2 cos𝜃N−2 0 RN−2 sin𝜃N−2

ª®¬ (3.7.11)

and the rotational 𝑠 vectors become

𝒔𝑥,𝛼 = −𝐴N−1𝛼
1

RN−1
𝒆̂𝑦 ,

𝒔𝑦,𝛼 = 𝐴N−1𝛼
1

RN−1
𝒆̂𝑥 ,

𝒔𝑧,𝛼 = −𝐴N−1𝛼
cot𝜃N−1
RN−1

𝒆̂𝑦 + 𝐴N−2𝛼
1

RN−2 sin𝜃N−2
𝒆̂𝑦 .

(3.7.12)

In summary, we can write the 𝑠 vector BF components as

𝑠BF
𝑅𝛽 ,𝛼

= 𝐴𝛽𝛼(cos 𝜙𝛽 sin𝜃𝛽 , sin 𝜙𝛽 sin𝜃𝛽 , cos𝜃𝛽),

𝑠BF
𝜃𝛽 ,𝛼

= 𝐴𝛽𝛼
1
R𝛽
(cos𝜃𝛽 cos 𝜙𝛽 , cos𝜃𝛽 sin 𝜙𝛽 ,− sin𝜃𝛽) − 𝐴N−1𝛼

1
RN−1

(cos 𝜙𝛽 , sin 𝜙𝛽 , 0),

𝑠BF
𝜙𝛽 ,𝛼

= 𝐴𝛽,𝛼
1

R𝛽 sin𝜃𝛽
(− sin 𝜙𝛽 , cos 𝜙𝛽 , 0),

+ 𝐴N−1𝛼
1

RN−1
(sin 𝜙𝛽 cot𝜃𝛽 , cot𝜃N−2 − cos 𝜙𝛽 cot𝜃𝛽 , 0),

− 𝐴N−2𝛼
1

RN−2 sin𝜃N−2
(0, 1, 0),

𝑠BF
𝑥,𝛼 = −𝐴N−1𝛼

1
RN−1

(0, 1, 0),

𝑠BF
𝑦,𝛼 = 𝐴N−1𝛼

1
RN−1

(1, 0, 0),

𝑠BF
𝑧,𝛼 = −𝐴N−1𝛼

cot𝜃N−1
𝔯N−1

(0, 1, 0) + 𝐴N−2𝛼
1

𝔯N−2 sin𝜃N−2
(0, 1, 0).

(3.7.13)

To generate the 𝐺 matrix elements from these vectors, we must compute

𝐺𝑎𝑏 =
∑
𝛼

1
𝑚𝛼

𝒔𝑎,𝛼 · 𝒔𝑏,𝛼 =
∑
𝛼

1
𝑚𝛼

𝑠𝑎,𝛼 𝑓 𝑠𝑏,𝛼 𝑓 (3.7.14)

where we see that the only factor that varies with 𝛼 is the element of the 𝐴 matrix.
Borrowing the notation of Ref. [47], we define 𝑀𝛽𝜂 =

∑
𝛼 𝐴𝛽𝛼𝑚−1

𝛼 𝐴𝜂𝛼 = (𝐴𝑚𝐴𝑇)𝛽𝜂,
where 𝑚 is a diagonal matrix and 𝑚𝛼𝛼 = 1/𝑚𝛼. With the caveat that 𝑠𝜃𝛽 ,𝛼 has to be
multiplied by − sin𝜃𝛽 before evaluating the 𝐺 matrix in order to fit the coordinate
definitions of Ref. [47], we see that the results of Appendix B of Ref. [47] are matched.
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3.8 Practical implementation in trove

Fortran, which lacks the capability of symbolic manipulation, necessitated the usage
of an external program – using the Sørensen method – to derive analytic KEOs in
the sum-of-products form of 1D elementary functions. Python was tested, but its
symbolic manipulation packages were deemed not as powerful as Mathematica, which
was ultimately used. The Mathematica script which generates the KEO was written to be
as general as possible, though each molecule has its own peculiarities. A version of the
script is available in the supplementary material of Ref. [2].

In the Sørensen approach of Section 2.4.2, one must define (for a given molecule)
the masses of the nuclei, the vibrational coordinates 𝑞(𝑅) = 𝑞(𝑟) as functions of the
Cartesian coordinates, the three conditions 𝐶(𝑔)(𝑟) in terms of the BF coordinates, and,
finally, the BF coordinates 𝑟(𝑞) in terms of the vibrational coordinates. Here, the 𝑟 in
𝑞(𝑟) and 𝐶(𝑔)(𝑟) represents the labels for the BF coordinates and likewise the 𝑞 in 𝑟(𝑞)
represents the labels for the vibrational coordinates.

At this point in the calculation it is worthwhile to check that the 𝐶(𝑔)(𝑟) conditions
are zero (Eq. (2.4.28)) by substituting the Cartesian coordinates 𝑟 in 𝐶(𝑔)(𝑟) with 𝑟(𝑞)
to form 𝐶(𝑔)(𝑟(𝑞)). While 𝐶(𝑔)(𝑟) is only a function of the 𝑟 labels and therefore not
identically zero, we recall that the BF coordinates 𝑟(𝑞) assume the rotational conditions
and therefore 𝐶(𝑔)(𝑟(𝑞))must be zero.

In a same vein, the coordinates 𝑞(𝑟) should be checked to be correctly defined by also
substituting 𝑟 with 𝑟(𝑞). Since 𝑟(𝑞) and 𝑞(𝑟) are effectively inverse operations, 𝑞(𝑟(𝑞)),
after simplification, should be the identity operation. It may happen that the expression
is too complicated for the analytic software to fully simplify the expression such that the
result is evidently an identity operation. In that case, for the function representing 𝑞𝑘(𝑞),
one may replace all other vibrational coordinates with random values and then plot
the resulting function (of 𝑞𝑘) as a function of 𝑞𝑖 . The result again should be the identity
operation. However, as the 𝑞 contain trigonometric functions, which are periodic and
hence do not have a well defined inverse across their entire domain, there may be
discontinuities in this plot.

Once these are obtained, the remainder of the script should in theory be practically
identical for all molecules. First the 𝑠 vector 𝑠𝑘,𝛼(𝑟) components as functions of the BF
coordinates are determined. The Cartesian coordinates 𝑟 must be substituted with 𝑟(𝑞)
to form 𝑠𝑘,𝛼(𝑟(𝑞)). The resulting expressions are typically not in their simplest form, or
even in the sum-of-product form. They must be simplified by the software.

In Mathematica there is an added complication of what constitutes “simplification.”
If it can combine trigonometric functions using product-to-sum identities, such as

sin 𝛼 cos 𝛽 + sin 𝛽 cos 𝛼 = sin(𝛼 + 𝛽), (3.8.1)

it will, but these are not helpful in this application as the expressions must be separated
again to force the sum-of-product form on the 𝑠 vectors. Moreover, comprehensive
simplification in Mathematica is time consuming. The identities actually applied should
be manually – and wisely – chosen. The essential identity is the Pythagorean identity
sin2 𝛼 + cos2 𝛼 = 1. Other useful identities are the trigonometric identities

2 sin 𝛼 cos 𝛼 = sin(2𝛼),
cos2 𝛼 − sin2 𝛼 = cos(2𝛼) (3.8.2)
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and Mathematica can be set to limit its trigonometric simplification to just those. Some-
times one encounters the need for the identities

1 − tan2 𝛼 = sec2 𝛼,

1 − cot2 𝛼 = csc2 𝛼.
(3.8.3)

Finally, to prevent unwanted simplification present when including the Automatic

keyword, Mathematica may be forced to simplify expressions such as
√
𝑓 (𝑥)2 𝑓 (𝑦)2 to√

𝑓 (𝑥)2√ 𝑓 (𝑦)2 and then
√
𝑓 (𝑥)2 to 𝑓 (𝑥) (i.e. positive roots). There may be trial and error

involved in choosing the correct simplification rules to apply to maximise the speed but
also to guarantee a sum-of-product form while minimising the size of the 𝑠 vectors.

For some molecules, a trigonometric function may be a function of a linear combi-
nation of the dihedral angles rather than a single dihedral angle. Despite the above
recommendation, it is preferable to also not expand any trigonometric functions using
the sum-to-product rules until a later stage to maximise the trigonometric simplifications
first: these are trickier for the software to find after the sum-to-product identities are
applied.

If the initial BF frame is not the desired frame, the 𝑠 vector components of the
latter can be calculated. After they are found, the above simplification procedure
can be applied. Then the 𝑠 vector components of the initial BF frame can be used to
find the vibrational 𝐺 matrix components and the pseudo potential – these are frame
independent – and the new 𝑠 vector components should be used to find the Coriolis
and rotational 𝐺 matrix components. Once again, they can be simplified with the above
procedure.

At this stage, the trigonometric sum-to-product identities should be applied so that
the KEO is in the sum-of-product form, but it can still be simplified. This step concludes
the calculation of the KEO in the software. The subsequent steps are specific to trove,
which must be able to read the KEO correctly. The result of these steps is a list of 1D
elementary functions and the expansion coefficients. Currently, they are numerical and
depend on the initial masses of the nuclei.

In trove, each term of Eq. (3.2.2) is numbered by

(𝔭1, . . . , 𝔭3N−6) → 𝑛𝔭1 ,...,𝔭3N−6 (3.8.4)

and this 3N − 6 dimensional index is converted to a single index 𝑛𝔭1 ,...,𝔭3N−6 . Actually,
trove iterates through each possible value of the index (for a given polyad number)
and converts it to the 3N − 6 dimensional index. How this number works in practice
is, to find the 𝑛 + 1 term with the 𝑛th term (𝔭1, . . . , 𝔭3N−6), one finds the first non-zero
𝔭𝑘 starting from the right, adds 1 to 𝔭𝑘−1, and then sets 𝔭3N−6 = 𝔭𝑘 − 1 and 𝔭𝑘 = 0 if
𝑘 =≠ 3N − 6. An example of this is shown in Table 3.8.1. Once 𝔭1 = 𝑚 < 𝔭max and the
rest zero, the next term is 𝔭3N−6 = 𝑚 + 1 and the rest zero. In this way, a lookup table is
created from the single index to the 3N − 6 dimensional index.

In the analytic KEO approach presented here, term numbers (𝔭1, . . . , 𝔭3N−6) are taken
from Eq. (3.2.1). Therefore, the reverse procedure of obtaining the single index from the
3N − 6 dimensional index is required. trove’s previous implementation of this used an
inefficient recursive function which was rarely needed, so an alternative approach was
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Table 3.8.1: The trove number on the left column for each term on the right column

Number Term
1120 (2, 1, 2, 3, 0)
1121 (2, 1, 3, 0, 2)
1122 (2, 1, 3, 1, 1)
1123 (2, 1, 3, 2, 0)
1124 (2, 1, 4, 0, 1)
1225 (2, 1, 4, 1, 0)
1226 (2, 1, 5, 0, 0)
1227 (2, 2, 0, 0, 4)

necessary. A direct mapping can be accomplished through the formula

𝑛𝔭1 ,...,𝔭3N−6 = 1 +
(
𝔓3N−6 + 3N − 6 − 1

3N − 6

)
+

3N−7∑
𝑘=1
𝔭𝑘>0

𝔭𝑘−1∑
𝑖=0

(
𝔓3N−6 −𝔓𝑘−1 + 3N − 6 − 𝑘 − 1 − 𝑖

3N − 6 − 𝑘 − 1

)
(3.8.5)

where the left-most sum is over all (except 𝑘 = 3N − 6) 𝔭𝑘 greater than zero,

𝔓𝑙 =
𝑙∑
𝑘=1

𝔭𝑘 , (3.8.6)

and the right-most sum is from 𝑖 = 0 to 𝑖 = 𝔭𝑘 − 1.
For trove to correctly read the analytic 1D functions 𝑓𝔭𝑘 (𝑞𝑘), each function of 𝑞𝑘 in the

KEO in Mathematica is converted to the form 𝑓 𝑘[𝔭𝑘] and trove is told which functions
the numbering corresponds to. For the first task, the Mathematica script determines
every 1D function present in the KEO. These are sorted according to the “total-power”
of each “fundamental” function which is the sum of the exponents of the fundamental
functions in a 1D function. For example, the 1D function of the form sin2 𝑞𝑘 cos 𝑞𝑘 has
total power 3 = 2+ 1 from the fundamental functions sin 𝑞𝑘 and cos 𝑞𝑘 , respectively. The
1D function mapping for all functions of 𝑞𝑘 could be

(sin2 𝑞𝑘 cos 𝑞𝑘 → 𝑓 𝑘[4], cos2 𝑞𝑘 → 𝑓 𝑘[3], cos 𝑞𝑘 → 𝑓 𝑘[2], sin 𝑞𝑘 → 𝑓 𝑘[1]) (3.8.7)

where the mappings are ordered from the highest total-power to lowest. This is the
order with which the substitutions are made. This would prevent, for example, cos 𝑞𝑘
being used in the substitution of sin2 𝑞𝑘 cos 𝑞𝑘 to sin2 𝑞𝑘 𝑓 𝑘[2], which is not correct.

With the substituted KEO, each expansion term can be represented in the form
(𝑎𝔭, 𝔭1, . . . , 𝔭3N−6)where 𝑎𝔭 is the coefficient. For the problem of trove reading this input,
there are a few approaches. The terms can be numbered by Eq. (3.8.5) so trove only
needs to be told which function each number corresponds. One approach, which was
effectively taken for programming the KEO for the homo- and heteronuclear triatomics,
is hard coding the functions into trove. This is not an ideal solution and is untenable for
a large KEO. It also goes against the black-box philosophy of trove.

89 of 191



3.9. Chapter summary 3. Analytic KEOs in trove

An alternative approach, one used for H2CS, uses an updated trove which reads the
mapping (specified in the input) on-the-fly. Each fundamental function can effectively
be expressed in the form 𝑔(𝑏𝑞𝑛𝑘 )𝑚 where 𝑛 and 𝑚 are exponents. The numbering 𝑛 and
𝑚 may not be unique, but the mapping need only be correct. The function 𝑔 is typically
the identity or a trigonometric function. A 1D function of the form

𝑔1(𝑏1𝑞
𝑛1
𝑘 )𝑚1 . . . 𝑔𝑟(𝑏𝑠𝑞𝑛𝑠𝑘 )𝑚𝑠 (3.8.8)

is expressed, in a text format, as

r m1 g1 b1 n1 m2 g2 b2 n2 m2 . . . ms gs bs ns (3.8.9)

which is part of the BASIC-FUNCTION block in the input file read by trove. Pointer
functions in Fortran are used to specify the fundamental function 𝑔𝑖 on-the-fly.

This concludes the steps necessary to construct a KEO for a molecule such as H2CS.
For larger molecules, such as C2H6, numbering by Eq. (3.8.5) is no longer tenable.
Ordinarily, the expansion order (the polyad 𝔭max) is specified and is typically around 6.
For a molecule with a small to medium number of modes, the number of possible terms
(𝔭1, . . . , 𝔭3N−6) where 𝔭1 + . . . + 𝔭3N−6 ≤ 𝔭max is reasonable. In trove, an array of this
size is created before the KEO is read (or constructed) and then its values are assigned
according to the coefficients. In the case of the analytic KEO the polyad has no physical
meaning and is just a convenient way to inform trove of the size of the necessary array.
For C2H6 this array becomes impractically large as there are 18 modes and up to 13
functions for a single mode. Another method is needed.

To combat this issue, a modification was made to trove which now can read the
input that includes the numbers (𝔭1, . . . , 𝔭3N−6). Since trove was not designed with
this in mind, the redundant polyad and number of terms are still required in the input,
although these numbers are not utilised. Modifying trove in this way was a significant
challenge as much of the code rests upon the assumption that the numbering of the
terms is according to Eq. (3.8.5).

3.9 Chapter summary

This chapter delved into the procedure implemented in Mathematica and trove to use
analytic KEOs. The general Sørensen methodology as well as how to implement it
practically was described. The relation between the 𝑠 vectors components for different
BF frames was proven and used to deduce the functions of the valence coordinates
present in the 𝑠 vectors and by extension the KEO. This approach was taken to re-derive
the KEO for polyspherical coordinates stated by Ref. [47]. Finally, the implementation
was tested for H2CO with the results compared to previously published values.

Appendix 3.A Derivation of the 𝑠 vector relations

In this section we shall derive the relations of the 𝑠 vectors under a change in BF frame,
as stated in the main text. All vector components are assumed to be in the BF frame.
First, we note that the translational 𝑠 and 𝑡 vector components are invariant under a
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change of BF frame. The coordinates 𝑟𝛼 of the original BF frame become 𝑆𝑟𝛼 under a
change of frame, where 𝑆 is the rotation matrix. Here we ignore translation since 𝑟𝛼
are assumed to be calculated with the origin at the centre of nuclear mass. Then, the
vibrational 𝑡 vector components 𝑡𝑘,𝛼 relate as

𝑡𝑘,𝛼 = 𝜕𝑘𝑟𝛼 → 𝜕𝑘(𝑆𝑟𝛼) = 𝑆𝑡𝑘,𝛼 + 𝜕𝑆
𝜕𝑞𝑘

𝑟𝛼 = 𝑆
(
𝑡𝑘,𝛼 + 𝔰𝑘,𝑔𝑡𝛼,𝑔

)
. (3.A.1)

where 𝔰𝑘 = (𝔰𝑘,𝑥 , 𝔰𝑘,𝑦 , 𝔰𝑘,𝑧) is defined by

𝑆𝑇
𝜕𝑆
𝜕𝑞𝑘

𝑣 = 𝔰𝑘 × 𝑣. (3.A.2)

Next, we consider the vibrational 𝑠 vectors 𝑠𝑘,𝛼. We may again use the argument of
Appendix 2.E that all vibrational coordinates 𝑞𝑘 are invariant under 𝑟𝛼 → 𝑆𝑟𝛼 + 𝑑, where
𝑑 are displacement coordinates. We find

𝜕𝛼𝑔𝑞𝑘(𝑟) = 𝑆𝑔ℎ𝜕𝛼ℎ𝑞𝑘(𝑇̃(𝑟)) (3.A.3)

which can be inverted to give

𝜕𝛼𝑔𝑞𝑘(𝑇̃(𝑟)) = 𝑆𝑔ℎ𝜕𝛼ℎ𝑞𝑘(𝑟). (3.A.4)

This is the required result. Thus
𝑠𝑘,𝛼 → 𝑆𝑠𝑘,𝛼 (3.A.5)

which means their relation is the same as the relation between the BF coordinates.
We must also check the vibrational 𝑡 and 𝑠 vectors behave properly as inverses:∑

𝛼

𝑠𝑘,𝛼𝑇𝑡𝑘′,𝛼 →
∑
𝛼

𝑠𝑘,𝛼𝑇𝑡𝑘′,𝛼︸         ︷︷         ︸
𝛿𝑘𝑘′

+𝔰𝑘′,𝑔
∑
𝛼

𝑠𝑘,𝛼𝑇𝑡𝑔,𝛼︸         ︷︷         ︸
0

= 𝛿𝑘𝑘′ .

(3.A.6)

We also note that the invariance of the vibrational 𝐺 elements is satisfied, as expected.
To determine the relation of the rotational 𝑠 vectors, we first calculate the relation of

the rotational 𝑡 vectors, which are

𝑡𝑔,𝛼ℎ = 𝜀ℎ𝑔ℎ′𝑟𝛼ℎ′ → 𝜀ℎ𝑔ℎ′𝑆ℎ′ 𝑓 𝑟𝛼 𝑓 . (3.A.7)

This can be expressed in terms of the original 𝑡 vectors components:

𝑆𝑔ℎ𝑡ℎ,𝛼𝑔′𝑆ℎ′𝑔′ = 𝑆𝑔ℎ𝑆ℎ′𝑔′𝜀𝑔′ℎ 𝑓 𝑟𝛼 𝑓
= 𝑆𝑔ℎ𝑆ℎ′𝑔′𝑆𝑝 𝑓 ′𝜀𝑔′ℎ 𝑓 ′𝑆𝑝 𝑓 𝑟𝛼 𝑓 = det(𝑆)𝜀ℎ′𝑔𝑝𝑆𝑝 𝑓 𝑟𝛼 𝑓 = 𝜀ℎ′𝑔𝑝𝑆𝑝 𝑓 𝑟𝛼 𝑓 .

(3.A.8)

Viewing 𝑡𝑔,𝛼 as the matrix Tr,𝛼, where 𝑔 signifies the columns, this can be expressed as

Tr,𝛼 → 𝑆Tr,𝛼𝑆𝑇 . (3.A.9)
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For the transformation of the rotational 𝑠 vectors, we assert that they become

𝑠𝑔,𝛼ℎ′ → 𝑠′𝑔,𝛼ℎ′ = 𝑆𝑔ℎ𝑆ℎ′𝑔′𝑠ℎ,𝛼𝑔′ −
∑
𝛽

𝜕𝑆 𝑓 ′ 𝑓
𝜕𝑞𝑘

𝑠𝑘,𝛼𝑔′𝑠ℎ,𝛽𝑝𝑆 𝑓 ′𝑝𝑟𝛽 𝑓 𝑆ℎ′𝑔′𝑆𝑔ℎ (3.A.10)

This can be simplified to and rewritten for the rotational 𝑠 matrix as

Sr,𝛼 → 𝑆
(
Sr,𝛼 − 𝔰𝑘′𝑠𝑘′,𝛼𝑇

)
𝑆𝑇 . (3.A.11)

To show that this is the correct transformation, we will show that this is the inverse of
the transformed 𝑡-matrix. First, with the translational 𝑡 vectors, we have∑

𝛼

Sr,𝛼𝑡𝐹,𝛼 →
∑
𝛼

𝑆
(
Sr,𝛼 − 𝔰𝑘′𝑠𝑘′,𝛼𝑇

)
𝑆𝑇𝑀𝐹

= 𝑆

©­­­­­­«
∑
𝛼

Sr,𝛼︸  ︷︷  ︸
0

−𝔰𝑘′
©­­­­­­«
∑
𝛼

𝑠𝑘′,𝛼𝑇︸    ︷︷    ︸
0

ª®®®®®®¬
ª®®®®®®¬
𝑆𝑇𝑀𝐹

(3.A.12)

where 𝑀𝐹 = (𝑀𝐹𝑥 , 𝑀𝐹𝑦 , 𝑀𝐹𝑧) and 𝑀 is Euler matrix of Eq. (2.4.2) and both terms are
zero due to condition Eq. (2.4.27) on the rotational and vibrational 𝑠 vectors. For the
rotational 𝑡 vectors, we have∑

𝛼

Sr,𝛼Tr,𝛼 →
∑
𝛼

𝑆
(
Sr,𝛼 − 𝔰𝑘′𝑠𝑘′,𝛼𝑇

)
Tr,𝛼𝑆𝑇

= 𝑆

©­­­­­­«
∑
𝛼

Sr,𝛼Tr,𝛼︸       ︷︷       ︸
𝐼

−𝔰𝑘′
©­­­­­­«
∑
𝛼

𝑠𝑘′,𝛼𝑇Tr,𝛼︸          ︷︷          ︸
0

ª®®®®®®¬
ª®®®®®®¬
𝑆𝑇

= 𝑆𝑆𝑇 = 𝐼.

(3.A.13)

Finally, for the vibrational 𝑡 vectors, we have∑
𝛼

Sr,𝛼𝑡𝑘,𝛼 →
∑
𝛼

𝑆
(
Sr,𝛼 − 𝔰𝑘′𝑠𝑘′,𝛼𝑇

) (
𝑡𝑘,𝛼 + 𝔰𝑘,𝑔𝑡𝑔,𝛼

)

= 𝑆

©­­­­­­«
∑
𝛼

Sr,𝛼𝑡𝑘,𝛼︸       ︷︷       ︸
0

+
∑
𝛼

𝔰𝑘,𝑔Sr,𝛼𝑡𝛼,𝑔︸            ︷︷            ︸
𝔰𝑘

−
∑
𝛼

𝔰𝑘′𝑠𝑘′,𝛼𝑇𝑡𝑘,𝛼︸             ︷︷             ︸
𝔰𝑘

+
∑
𝛼

𝔰𝑘,𝑔𝔰𝑘′𝑠𝑘′,𝛼𝑇𝑡𝑔,𝛼︸                  ︷︷                  ︸
0

ª®®®®®®¬
= 𝑆(𝔰𝑘 − 𝔰𝑘) = 0

(3.A.14)

which concludes the proof.

92 of 191



3.B. Invariance of the pseudo potential 3. Analytic KEOs in trove

Appendix 3.B Invariance of the pseudo potential

The pseudo potential𝑈 consists of the four terms:

𝑈1 =
1
8

∑
𝛼

1
𝑚𝛼
(𝒆̂𝑔 × 𝒔𝑔,𝛼) · (𝒆̂𝑔′ × 𝒔𝑔′,𝛼),

𝑈2 =
1
4

∑
𝛼

1
𝑚𝛼

(
𝒆̂𝑔 × 𝒔𝑘,𝛼

) · 𝜕𝒔𝑔,𝛼
𝜕𝑞𝑘

,

𝑈3 = −1
4

∑
𝛼

1
𝑚𝛼

𝒔𝑘,𝛼 · 𝜕
2𝒔𝑘′,𝛼

𝜕𝑞𝑘𝜕𝑞𝑘′
,

𝑈4 = −1
8

∑
𝛼

1
𝑚𝛼

𝜕𝒔𝑘,𝛼
𝜕𝑞𝑘

· 𝜕𝒔𝑘′,𝛼
𝜕𝑞𝑘′

(3.B.1)

where𝑈 is the sum of these terms. The first term can be rewritten as

𝑈1 =
1
8

∑
𝛼

1
𝑚𝛼
(𝑠𝑔,𝛼ℎ𝑠𝑔,𝛼ℎ − 𝑠𝑔,𝛼ℎ𝑠ℎ,𝛼𝑔) (3.B.2)

or, in matrix notation,

𝑈1 =
1
8

∑
𝛼

1
𝑚𝛼

Tr(Sr,𝛼S
𝑇
r,𝛼 − Sr,𝛼Sr,𝛼). (3.B.3)

The second term can be rewritten as

𝑈2 =
1
4

∑
𝛼

1
𝑚𝛼

𝜀ℎ𝑔ℎ′𝑠𝑘,𝛼ℎ′
𝜕𝑠𝑔,𝛼ℎ
𝜕𝑞𝑘

. (3.B.4)

We will briefly outline the methods used to obtain the changes Δ𝑈𝑖 of each𝑈𝑖 – where
Δ𝑈𝑖 is the difference between the 𝑈𝑖 before and after changing the BF frame – before
writing them all out. For𝑈1, we have

Δ𝑈1 =
1
8

∑
𝛼

1
𝑚𝛼

(
Tr(𝑆S̃r,𝛼S̃

𝑇
r,𝛼𝑆

𝑇) − Tr(Sr,𝛼S
𝑇
r,𝛼) − Tr(𝑆S̃r,𝛼S̃r,𝛼𝑆𝑇) + Tr(Sr,𝛼Sr,𝛼)

)
=

1
8

∑
𝛼

1
𝑚𝛼

(
Tr(S̃r,𝛼S̃

𝑇
r,𝛼) − Tr(Sr,𝛼S

𝑇
r,𝛼) − Tr(S̃r,𝛼S̃r,𝛼) + Tr(Sr,𝛼Sr,𝛼)

) (3.B.5)

where
S̃r,𝛼 = Sr,𝛼 − 𝔰𝑘𝑠𝑘,𝛼𝑇 . (3.B.6)

An example term would be

Tr(𝔰𝑘𝑠𝑘,𝛼𝑇 𝑠𝑘′,𝛼𝔰𝑘′𝑇) = (𝔰𝑘 · 𝔰𝑘′)(𝑠𝑘,𝛼 · 𝑠𝑘′,𝛼). (3.B.7)

For𝑈2, we have

Δ𝑈2 =
1
4

∑
𝛼

1
𝑓𝛼

(
𝜀𝑔′𝑔ℎ′𝑆ℎ′𝑙𝑠𝑘,𝛼𝑙

𝜕

𝜕𝑞𝑘
(𝑆𝑔ℎ𝑆𝑔′ 𝑓 𝑠ℎ,𝛼 𝑓 ) − 𝜀𝑔′𝑔ℎ′𝑠𝑘,𝛼ℎ′

𝜕𝑠𝑔,𝛼𝑔′

𝜕𝑞𝑘

)
. (3.B.8)
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A term such as
𝜀𝑔′𝑔ℎ′𝑆ℎ′ 𝑓 𝑠𝑘,𝛼 𝑓

𝜕𝑆𝑔ℎ
𝜕𝑞𝑘

𝑆𝑔′ 𝑓 ′𝑠ℎ,𝛼 𝑓 ′ (3.B.9)

becomes

𝜀ℎ′𝑔′𝑝𝑆ℎ′ 𝑓 𝑆𝑔′𝑛𝑆𝑝𝑝′𝑠𝑘,𝛼𝑝′𝑆𝑔 𝑓 ′
𝜕𝑆𝑔ℎ
𝜕𝑞𝑘

𝑠ℎ,𝛼 𝑓 = 𝜀 𝑓 𝑓 ′𝑝′𝜀 𝑓 ′𝑔ℎ𝑠𝑘,𝛼𝑝′𝔰𝑘,𝑔𝑠ℎ,𝛼 𝑓

= Tr(S̃r,𝛼)(𝑠𝑘,𝛼 · 𝔰𝑘) − 𝑠𝑘,𝛼𝑇 S̃r,𝛼𝔰𝑘 .
(3.B.10)

For𝑈3, we have

Δ𝑈3 = −1
4

∑
𝛼,𝑘,𝑘′

1
𝑚𝛼

(
𝑆𝑠𝑘,𝛼 · 𝜕

2𝑆𝑠𝑘′,𝛼
𝜕𝑞𝑘𝜕𝑞𝑘′

− 𝑠𝑘,𝛼 · 𝜕
2𝑠𝑘′,𝛼

𝜕𝑞𝑘𝜕𝑞𝑘′

)
. (3.B.11)

A term such as
𝑆𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘

(
𝜕𝑆
𝜕𝑞𝑘′

𝑠𝑘′,𝛼

)
(3.B.12)

becomes

𝑆𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘

(
𝜕𝑆
𝜕𝑞𝑘′

𝑠𝑘′,𝛼

)
= 𝑆𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘

(
𝑆𝑆𝑇

𝜕𝑆
𝜕𝑞𝑘′

𝑠𝑘′,𝛼

)
= 𝑆𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘
(𝑆𝔰𝑘′ × 𝑠𝑘′,𝛼)

= (𝑠𝑘,𝛼 · (𝔰𝑘 × (𝔰𝑘′ × 𝑠𝑘′,𝛼)) + (𝑠𝑘,𝛼 ·
(

𝜕

𝜕𝑞𝑘
(𝔰𝑘′ × 𝑠𝑘′,𝛼)

)
.

(3.B.13)

A similar procedure can be used for𝑈4.
With these expressions the differences Δ𝑈𝑖s are given by

Δ𝑈1 = + 1
8

∑
𝛼

((𝔰𝑘 · 𝔰𝑘′)(𝑠𝑘,𝛼𝑠𝑘′,𝛼) − (𝔰𝑘 · 𝑠𝑘′,𝛼)(𝑠𝑘,𝛼 · 𝔰𝑘′,𝛼))

+ 1
4

∑
𝛼

(
𝑠𝑇𝑘,𝛼Sr,𝛼𝔰𝑘 − 𝔰𝑘𝑇Sr,𝛼𝑠𝑘,𝛼

)
,

Δ𝑈2 = + 1
4

∑
𝛼

(𝔰𝑘 · 𝑠𝑘′,𝛼)(𝑠𝑘,𝛼 · 𝔰𝑘′) − (𝔰𝑘 · 𝔰𝑘′)(𝑠𝑘,𝛼 · 𝑠𝑘′,𝛼))

+ 1
4

∑
𝛼

(
𝔰𝑘𝑇Sr,𝛼𝑠𝑘,𝛼 − 𝑠𝑘,𝛼𝑇Sr,𝛼𝔰𝑘

)
+ 1

4

∑
𝛼

(
𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘
(𝔰𝑘′ × 𝑠𝑘′,𝛼)

)
,

Δ𝑈3 = − 1
4

∑
𝛼

(
𝑠𝑘,𝛼 · 𝜕

𝜕𝑞𝑘
(𝔰𝑘′ × 𝑠𝑘′,𝛼) + 𝑠𝑘,𝛼 ·

(
𝔰𝑘 × 𝜕𝑠𝑘′

𝜕𝑞𝑘′

))
− 1

4

∑
𝛼

((𝔰𝑘 · 𝑠𝑘′,𝛼)(𝑠𝑘,𝛼 · 𝔰𝑘′) − (𝔰𝑘 · 𝔰𝑘′)(𝑠𝑘,𝛼 · 𝑠𝑘′,𝛼)) ,

Δ𝑈4 = − 1
8

∑
𝛼

(𝔰𝑘 · 𝑠𝑘′,𝛼)(𝑠𝑘,𝛼 · 𝔰𝑘′) − (𝔰𝑘 · 𝔰𝑘′)(𝑠𝑘,𝛼 · 𝑠𝑘′,𝛼))

− 1
8

∑
𝛼

(
−2𝑠𝑘,𝛼 ·

(
𝔰𝑘 × 𝜕𝑠𝑘′

𝜕𝑞𝑘′

))
.

(3.B.14)
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An inspection of these expressions show that Δ𝑈 = Δ𝑈1 + Δ𝑈2 + Δ𝑈3 + Δ𝑈4 = 0, as
expected.

95 of 191



4. marvelised H2CS Line List

Chapter 4

marvelised H2CS Line List

4.1 Introduction

Since its original interstellar detection [107], thioformaldehyde (main isotopologue
1H2

12C32S, henceforth referred to as H2CS) has been observed in a variety of astronomical
environments. For example, in massive star-forming regions such as Sagittarius B2 [108]
where it can be efficiently formed through bimolecular reactions [109], in nearby [110,
111] and more distant galaxies [112], molecular clouds [113], and in the comet Hale-
Bopp [114] which was the first detection of thioformaldehyde in a comet. Given that it is
a simple organosulphur molecule, thioformaldehyde can be expected in the atmospheres
of exoplanets where sulphur chemistry is known to play a significant role in atmospheric
composition [115, 116]. The need for accurate and complete molecular opacity data of
H2CS is the motivation for the production of a hot line list for the ExoMol database [8]
and is the subject of this chapter.

It is broadly split into two sections, based on the publications Refs. [1, 2]. This former
was an extensive spectroscopic literature search of H2CS which extracted all meaningful
transitions into a consistent, labelled dataset with measurement uncertainties. This
dataset was processed using the marvel (Measured Active Rotational-Vibrational Energy
Levels) algorithm [117–120] which produced an extensive list of rovibrational energy
levels of H2CS in its ground electronic state.

The marvel dataset was used in the computation of a new comprehensive line
list of H2CS, which is the subject of the second half of the chapter. This calculation
improved upon previous line lists by empirically-refining the PES with the marvel
values. Moreover, after the line list was computed, the calculated energy levels were
replaced with the empirically-derived marvel values. The variational rovibrational
calculations also employed an analytic KEO discussed in Chapter 3.

4.2 marvel procedure

4.2.1 The approach and input structure

Based on the theory of spectroscopic networks [25, 119, 121, 122], marvel takes a
user-constructed dataset of assigned spectroscopic transitions and converts them into a
consistent set of labelled energy levels with the measurement uncertainties propagated
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from the input transitions to the output energies. To convert the transitions, it essentially
minimises the weighted quadratic sum

∑
𝑖

1
𝜎2
𝑖

©­«𝑇𝑖 −
∑
𝑗

𝑋𝑖 𝑗𝐸 𝑗
ª®¬

2

(4.2.1)

where 𝑇𝑖 and 𝜎𝑖 are the 𝑖th transition and associated uncertainty, respectively, 𝐸 𝑗 is the
𝑗th energy level, and 𝑋𝑖 𝑗 is

𝑋𝑖 𝑗 =


1 𝑗 is the upper state for transition 𝑖
−1 𝑗 is the lower state for transition 𝑖
0 otherwise.

(4.2.2)

Differentiating with respect to 𝐸𝑘 , equating to zero, and rearranging , we obtain

∑
𝑖

𝑋𝑇
𝑘𝑖

𝜎2
𝑖

𝑇𝑖 =
∑
𝑖 𝑗

𝑋𝑇
𝑘𝑖

𝜎2
𝑖

𝑋𝑖 𝑗𝐸 𝑗 (4.2.3)

which is a set of linear equations which can be solved for the energy levels.
From a user-perspective, the marvel input dataset of transitions has the general

structure

𝜈 in. unc up. unc QN′ QN′′ source.𝑖

where 𝜈 is the transition wavenumber (cm−1), in. unc is the initial measurement
uncertainty (cm−1), up. unc is the updated uncertainty (cm−1) which may differ from
the initial uncertainty, QN′ and QN′′ are the quantum numbers of the upper and lower
states involved in the transition, respectively, and source.𝑖 is the literature source tag
concatenated with a counting number 𝑖 of the datum from this source. source.𝑖 is a
unique ID of the transition in the dataset and is required by marvel. The source tag, for
example 72BeKlKiJo, is based on the notation employed by the IUPAC task group on
water [123, 124] and is generally speaking formed from the year published and the first
two letters of, up to, the initial four authors’ surnames. An extract of the marvel input
file of H2CS containing the labelled transitions is shown in Table 4.2.1.

Table 4.2.1: Extract from the marvel transition file. The marvel frequency wavenumber
𝜈 and uncertainties are in cm−1. There are two uncertainty columns to allow the input
uncertainty to be updated while retaining the original uncertainty of the source.

𝜈 unc. (cm−1) unc. (cm−1) Quantum ‘numbers’ of upper states Quantum ‘numbers’ of lower states Source
𝐽′ 𝐾′𝑎 𝐾′𝑐 𝑣′1 𝑣′2 𝑣′3 𝑣′4 𝑣′5 𝑣′6 𝐽′′ 𝐾′′𝑎 𝐾′′𝑐 𝑣′′1 𝑣′′2 𝑣′′3 𝑣′′4 𝑣′′5 𝑣′′6

8.01661895 0.00000167 0.00000167 7 4 4 0 0 0 0 0 0 6 4 3 0 0 0 0 0 0 08MaMeWiDe.35
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4.2.2 H2CS quantum numbers

H2CS is a semi-rigid, asymmetric top molecule that can be classified according to the
𝒞2v(M) molecular symmetry group with the irreducible representations 𝒜1, 𝒜2, ℬ1,
andℬ2 [74]. Transitions follow the parity selection rules𝒜1 ↔ 𝒜2 andℬ1 ↔ℬ2; and
the standard rotational selection rules, 𝐽′ − 𝐽′′ = 0,±1, 𝐽′ + 𝐽′′ ≠ 0; where ′ and ′′ denote
the upper and lower state, respectively.

Nine quantum numbers are required to uniquely label a rovibrational energy level of
H2CS in the ground electronic state: the six vibrational normal mode quantum numbers
𝜈1 to 𝜈6, detailed in Figure 4.2.1, and the three standard rigid-rotor quantum numbers
𝐽, 𝐾𝑎 , and 𝐾𝑐 . Here, 𝐽 is the total angular momentum quantum number, 𝐾𝑎 and 𝐾𝑐
are the oblate and prolate quantum numbers, respectively. These are restricted by the
convention 𝐽 = 𝐾𝑎 + 𝐾𝑐 or 𝐽 = 𝐾𝑎 + 𝐾𝑐 + 1 (the latter only when 𝐾𝑎 ≠ 0 and 𝐾𝑐 ≠ 0). This
gives 2𝐽 + 1 states for a given 𝐽.

The chosen set of quantum numbers has to be consistent across the whole dataset and
care must be taken when extracting data from literature sources as different labelling
conventions are occasionally encountered.

Out of the chosen set, only 𝐽 is a good quantum number. While the remaining
quantum numbers are only approximate, their values still have theoretical and experi-
mental significance and typically states can be labelled with quite reasonable confidence.
However, due to the close energies of the 𝜈4 and 𝜈6 normal modes, shown in Figure 4.2.1,
labelling states with either of those two quantum numbers is much more ambiguous.
We will return to this point when we discuss how states were relabelled in Section 4.3.2.

𝜈1

C
HH

S

(a) symm. C–H stretch (𝒜1)
2971.03 cm−1 [125].

𝜈2

C
HH

S

(b) symm. S–C–H bend (𝒜1)
1455.50 cm−1 [126]

𝜈3

C
HH

S

(c) symm. C–S stretch (𝒜1)
1059.20 cm−1 [127]

𝜈4

C
+ H−−

−

H

S

(d) out-of-plane bend (ℬ1)
990.18 cm−1 [127]

𝜈5

C
HH

S

(e) assym. C–H stretch (ℬ2)
3024.61 cm−1 [125]

𝜈6

C
HH

S

(f) assym. S–C–H bend (ℬ2)
991.02 cm−1 [127]

Figure 4.2.1: Vibrational modes and measured band centers of H2CS.

Table 4.2.2 shows the relationship between the rotational quantum numbers and
overall rotational symmetry. This needs to combined with the symmetry of the
vibrational modes given above to give the total symmetry of a given state, which is also
a good quantum number.

98 of 191



4.3. Experimental data sources 4. marvelised H2CS Line List

Table 4.2.2: Symmetry species of 𝐽𝐾𝑎 ,𝐾𝑐 levels of H2CS in the 𝒞2v(M) group [74].

𝐾𝑎 𝐾𝑐 Γrot

even even 𝒜1
even odd 𝒜2
odd even ℬ2
odd odd ℬ1

4.3 Experimental data sources

Spectroscopic data was extracted from 11 published sources and these are summarised
in Table 4.3.1. This contains the energy and 𝐽 range of each source, the bands covered,
the number of available transitions (A), the number of validated transitions (V) by
the marvel procedure, and, from those validated transitions, the mean and maximum
uncertainty obtained from the uncertainties quoted in each study. Four sources provided
their data in digital format. The other literature sources, whose data was only available
in PDF form, were processed using ABBYY FineReader as it has the capability to convert
scanned PDF files into editable file formats. The number of available transitions for a
given source does not include transitions taken from prior sources.

There were two primary reasons for the exclusion of a transition. The first is when its
provenance was not clear so the line could not be verified to be purely experimental. The
second is when the difference between the energy of a state determined by the marvel
procedure compared to the energy as predicted by a transition was greater than the
uncertainty of the transition. Typically, these states were well supported by several other
transitions (from another source) with the outlier transition biasing the marvel energy
of the state towards the transition predicted energy even if the transition uncertainty
was increased. Thus, the removal of the transition improved the final marvel energy.
A negative sign is added to any transition wavenumber to remove it from the marvel
procedure.

A number of changes were made to the extracted transition data. The energies of
states with 𝐾𝑎 close to 𝐽 may depend only very weakly on 𝐾𝑐 and often give rise to two
very-closely-spaced transitions, a phenomenon known as 𝐾-doubling (see Section 4.3.2).
In sources where the prolate (𝐾𝑐) quantum numbers were missing, degenerate transitions
with both possible values were added into the input transitions file which respected the
symmetry rule. The number of available transitions in Table 4.3.1 reflects this change.

Due to the close band centres of 𝜈4 and 𝜈6, many states had to be reassigned to
ensure consistency in the input transitions file. The basis and method of reassignment
is explained in Section 4.3.2, with the changes made to the individual sources detailed
below.

70JoPo [128]: A ground vibrational study whose data was included in 19MuMaTh.
71JoPoKi [136]: A ground vibrational study whose data was included in 72BeKlKiJo.
71JoOl [125]: An infrared study with the 𝜈1, 𝜈5, and 2𝜈2 bands. The original

assignment for the latter was 2𝜈6 but this was incorrect and has since been updated.
The transitions from this source were challenging to scan due to the print quality and
were not always unambiguous. The transitions were also of relatively low resolution
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Table 4.3.1: Experimental literature sources of H2CS spectra and their coverage. For the
marvel analysis, V is the number of verified transitions and A is the number of available
transitions. The mean and maximum uncertainties of each dataset reflects only the
verified transitions. 𝜈0 means ground vibrational.

Tag Energy range (cm−1) Band 𝐽 range V/A Unc. Mean/Max (cm−1)

70JoPo [128] 0.209 to 0.349 𝜈0 3 to 4 2/2 3.34 × 10−7 / 3.34 × 10−7

71JoOl [125] 2843 to 3129 𝜈1, 2𝜈2, 𝜈5 0 to 30, 1 to 30, 2 to 24 1110/1478 7.559 × 10−3 / 2.000 × 10−2

72BeKlKiJo [129] 0.105 to 8.141 𝜈0 0 to 27 56/56 1.167 × 10−4 / 2.715 × 10−4

77FaKrMu [130] 0.0349 𝜈0 0 to 1 1/1 2.23 × 10−9 / 2.23 × 10−9

80BeDu [131] 924.9 to 1059 𝜈3, 𝜈4, 𝜈6 1 to 6, 3 to 9, 3 to 9 63/82 2.000 × 10−3 / 2.000 × 10−3

81TuHaMi [132] 818.8 to 1221 𝜈4, 𝜈6 0 to 22, 2 to 23 102/386 3.839 × 10−3 / 2.800 × 10−2

93McBr [126] 31.46 to 1499 𝜈0, 𝜈2 21 to 54, 1 to 37 922/935 3.256 × 10−2 / 5.000 × 10−2

94ClHuAdMe [133] 2.222 to 402.1 𝜈0 0 to 36 302/355 4.000 × 10−4 / 4.000 × 10−4

08MaMeWiDe [134] 4.161 to 12.40 𝜈0 4 to 41 113/113 1.980 × 10−6 / 3.340 × 10−6

19MuMaTh [135] 4.161 to 46.23 𝜈0 4 to 42 317/317 1.020 × 10−6 / 3.336 × 10−6

08FlLaPeKi [127] 690.7 to 1338 𝜈3, 𝜈4, 𝜈6 0 to 50, 0 to 50, 1 to 51 8649/8655 4.748 × 10−4 / 1.000 × 10−3

as illustrated in Figure 4.3.1. This paper had the largest number of non-validated
transitions. These were the asterisk-marked transitions in their publication, which, in
certain cases, were unobserved but expected transitions, however the precise transitions
where this applied was not specified. Thus, all had to be removed from the validated set.
These were labelled with a “_a” after the source number but before the label number. In
total, 368 transitions were removed for this reason or because the energy they predicted
deviated from that predicted by marvel beyond their uncertainty.

72BeKlKiJo [129]: A ground vibrational study up to 𝐽 = 27. No difficulties in
validating the transitions.

77FaKrMu [130]: One measured line from this study was included in the 19MuMaTh
data set.

80BeDu [131]: Infrared study involving the 𝜈3, 𝜈4, and 𝜈6 bands. 19 transitions were
removed as the energy they predicted deviated from that predicted by marvel beyond
their uncertainty.

08FlLaPeKi [127]: An infrared study of the 𝜈3, 𝜈4, and 𝜈6 bands. The authors of
this study were contacted and provided a more complete set of data which was used
in the marvel analysis. Several quantum numbers were adjusted, primarily due to the
ambiguity of 𝜈4 and 𝜈6 discussed in Section 4.3.2. 18 lines had the 𝐾′𝑎 quantum number
increased by 2 with the corresponding 𝐾′𝑐 quantum number decreased by 2 to maintain
the symmetry and 𝐾′𝑎 + 𝐾′𝑐 requirement. 2919 lines had their 𝐾′𝑐 value adjusted by 1 or
−1 so that the symmetry selection rule was satisfied. Finally, 1625 lines had their 𝜈4 and
𝜈6 assignment swapped (discussed in Sec. 4.3.2). Six transitions were removed as their
optimal uncertainty was too high.

81TuHaMi [132]: Infrared study involving the 𝜈3, 𝜈4, and 𝜈6 bands. Some listed
transitions were taken from 80BeDu so we ignored these and used the original data
source. These were labelled with a “_o” after the source name but before the label
number. Eight transitions had their 𝜈4 and 𝜈6 assignment swapped. Ten transitions had
their 𝐾′𝑐 values changed by 1, three had their 𝐾′𝑐 values changed by 2, and one had its 𝐾′𝑐
value changed by 3. One transition had its 𝐾′𝑎 value changed by 1 and four had their 𝐾′𝑎
value changed by 2. Eight transitions had their 𝐾′′𝑐 values changed by 1. One transition
had its 𝐾′′𝑎 value changed by 1 and one had its 𝐾′′𝑎 value changed by 2. 284 transitions
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were removed as the energy they predicted deviated from that predicted by marvel
beyond their uncertainty.

93McBr [126]: The authors of this study were contacted and they provided us with
the transitions from the 𝜈2 band. It is the only source containing the 𝜈2 band; the
transitions are relatively low resolution, as illustrated in Figure 4.3.1 where the highest
circle for 93McBr corresponds to the 𝜈2 transitions. No subsequent high resolution
studies of this band have been undertaken. Ground vibrational transitions from this
source are contained in 19MuMaTh and 08MaMeWiDe.

94ClHuAdMe [133]: An electronic study of the 𝐴̃–𝑋̃ transition of thioformaldehyde.
The ground state combination differences reported in 19MuMaTh and taken from this
study were used in the marvel dataset. 53 transitions were removed as the energy they
predicted deviated from that predicted by marvel beyond their uncertainty.

08MaMeWiDe [134]: A ground vibrational study which included transition data
from multiple sources including 94ClHuAdMe, 71JoPoKi, 80BeDu, 72BeKlKiJo, 93McBr
as well as CDMS (Cologne Database for Molecular Spectroscopy) [137] data and the
FASSST [138] data. Transitions in the marvel input file from 93McBr numbered 113 and
above are from this source.

19MuMaTh [135]: A ground vibrational study which incorporated data from
multiple sources including 77FaKrMu, 70PoJo, 71JoPoKi, 72BeKlKiJo, 94ClHuAdMe,
and 93McBr. It also contained CDMS and FASSST data. Transitions from 93McBr
numbered 1 to 112 are from this source.

There is an overlap in data coverage from the sources 08FlLaPeKi, 80BeDu, and
81TuHaMi as, collectively, they contained transitions involving the 𝜈3, 𝜈4, and 𝜈6
bands. Figure 4.3.1 illustrates the uncertainties of the data by source. The uncertainties
of 08BeDu and 81TuHaMi were consistently higher than the ones from 08FlLaPeKi.
08FlLaPeKi’s dataset was also significantly larger and, consequently, each state was well
represented by several transitions. Due to the lower uncertainties, transitions to a given
upper state were much more internally consistent. Because of these factors, 08FlLaPeKi
was favoured over the other two sources. In total, 19 transitions from 80BeDu and 284
transitions from 81TuHaMi were removed because they were not in agreement with the
other data.

4.3.1 Artificial transitions

The complete internal states of H2CS are either ortho (nuclear spin functions of symmetry
𝒜1) or para (nuclear spin functions of symmetryℬ1). There are no transitions between
those states. As a result, the marvel analysis produces two separate networks of energy
levels, an ortho-network and a para-network, which are disconnected. To ensure the
energies of the all para-states relative to the rovibrational ground state of the molecule are
correct, it is necessary to link the ortho-network and para-network through an artificial
transition. This was done using the pseudo-experimental transition wavenumbers
reconstructed with the pgopher program [139] where the spectroscopic constants were
taken from 08FlLaPeKi. The ground vibrational transition 111 ← 000 (states labelled as
𝐽𝐾𝑎𝐾𝑐 ) with a value of 10.281 826(100) cm−1 was added to the input marvel transition file
to link the networks.
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Figure 4.3.1: Uncertainties in the measured data (vertical axis, log scale) from each
literature source (horizontal axis). Each circle corresponds to a given uncertainty. The
vertical coordinate of the centre of the circle is the uncertainty, and the area of the circle
is proportional to the number of transitions with that uncertainty. The smallest and
largest circles correspond to 1 and 2729 transitions, respectively.

4.3.2 Relabelling of transition data

The out-of-plane bending mode 𝜈4 and the asymmetric S–C–H bending mode 𝜈6 have
very close band centres and interact through a massive A-type Coriolis resonance [127].
As a consequence, the sources did not all consistently label states which involved 𝜈4
and 𝜈6 excitations. To rectify this and ensure consistency across all literature sources,
a number of these states were relabelled. This was performed on the basis of the
assignment of the trove calculation, which is automatically self-consistent. As the trove
calculation used valence coordinates, it did not produce normal mode quantum numbers.
Thus, the trove assignment had to be translated to the normal mode assignment.

The valence coordinates “classes” trove used (labelled 𝑞1 to 𝑞6) are the C–S stretch,
the two C–H stretches, the two S–C–H bends, and the dihedral angle between the two
S–C–H planes, with the BF frame of Section 3.6. The rovibrational states have the form

𝜓 =
∑
𝑝

𝑎𝑝 |𝐽𝐾𝜂⟩𝜙𝑛1(𝑞1) . . . 𝜙𝑛6(𝑞6). (4.3.1)

where the sum 𝑝 is over 𝑝 ∈ (𝐽 , 𝐾, 𝜂, 𝑛1, . . . , 𝑛6). Quantum numbers are assigned
based on the largest coefficient 𝑎𝑝 and are also given by (𝐽 , 𝐾, 𝜂, 𝑛1, . . . , 𝑛6) as well as
rotational, vibrational, and total symmetries of the state. The resulting assignments are
internally consistent and can be unambiguously mapped to normal mode assignments.
Because the available trove rovibrational states greatly outnumber those made available
experimentally, relabelling the trove states purely on the basis of the experimental
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assignments would not be possible. Further assignments would be necessary to ensure
internal consistency without the guidance of the experimental assignments. Thus, for
practical reasons in the refinement and marvelisation of the computed line list, it was
more straightforward to relabel the experimental data on the more complete trove data.

For the rotational quantum numbers, we must understand the meaning of 𝐾𝑎 . The
rigid-rotor Hamiltonian, for principal axes 𝑎, 𝑏, and 𝑐, ordered by increasing moments
of inertia, is given by

𝐻̂rot = ℏ−2(𝐴e𝐽2
𝑎 + 𝐵e𝐽2

𝑏 + 𝐶e𝐽2
𝑐 ) (4.3.2)

where the coefficients are known as the rotational constants and, for example, the
rotational constant 𝐴𝑒 is defined by

𝐴e =
ℏ2𝜇e

𝑎𝑎

2ℎ𝑐 (4.3.3)

and 𝜇e
𝑎𝑎 = (𝐼e)−1

𝑎𝑎 where 𝐼e is the equilibrium moment of inertia matrix. The other
constants are defined similarly. The H2CS is a near-prolate top as 𝐴e > 𝐵e ∼ 𝐶e
(𝐴e = 9.727 cm−1, 𝐵e = 0.5904 cm−1, 𝐶e = 0.5555 cm−1). If one sets the 𝑧 axis to be along
the 𝑎 axis, then 𝐻̂rot can be expressed as

𝐻̂rot = ℏ−2[(𝐵e + 𝐶e)/2𝐽2 + (𝐴e − (𝐵e + 𝐶e)/2)𝐽2
𝑧 + (𝐵e − 𝐶e)/4((𝐽+)2 + (𝐽−)2)] (4.3.4)

where 𝐽+ and 𝐽− are raising and lowering operators, respectively. The close value of 𝐵e
and 𝐶e explains the near-degeneracy of states with the same value of 𝐾𝑎 , the projection
of the angular momentum onto the 𝑧 or 𝑎 axis, as then 𝐵e − 𝐶e is close to zero.

The 𝑎 axis in this case is along the C –S bond and this was the direction of the 𝑧 axis
in the trove calculations. This implies that 𝐾𝑎 should be set to 𝐾. 𝐾𝑐 is chosen so that
the rotational symmetry matches the |𝐽𝐾𝜂⟩ function (given by Table 4.3.2) according to
Table 4.2.2.

Table 4.3.2: Symmetry species of the |𝐽𝐾𝜂⟩ functions of H2CS in the C2v(M) group [74].
𝜂 can take the values 0 and 1.

𝐾 𝜂 Γrot

even 0 𝒜1
even 1 𝒜2
odd 1 ℬ2
odd 0 ℬ1

Mapping the trove vibrational quantum numbers to the normal mode ones is accom-
plished by first determining which normal modes the trove coordinates correspond to.
For example, varying the C–H stretches (excitations 𝑛2 and 𝑛3) must be a combination
of the symmetric or asymmetric C–H stretches (excitations 𝑣1 and 𝑣5 1). Moreover, the
total degree of excitation must match. That is, we have

𝑛2 + 𝑛3 = 𝑣1 + 𝑣5. (4.3.5)

1This is the degree of excitation of the 𝜈1 and 𝜈5 normal modes and should not be confused with the
normal modes themselves.
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The precise values of the quantum numbers are found by matching the symmetries
of the states. The full mapping between the two for the states of interest is given in
Table 4.3.3.

Table 4.3.3: The mapping between the trove quantum numbers and the standard normal
mode notation with the associated irrep of the states. In trove, the assignment within a
“class” is somewhat unpredictable as only the sum is of significance as illustrated in the
table.

Normal mode trove quantum numbers Symmetry
𝑛1 𝑛2 + 𝑛3 𝑛4 + 𝑛5 𝑛6

𝜈1 0 1 0 0 𝒜1
𝜈2 0 0 1 0 𝒜1

2𝜈2 0 0 2 0 𝒜1
𝜈3 1 0 0 0 𝒜1
𝜈4 0 0 0 1 ℬ1
𝜈5 0 1 0 0 ℬ2
𝜈6 0 0 1 0 ℬ2

For the marvel input file, the relabelling process involved swapping the upper
state 𝜈′4 and 𝜈′6 quantum numbers in transitions from the literature sources 08FlLaPeKi
and 81TuHaMi (see Table 4.3.1). Also, the upper state 𝐾′𝑐 value was changed by 1 or
−1 to maintain the symmetry selection rule of the transition while also ensuring that
the convention 𝐽′ = 𝐾′𝑎 + 𝐾′𝑐 or 𝐽′ = 𝐾′𝑎 + 𝐾′𝑐 + 1 was satisfied. To generate the lower
state energies, the computer program pgopher [139] was used with the spectroscopic
constants given in 08FlLaPeKi. Since the lower states were purely rotational, there was
no ambiguity in their assignment.

4.4 marvel analysis

The marvel analysis was performed using the compiled marvel version 3 with the
Cholesky (analytic) method. An extract from the output marvel energy level file is
shown in Table 4.4.1. In total, 11 638 non-unique transitions out of 12 380 transitions up
to 𝐽 = 54 were processed, resulting in 4254 rovibrational energy levels up to 3729.07 cm−1.
Using the new ExoMol H2CS line list (Section 4.5) shows the number of transitions
between marvel states stronger than 1 × 10−30 cm/molecule (the hitran threshold) is
74 425.

In Figure 4.4.1, the energy level coverage of the marvel rovibrational states is plotted
as a function of the angular momentum quantum number, 𝐽, for the different vibrational
bands. Each vibrational band is illustrated by colour but within each band the different
𝐾𝑎 and 𝐾𝑐 states have the same colour. As can be seen, the energy separation between
the 𝜈4 and 𝜈6 states is very small. trove consistently assigned states of higher energy
as 𝜈6 states and this provided further justification for basing the experimental marvel
assignment on the trove assignment.
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Figure 4.4.1: The marvel energy of each state as a function of the angular momentum
quantum number, 𝐽. Each band has a different colour. Multiple states from the same
band with the same 𝐽 have different 𝐾𝑎 and 𝐾𝑐 numbers (not labelled). The 𝜈0 (ground
vibrational) states are separated by ortho (𝐾𝑎 odd) or para (𝐾𝑎 even).
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Table 4.4.1: Extract from the marvel energy file. The quantum numbers/labels are
described in the text and are followed by the marvel energy term value (cm−1), the
uncertainty of the state (cm−1), and the number of transitions supporting the state in
question.

Quantum ‘numbers’ 𝐸 Unc. No. of
𝐽 𝐾𝑎 𝐾𝑐 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 cm−1 cm−1 travs.

5 2 3 0 0 0 0 0 0 53.792652349 0.000316979 27
9 1 9 0 0 0 0 0 0 59.916981444 0.000135763 28
6 2 5 0 0 0 0 0 0 60.662392583 0.000316979 28
6 2 4 0 0 0 0 0 0 60.669363102 0.000316975 25
9 1 8 0 0 0 0 0 0 61.486995429 0.000135763 28

Table 4.4.2 shows the lowest energy state of each fundamental band as determined
by marvel, as well as the predicted band centre, which was obtained by subtracting the
energy of the pure rotational state from the rovibrational state. These values can be
compared to the experimentally measured band centres quoted in Figure 4.2.1, and we
see that for the 𝜈3, 𝜈4, and 𝜈6 modes the marvel band centres are the same to within
two decimal places. For the other fundamentals, the marvel band centres deviate from
the measured band centres at two decimal places. We can see what the deviation is by
comparing the minimum (or maximum) possible value of the experimental band centres
(those quoted in Figure 4.2.1) and the predicted marvel band centres. For example,
the minimum possible value for 𝜈1 is 2971.025 cm−1 and the marvel band centre is
2971.018 16 cm−1. Thus, the deviation is 0.006 84 cm−1. For the bands 𝜈2 and 𝜈5, the
marvel energies are different by 0.0273 cm−1 and 0.0006 cm−1, respectively. This is not
wholly unexpected, however, as the associated experiments were of lower accuracy.
Consequently, the marvel uncertainties on the lowest energy states for these bands are
0.007 cm−1, 0.05 cm−1, and 0.007 cm−1, respectively.

Table 4.4.2 shows the difference between the available CDMS [140] and marvel 𝜈0
energies. The CDMS data was generated by taking the union of the lower state energies
and the lower state energy plus the transition wavenumber. The sources were essentially
the same as the ground vibrational sources used for the marvel analysis. The majority
are clustered around 0 and those have a maximum difference of ∼ 1 × 10−3 cm−1. The
average uncertainty of the marvel ground vibrational energies is 7.42× 10−4 cm−1. Thus,
the agreement is good, and the lack of any significant outlier implies that no state has
an incorrect energy or assignment.

Figure 4.4.3a shows examples of the original 08FlLaPeKi assignment for the 𝜈4 and
𝜈6 for both 𝐾𝑎 = 1 and 𝐾𝑎 = 2 where the plots show the 08FlLaPeKi energy minus
𝐵𝐽(𝐽 + 1), with 𝐵 being the rotational constant – a measure of the approximate 𝐽 energy
dependence. This reduces the energy range and thus increases the readability of the
plot. There is an apparent misassignment of the 𝜈4 and 𝐾𝑎 = 2 energies in the region
20 < 𝐽 < 30. The trove assignment, shown in Figure 4.4.3b, partially rectifies this issue.

However, there are still graphically-incorrect assignments for 𝜈4, 𝐾𝑎 = 2 and 𝜈6,
𝐾𝑎 = 2. Swapping the assignment for these states for 𝐽 > 37 resulted in the assignment
shown in Figure 4.4.4. For the 𝜈6 and 𝐾𝑎 = 2 state, one notes that the peculiar behaviour
of the energy difference of the two 𝐾𝑎 states. This is due to a resonance interaction with
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Table 4.4.2: marvel energies of states from each band with the associated quantum
numbers and symmetry. The marvel uncertainty and the number of transitions which
supported a state (No. trans.) are also quoted. Above dividing line: The marvel energies
from the lowest lying state from each band as well as the band centre which is obtained
by subtracting the marvel energy of the purely rotational state from the rovibrational
energy. Below dividing line: The subsequent states from each band.

(𝐽𝐾𝑎𝐾𝑐𝑛1𝑛2𝑛3𝑛4𝑛5𝑛6) Irrep marvel energy (cm−1) Uncertainty (cm−1) No. trans. Band centre (cm−1)

(000000000) A1 0.000 00 0.000 00 8 0.000 00
(101100000) B1 2972.164 00 0.007 00 1 2971.018 16
(111010000) A2 1465.859 13 0.050 00 1 1455.577 31
(202020000) A1 2880.555 12 0.007 00 2 2877.117 72
(000001000) A1 1059.204 76 0.000 46 1 1059.204 76
(000000100) B1 990.182 14 0.000 47 2 990.182 14
(707000010) A2 3056.673 37 0.007 00 1 3024.604 40
(101000001) A2 992.164 06 0.000 81 2 991.018 22

(101000000) A2 1.145 84 0.000 04 10
(202000000) A1 3.437 39 0.000 09 15
(303000000) A2 6.874 40 0.000 14 16
(202100000) A1 2974.459 84 0.005 00 1
(303100000) B1 2977.888 23 0.005 00 2
(111100000) B1 2981.234 12 0.005 00 2
(404010000) A2 1466.957 07 0.050 00 1
(212010000) B1 1468.113 37 0.050 00 2
(211010000) B2 1468.227 40 0.050 00 2
(303020000) A2 2884.022 50 0.007 00 2
(111020000) B1 2887.486 73 0.007 00 1
(110020000) B2 2887.524 03 0.007 00 2
(101001000) A2 1060.345 03 0.000 91 2
(202001000) A1 1062.625 43 0.000 46 2
(303001000) A2 1066.045 82 0.000 47 2
(111000100) A1 990.884 14 0.002 00 1
(110000100) A2 990.885 04 0.000 80 3
(101000100) B2 991.325 47 0.000 34 3
(220000010) B2 3064.413 53 0.007 01 1
(221000010) B1 3064.413 53 0.007 01 1
(808000010) B2 3065.845 98 0.007 00 1
(202000001) B2 994.451 57 0.000 81 3
(303000001) B1 997.882 37 0.000 81 3
(404000001) B2 1002.455 90 0.000 82 3

the nearby 𝜈3, 𝐾𝑎 = 1 states, also shown in Figure 4.4.4. The lower lying 𝜈3, 𝐾𝑎 = 1 states
have symmetries which alternate betweenℬ1 andℬ2 in step with the upper lying 𝜈6,
𝐾𝑎 = 2 states.

A further seemingly problematic set of assignments are for the 𝐾𝑎 = 0 and 𝐾𝑎 = 1
states of the 𝜈4 and 𝜈6 bands, the 𝜈4 band being shown in Figure 4.4.5. In these cases,
rather than the two near-degenerate states being those with the same 𝐾𝑎 , one is assigned
as the 𝐾𝑎 = 0 state and the other the 𝐾𝑎 = 1 state. The other 𝐾𝑎 = 1 state is assigned to
the energy further away. This is because of the strong interaction, and hence mixing,
between these two levels.

It is not possible to manually relabel these states as it would involve changing the
𝐾𝑎 value from odd to even (or vice versa) which changes the symmetry from𝒜 type to
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Figure 4.4.2: Difference between vibrational ground state energies from marvel and
CDMS as a function of angular momentum quantum number, 𝐽.

ℬ type (or vice versa) (see Table 4.2.2). Changing the 𝐾𝑐 value by one or relabeling 𝜈4
states to 𝜈6 states (or vice versa) does not do this (see Table 4.2.1), so it is impossible to
return to the original irreducible representation with this relabelling.

The uncertainties for each state by band are shown in Figure 4.4.6. One notes the
expected behaviour for the vibrational ground state (𝜈0), 𝜈3, 𝜈4, and 𝜈6 bands. The input
data for these bands was primarily from 08MaMeWiDe, 08FlLaPeKi, and 19MuMaTh,
which were of higher quality than the sources for the other bands. The energies for
the other bands are sourced exclusively from 93McBr and 71JoOl. Figure 4.4.6 shows
that their uncertainty is flat rather than growing with 𝐽. This is a result of both large
input uncertainties, as shown on Figure 4.3.1, with a mean of 7.559 × 10−3 cm−1 and
2.000 × 10−3 cm−1 for 71JoOl and 93McBr, respectively, and for uniform uncertainties for
all transitions within a band.

Finally, Figure 4.4.7 shows the energy of each state minus its band centre split by
band. The size of each point is proportional to the number of transitions that support
that state. The 𝜈0, 𝜈3, 𝜈4, and 𝜈6 states are measured up to a higher rotational excitation
with states up to 𝐽 = 51. The maximum rotational excitation has a range of 𝐽 = 24 to
𝐽 = 37 for the other bands.

The number of transitions supporting a state varies between bands. The strongest is
the ground vibrational whose maximum support is 35 transitions. 𝜈4 and 𝜈6 are also
well supported, though not as well as 𝜈0, with a maximum of 9. The remaining states
are much less supported, with several higher rotationally excited states in 𝜈1, 𝜈2, 2𝜈2, 𝜈6,
and, to a lesser extent, 𝜈3 being only supported by a single transition. 𝜈3’s maximum
is 6 while the rest have a maximum of 3. The marvel output energies for states only
supported by a single transition are much less trustworthy and depend largely on the
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(a) 08FlLaPeKi assignment.

0 10 20 30 40 50
900

1000

1100

1200

𝐽

𝜈4 and 𝐾𝑎 = 1
𝜈4 and 𝐾𝑎 = 2
𝜈6 and 𝐾𝑎 = 1
𝜈6 and 𝐾𝑎 = 2

(b) trove assignment.

Figure 4.4.3: A plot of the marvel Energy − 𝐵𝐽(𝐽 + 1) of the 𝐾𝑎 = 1 and 𝐾𝑎 = 2 states for
the 𝜈4 and 𝜈6 bands as a function of the angular momentum quantum number, 𝐽, where
𝐵 is the rotational constant.
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Figure 4.4.4: A plot of the Energy − 𝐵𝐽(𝐽 + 1) of the 𝐾𝑎 = 1 and 𝐾𝑎 = 2 states for the 𝜈4
and 𝜈6 bands as a function of the angular momentum quantum number, 𝐽, where 𝐵 is
the rotational constant. This is after the 𝐽 > 37 states of 𝜈4 and 𝐾𝑎 = 2 and 𝜈6 and 𝐾𝑎 = 2
were swapped. The states 𝜈3 and 𝐾𝑎 = 1 are also shown.

accuracy of the stated uncertainty of the experiment; transitions to these states cannot
be compared to ensure consistency and accuracy.
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Figure 4.4.5: A plot of the Energy − 𝐵𝐽(𝐽 + 1) of the 𝐾𝑎 = 1 and 𝐾𝑎 = 0 states for the
𝜈4 band as a function of the angular momentum quantum number, 𝐽, where 𝐵 is the
rotational constant. These were sourced from the energy levels file of the marvel output
after the transitions were relabelled using trove.
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Figure 4.4.6: Uncertainty of the marvel energies levels (vertical axis, log scale) split
by band (horizontal axis). The uncertainties are plotted as a function of the angular
momentum quantum number, 𝐽. The left-most uncertainty corresponds to 𝐽 = 0 states
while the crossover point to the next band corresponds to 𝐽 = 60. Multiple states from
the same band with the same 𝐽 number have different 𝐾𝑎 and 𝐾𝑐 numbers.
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Figure 4.4.7: The energy of each state minus the band centre of each state (the vertical
axis) split by band (the horizontal axis). Each circle corresponds to a given state. The
vertical coordinate of the centre of the circle is the energy of the state minus the band
centre, and the area of the circle is proportional to the number of transitions that supports
that state. The maximum number of supporting transitions is 35.

4.5 Variational nuclear motion calculations

This section summarises the steps in the rovibrational calculations of H2CS in trove,
with the general methodology already outlined in Section 2.7 and Chapter 3. The
Hamiltonian and basis functions used to construct the eigenfunctions were expressed in
terms of the previously specified valence coordinates: RCS (the C–S bond), RCH1 and
RCH2 (the C–H bonds), 𝜃SCH1 and 𝜃SCH2 (the H–C–S angles), and 𝜏 (the dihedral angle
between the H–C–S planes). The dipole moment surface (DMS) was also expressed in
terms of these coordinates, and along with the eigenfunctions, was used to compute
rovibrational line intensities. The ExoMol’s MPI-GAIN [141] – a GPU parallelised
program which calculates Einstein A coefficients – was employed for this.

For the KEO and DMS, a (right-handed) body-fixed frame was chosen such that the
𝑥 axis bisected the dihedral angle 𝜏, the 𝑧 axis pointed along the C–S bond, and the
frame’s origin was at the centre of mass of the nuclei. For each class the finite set of
functions (the 𝑓 s of Eq. (3.2.1)) in the KEO is as follows: for the bond lengths, they are

1
R
,

1
R2 ,

1
R3 , and 1

R4 . (4.5.1)

For the bond angles, they are

cos𝜃, cot𝜃, csc𝜃, sin𝜃, cot2 𝜃, cot𝜃 csc𝜃, and csc2 𝜃. (4.5.2)

Finally, for the dihedral angle, they are

cos(𝜏/2), sin(𝜏/2), cos2(𝜏/2), cos(𝜏/2) sin(𝜏/2), and sin2(𝜏/2). (4.5.3)
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The full KEO is provided in Appendix A of Ref. [2].
The vibrational basis set cut-off applied, based on a polyad number truncation

scheme, was

𝑃 = 𝑛CS + 2(𝑛CH1 + 𝑛CH2) + 𝑛H1CS + 𝑛H2CS + 𝑛𝜏 ≤ 𝑃max, (4.5.4)

which used the polyad cut-off 𝑃max = 14, chosen to ensure that full rovibrational
calculations were computationally tractable when generating a line list up to very high 𝐽
(discussed in Ref. [142]).

The PES used in this work is based on an ab initio surface originally generated by Ref.
[143], which utilised a CCSD(T)-F12b method in the calculation process. The PES was
represented as an expansion in terms of six coordinates,

Q𝑖 = R𝑖 − Re
𝑖 , 𝑖 = CS,CH1,CH2, (4.5.5)

Q𝑗 = 𝛼 𝑗 − 𝛼e
𝑗 , 𝑗 = SCH1, SCH2, (4.5.6)

Q𝜏 = 1 + cos 𝜏. (4.5.7)

The PES was expressed analytically as,

𝑉 =
∑
𝔭

𝑎𝔭Q
𝔭CS
CS Q

𝔭CH1
CH1

Q
𝔭CH2
CH2

Q
𝔭SCH1
SCH1

Q
𝔭SCH2
SCH2

Q
𝔭𝜏
𝜏 , (4.5.8)

where 𝑎𝔭 are the expansion parameters with maximum expansion order 𝔭CS + 𝔭CH1 +
𝔭CH2 + 𝔭SCH1 + 𝔭SCH2 + 𝔭𝜏 = 6 with the linear expansion parameters fixed to zero. A total
of 413 parameters were utilised including the three equilibrium (Re

CS, Re
CH, 𝛼e

SCH) and
two Morse parameters (𝑏CH, 𝑏CS). The expansion parameters assumed the values of the
ab initio PES from Ref. [143]. Sergey Yurchenko refined the PES by varying the quartic
expansion parameters (114 in total) varied in the refinement to the empirically-derived
marvel energy levels. The refinement used H2CS marvel energies for 𝐽 = 0, 1, 2, 3, 4, 5, 8,
and 10 (448 in total) covering the ground, 𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5, 𝜈6, and 2𝜈2 vibrational bands.
For the equilibrium structural parameters the optimised geometry values from [142]:
Re

CS = 1.608 952 Å, Re
CH = 1.086 848 Å, and 𝛼e

SCH = 121.750◦ were used. The PES was
constrained to the ab initio PES of Ref. [143] in the fitting.

Because an exact KEO was employed in the variational calculations, the refinement
showed very quick convergence. It can be expected that the valance coordinate
representation improved the convergence of the variationally computed rovibrational
energies of H2CS, especially at high 𝐽s, as discussed in Ref. [77]. The quality of the fit is
demonstrated in Figure 4.5.1, where the fitting residuals, i.e. the energy difference (in
cm−1) between the marvel and computed trove H2CS values, are plotted for the seven
vibrational states used in the refinement. The fitting residuals are all below 1 cm−1 with
the majority of bands possessing errors orders-of-magnitude smaller, notably for the
ground vibrational state which is to be expected since it corresponds to the lowest part
of the PES. The errors are substantially smaller than those of the original ab initio H2CS
PES of Ref. [143], which would be in the region of 1 cm−1 to 5 cm−1, demonstrating the
improvements in accuracy that can be achieved with a refined PES.
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Figure 4.5.1: The fitting residual errors (obs-calc), i.e. the energy difference (in cm−1)
between the empirically-derived marvel energies and computed trove values, as a
function of the total angular momentum quantum number 𝐽. Residual errors are shown
for seven vibrational bands and have been computed using the newly refined PES of
H2CS.

4.5.1 Dipole moment surfaces

A previously published ab initio DMS was utilised for intensity calculations. The DMS
of Ref. [142] was computed using coupled cluster theory CCSD(T) in conjunction with
the augmented correlation-consistent basis set aug-cc-pVQZ(+d for S) [144, 145]. The
three dipole components making up the DMS were represented analytically using a
sum-of-products expansion in terms of linear expansion variables for the six vibrational
coordinates (further details can be found in Ref. [142]).

4.6 The moty line list of H2CS

The newly computed line list for H2CS, called moty, contains 43 561 116 660 transitions
between 52 292 454 states and covers the 0 cm−1 to 8000 cm−1 range for rovibrational
states with rotational excitation up to 𝐽 = 120. The lower and upper state energy
thresholds were chosen to be 8000 cm−1 and 18 000 cm−1, respectively.

As is standard now for ExoMol line lists, all molecular states possess an uncertainty.
The uncertainties were defined either as the marvel uncertainty if available, or estimated
via the expression:

unc = 0.4𝑛1 + 0.2(𝑛2 + 𝑛3 + 𝑛4 + 𝑛5 + 𝑛6) + 0.002𝐽(𝐽 + 1), (4.6.1)

where 𝑛1 to 𝑛6 are the trove quantum numbers2. States with an estimated uncertainty
may well be highly accurate, however without comparison to experiment it is difficult to
verify.

2The rovibrational energies grow approximately as 𝐽(𝐽 + 1) with 𝐽 and linearly with vibrational
excitation; the uncertainties are assumed to have the same dependence
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Figure 4.6.1: Temperature-dependence of the partition function𝑄(𝑇) of H2CS computed
using the moty line list (solid line) and compared to the CDMS values (points) [140].

The temperature-dependent partition function 𝑄(𝑇) of H2CS was been computed
on a 1 K grid in the 1 K to 2000 K range. Partition function values were computed by
summing over all the computed rovibrational states of the moty line list and used nuclear
spin statistical weights of 𝑔ns = 1, 1, 3, and 3 for states of symmetry 𝒜1,𝒜2,ℬ1, and
ℬ2, respectively. The dependence of 𝑄(𝑇) on temperature is illustrated in Figure 4.6.1,
which shows the partition function values from the CDMS [140] database. The latter
only sums over rotational states which explains the lower value at 𝑇 = 500 K.

Following the ExoMolHD strategy [146], in order to improve the accuracy of the
moty line list and tailor it to high-resolution applications, the calculated energy levels
are replaced with the empirically-derived marvel values if available.

4.7 Spectra simulations

All spectra simulations used the ExoMol program ExoCross [147], which generates a
spectrum from the line list at a specified temperature and line width. In Figure 4.7.1, a
general overview of the H2CS spectrum at three different temperatures (296 K, 1000 K,
2000 K) is plotted. Absolute absorption cross-sections were computed at a resolution of
1 cm−1 using a Gaussian line profile with a half width at half maximum (HWHM) of
1 cm−1. As expected, the higher temperature spectra exhibit spectral flattening as the
previously weaker features gain intensity.

A more detailed band-by-band illustration of the room temperature spectrum of
H2CS is shown in Figure 4.7.2. In Figure 4.7.3 (left panel), a comparison of a synthetic
microwave spectrum of H2CS between the moty ExoMol and the CDMS [140, 148] line
list is given. The good agreement of the intensities indicate that the equilibrium dipole
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Figure 4.7.1: Absorption cross-sections of H2CS (at 𝑇 = 296 K, 1000 K, and 2000 K). A
Gaussian line profile with a half-width-half-maximum (HWHM) of 1 cm−1 was used on
a grid of resolution 1 cm−1.

moments used in CDMS and the moty line list agree well. The CDMS line list is based
on a dipole moment value of 1.6491 D by [130]. The ExoMol ab initio dipole moment
gives an expectation value of 1.648 72 D for the ground vibrational state. These values
can also be compared to an experimental laser-Stark value of 1.6483 D by [149].

The right-hand side panel of Figure 4.7.3 shows a comparison with a high-resolution
spectrum of H2CS by Ref. [127] for the 𝜈3, 𝜈4, and 𝜈6 region, although the experimental
data only gives relative intensities. The agreement is excellent. Further confirmation
of the reliability of the moty line list intensities can be seen when comparing to recent
theoretical calculations by Ref. [150], which gave an intensity of 1.01×10−20 cm/molecule
[150] (using coupled cluster theory, CCSD(T)/cc-pVTZ) for the 𝜈4 transition 303 ← 313,
compared to our value of 1.02 × 10−20 cm/molecule at 𝑇 = 296 K.

Figure 4.7.4 illustrates the impact of the marvelisation procedure for the moty
line list of H2CS. It shows a comparison between room-temperature spectra of H2CS
computed using the entire “unmarvelised” moty line list and using the marvelised
(upper and lower) states only. The total number of H2CS transitions at 𝑇 = 296 K above
the hitran threshold (between 0 cm−1 to 8000 cm−1) is 32 094 935. For example, the weak
transitions in the region of 2000 cm−1 belongs to the hot bands (transitions between
excited vibrational states) formed from 𝜈1/𝜈5 (upper) to 𝜈4/𝜈6 (lower) states, which has
not been experimentally characterised. This figure can provide some indication of the
H2CS spectral regions that are suitable for high-resolution applications.

115 of 191



4.7. Spectra simulations 4. marvelised H2CS Line List

0 20 40 60
0

0.5

1

10−20

𝜈0

Wavenumber (cm−1)

In
te

ns
ity

(c
m
/m

ol
ec

ul
e)

800 900 1000 1100
0

1

2

3

10−20

�3

�4

�6

Wavenumber (cm−1)
1400 1450 1500
0

1

2

10−21

�2

Wavenumber (cm−1)

1800 1900 2000 2100
0

0.5

1 10−21

2�4�4 + �6
2�6

Wavenumber (cm−1)

In
te

ns
ity

(c
m

/m
ol

ec
ul

e)

2800 2900 3000 3100 3200
0

1

2
10−20

�1

2�2 �5

Wavenumber (cm−1)

3900 4000 4100
0

1

2

3

10−22

�1 + �3

Wavenumber (cm−1)

In
te

ns
ity

(c
m

/m
ol

ec
ul

e)

4300 4400 4500 4600
0

0.5

1

1.5

2 10−21

�2 + �5

Wavenumber (cm−1)

Figure 4.7.2: Overview of the strongest bands of H2CS at 𝑇 = 296 K.
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Figure 4.7.3: Left: Comparison of ExoMol and CDMS [140] microwave absorption
cross-sections of H2CS at 𝑇 = 296 K. Right: Comparison of ExoMol (cm/molecule) and
experimental (arb.units) [127] absorption cross-sections of the 𝜈3, 𝜈4, and 𝜈6 region of
H2CS at 𝑇 = 296 K.
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Figure 4.7.4: Room temperature (𝑇 = 296 K) spectra of H2CS showing the coverage
of the marvelised transitions (red points) compared to the total moty spectrum. The
marvel spectrum includes transitions which involve only marvelised states (upper and
lower), while the total moty spectrum involves all states.

117 of 191



4.8. Chapter summary 4. marvelised H2CS Line List

4.8 Chapter summary

This chapter described the comprehensive analysis of the published spectroscopic
literature of the main isotopologue of thioformaldehyde (1H2

12C32S). All meaningful
transitions from 11 literature sources were extracted and verified, resulting in 11 638
validated transitions using the marvel algorithm. The data covered the ground, 𝜈1, 𝜈2,
𝜈3, 𝜈4, 𝜈5, 𝜈6, and 2𝜈2 vibrational bands and produced 4254 rovibrational energy levels
up to 𝐽 = 54 below 3729 cm−1.

Moreover, a hot comprehensive rovibrational line list of H2CS was presented. The
moty line list contains over 43.5 billion transitions and covers the 0 cm−1 to 8000 cm−1

range (wavelengths 𝜆 > 1.3 µm) for states with rotational excitation up to 𝐽 = 120.
The calculations used a new empirically-refined PES and also utilised an exact KEO.
The moty line list was also marvelised by replacing the calculated energy levels with
more accurate empirically-derived marvel values, therefore tailoring the line list to
high-resolution applications in certain spectral windows.
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Chapter 5

Artificial Symmetry for Linear Molecules

5.1 Introduction

The description of the rovibrational motion of a molecule has so far been limited to
the “3N − 6” vibrational coordinate methodology. For triatomic molecules with a large,
non-accessible barrier to linearity, such as H2S (24 423(75) cm−1 [151]) a KEO can be
expressed in terms of two bonds, one angle, and three rotational coordinates [74]. For
convenience, the 𝜌 angle used measures the deviation from linearity, i.e. 𝜌 = 𝜋−𝜃 where
𝜃 is the inter-bond angle. The rotational part of an analytic KEO in these coordinates
contains terms with a 1/sin 𝜌 factor. If the linear configuration is feasible, such as for
CO2 or H2O, then the KEO is singular at linearity.

The singularity is a result of the separation of the coordinates into vibrational and
rotational terms. For the latter, the Euler angles depend solely on the positions of the
nuclei. At linearity, one can specify the molecular orientation in terms of only two angles.
In particular, a rotation about the molecular axis is redundant. Typically, this is the 𝜒
rotation about the BF frame 𝑧 axis, and therefore one observes the singular terms in the
𝐺𝑖𝑧 elements of the 𝐺 matrix (if non-zero). Moreover, if a non-Euclidean integration
volume is used, as is the case for the Sørensen method, then the pseudo-potential may
contain singular terms also.

In the literature, there are two main approaches to resolve the singularity issue: the
“3N− 5” or “3N− 6” methodologies, i.e. the number of vibrational coordinates involved.
Both essentially abandon solving the vibrational part of the Hamiltonian separately (and
first) from the rotational part of the Hamiltonian. Rather, the part of the rotational KEO
which gives rise to the singularity is treated simultaneously with the vibrational part.

The traditional textbook approach is to “transfer” one rotational coordinate to the
vibrational coordinates (hence 3N − 5) leaving only two rotational degrees of freedom.
This approach is usually associated with the normal modes as vibrational coordinates.
The KEO is not singular in such a representation, which is the main point of the 3N − 5
methodology [152]. This approach was previously implemented in trove for C2H2 [153].
The second approach was implemented more recently in trove [7] and was utilised in
CO2 [6]. This chapter will cover the symmetry aspects of this implementation based on
the work published in Ref. [3]. In this approach, the singularity is killed with specially
designed basis functions.
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5.2 3N − 5 and 3N − 6 basis functions

When the 3N− 5 normal mode approach is taken for triatomic molecules, the vibrational
basis is constructed as

|𝑣1, 𝑣2, 𝑣
ℓ3
3 ⟩ = Φ𝑣1(𝑄1)Φ𝑣2(𝑄2)Φ𝑣3 ,ℓ3(𝑄3𝑎 , 𝑄3𝑏). (5.2.1)

whereΦ𝑣𝑘 (𝑄𝑘) are Harmonic oscillator functions for the𝑄𝑘 normal modes describing the
two stretches and Φ𝑣3 ,ℓ3(𝑄3𝑎 , 𝑄3𝑏) is a doubly-degenerate Harmonic oscillator function
for modes describing the bend. The bending coordinates are often represented by polar
coordinates (𝑄3𝑎 , 𝑄3𝑏) = (𝑄3 cos 𝜒, 𝑄3 sin 𝜒) and we can identify 𝜒 as the rotation about
the 𝑧 axis. The vibrational basis function is combined with the rotational function
𝑆𝐽𝑘𝑚(𝜃, 𝜙)where

𝑆𝐽𝑘𝑚(𝜃, 𝜙) =
√

2𝜋𝑒−𝑖𝑘𝜒 |𝐽𝑘𝑚⟩ (5.2.2)
or, in other words, the 𝜒 independent part of |𝐽𝑘𝑚⟩. This recognises that Φ𝑣3 ,ℓ3 contains
the factor exp(𝑖ℓ3𝜒), already associated with exp(𝑖𝑘𝜒). To transform correctly under the
group 𝒞2v(M), only combinations ℓ3 = 𝑘 are allowed.

In the 3N − 6 framework applied to a linear molecule, a vibrational basis function is
given by

|𝑛1, 𝑛2, 𝑛ℓ3⟩ = 𝜑𝑛1(R1)𝜑𝑛2(R2)𝜑𝑛3 ,ℓ (𝜌), (5.2.3)
where the stretching vibrations are parametrised by the bond lengths R1 and R2. The
bending function 𝜑𝑛3 ,ℓ (𝜌) in Eq. (5.2.3) plays the central role in the 3N − 6 formalism by
being constructed to possess the correct dependence at 𝜌→ 0 to resolve the singularity
of the KEO [7, 154]:

𝜑𝑛3 ,ℓ (𝜌) ∼
√
𝜌2ℓ+1. (5.2.4)

Examples of functions used are the Laguerre and associated Legendre polynomials.
In this formalism, there is no analogous ℓ = 𝐾 restriction when the vibrational

functions are combined with rotational basis functions. However, orthogonality of the
complete rovibrational basis set is still a desirable property. While ℓ can no longer be
interpreted as 𝐾, applying the condition for the 3N − 6 approach is a natural way to
maintain orthogonality. The resulting complete basis functions

|𝑛1, 𝑛2, 𝑛ℓ3; 𝐽 , 𝐾 = ℓ , 𝑚, 𝜂⟩ = 𝜑𝑛1(R1)𝜑𝑛2(R2)𝜑𝑛3 ,ℓ (𝜌) |𝐽(𝐾 = ℓ )𝑚𝜂⟩ (5.2.5)

are generally orthogonal, the orthogonality being manifested by the integration over 𝜒
for functions with different values of ℓ and over 𝜌 for functions with the same value of ℓ
but different values of 𝑛3.

The remainder of this chapter will discuss on a practical level how this condition
was applied to the existing structure of trove. In particular, the symmetrisation scheme
is exploited by assigning the vibrational and rotational basis functions to irreps of
an “artificial” symmetry group (one not based on the molecular structure) which is
designed such that the ℓ = 𝐾 irreps can be straightforwardly selected. The group will
first be detailed and an illustrating example will then be provided. This relatively
unconventional approach is opposite to the usual practice, where the symmetry group
to a large extent is dictated by the physics of the molecule itself, which in turn defines
the computational approach.
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5.3 “Artificial” group𝒟𝑛h(AEM)

The finite artificial extended MS group𝒟𝑛h(AEM) is defined as follows

𝒟𝑛h(AEM) =𝒵2 ⊗ . . . ⊗︸ ︷︷ ︸
𝑛−1

𝒵2 (5.3.1)

where 𝒵2 is the cyclic group of order 2 and therefore consists of the set {0, 1} with
addition modulo 2. The integer 𝑛 depends on the value of ℓmax. The vibrational
|𝑛1, 𝑛2, 𝑛ℓ3⟩ and rigid-rotor |𝐽𝐾𝑚⟩ basis set functions of differing ℓ (or 𝐾) values are
assigned to different irreps of this group.

The group 𝒟𝑛h(AEM) must fulfil certain conditions necessary for our purposes.
First, all irreps should be one-dimensional and real for simplicity. This is to ensure
the bending functions all transform independently under 𝒟𝑛h(AEM). The irreps of
𝒟𝑛h(AEM) will be labelled as 𝒞2v(M) irreps with an extra superscript (see Table 5.3.1),
e.g. 𝒜4

1 . The bending function 𝜑𝑛3 ,ℓ (𝜌) or rigid rotor function |𝐽𝐾𝑚⟩, if they transform
as irrep Γ in 𝒞2v, would be assigned to Γℓ or Γ𝐾 , respectively. For example, a vibrational
function with ℓ = 4 and transforming as𝒜1 in 𝒞2v(M) would be assigned the symmetry
𝒜

4
1 in the𝒟𝑛h(AEM).

Table 5.3.1: Character table for the MS group 𝒞2v(M). The last four columns show the
group operations, with two labels for each operation.

Γ ℰ (12) (12)∗ ℰ
∗

𝒜1 1 1 1 1
ℬ1 1 −1 1 −1
𝒜2 1 1 −1 −1
ℬ2 1 −1 −1 1

From 𝒟𝑛h(AEM), four elements are selected and matched with a 𝒞2v(M) element.
Then, the characters of those elements for each 0-superscripted irrep should be the same
as the corresponding 𝒞2v irrep. When combining a bending function which transforms
as Γℓ1 with a rigid rotor function which transforms as Γ𝐾2 , their product should transform
as Γℓ1 ⊗ Γ𝐾2 = (Γ1 ⊗ Γ2)𝑚 for some 𝑚 ≠ 0 if ℓ ≠ 𝐾. If ℓ = 𝐾, then they should transform as
Γℓ1 ⊗ Γℓ2 = (Γ1 ⊗ Γ2)0. For example,𝒜4

2 ⊗ℬ4
1 should beℬ0

2 .
These rules are illustrated with the group𝒟4h(AEM) in Table 5.3.2 for the characters

and Table 5.3.3 for the multiplication table of the irreps.
As discussed above, these properties are intended to allow us to assign each

vibrational basis function to an irrep which depends on ℓ . It will also combine 𝐾 and ℓ
basis set functions correctly so that the condition of 𝐾 = ℓ can be imposed by giving an
irrep with superscript ≠ 0 a statistical weight factor of 0.

To show that𝒟𝑛h(AEM) has the required properties, and is effectively the only group
that does, first note that since the irreps are one dimensional, the group is abelian, and
thus, by the fundamental theorem of finite abelian groups [155], can be expressed as a
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Table 5.3.2: Character table for the 𝒟4h(AEM) group. Note that the characters of the
0-superscripted irreps for these operations are the same as those of the corresponding
irreps for the𝒞2v(M) group. The horizontal lines demarcate irreps of different superscript
values.

𝒟4h(AEM) ℰ
0

𝒞
0
2 𝜎0 𝜎0

𝑣 ℰ
1

𝒞
1
2 𝜎1 𝜎1

𝑣 ℰ
2

𝒞
2
2 𝜎2 𝜎2

𝑣 ℰ
3

𝒞
3
2 𝜎3 𝜎3

𝑣

𝒜
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ℬ
0
1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

𝒜
0
2 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

ℬ
0
2 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

𝒜
1
1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

ℬ
1
1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

𝒜
1
2 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 1

ℬ
1
2 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

𝒜
2
1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

ℬ
2
1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

𝒜
2
2 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

ℬ
2
2 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1

𝒜
3
1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

ℬ
3
1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

𝒜
3
2 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

ℬ
3
2 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

Table 5.3.3: Multiplication table for the irreps of the 𝒟4h(AEM) group. The vertical
and horizontal lines demarcate the blocks of different superscript values. Note that the
diagonal blocks are all 0-superscripted, while off diagonal ones are non-0-superscripted.

⊗ 𝒜
0
1 ℬ

0
1 𝒜

0
2 ℬ

0
2 𝒜

1
1 ℬ

1
1 𝒜

1
2 ℬ

1
2 𝒜

2
1 ℬ

2
1 𝒜

2
2 ℬ

2
2 𝒜

3
1 ℬ

3
1 𝒜

3
2 ℬ

3
2

𝒜
0
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0
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1 𝒜
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2 ℬ
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direct product of cyclic groups of prime order, i.e.

𝒵𝑚1 ⊗ . . . ⊗𝒵𝑚𝑛 (5.3.2)

where𝑚𝑖 is prime and the𝒵𝑚𝑖 consists of the set {0, 1, . . . , 𝑚𝑖 −1}with addition modulo
𝑚𝑖 for 𝑖 ∈ {0, . . . , 𝑛}. However, the cyclic group𝒵𝑚 has a representation where element
𝑖 is associated with 𝑒2𝜋𝑖/𝑚 , which is only real for all 𝑖 if 𝑚 = 2, thus our group can only
be of the form

𝒟𝑛h(AEM) =𝒵2 ⊗ . . . ⊗︸ ︷︷ ︸
𝑛−1

𝒵2. (5.3.3)

for some 𝑛. For a given ℓmax (or the same 𝐾max), we must have at least 4(ℓmax + 1)
representations (4 for each ℓ including ℓ = 0). 𝒟𝑛h(AEM) has 2𝑛 representations, hence

𝑛 = ⌈log2 4(ℓmax + 1)⌉ . (5.3.4)

where ⌈⌉ rounds up to the nearest integer. To show that the irrep product properties
hold, first consider 𝒵2. It has character table shown in Table 5.3.4. In the following

Table 5.3.4: Character table for the𝒵2 group.

𝒵2 0 1
𝒜 1 1
ℬ 1 −1

we omit labelling the elements and the irreps and simply write the character table as a
matrix. Then𝒵2 is written (

1 1
1 −1

)
. (5.3.5)

The character table of a direct product of two groups can then be found by taking an
outer product of a matrix. This is defined by

©­«
𝑎11 . . . 𝑎1𝑛
...

...
𝑎𝑚1 . . . 𝑎𝑚𝑛

ª®¬ ⊗ ©­«
𝑏11 . . . 𝑏1𝑠
...

...
𝑏𝑟1 . . . 𝑏𝑟𝑠

ª®¬ =

©­­­­­­­­­­«

𝑎11𝑏11 . . . 𝑎1𝑛𝑏11 . . . 𝑎11𝑏1𝑠 . . . 𝑎1𝑛𝑏1𝑠
...

...
...

...
𝑎𝑚1𝑏11 . . . 𝑎𝑚𝑛𝑏11 . . . 𝑎𝑚1𝑏1𝑠 . . . 𝑎𝑚𝑛𝑏1𝑠
...

...
...

...
𝑎11𝑏𝑟1 . . . 𝑎1𝑛𝑏𝑟1 . . . 𝑎11𝑏𝑟𝑠 . . . 𝑎1𝑛𝑏𝑟𝑠
...

...
...

...
𝑎𝑚1𝑏𝑟1 . . . 𝑎𝑚𝑛𝑏𝑟1 . . . 𝑎𝑚1𝑏𝑟𝑠 . . . 𝑎𝑚𝑛𝑏𝑟𝑠

ª®®®®®®®®®®¬
. (5.3.6)
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Now, 𝒞2v(M) = 𝒵2 ⊗ 𝒵2. So 𝒟2h(AEM) works for 𝐾max = 0 where we label the 0-
superscripted irreps of𝒟2h(AEM) in the same order as Table 5.3.2. We call the𝒟2h(AEM)
character table matrixℱ, i.e.

ℱ =
©­­­«
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

ª®®®¬ (5.3.7)

and say that this has the property thatℱ ×ℱ = ℱ in that for any irreps of Γ1 and Γ2 of
𝒟2h(AEM), the result of Γ1 × Γ2 is another irrep in𝒟2h(AEM). If we now consider the
case ℓmax = 3, we have the character matrix

©­­­«
ℱ ℱ ℱ ℱ

ℱ −ℱ ℱ −ℱ
ℱ ℱ −ℱ −ℱ
ℱ −ℱ −ℱ ℱ

ª®®®¬ . (5.3.8)

This is a more succinct way to write Table 5.3.2. The first row containing four irreps is
0-superscript labelled as in Table 5.3.2. The next four are 1-superscripted, in the same
order as the corresponding 0-superscripted irreps, and so on. With this construction, for
any two irreps of Γ1 and Γ2 of𝒟4h(AEM), if they have the same superscript, Γ1 ⊗ Γ2 will
cancel the minus signs of theℱs and the result will be an irrep of the 0-superscripted
block. Moreover, this will be the same irrep as one would obtain had we used the𝒞2v(M)
group. If the irreps do not have the same superscript, we will have a −ℱ ×ℱ = −ℱ
type multiplication whose result will be an irrep not in the 0-superscripted block. We
can see this easily generalises to any ℓmax. This concludes the definition of𝒟𝑛h(AEM).
Table 5.3.5 states how the characters for𝒟𝑛h(AEM) are defined for an arbitrary 𝑛, though
in practice one would use the outer product formulation to build the character table.

Table 5.3.5: The character table for the𝒟𝑛h(AEM) group for some 𝑛. The character for
the corresponding to the 𝑖th row and 𝑗th column is given by 𝑓 (𝑖 , 𝑗) = 𝑓 (𝑗 , 𝑖). Here, 𝑚 is
given by 𝑚 = 2𝑛−2 − 1. Starting the row and column number from zero, the output of
the function 𝑓 is as follows: first 𝑖 and 𝑗 are converted into binary numbers and their
bitwise sum is calculated. If the number of 1s in the result is odd, character is −1; if it is
even, the character is 1. For example, 7 and 4 would be 111&100 = 100, so the number of
1s is 1 (odd) and thus the character is −1.

𝒟𝑛h(AEM) ℰ
0
𝒞

0
2 𝜎0 𝜎0

𝑣 . . . 𝜎𝑚𝑣

𝒜
0
1 1 1 1 1 𝑓 (4𝑚 + 3, 0)

ℬ
0
1 1 −1 1 −1 𝑓 (4𝑚 + 3, 1)

𝒜
0
2 1 1 −1 −1 𝑓 (4𝑚 + 3, 2)

ℬ
0
2 1 −1 −1 1 𝑓 (4𝑚 + 3, 3)
...
ℬ
𝑚
2 𝑓 (4𝑚 + 3, 4𝑚 + 3)
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The structure introduced is similar to that of Extended molecular symmetry groups
𝒢(EM), which are used in the rovibrational problems of non-rigid molecules such as
hydrogen peroxide (H2O2) [90] and ethane (C2H6) [5].

In these cases, the group structure is

𝒢(EM) = 𝒢(M) ⊗ {ℰ,ℰ′} � 𝒢(M) ⊗𝒵2 (5.3.9)

while𝒟𝑛h(AEM) is given by

𝒵2 ⊗ . . . ⊗︸ ︷︷ ︸
𝑛−1

𝒵2 = 𝒞2v(M) ⊗𝒵2 ⊗ . . . ⊗︸ ︷︷ ︸
𝑛−3

𝒵2 (5.3.10)

which clarifies how this sort of construction would work for any arbitrary group𝒢:

𝒢 ⊗𝒵2 ⊗ . . . ⊗𝒵2. (5.3.11)

The basis functions for these types of molecules also contain artificial, unphysical
irreps. For example, the rotational or vibrational wavefunctions of 𝒢36(EM), the MS
group of ethane C2H6, can transform as odd or even under ℰ′, labelled as 𝑠 and 𝑑,
respectively. Likewise, the full rovibrational wavefunction can only be of 𝑠 type and the
artificial 𝑑 types must be eliminated [5]. Chapter 7 will discuss this further.

The artificial symmetry group introduced here has been implemented in the existing
structure of the trove program, as illustrated below.

5.4 Example application of𝒟𝑛h(AEM)

Let us consider a rovibrational basis set of a centrosymmetric linear triatomic (CO2) in a
symmetry adapted form as (compare to Eq. (5.2.3)) and a bisector frame [7]:

ΦΓ =
{[𝜙𝑖1(R1,R2)]Γ1[𝜙𝑖2 ,ℓ (𝜌)]Γ2 |𝐽𝐾𝑚Γrot⟩

}Γtot ,

where Γs are the irreps, 𝐾 = |𝑘 |, 𝑖1 and 𝑖2 are function labels, R1 and R2 are the equivalent
stretches, and 𝜌 is the inter-bond angle. Assuming a small rotational problem with
𝐽max = 4, we need 𝐾max = 4, and hence 𝑛 = ⌈log2 20⌉ = 5 (Eq. (5.3.4)). There are 25 = 32
irreps in the group𝒟5h(AEM), but our basis functions can be only one of (for 𝐾max = 4)
4(4 + 1) = 20 irreps, and the remainder is not utilised. However, they are still necessary
when combining basis functions as was illustrated in Table 5.3.3.

The procedure works as follows: initially the reduced Hamiltonian matrix for the
bending motion is manually made block diagonal in ℓ by setting matrix elements of
differing ℓs to zero1 and the whole matrix is diagonalized. In principle, trove could
treat these blocks separately and diagnolise each individually. However, in practice,
the dimension is small enough that diagnolising the entire matrix is computationally
acceptable.

To obtain symmetrised (in 𝒟5h(AEM)) eigenfunctions for both the bending and
stretching Hamiltonians, the standard trove symmetrisation procedure is applied. The

1This can be done as we will later combine the bending and rotational functions with the 𝐾 = ℓ
condition which ensures matrix elements of differing ℓs are zero.
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resulting irreps are the 0-superscripted ones of𝒟5h(AEM) and they correspond to the
𝒞2v(M) ones. To correctly symmetrise this way, the operation 𝒪𝑚 , using the notation of
Table 5.3.2, has the same behaviour on the coordinates as operation 𝒪0.

Once 0-superscripted irreps are obtained, the rotational and bending wavefunctions
are reassigned to the appropriate 𝐾- or ℓ -superscripted irrep.

Table 5.4.1 lists a few vibrational energies with their symmetry assignment in
𝒟5h(AEM). The irreps generated by the bending basis functions can only be 𝒜1, and
they are assigned to 𝒜ℓ

1 for a given ℓ . In this case ℓ ≤ 4. The stretching functions are
all assigned as a 0-superscripted irrep. This ensures that when they are combined
with the bending function, the “base” irrep obtained (i.e. the letter and subscript of
the irrep label) would have been the same had we used the 𝒞2v(M) group. The only
0-superscripted irrep is the one where ℓ = 𝐾, as expected, and only this would be
retained from this set.

Table 5.4.2 shows the𝒜0
1 and𝒜0

2 states for the 𝐽 = 2 case. Here we see that 𝐾 ranges
from 0 to 2, and the rotational irreps are superscripted accordingly. The combined
stretching and bending irreps are the same as their corresponding rotational irrep, and
thus the full functions are of type𝒜0

1 or𝒜0
2 .

Table 5.4.1: The 𝐽 = 0 vibrational states, including the symmetry Γ in𝒟5h(AEM) of the
full state. 𝑣1, 𝑣2, ℓ and 𝑣3 are the linear molecule quantum numbers of CO2.

Γ ℰ(cm−1) 𝑣1 𝑣2 ℓ 𝑣3

𝒜
0
1 0.00 0 0 0 0

𝒜
1
1 667.75 0 1 1 0

𝒜
0
1 1285.40 0 2 0 0

𝒜
2
1 1336.67 0 2 2 0

𝒜
0
1 1388.21 1 0 0 0

𝒜
1
1 1932.82 0 3 1 0

𝒜
3
1 2006.73 0 3 3 0

𝒜
1
1 2077.23 1 1 1 0

ℬ
0
2 2349.17 0 0 0 1

𝒜
0
1 2548.34 1 2 0 0

𝒜
2
1 2586.55 0 4 2 0

𝒜
0
1 2671.14 2 0 0 0

𝒜
4
1 2677.94 0 4 4 0

𝒜
2
1 2762.27 1 2 2 0

𝒜
0
1 2797.16 1 2 0 0

ℬ
1
2 3004.45 0 1 1 1

𝒜
1
1 3181.79 1 3 1 0
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Table 5.4.2: The 𝐽 = 2 rovibrational states including the symmetry of the full state and the
symmetry of the rotational, stretching, and bending parts. The assignment of 𝑣1, 𝑣2, ℓ , 𝑣3
and 𝐾 is approximate and based on the largest contribution to the eigenfunction. Only
states with non-zero nuclear statistical weighs are shown.

Γtot ℰ(cm−1) Γrot 𝐾 Γstretch Γbend 𝑣1 𝑣2 ℓ 𝑣3

𝒜
0
1 2.34 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 0 0 0 0

𝒜
0
2 669.71 𝒜

1
2 1 𝒜

0
1 𝒜

1
1 0 1 1 0

𝒜
0
1 1287.75 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 0 2 0 0

𝒜
0
1 1337.46 𝒜

2
1 2 𝒜

0
1 𝒜

2
1 0 2 2 0

𝒜
0
1 1390.55 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 1 0 0 0

𝒜
0
2 1934.78 𝒜

1
2 1 𝒜

0
1 𝒜

1
1 0 3 1 0

𝒜
0
2 2079.19 𝒜

1
2 1 𝒜

0
1 𝒜

1
1 1 1 1 0

𝒜
0
1 2550.69 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 1 2 0 0

𝒜
0
1 2587.33 𝒜

2
1 2 𝒜

0
1 𝒜

2
1 0 4 2 0

𝒜
0
1 2673.48 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 2 0 0 0

𝒜
0
1 2763.06 𝒜

2
1 2 𝒜

0
1 𝒜

2
1 1 2 2 0

𝒜
0
1 2799.50 𝒜

0
1 0 𝒜

0
1 𝒜

0
1 1 2 0 0

𝒜
0
1 3006.39 ℬ

1
2 1 ℬ

0
2 𝒜

1
1 0 1 1 1

𝒜
0
2 3183.76 𝒜

1
2 1 𝒜

0
1 𝒜

1
1 1 3 1 0

5.5 Chapter summary

The artificial symmetry group𝒟𝑛h(AEM) introduced in this chapter was designed so
that imposing a ℓ = 𝐾 condition within the framework of trove was straightforward.
This ensured that the rovibrational basis was orthogonal. The construction of𝒟𝑛h(AEM)
is based on the cyclic group of order 2. 𝒟𝑛h(AEM) is shown to have all the properties
required: basis functions with different ℓ or 𝐾 functions (vibrational or rotational,
respectively) can be assigned to different irreducible representations of𝒟𝑛h(AEM). As
opposed to the ordinary method of using MS groups dictated by the physics of the
molecule, here the group was defined with the practical application of being able to
exploit trove’s symmetrisation procedure such that a 𝐾 = ℓ constraint could be applied
to the basis set.
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Chapter 6

Molecular Frames for Symmetry

Adaptation

6.1 Introduction

The bisector frame was used both for the H2CS and CO2 rovibrational calculations
described in this thesis. This is fairly atypical of trove. When trove Taylor expands a
KEO, instead of using an analytic one, the default choice is the Eckart or Sayvetz frame.
Crucially, they allow for the classification of the rotational functions as irreps of the
MS group. To do so, one needs to know how the Euler angles transform under the
MS operations, or, in other words, how the BF frames rotate under these operations.
There are so-called equivalent rotations [74] of the BF frames which occur during an MS
operation.

For general frames, however, the rotation associated with an MS operation depends
on the vibrational coordinates. In particular, the 𝜒 Euler angle transforms as [74]

𝜒′ = ±𝜒 + 𝛾(𝑞). (6.1.1)

Because the rotational and vibrational coordinates are no longer separable, such a
dependency will lead to a breakdown of the rotational basis set symmetrisation and
prevent the construction of a symmetry-adapted rotational basis set [106].

For H2CS and CO2 it was quite obvious how to choose a frame which “respects the
symmetry,” a vague way to say that the 𝛾 angle above is constant for all MS operations.
Not all molecules will be this obvious. One could stick to the Eckart and Sayvetz frames,
but these can only be solved analytically for triatomics [42] and planar molecules [156].
These are also suboptimal for molecules without a well-defined equilibrium geometry.
Our goal is to find geometric frames – ones that can be expressed as an analytic function
of the vibrational coordinates – for other molecules where the frame’s rotations are
constants under symmetry operations.

This chapter attempts to develop a systematic procedure find these alternative frames
and is based on the publication Ref. [4]. Its results will be used in the next chapter
for the ethane molecule. The structure of the remainder of this chapter is as follows:
Section 6.2 describes the action of the MS operations on the rotational and vibrational
coordinates. The example of an ABA molecule illustrates frames where the rotation
under MS operations depends on the vibrational coordinates. The transformation and
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invariance of the kinetic energy operator is stated and proved in Section 6.3. With
the same ABA illustrative example, Section 6.4 demonstrates why rotational basis set
symmetrisation is not possible for certain frames. Section 6.5 shows that the correct
transformation of the kinetic energy operator was derived for an ABA molecule for
both a bisector frame and a bond vector frame. It further proves that the rotations
are constant under symmetry operations when using the Eckart frames. Section 6.6
largely follows the pattern of Section 6.5, but for the CH3Cl molecule. It also provides
a geometric frame for which the rotations are constant under symmetry operations.
Section 6.7 shows how one can find this frame. Finally, Section 6.8 mentions the possible
avenues for further work.

6.2 Coordinate transformations

The relation between the RF and BF coordinates is

𝑅𝛼 = 𝑀𝑟𝛼 . (6.2.1)

where 𝑀 is the rotation matrix of Eq. (2.4.2). Under MS operations, the BF frame
rotation is found by ensuring that the transformation of the left hand side is equal to
the transformed Euler matrix times the transformed BF coordinates. The latter is found
by replacing the vibrational coordinates in 𝑟𝛼(𝑞)with their transformed counterparts
𝑟𝛼(𝑞′) = 𝑟𝛼(𝑞).

As an example, consider a triatomic molecule of type ABA, shown in Figure 6.2.1,
and let the A-type atoms (called A1 and A2) have coordinates 𝑹A1(𝜙, 𝜃, 𝜒, 𝑞1, 𝑞2, 𝑞3) and
𝑹A2(𝜙, 𝜃, 𝜒, 𝑞1, 𝑞2, 𝑞3). In this representation, 𝑞1 and 𝑞2 are the AB bonds while 𝑞3 is
the ABA angle.

A1

A2

B

𝑦

𝑥

Figure 6.2.1: The bond vector BF frame for the ABA molecule with the 𝑥 axis parallel to
the A1–B bond and the 𝑦 axis in the plane of the three atoms. The axes are offset for
clarity.

For the BF frame, one possible choice is with the 𝑥 axis parallel to the bond from
atom B to A1 (i.e. parallel to the 𝑹A1 − 𝑹B vector) and the 𝑧 axis perpendicular to the
plane of ABA. With this choice, the BF coordinates for the ABA molecule are

𝑟A1 = (𝑞1, 0, 0),
𝑟A2 = (𝑞2 cos 𝑞3, 𝑞2 sin 𝑞3, 0),
𝑟B = (0, 0, 0).

(6.2.2)
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The operation (12) permutes 𝑞1 and 𝑞2 resulting in new BF coordinates given by
𝑟A1 = (𝑞2, 0, 0),
𝑟A2 = (𝑞1 cos 𝑞3, 𝑞1 sin 𝑞3, 0),
𝑟B = (0, 0, 0)

(6.2.3)

where 𝑟𝛼 is the result after transforming the vibrational coordinates in the expression
for 𝑟𝛼. In general, the Euler angles also change, and we call the Euler matrix with the
transformed angles as 𝑀̃. As we have 𝑅𝛼

′ = 𝑀̃𝑟𝛼 and 𝑀̃ now defines a rotated BF frame,
we see that the transformed 𝑟𝛼 are the BF coordinates of 𝑟𝛼 in the rotated BF frame and
after the transformation. The BF frame is rotated in such a way so as to ensure that
𝑅A1

′ = 𝑅A2 and vice versa. In this case, the new RF coordinates are
𝑅𝛼
′ = 𝑀𝑥(𝜙 + 𝜋)𝑀𝑦(𝜋 − 𝜃)𝑀𝑧(2𝜋 − 𝜒 − 𝑞3)𝑟𝛼 = 𝑅𝛼′ = 𝑀̃𝑟𝛼 . (6.2.4)

In performing this operation, we now have 3 frames: the RF frame and the two BF
frames. Denoting the new BF frame unit vectors as 𝒆̂′𝑔 , i.e. with a prime, the components
of 𝑹𝛼 are then

𝑹𝛼 · 𝒆̂′𝑔 = 𝑟𝛼,𝑔 . (6.2.5)
It is of interest to note what the transformed Cartesian coordinates in the original
BF frame are (denoted by 𝑟𝛼′). Since the Euler matrix of this frame is unchanged, if
𝑅𝛼
′ = 𝑅𝛼′, we have

𝑅𝛼
′ = 𝑀𝑟𝛼′ = 𝑅𝛼′ = 𝑀𝑟𝛼′ = 𝑀̃𝑟𝛼 (6.2.6)

and so 𝑟𝛼′ = 𝑟𝛼′. We also have
𝑟𝛼′ = 𝑀𝑇𝑀̃𝑟𝛼 ≡ 𝑁𝑟𝛼 (6.2.7)

where 𝑁 ≡ 𝑀𝑇𝑀̃ is the rotation matrix relating the coordinates of 𝑹𝛼 in the new BF
frame to that of the old BF frame. In this case, it is

𝑁(12) =
©­«
cos 𝑞3 sin 𝑞3 0
sin 𝑞3 − cos 𝑞3 0

0 0 −1

ª®¬ . (6.2.8)

For completeness, the MS transformation properties of the 𝑠 and 𝑡 vectors are stated
in Section 6.3, with the proofs in Appendix 6.A.

6.3 KEO transformation

6.3.1 𝑠 and 𝑡 vector and operator transformations

For the transformation 𝑅𝛼 → 𝑅𝛼′ and 𝑞𝑘 → 𝑞𝑘′, the definition and transformation
of the vectors and operators are summarised in Table 6.3.1. Table 6.3.2 shows the
transformation for the vibrational 𝑠 vectors and vibrational momentum operators for
more complex vibrational transformations. The transformation of the rotational 𝑠 vectors
and angular momentum operators is unchanged.

In Appendix 6.A it is shown that the transformed vibrational 𝑠 vectors can also be
expressed in the new BF frame by performing the vibrational coordinate transformation
(which we shall denote as 𝑠𝑘,𝛼𝑔) on the original BF components 𝑠𝑘,𝛼𝑔 . The same procedure
also applies to the other vectors.
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Table 6.3.1: The transformation of the 𝑡 and 𝑠 vectors. This assumes that 𝑅𝛼
′ = 𝑅𝛼′ and

that 𝑞𝑘′ = 𝑞𝑘′. The matrix 𝑁 is that of Eq. (6.2.7). The term ¤𝛾𝑘 = 𝜕𝑘𝛾 where 𝛾 is the angle
in the 𝜒 transformation 𝜒′ = ±𝜒 + 𝛾 of Table 6.4.1. The sign in front ¤𝛾𝑘 corresponds to
the left and right transformations of Table 6.4.1. Summation over repeated indices is
assumed.

Object Equation Transformation
𝒔𝑘,𝛼 𝒆̂𝐹𝜕𝛼𝐹𝑞𝑘 𝒔𝑘′,𝛼′
𝒔𝑔,𝛼 Eq. (2.4.33) 𝑁ℎ𝑔𝒔ℎ,𝛼′ ∓ ¤𝛾𝑘𝒔𝑘,𝛼𝑁𝑧𝑔
𝒕𝑘,𝛼 𝜕𝑘𝑹𝛼 𝒕𝑘′,𝛼′ ± ¤𝛾𝑘′𝒕𝑧,𝛼′
𝒕𝑔,𝛼 𝒆̂𝑔 × 𝑹𝛼 𝑁ℎ𝑔𝒕ℎ,𝛼′
𝐽𝑔 Eq. (2.4.38) 𝑁ℎ𝑔 𝐽ℎ [74]
𝜋̂𝑘 −𝑖ℏ 𝜕/𝜕𝑞𝑘 𝜋̂𝑘′ ± ¤𝛾𝑘′𝐽𝑧

Table 6.3.2: The transformation of 𝑞𝑘 in the left column and the corresponding trans-
formed vibrational 𝑠 vector and vibrational momentum operator. The transformations of
the Cartesian coordinates, the rotational 𝑠 vectors, and the angular momentum operators
remain the same as Table 6.3.1.

Coordinate 𝑠 vector Momentum operator

𝑞𝑘 → −𝑞𝑘′ −𝒔𝑘′,𝛼′ −(𝜋̂𝑘′ ± ¤𝛾𝑘′𝐽𝑧)
𝑞𝑘 → 𝑎𝑞𝑘 + 𝑏𝑞𝑘′ 𝑎𝒔𝑘,𝛼′ + 𝑏𝒔𝑘′,𝛼′ 𝑎(𝜋̂𝑘 ± ¤𝛾𝑘 𝐽𝑧) + 𝑏(𝜋̂𝑘′ ± ¤𝛾𝑘′𝐽𝑧)
𝑎2 + 𝑏2 = 1

6.3.2 𝐺 matrix transformation

From the transformation properties of the 𝑠 vectors, we can obtain the transformation
of the 𝐺 matrix. Assuming the vibrational coordinates 𝑞𝑖 and 𝑞𝑖′ transform to 𝑞 𝑗 and
𝑞 𝑗′, respectively, the vibrational, rotational, and Coriolis components of the 𝐺 matrix
transform as

𝐺𝑖𝑖′′ = 𝐺 𝑗 𝑗′ ,
𝐺𝑔𝑔′

′ = 𝑁ℎ𝑔𝑁ℎ′𝑔′𝐺ℎℎ′ + ¤𝛾𝑘 ¤𝛾𝑘′𝐺𝑘𝑘′𝑁𝑧𝑔𝑁𝑧𝑔′ − ¤𝛾𝑘𝐺𝑘ℎ(𝑁ℎ𝑔′𝑁𝑧𝑔 + 𝑁ℎ𝑔𝑁𝑧𝑔′),
𝐺𝑔𝑖
′ = 𝑁ℎ𝑔𝐺ℎ 𝑗 − ¤𝛾𝑘𝐺𝑘 𝑗𝑁𝑧𝑔

(6.3.1)

where the rotation matrix 𝑁 is that of Eq. (6.2.7) and relates the directions of the original
and rotated BF frames and ¤𝛾𝑘 = 𝜕𝑘𝛾 defined in Table 6.3.1. The left hand side of
the above equations are of the form 𝐺𝑎𝑏 ◦𝒫(𝑞), where 𝒫 is the MS operation which
transforms the coordinates first, after which the 𝐺 matrix element 𝐺𝑎𝑏 is applied to the
transformed coordinates. The right hand side is in terms of 𝐺𝑎𝑏(𝑞) which is the matrix
element 𝐺𝑎𝑏 applied to the un-transformed coordinates.

From the definition of the 𝐺 matrix, we have

𝐺𝑎𝑏 =
∑
𝛼

1
𝑚𝛼

𝑠𝛼,𝑎𝐹𝑠𝛼,𝑏𝐹 =
∑
𝛼

1
𝑚𝛼

𝑠𝛼,𝑎𝑔𝑠𝛼,𝑏𝑔 =
∑
𝛼

1
𝑚𝛼

𝑠𝛼,𝑎𝑔′𝑠𝛼,𝑏𝑔′ (6.3.2)
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where the 𝑠 vector components are in the RF, old BF, and new BF frame, respectively.
Since the new BF frame components of the transformed 𝑠 vectors are given by 𝑠𝛼,𝑎 , to
transform the 𝐺 matrix, one can also perform the vibrational coordinate transformation
on the original 𝐺 matrix.

Action of the full Hamiltonian on a function 𝜓(Ξ, 𝑞) is of the form

𝐻̂𝜓 = 1
2 𝜋̂𝑎𝐺𝑎𝑏𝜋̂𝑏𝜓 +𝑈𝜓 +𝑉𝜓 = 1

2𝐺𝑘𝑘′𝜋̂𝑘𝜋̂𝑘′𝜓 + 1
2(𝜋̂𝑘𝐺𝑘𝑘′)(𝜋̂𝑘′𝜓) + 1

2𝐺𝑔ℎ 𝐽𝑔 𝐽ℎ𝜓

+ 1
2𝐺𝑔𝑘 𝐽𝑔𝜋̂𝑘𝜓 + (𝜋̂𝑘𝐺𝑘𝑔)𝐽𝑔𝜓 + 1

2𝐺𝑘𝑔𝜋̂𝑘 𝐽𝑔𝜓 +𝑈𝜓 +𝑉𝜓.
(6.3.3)

where implicit summation of repeated indices is assumed. In Appendix 6.B it is shown
that the Hamiltonian is invariant under the transformations of Table 6.3.1.

6.4 Rotational symmetrisation

trove eigenfunctions have the form∑
𝑎𝑏

𝑐𝑎𝑏 |𝐽𝐾𝑚𝜂⟩𝑎𝜑𝑏(𝑞). (6.4.1)

If one applies the full Hamiltonian to the function 𝜑𝑏(𝑞), then the rotational and Coriolis
parts drop out, and we can find the transformation of 𝐻̂𝜑 under MS operations. The
vibrational operators then transform as 𝜋̂′𝑘 = 𝜋̂𝑘′, i.e. without the second term, and the
Hamiltonian is invariant, showing the vibrational eigenfunctions also are irreps of the
same group [74].

To symmetrise the rotational part, however, one uses the transformation properties
of the rigid rotors under BF frame rotations. These are defined in Table 6.4.1 and given
by

ℛ
𝛽
𝑧 |𝐽𝑘𝑚⟩ = 𝑒 𝑖𝑘𝛽 |𝐽𝑘𝑚⟩ (6.4.2)

and
ℛ

𝜋
𝛼 |𝐽𝑘𝑚⟩ = (−1)𝐽 𝑒−2𝑖𝑘𝛼 |𝐽−𝑘𝑚⟩. (6.4.3)

A1
A2

B

𝑦

𝑥

Figure 6.4.1: The principal axis system for the ABA molecule in vibrational equilibrium
with the 𝑧 axis pointing out of the plane and the 𝑦 axis bisecting the A1–B–A2 bond.
The axes are offset for clarity.
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Table 6.4.1: The change in the Euler angles for a given rotation of the BF frame. ℛ𝜋
𝛼 and

ℛ
𝛽
𝑧 are rotations of the BF frame. ℛ𝜋

𝛼 is a rotation of 𝜋 radians about an axis in the 𝑥𝑦
plane making an angle 𝛼 about with the 𝑥 axis (𝛼 is measured in the right handed sense
about the 𝑧 axis) andℛ𝛽

𝑧 is a rotation of 𝛽 radians about the 𝑧 axis (𝛽 measured in the
right handed sense about the 𝑧 axis) [74].

ℛ
𝜋
𝛼 ℛ

𝛽
𝑧

𝜃 𝜋 − 𝜃 𝜃
𝜙 𝜙 + 𝜋 𝜙
𝜒 2𝜋 − 2𝛼 − 𝜒 𝜒 + 𝛽

If we refer back to our ABA example and instead use the principal axis system at the
vibrational equilibrium, shown in Figure 6.4.1, with the 𝑧 axis pointing out of the plane
and the 𝑦 axis bisecting the ABA angle, then one can follow the prescription of Section.
12.1 of Ref. [74] and find the “equivalent rotations” of the axes during an MS operation.
There are four symmetry operations for the MS group 𝒞2v(M): {ℰ,ℰ∗, (12), (12)∗},
and they have the equivalent rotations (defined in Table 6.4.1) of ℛ0

𝑧 ,ℛ
𝜋
𝑧 ,ℛ

𝜋
𝜋/2,ℛ

𝜋
0 ,

respectively. This results in the transformation properties of (|𝐽𝑘𝑚⟩, |𝐽−𝑘𝑚⟩) being

ℛ
0
( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
=

(
1 0
0 1

) ( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
,

ℛ
𝜋
𝑧

( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
= (−1)𝑘

(
1 0
0 1

) ( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
,

ℛ
𝜋
𝜋/2

( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
= (−1)𝐽+𝑘

(
0 1
1 0

) ( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
,

ℛ
𝜋
0

( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
= (−1)𝐽

(
0 1
1 0

) ( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
(6.4.4)

which is a representation of the MS group𝒞2v(M) of the ABA molecule. Irreducible rep-
resentations can be formed with projection operators. The result is that the symmetrised
functions |𝐽 |𝑘 |𝑚𝑝⟩ have the form

|𝐽 |𝑘 |𝑚𝑝⟩ = 1√
2
(|𝐽𝑘𝑚⟩ + 𝑝(𝐽 , |𝑘 |)|𝐽−𝑘𝑚⟩) (6.4.5)

where 𝑝(𝐽 , |𝑘 |) = ±1. The values of 𝑝 and the symmetry are summarised in Table 6.4.2.
The key aspect of the transformations that enable this is that the rotation matrices

are constant (up to 𝐽 and 𝑘) which allow standard combinations of the rigid rotors
(dependant on 𝐽 and 𝑘) that transform irreducibly under the MS group transformations
[106].

In our original example, however, we saw that the rotations associated with the MS
group were not the equivalent rotations, nor were they constant. The operation (12), for
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Table 6.4.2: The irrep of the function |𝐽 |𝑘 |𝑚𝑝⟩ for the MS group 𝒞2v(M) depending on
the values of 𝐽, |𝑘 |, and 𝑝.

𝐽 |𝑘 | 𝑝(𝐽 , |𝑘 |) Γ

even even 1 𝒜1
even even −1 𝒜2
odd even −1 𝒜1
odd even 1 𝒜2
even odd −1 ℬ1
even odd 1 ℬ2
odd odd 1 ℬ1
odd odd −1 ℬ2

example, included the rotationsℛ𝜋
0ℛ

𝑞3
𝑧 whose effect on the rigid rotors is

ℛ
𝜋
0ℛ

𝑞3
𝑧

( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
= (−1)𝐽

(
0 𝑒−𝑖𝑘𝑞3

𝑒 𝑖𝑘𝑞3 0

) ( |𝐽𝑘𝑚⟩
|𝐽−𝑘𝑚⟩

)
. (6.4.6)

With this transformation, the representation of the group now depends on the angle
𝑞3, and one can no longer form 𝑞3-independent combinations of the rigid rotors that
transform as the irreps of the group. For example, if 𝐽 and 𝑘 are both even, the𝒜1 irrep
has the form

|𝐽 |𝑘 |⟩𝒜1 =
1√
2
(|𝐽𝑘𝑚⟩ + 𝑒−𝑖𝑘𝑞3 |𝐽−𝑘𝑚⟩). (6.4.7)

Thus, one cannot have separate symmetry-adapted rotational functions used in Eq. (6.4.1)
using this choice of BF frame. A separate rotational basis set can still be used, but it
cannot be assigned a symmetry label of the group in question. To do this, a different BF
frame is required.

The upshot of this result is that to keep the rotational and vibrational coordinates
separate, and thus for the rotational functions to transform with matrices that do not
depend on the vibrational coordinates, the rotation angle must be constant and its axis
of rotation relative to the BF frame must also be constant. This will ensure 𝑁 is constant
and ¤𝛾𝑘 = 0. Whatever the rotation axis is, the angle must be 2𝜋/𝑛 where 𝑛 is the order
of the MS operation.

6.5 ABA example

6.5.1 Bond vector frame

To demonstrate the MS transformation of the KEO and its invariance, we return to the
ABA molecule in more detail. For our original BF frame we know that matrix 𝑁 for
the operation (12) is Eq. (6.2.8). The components of the 𝐺 matrix are as follows [7]: the
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rotational part is

𝐺rot =

©­­­­­­­­«

cot 𝑞2
3

𝜇AB𝑞2
1
+ csc 𝑞2

3

𝜇AB𝑞2
2
− 2 cot 𝑞3 csc 𝑞3

𝑚B𝑞1𝑞2

cot 𝑞3

𝜇AB𝑞2
1
− csc 𝑞3

𝑚B𝑞1𝑞2
0

cot 𝑞3

𝜇AB𝑞2
1
− csc 𝑞3

𝑚B𝑞1𝑞2

1
𝜇AB𝑞2

1
0

0 0 1
𝜇AB𝑞2

1

ª®®®®®®®®¬
(6.5.1)

where 𝜇AB is the reduced mass

1
𝜇AB

=
1
𝑚A
+ 1
𝑚B

(6.5.2)

and 𝑚A and 𝑚B are the masses of A and B, respectively; the Coriolis part is

𝐺cor =

©­­­­­«
0 0 0

0 0
sin 𝑞3

𝑚B𝑞1

0 0 − 1
𝜇AB𝑞2

1
+ cos 𝑞3

𝑚B𝑞1𝑞2
.

ª®®®®®¬
(6.5.3)

where the rows correspond to the vibrational coordinates and the columns to the axes;
the vibrational part of the 𝐺 matrix

𝐺vib =

©­­­­­­­­«

1
𝜇AB

cos 𝑞3

𝑚B
−sin 𝑞3

𝑚B𝑞2
cos 𝑞3

𝑚B

1
𝜇AB

−sin 𝑞3

𝑚B𝑞1

−sin 𝑞3

𝑚B𝑞2
−sin 𝑞3

𝑚B𝑞1

1
𝜇AB

(
1
𝑞2

1
+ 1
𝑞2

2

)
− 2 cos 𝑞3

𝑀𝐵𝑞1𝑞2

ª®®®®®®®®¬
. (6.5.4)

If we list the vibrational momentum and angular momentum operators as

Π̂ = ©­«
𝜋̂1
𝜋̂2
𝜋̂3

ª®¬ , 𝐽 = ©­«
𝐽𝑥
𝐽𝑦
𝐽𝑧

ª®¬ (6.5.5)

then the full kinetic energy operator (besides the pseudo potential) is given by

1
2Π̂

𝑇𝐺vibΠ̂ + 1
2Π̂

𝑇𝐺cor𝐽 + 1
2 𝐽

𝑇𝐺𝑇corΠ̂ +
1
2 𝐽

𝑇𝐺rot𝐽.

During the MS operation, we transform 𝑞1 ↔ 𝑞2 in each of the 𝐺 matrix elements.
The operator Π̂ transforms to

Π̂′ = 𝐶Π̂ − 𝐷𝐽 (6.5.6)
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where 𝐶 and 𝐷 are given by

𝐶 = ©­«
0 1 0
1 0 0
0 0 1

ª®¬ , 𝐷 = ©­«
0 0 0
0 0 0
0 0 1

ª®¬ . (6.5.7)

The rotational operators transform as 𝐽′ = 𝑁𝑇
(12)𝐽 ≡ 𝑁𝑇 𝐽. The transformed kinetic energy

operator is then
1
2Π̂

𝑇 (𝐶𝑇 𝐺̃vib𝐶)︸      ︷︷      ︸
𝐺vib

Π̂

+ 1
2Π̂

𝑇 (𝐶𝑇 𝐺̃cor𝑁𝑇 − 𝐶𝑇 𝐺̃vib𝐷)︸                         ︷︷                         ︸
𝐺cor

𝐽

+ 1
2 𝐽

𝑇 (𝑁𝐺̃𝑇cor𝐶 − 𝐷𝑇 𝐺̃vib𝐶)︸                     ︷︷                     ︸
𝐺𝑇cor

Π̂

+ 1
2 𝐽

𝑇 (𝑁𝐺̃rot𝑁𝑇 + 𝐷𝑇 𝐺̃vib𝐷 − 𝐷𝑇 𝐺̃cor𝑁𝑇 − 𝑁𝐺̃𝑇cor𝐷)︸                                                         ︷︷                                                         ︸
𝐺rot

𝐽

(6.5.8)

where the expressions in brackets can be confirmed to be the original 𝐺 matrix elements.
The other generator for the MS group of the ABA molecule isℰ∗. For this operation, the
vibrational coordinates are unchanged so that 𝑟𝛼 = 𝑟𝛼. For 𝑅𝛼

′ = −𝑅𝛼 to be satisfied,
the BF frame rotates by 𝜋 about the 𝑧 axis. The rotation 𝑁ℰ∗ is then

𝑁ℰ∗ = 𝑀𝑧(𝜋) = ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬ (6.5.9)

and we have 𝑅𝛼
′ = 𝑀𝑁ℰ∗𝑟𝛼 = −𝑅𝛼, as required. The corresponding operation ℛ𝜋

𝑧
changes the rigid rotors by the second line of Eq. (6.4.4) and thus an irreducible
representation for the subgroup {ℰ,ℰ∗} can be formed. In other words, we can use a
product basis set with this BF frame to symmetrise the rotation basis functions by parity
(the subgroup {ℰ,ℰ∗}), but not of the full MS group 𝒞2v(M).

6.5.2 Bisector frame

Another obvious BF frame choice for the ABA molecule is the 𝑦 axis bisecting the angle
and the 𝑧 axis pointing out of the plane. The equivalent rotations for this frame were
given in Eq. (6.4.4). There is a subtle difference, however. In that frame, the 𝑦 axis
bisects ABA angle as this is the orientation of the principal axis system at vibrational
equilibrium. In this case, the 𝑦 axis bisects the ABA angle for all geometries. The BF
coordinates in this frame are given by

𝑟A1 = (𝑞1 sin(𝑞3/2), 𝑞1 cos(𝑞3/2), 0),
𝑟A2 = (−𝑞2 sin(𝑞3/2), 𝑞2 cos(𝑞3/2), 0),
𝑟B = (0, 0, 0).

(6.5.10)
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This time, when we apply the (12) operation, the matrix 𝑁(12) given by

𝑁(12) = 𝑀𝑦(𝜋) = ©­«
−1 0 0
0 1 0
0 0 −1

ª®¬ (6.5.11)

has exactly the property that 𝑅1
′ = 𝑀𝑁(12)𝑟1 = 𝑅2, and likewise for 𝑅2. In this case we

can build a symmetry adapted rotational basis set because the rotation angle is 𝜋 = 2𝜋/2
and the axis of rotation is constant relative to the BF frame for this operation.

For this frame, the vibrational 𝐺 matrix is Eq. (6.5.4) [7].
The rotational 𝐺 matrix is

𝐺rot =

©­­­­­­­«

sec2(𝑞3/2)
4𝜇AB

(
1
𝑞2

2
+ 1
𝑞2

1

)
+ sec2(𝑞3/2)

2𝑚B𝑞1𝑞2

csc 𝑞3

2𝜇AB

(
1
𝑞2

2
− 1
𝑞2

1

)
csc 𝑞3

2𝜇AB

(
1
𝑞2

2
− 1
𝑞2

1

)
csc2(𝑞3/2)

4𝜇AB

(
1
𝑞2

2
+ 1
𝑞2

1

)
− csc2(𝑞3/2)

2𝑚B𝑞1𝑞2

0 0
0
0

1
4𝜇AB

(
1
𝑞2

2
+ 1
𝑞2

1

)
+ cos 𝑞3

4𝑚B𝑞1𝑞2

ª®®®®¬
(6.5.12)

The Coriolis 𝐺 matrix is

𝐺cor =

©­­­­­­­­«

0 0 − sin 𝑞3

2𝑚B𝑞2

0 0
sin 𝑞3

2𝑚B𝑞1

0 0 1
2𝜇AB

(
1
𝑞2

2
− 1
𝑞2

1

)
ª®®®®®®®®¬
. (6.5.13)

In this BF frame, 𝐷 = 0 for operation (12). One can again use Eq. (6.5.8) to confirm the
invariance of the 𝐺 matrix.

6.5.3 Transformation through the frame condition

A more qualitative way to understand these results, which will prove important when
studying the Eckart frames, is to examine the three conditions which define the BF
frame in the Sørensen approach. In the case of the bisector frame of the ABA molecule

𝐶1 = 𝑧A1 − 𝑧𝐵 = 0,
𝐶2 = 𝑧A2 − 𝑧𝐵 = 0,
𝐶3 = (𝑥A1 − 𝑥𝐵)(𝑦A2 − 𝑦𝐵) + (𝑥A2 − 𝑥𝐵)(𝑦A1 − 𝑦𝐵) = 0

(6.5.14)

where the subscript refers to the atom the coordinate refers to. It should be pointed out
that these do not totally define the BF frame orientation, as we can rotate the BF frame
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by 𝜋 about any of the BF frame axes and the conditions would still hold. In general the
conditions also do not define the handedness of the axes as one can change all the BF
coordinates 𝑟𝛼 to −𝑟𝛼 (i.e. make the axes left handed) and the conditions would still
hold.

An MS operation applied to each condition relabels the BF coordinates. The result
is the transformed BF coordinates in the original BF frame. For example, for the (12)
operation, they become

𝐶1′ = 𝑧A2 − 𝑧𝐵 = 0,
𝐶2′ = 𝑧A1 − 𝑧𝐵 = 0,
𝐶3′ = (𝑥A2 − 𝑥𝐵)(𝑦A1 − 𝑦𝐵) + (𝑥A1 − 𝑥𝐵)(𝑦A2 − 𝑦𝐵) = 0

(6.5.15)

which are actually still zero, a manifestation of the possible choice we had in the BF
frame that satisfies these conditions. We know that we must apply a 𝜋 rotation about
the 𝑧 axis, after which they become

𝐶1′ = 𝑧A1 − 𝑧𝐵 = 0,
𝐶2′ = 𝑧A2 − 𝑧𝐵 = 0,
𝐶3′ = (𝑥A1 − 𝑥𝐵)(𝑦A2 − 𝑦𝐵) + (𝑥A2 − 𝑥𝐵)(𝑦A1 − 𝑦𝐵) = 0

(6.5.16)

which are the original conditions and thus zero.
In the bond vector frame choice for the molecule, the conditions were

𝐶1 = 𝑧A2 − 𝑧𝐵 = 0,
𝐶2 = 𝑧A1 − 𝑧𝐵 = 0,
𝐶3 = 𝑦A1 − 𝑦𝐵 = 0

(6.5.17)

which after a transformation of (12) and a rotation by 𝜋 are

𝐶1′ = 𝑧A1 − 𝑧𝐵 = 0,
𝐶2′ = 𝑧A2 − 𝑧𝐵 = 0,
𝐶3′ = −𝑦A2 + 𝑦𝐵.

(6.5.18)

The last condition is in general not zero.

6.5.4 Eckart frame

Approaching the problem from the point of view of the frame conditions provides us
with an alternative way to check if the BF frame undergoes a constant rotation under
MS operations. This is especially useful when the BF coordinates as functions of the
vibrational coordinates are not available analytically. In particular, we can check that
the Eckart frame also satisfies the aforementioned rotation condition.

The conditions for the Eckart frame are defined as [157]

𝐶 =
∑
𝛼

𝑚𝛼𝑎𝛼 × 𝑟𝛼 (6.5.19)

138 of 191



6.6. CH3Cl example 6. Molecular Frames for Symmetry Adaptation

where the equilibrium frame is defined to be the principal axis system (PAS). The 𝑎𝛼𝑔
are the BF coordinates of the nuclei at equilibrium and enter the condition as constants.
As stated above, the PAS for the ABA molecule in vibrational equilibrium is the bisector.
We thus have

(𝑚A[𝑎A1 × 𝑟A1 + 𝑎A2 × 𝑟A2] + 𝑚B𝑎B × 𝑟B) = 0 (6.5.20)

where 𝑎A1 , 𝑎A2 , and 𝑎B are of the form

𝑎A1 =
©­«
𝑏
𝑐
0

ª®¬ , 𝑎A2 =
©­«
−𝑏
𝑐
0

ª®¬ , 𝑎B = ©­«
0
𝑑
0

ª®¬ . (6.5.21)

In particular, if 𝑁(12) ≡ 𝑁 = 𝑀𝑦(𝜋), then 𝑎A2 = 𝑁𝑇𝑎A1 and 𝑎B = 𝑁𝑇𝑎B. Once the
operation (12) is applied, we have

(𝑚A[𝑎A1 × 𝑟A2 + 𝑎A2 × 𝑟A1] + 𝑚B𝑎B × 𝑟B) (6.5.22)

where it should be reiterated that the components 𝑟𝛼 are in the original BF frame. If we
then rotate the frame the new conditions are

𝐶′ = (𝑚A[𝑎A1 × 𝑁𝑟A2 + 𝑎A2 × 𝑁𝑟A1] + 𝑚B𝑎B × 𝑁𝑟B)
= 𝑁𝑁𝑇(𝑚A[𝑎A1 × 𝑁𝑟A2 + 𝑎A2 × 𝑁𝑟A1] + 𝑚B𝑎B × 𝑁𝑟B)
= 𝑁(𝑚A[𝑁𝑇𝑎A1 × 𝑟A2 + 𝑁𝑇𝑎A2 × 𝑟A1] + 𝑚B𝑁𝑇𝑎B × 𝑟B)
= 𝑁(𝑚A[𝑎A2 × 𝑟A2 + 𝑎A1 × 𝑟A1] + 𝑚B𝑎B × 𝑟B) = 0

(6.5.23)

where in the second line we applied 𝐼 = 𝑁𝑁𝑇 to the conditions and in the third line
used the property that, if 𝑁 is a rotation, 𝑁(𝑎 × 𝑏) = 𝑁𝑎 ×𝑁𝑏. The last line is 𝑁 applied
to the original conditions and therefore zero.

The operationℰ∗ is even easier and can be trivially shown to work as the operation
changes the 𝑟𝑖 to −𝑟𝑖 while 𝑀𝑧(𝜋)𝑇𝑎 ≡ 𝑁𝑇𝑎 = −𝑎. We have therefore shown that the
Eckart frames are applicable for ABA molecules if one desires a symmetry-adapted
rotational basis set.

6.6 CH3Cl example

6.6.1 Eckart frame

For ABA molecules, it was relatively straightforward to choose alternative (to Eckart) axes
with which one could symmetrise the rotational basis functions. For other molecules
the choice is not so simple. The example of CH3Cl (shown in Figure 6.6.1) is used
to demonstrate that the Eckart frame (whose equilibrium orientation is shown in
Figure 6.6.2) can be employed to build a symmetry-adapted rotational basis set. An
alternative and geometric frame is then stated which can also be used for rotational
symmetrisation.

The Eckart conditions for CH3Cl are

([𝑚C𝑎C × 𝑟C + 𝑚Cl𝑎Cl × 𝑟Cl] + 𝑚H[𝑎H1 × 𝑟H1 + 𝑎H2 × 𝑟H2 + 𝑎H3 × 𝑟H3]) = 0 (6.6.1)
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C
H

H
H

Cl

Figure 6.6.1: The structure of the CH3Cl molecule.

where the PAS frame for the equilibrium geometry is shown in Figure 6.6.2. Because of
this, both 𝑎Cl and 𝑎C only have a 𝑧 component.

The MS group of CH3Cl is 𝒞3v(M) and can be constructed from two generating
operations (123) and (23)∗ with equivalent rotations ofℛ2𝜋/3

𝑧 andℛ𝜋
𝜋/2, respectively.

For the operation (123), we can relate the equilibrium coordinates as 𝑎H2 = 𝐴2𝑎H1
and 𝑎H3 = 𝐴𝑎H1 where 𝐴 = 𝑀𝑧(2𝜋/3) from Eq. (2.4.3). The Eckart conditions can thus
be can be expressed as

([𝑚C𝑎C × 𝑟C + 𝑚Cl𝑎Cl × 𝑟Cl] + 𝑚H[𝑎H1 × 𝑟H1 + 𝐴2𝑎H1 × 𝑟H2 + 𝐴𝑎H1 × 𝑟H3]) = 0. (6.6.2)

Applying the operation (123), the Eckart conditions become

([𝑚C𝑎C × 𝑟C + 𝑚Cl𝑎Cl × 𝑟Cl] + 𝑚H[𝑎H1 × 𝑟H3 + 𝐴2𝑎H1 × 𝑟H1 + 𝐴𝑎H1 × 𝑟H2]). (6.6.3)

As usual, we rotate the frame, in this case byℛ2𝜋/3
𝑧 . This transforms 𝑟𝑖 to 𝐴𝑇𝑟𝑖 . Using

the same procedure as for the ABA case we can rewrite this as

𝐴𝑇([𝑚C𝑎C × 𝑟C +𝑚Cl𝑎Cl × 𝑟Cl] +𝑚H[𝐴𝑎H1 × 𝑟H3 + 𝑎H1 × 𝑟H1 + 𝐴2𝑎H1 × 𝑟H2]) = 0 (6.6.4)

where we used that 𝐴 applied to the equilibrium coordinates of Cl or C does not change
them. The final result is precisely the same as in the case of ABA.

H1

H3

H2

𝑦

𝑥

Figure 6.6.2: The equilibrium Eckart frame for CH3Cl. The 𝑧 axis is along the C–Cl bond
and the 𝑥 axis in the plane formed by Cl–C–H1.

For the operation (23)∗, the rotation matrix is 𝑁 = 𝑀𝑦(𝜋). We can again relate
the equilibrium coordinates by 𝑁𝑎H2 = −𝑎H3 and vice versa. Also, 𝑁𝑎H1 = −𝑎H1 and
likewise for C and Cl. The Eckart conditions can thus be written

([−𝑚C𝑁𝑎C×𝑟C−𝑚Cl𝑁𝑎Cl×𝑟Cl]−𝑚H[𝑁𝑎H1×𝑟H1−𝑁𝑎H3×𝑟H2−𝑁𝑎H2×𝑟H3]) = 0. (6.6.5)
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The result after applying (23)∗ is

([𝑚C𝑁𝑎C × 𝑟C + 𝑚Cl𝑁𝑎Cl × 𝑟Cl] + 𝑚H[𝑁𝑎H1 × 𝑟H1 + 𝑁𝑎H3 × 𝑟H3 + 𝑁𝑎H2 × 𝑟H2]). (6.6.6)

Rotating the frame by 𝑁 , multiplying the conditions by 𝑁𝑁𝑇 , and using the same steps
as before, we have

𝑁([𝑚C𝑎C × 𝑟C + 𝑚Cl𝑎Cl × 𝑟Cl] + 𝑚H[𝑎H1 × 𝑟H1 + 𝑎H3 × 𝑟H3 + 𝑎H3 × 𝑟H3]) = 0. (6.6.7)

The technique used in this proof can be applied to many different molecules where
the Eckart frame is used as it relied on relations between the equilibrium Cartesian
coordinates of the molecule. In vibrational equilibrium, the Cartesian coordinates
of the nuclei are related to each other by constant rotations. These rotations can be
found, for example, through graphical means, which is the technique used to find the
equivalent rotations explained in Ref. [74]. Alternatively, although the form of the BF
coordinates as a function of vibrational coordinates for all geometries is not known, their
equilibrium “structure” (à la Eq. (6.5.21)) is. The required rotation for an MS operation
can then by found by satisfying 𝑎𝛼′ = 𝑁𝑎̃𝛼 = 𝑁𝑎𝛼, where 𝑎𝛼 are the equilibrium BF
coordinates. These do not change under the vibrational coordinate transformation
because the vibrational coordinates are effectively frozen. Since the matrix 𝑁 should
be the same regardless of the geometry, if it is found in vibrational equilibrium, it is
found in general. As demonstrated above, if one uses the PAS system at the vibrational
equilibrium to define the reference geometry, then the equivalent rotations are the
correct rotations of the BF frame undergoing MS operations.

6.6.2 Geometric CH3Cl frame

The following introduces a frame definition which can be solved analytically. In this
case, the 𝑧 axis always points parallel the C–Cl bond and the direction of the 𝑥 axis is
defined by 𝜙, given by

𝜙1 =
1
3

(
𝜙21 − 𝜙13

)
(6.6.8)

where 𝜙21 is the dihedral angle from the plane formed by Cl–C–H2 to the plane Cl–C–H1
and likewise for 𝜙13. This is illustrated in Figure 6.6.3. Had we decided to start from H2,

H1

H3

H2

𝜙13

𝜙1

𝜙21
𝑥1

Figure 6.6.3: The dihedrals that determine the value of 𝜙1 = 1/3(𝜙21 − 𝜙13).
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the choice of 𝑥 axis direction (𝑥2) would be determined by

𝜙2 =
1
3

(
𝜙32 − 𝜙21

)
(6.6.9)

where Figure 6.6.4 displays this choice. A feature of these choices is the angle between

H1

H3

H2

𝜙21
𝑥2

𝜙2
𝜙32

Figure 6.6.4: The dihedrals that determine the value of 𝜙2 = 1/3(𝜙32 − 𝜙21).

the 𝑥 axes, as shown in Figure 6.6.5, can be found as follows:

𝜙21 − 𝜙1 + 𝜙2 = 𝜙21 − 1
3

(
𝜙21 − 𝜙13

) + 1
3

(
𝜙32 − 𝜙21

)
=

1
3(𝜙21 + 𝜙13 + 𝜙32) = 2𝜋

3 .
(6.6.10)

Thus the angle between them is always 2𝜋/3, irrespective of the coordinates of the

H1

H3

H2

𝜙21

𝜙2

𝜙13

𝑥2

𝜙1
𝜙32

𝑥1

Figure 6.6.5: All the angles relevant angles to determine the angle between 𝑥1 and 𝑥2.

nuclei. It is this property that allows the frame to be used when symmetrising the
rotational basis set.

To demonstrate that, with this frame, the Cartesian coordinates transform correctly
under MS operations if the BF frame rotates by constant angles, let us first parametrise
the vibrational coordinates by the Cl–C stretch (𝑞1), the 3 C–H stretches (𝑞2 to 𝑞4), the
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three Cl–C–H bends (𝑞5 to 𝑞7), and the symmetrised coordinates defined by

𝑞8 =
1√
6
(2𝜙32 − 𝜙21 − 𝜙13),

𝑞9 =
1√
2
(𝜙21 − 𝜙13).

(6.6.11)

Note that 𝑞9 is the angle 3/√2𝜙1. The BF coordinates in the bond vector frame are
given by (with the origin at the C atom)

𝑟C = (0, 0, 0),
𝑟Cl = (0, 0, 𝑞1),
𝑟H1 = (𝑞2 sin 𝑞5, 0, 𝑞2 cos 𝑞5) ,
𝑟H2 =

(
𝑞3 cos 𝜙21 sin 𝑞6,−𝑞3 sin 𝜙21 sin 𝑞6, 𝑞3 cos 𝑞6

)
,

𝑟H3 =
(
𝑞4 cos 𝜙13 sin 𝑞7, 𝑞4 sin 𝜙13 sin 𝑞7, 𝑞4 cos 𝑞7

)
.

(6.6.12)

Solving Eq. (6.6.11) for the angles 𝜙21 and 𝜙13 by using the substitution 𝜙32 = 2𝜋−𝜙21 −
𝜙13, we obtain

𝜙21 =
4𝜋
6 −

𝑞8√
6
+ 𝑞9√

2
,

𝜙13 =
4𝜋
6 −

𝑞8√
6
− 𝑞9√

2

(6.6.13)

which can be substituted into Eq. (6.6.12). Applying the rotation matrix 𝑀𝑧(
√

2𝑞9/3) (the
matrix 𝑆 of Eq. (6.7.1)) to the BF coordinates and using the relations cos(𝑥 + 𝜋/2) = − sin 𝑥
and sin(𝑥 + 𝜋/2) = cos 𝑥, the final result is

𝑟C = (0, 0, 0),
𝑟Cl = (0, 0, 𝑞1),

𝑟H1 =

(
𝑞2 cos

(√
2𝑞9

3

)
sin 𝑞5, 𝑞2 sin

(√
2𝑞9

3

)
sin 𝑞5, 𝑞2 cos 𝑞5

)
,

𝑟H2 =
(
−𝑞3 sin

(
𝜋
6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞6,−𝑞3 cos

(
𝜋
6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞6, 𝑞3 cos 𝑞6

)
,

𝑟H3 =
(
−𝑞4 sin

(
𝜋
6 −

𝑞8√
6
− 𝑞9

3
√

2

)
sin 𝑞7, 𝑞4 cos

(
𝜋
6 −

𝑞8√
6
− 𝑞9

3
√

2

)
sin 𝑞7, 𝑞4 cos 𝑞7

)
.

(6.6.14)

The operation (123) changes the stretches and angles in the usual manner and changes
the dihedrals according to

𝑞8
′ =

1√
6
(2𝜙21 − 𝜙13 − 𝜙32),

𝑞9
′ =

1√
2
(𝜙13 − 𝜙32)

(6.6.15)
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or (
𝑞8
′

𝑞9
′

)
=

( −1/2 √
3/2

−√3/2 −1/2
) (
𝑞8
𝑞9

)
. (6.6.16)

The transformed coordinates are then

𝑟C = (0, 0, 0),
𝑟Cl = (0, 0, 𝑞1),
𝑟H1 =

(
𝑞4 cos

(
− 𝑞8√

6
− 𝑞9

3
√

2

)
sin 𝑞7, 𝑞4 sin

(
− 𝑞8√

6
− 𝑞9

3
√

2

)
sin 𝑞7, 𝑞4 cos 𝑞7

)
,

𝑟H2 =

(
𝑞2 sin

(
−𝜋6 +

√
2𝑞9

3

)
sin 𝑞5,−𝑞2 cos

(
−𝜋6 +

√
2𝑞9

3

)
sin 𝑞5, 𝑞2 cos 𝑞5

)
,

𝑟H3 =
(
𝑞3 sin

(
−𝜋6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞6, 𝑞3 cos

(
−𝜋6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞6, 𝑞3 cos 𝑞6

)
.

(6.6.17)

These are in the new BF frame. If we now consider them in the old BF frame via the
rotation matrix

𝑁(123) =
©­«
− sin(𝜋/6) − cos(𝜋/6) 0

cos(𝜋/6) − sin(𝜋/6) 0
0 0 1

ª®¬ = ©­«
− cos(𝜋/3) − sin(𝜋/3) 0

sin(𝜋/3) − cos(𝜋/3) 0
0 0 1

ª®¬ (6.6.18)

and apply the first form to 𝑟H1 and 𝑟H2 and the second form to 𝑟H3 , we obtain the original
coordinates but permuted by (123).

For the operation (23)∗, the stretches and angles transform in an obvious way while
the dihedrals transform as (

𝑞8
′

𝑞9
′

)
=

(
1 0
0 −1

) (
𝑞8
𝑞9

)
. (6.6.19)

Performing this transformation and also applying the matrix 𝑀𝑦(𝜋) to the Cartesian
coordinates, we obtain

𝑀𝑦(𝜋)𝑟C = (0, 0, 0),
𝑀𝑦(𝜋)𝑟Cl = (0, 0,−𝑞1),

𝑀𝑦(𝜋)𝑟H1 =

(
−𝑞2 cos

(√
2𝑞9

3

)
sin 𝑞5,−𝑞2 sin

(√
2𝑞9

3

)
sin 𝑞5,−𝑞2 cos 𝑞5

)
,

𝑀𝑦(𝜋)𝑟H2 =
(
𝑞3 sin

(
𝜋
6 −

𝑞8√
6
− 𝑞9

3
√

2

)
sin 𝑞6,−𝑞3 cos

(
𝜋
6 −

𝑞8√
6
− 𝑞9

3
√

2

)
sin 𝑞6,−𝑞3 cos 𝑞6

)
,

𝑀𝑦(𝜋)𝑟H3 =
(
𝑞4 sin

(
𝜋
6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞7, 𝑞4 cos

(
𝜋
6 −

𝑞8√
6
+ 𝑞9

3
√

2

)
sin 𝑞7,−𝑞4 cos 𝑞7

)
(6.6.20)

which are the original Cartesian coordinates with 2 and 3 permuted and then inverted.
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6.7 Finding the geometric BF frames

This section explains how to find the angle 𝜙1 in the case of CH3Cl and more generally
introduces the methodology for any molecule.

For a general symmetry operation, if 𝑅𝛼 → 𝑅𝛼′, we required that 𝑟𝛼′ = 𝑁𝑟𝛼 or
𝑁𝑇𝑟𝛼′ = 𝑟𝛼. We then stipulate that𝑁 is a constant matrix, for example𝑁(123) = 𝑀𝑧(2𝜋/3)
for CH3Cl. The Cartesian coordinates 𝑟𝛼 are in the old BF frame. In the new BF frame,
they will be of the form 𝑆(𝑞)𝑟𝛼 for some rotation matrix 𝑆 which is a function of the
vibrational coordinates. We thus want

𝑁𝑇𝑆𝑟𝛼′ = 𝑆̃𝑟𝛼 (6.7.1)

for every operation. In the case of CH3Cl we see that the 𝑧 axis along the Cl–C bond
should be maintained. Only a rotation about the 𝑧 axis is required. Since motion of the
atoms in this plane is parametrised by the dihedral angles, we will assume the simplest
rotation of the form 𝑀𝑧(𝑎𝑞8 + 𝑏𝑞9)where 𝑎 and 𝑏 are constants. The position of H1 in
this, yet, undetermined frame is given by

𝑟H1 = (𝑞2 cos(𝑎𝑞8 + 𝑏𝑞9) sin 𝑞5, 𝑞2 sin(𝑎𝑞8 + 𝑏𝑞9) sin 𝑞5, 𝑞2 cos 𝑞5) (6.7.2)

while 𝑁𝑇𝑟H3 is given by

𝑁𝑇𝑟H3 =
(
𝑞4 cos

(
− 𝑞8√

6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9

)
sin 𝑞7,

𝑞4 sin
(
− 𝑞8√

6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9

)
, 𝑞4 cos 𝑞7

)
. (6.7.3)

Thus we want to equate the transformed 𝑎𝑞8 + 𝑏𝑞9 to − 𝑞8√
6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9, or

−𝑎 𝑞8

2 + 𝑎
√

3𝑞9

2 − 𝑏
√

3
2 𝑞8 − 𝑏 𝑞9

2 = − 𝑞8√
6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9 (6.7.4)

from which we obtain

𝑏 =

√
2

3 +
(−3𝑞8 +

√
3𝑞9)𝑎√

3𝑞8 + 3𝑞9
. (6.7.5)

For the operation (23)∗, 𝑟H2 in this frame is given by

𝑟H2 =
(
𝑞3 cos

(
4𝜋
6 −

𝑞8√
6
+ 𝑞9√

2
− 𝑎𝑞8 − 𝑏𝑞9

)
sin 𝑞6,

−𝑞3 sin
(

4𝜋
6 −

𝑞8√
6
+ 𝑞9√

2
− 𝑎𝑞8 − 𝑏𝑞9

)
sin 𝑞6, 𝑞3 cos 𝑞6

)
(6.7.6)

and −𝑁𝑟H3 = −𝑀𝑦(𝜋)𝑟H3 is

𝑟H3 =
(
𝑞3 cos

(
4𝜋
6 −

𝑞8√
6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9

)
sin 𝑞6,
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−𝑞3 sin
(

4𝜋
6 −

𝑞8√
6
+ 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9

)
sin 𝑞6, 𝑞3 cos 𝑞6

)
. (6.7.7)

Equating the transformed Eq. (6.7.6) to Eq. (6.7.7), we have

4𝜋
6 −

𝑞8√
6
− 𝑞9√

2
− 𝑎𝑞8 + 𝑏𝑞9 =

4𝜋
6 −

𝑞8√
6
− 𝑞9√

2
+ 𝑎𝑞8 + 𝑏𝑞9. (6.7.8)

From these we obtain 𝑎 = 0 and 𝑏 =
√

2/3 as stated previously.

6.8 Further applications

In the above sections, the focus was on valence coordinates as these are the simplest to
define and use to determine the appropriate frames. However, this does not preclude
the use of other coordinates. For example, the Jacobi [158] and Radau [159] coordinates
offer alternative parametrisations. These have advantages due to the simplification of
the Hamiltonian.

It is feasible that a similar procedure could be applied for these coordinates for
rotational basis symmetrisation. Indeed, the 𝑠 vector approach stipulates that the
vibrational coordinates are independent of the translation and rotation of the molecule.
It does not specify the form of the coordinates. For CH3F, for example, the kinetic energy
operator was derived in Ref. [43] where the canonical point was the centre of mass
of CH3 group and the vectors were the distances from that point to the hydrogen and
fluorine nuclei. The frame chosen was the bond vector using vectors from the canonical
point to two of the hydrogens. Using vibrational coordinates analogous to the valence
ones for CH3Cl of Section 6.6.2, it is clear that the structure of the Cartesian coordinates
as a function of the vibrational is identical, and hence the same process should work.

The size of the Coriolis coupling was not considered, but it is arguably the most
important factor when comparing these frames. Previously research into this has been
undertaken; see, for example, Ref. [160] who compared the Radau bisector, the valence
bisector, and the Eckart frame for symmetric triatomics and found that the Radau
bisector is superior in reducing this coupling and should lead to better rovibrational
separation. Comparing the BF frames of this chapter is a possible avenue for further
research.

Moving beyond the molecules chosen, the question of the possibility of finding
non-Eckart frames where rotational symmetrisation is possible still remains. For certain
molecules, such as ammonia, a trisector can define the 𝑧 axis. Then, once again, two
symmetrised coordinates based on the dihedrals could be used to rotate about this 𝑧
axis as the structure is the same as the CH3Cl molecule. For other molecules, such as
CH4, it is remarkably more challenging. For Eq. (6.7.1) one can replace 𝑟𝛼′ with 𝐵𝑟𝛼,
where 𝐵 is the rotation matrix relating the old and rotated bond vector frame (i.e. it
is the matrix 𝑁 of Eq. (6.2.7) for the bond vector frame rather than the desired frame).
Then, the equation that must be solved is

𝑁𝑆̃ = 𝑆𝐵 (6.8.1)

for each generator. For CH4, the matrix 𝑆 would be parametrised by five symmetrised
angles and the coefficient values could only be found numerically, if they could be found
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at all. In general, finding the frame for a given molecular structure and coordinate
choice would have to be done on a case-by-case basis.

6.9 Chapter summary

The main result in this chapter is the determination of geometric BF frames for a certain
class of molecules – with the CH3Cl molecule used as a defining example – where
rotational symmetrisation is possible. The Eckart frame was also shown to be suitable
for this molecule, with the form of the proofs extendable to other molecules as it relied
on the correspondence between the MS group of the molecule and the point group of
the molecule when in vibrational equilibrium.

Furthermore, one approach to find such frames is described for CH3Cl, and a method
to check frames is also given, provided one has the BF coordinates as a function of the
vibrational coordinates.

The main purported benefits of the Eckart frame are that it has wide applicability
for a variety of molecules with maintaining the same generic structure, it automatically
separates rotational and vibrational coordinates under MS operations, and it minimises
the Coriolis coupling, though the latter is not necessarily true as seen in Ref. [160]. Its
disadvantages are that (in most cases) it can only be solved numerically and is not
particularly suited for molecules without a well-defined equilibrium geometry.

In contrast, the geometric frames are, by default, analytic, but their use is far more
limited with molecules of differing structure needing different frames, particularly if
one desires that the rotational and vibrational coordinates are symmetry separated. If
such frames are found, they may reduce the rovibrational coupling in comparison to the
Eckart frame, though this can only be known with calculation. As already stated, the
choice of frame must be made on a case-by-case basis.

Appendix 6.A Derivation of the transformations

6.A.1 Vibrational 𝑠 vector transformation

We want to determine transformation of the vibrational 𝑠 vectors due to an MS transfor-
mation. As before, we first differentiate, then evaluate the 𝑠 vector at the transformed
coordinates. Suppose 𝑹𝛼 is transformed to 𝑹𝛼′. Then, if 𝑞𝑘 is transformed to 𝑞𝑘′, we
have

𝜕𝛼′𝐹(𝑞𝑘 ◦𝒫)(𝑅) =
∑
𝛽

𝜕𝛼′𝐹𝒫
𝛽𝐺(𝑅)𝜕𝛽𝐺𝑞𝑘(𝒫(𝑅))

𝜕𝛼′𝐹𝑞𝑘′(𝑅) = 𝜕𝛼𝐹𝑞𝑘(𝒫(𝑅))
(6.A.1)

or
𝒔′𝑘,𝛼 = 𝒔𝑘′,𝛼′ . (6.A.2)

In short, the first index transforms like the vibrational coordinates and the second like
the Cartesian coordinates.
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If 𝑞𝑘 and 𝑞𝑘′ transformed as in Eq. (6.B.6), then the transformation of 𝒔𝑘,𝛼 would be

𝒔′𝑘,𝛼 = 𝑎𝒔𝑘,𝛼′ + 𝑏𝒔𝑘′,𝛼′ (6.A.3)

and similarly for the other vibrational 𝑠 vectors.
From a computational standpoint, the BF 𝑠 vector components are typically used.

We have

𝒔′𝑘,𝛼 = 𝜕𝛼𝐼𝑞𝑘(𝒫(𝑅1, . . . , 𝑅N))𝒆̂𝐼
= 𝜕𝛼𝐼𝑞𝑘(𝑅𝓅1 , . . . , 𝑅𝓅N

))𝒆̂𝐼
= 𝜕𝛼𝑔𝑞𝑘(𝑇(𝑅𝓅1), . . . , 𝑇(𝑅𝓅N

))𝒆̂𝑔
= 𝜕𝛼𝑔𝑞𝑘(𝑟1, . . . , 𝑟N)𝒆̂𝑔

(6.A.4)

as 𝑇(𝑅𝓅𝛼) are the coordinates of atom 𝛼 after the MS operation is performed and in the
new BF frame. As we’ve seen, this is given by 𝑟𝛼, so that to transform the BF components
𝑠𝑘,𝛼𝑖 we simply perform the vibrational coordinate transformation (which we shall
denote as 𝑠𝑘,𝛼𝑔). This will give us the transformed 𝑠 vector components in the new BF
frame.

6.A.2 Rotational 𝑡 vector transformation

The second set of vectors to consider are the rotational 𝑡 vectors as

𝒕𝑔,𝛼 = 𝒆̂𝑔 × 𝑹𝛼

= 𝑀𝑇
𝑔𝐺 𝒆̂𝐺 × 𝑹𝛼

= 𝑀𝐺𝑔𝜀𝐼𝐺𝐹𝑅𝛼𝐹 𝒆̂𝐼

(6.A.5)

where 𝑀𝑇 is the inverse Euler matrix. The RF components are therefore given by
𝑡𝑔,𝛼𝐼 = 𝑀𝐺𝑔𝜀𝐼𝐺𝐹𝑅𝛼𝐹 and the BF components are given by 𝑡𝑔,𝛼ℎ = 𝜀ℎ𝑔 𝑓 𝑟𝛼 𝑓 .

An MS transformation changes 𝑅𝛼 to 𝑅𝛼′ and 𝑀 to the new matrix relating compo-
nents in the new BF frame to the RF frame, denoted by 𝑀̃. We can thus write

𝒕𝑔,𝛼′ = 𝑀̃𝐺𝑔𝜀𝐼𝐺𝐹𝑅𝛼′𝐹 𝒆̂𝐼

= 𝑀̃𝐺𝑔𝑀𝐺𝑙𝑀𝐻𝑙𝜀𝐼𝐻𝐹𝑅𝛼′𝐹 𝒆̂𝐼
= 𝑁𝑙 𝑔𝒕𝑙 ,𝛼′

(6.A.6)

where 𝑁 is the rotation matrix relating the coordinates in the new BF frame to the old
BF frame and is Eq. (6.2.7). We also have

𝒕𝑔,𝛼′ = 𝒆̂′𝑔 × 𝑹𝛼′ (6.A.7)

and thus has components in the new BF frame given by 𝑡𝑔,𝛼ℎ = 𝜀ℎ𝑔 𝑓 𝑟𝛼 𝑓 which can
be obtained by performing the vibrational coordinate transformation on the old 𝑡𝑔,𝛼ℎ
components.
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6.A.3 Vibrational 𝑡 vector transformation

The third set of vectors are the vibrational 𝑡 vectors, defined by

𝒕𝑘,𝛼 = 𝜕𝑘𝑹𝛼

= 𝜕𝑘𝑅𝛼𝐹 𝒆̂𝐹
= 𝜕𝑘𝑟𝛼𝑔 𝒆̂𝑔

(6.A.8)

where now the position vectors are wholly defined by the vibrational and rotational
coordinates. The RF components thus transform as

𝜕𝑘𝑅𝛼𝐹(𝒫(Ξ, 𝑞)). (6.A.9)

We use the standard procedure to write this in terms of the original components

𝑡𝑘′,𝛼′𝐹 = 𝜕𝑘′(𝑅𝛼𝐹 ◦𝒫)(Ξ, 𝑞)
= 𝜕𝑘′𝒫

𝑚(Ξ, 𝑞)𝜕𝑚𝑅𝛼𝐹(𝒫(Ξ, 𝑞))
= 𝜕𝑘𝑅𝛼𝐹(𝒫(Ξ, 𝑞)) + 𝜕𝑘′𝒫

𝑔(Ξ, 𝑞)𝜕𝑔𝑅𝛼𝐹(𝒫(Ξ, 𝑞))
= 𝑡𝑘,𝛼𝐹′ + 𝜕𝑘′𝒫

𝑔(Ξ, 𝑞)𝜕𝑔𝑅𝛼𝐹(𝒫(Ξ, 𝑞)).
(6.A.10)

To simplify the last term, we turn to the expressions for the change in the Euler angles
when the BF frame is rotated (see Table 6.4.1). We can immediately see that, in general,
only the transformation of 𝜒 might contain a vibrational coordinate dependence, due to
the angles 𝛽 and 𝛼. The combined effect will be in the form

𝜒′ = 𝜒 + 𝛾(𝑞) or
𝜒′ = −𝜒 + 𝛾(𝑞) (6.A.11)

for some function 𝛾. Therefore, 𝑔 = 3 in the last line of Eq. (6.A.10). We thus have

𝑡𝑘′,𝛼′𝐹 = 𝑡𝑘,𝛼𝐹′ + 𝜕𝑘′𝛾𝜕3𝑅𝛼𝐹(𝒫(Ξ, 𝑞))
= 𝑡𝑘,𝛼𝐹′ + 𝜕𝑘′𝛾(𝜕3𝑀𝐹𝑔)𝑟𝛼𝑔(𝒫(Ξ, 𝑞))
= 𝑡𝑘,𝛼𝐹′ + 𝜕𝑘′𝛾(𝜕3𝑀𝐹𝑔)𝑀𝐻𝑔𝑀𝐻ℎ𝑟𝛼ℎ(𝒫(Ξ, 𝑞))
= 𝑡𝑘,𝛼𝐹′ +Ω𝑘′,𝐹𝐻𝑅𝛼𝐻(𝒫(Ξ, 𝑞))

(6.A.12)

where Ω𝑘′ is the antisymmetric matrix

Ω𝑘′ = 𝜕𝑘′𝛾(𝑞) ©­«
0 − cos𝜃 sin𝜃 sin 𝜙

cos𝜃 0 − cos 𝜙 sin𝜃
− sin𝜃 sin 𝜙 cos 𝜙 sin𝜃 0

ª®¬ . (6.A.13)

We also call 𝜕𝑘′𝛾(𝑞) as ¤𝛾𝑘′ for brevity.
One can rewrite Ω𝑘′,𝐹𝐻𝑅𝛼𝐻 as 𝜀𝐹𝐺𝐻𝜔𝑘′,𝐺𝑅𝛼𝐻 where 𝜔𝑘′ is defined as

𝜔𝑘′ = ¤𝛾𝑘′(cos 𝜙 sin𝜃, sin𝜃 sin 𝜙, cos𝜃) (6.A.14)

Actually, 𝜔𝑘′,𝐺 = ¤𝛾𝑘′𝑀𝐺𝑧 and 𝜔̃𝑘′,𝐺 = ∓𝜔𝑘′,𝐺 with the sign change corresponding to the
left and right columns of Table 6.4.1, respectively. Assuming a change of the form of the
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left column, we have

𝑡𝑘′,𝛼′𝐹 = 𝑡𝑘,𝛼𝐹′ + 𝜔𝑘′,𝐺𝜀𝐹𝐺𝐻𝑅𝛼𝐻(𝒫(Ξ, 𝑞))
= 𝑡𝑘,𝛼𝐹′ + 𝜔̃𝑘′,𝐺𝜀𝐹𝐺𝐻𝑅𝛼′𝐻

= 𝑡𝑘,𝛼𝐹′ + 𝜔̃𝑘′,𝐼𝑀𝐼 𝑔𝑀𝐺𝑔𝜀𝐹𝐺𝐻𝑅𝛼′𝐻

= 𝑡𝑘,𝛼𝐹′ + 𝜔̃𝑘′,𝐼𝑀𝐼 𝑔𝑡𝑔,𝛼′𝐹
= 𝑡𝑘,𝛼𝐹′ − ¤𝛾𝑘′𝛿𝑔𝑧𝑡𝑔,𝛼′𝐹
= 𝑡𝑘,𝛼𝐹′ − ¤𝛾𝑘′𝑡𝑧,𝛼′𝐹

(6.A.15)

where the penultimate line is due to the fact that 𝜔̃𝑘′,𝐼𝑀𝐼 𝑔 = − ¤𝛾𝑘′𝑀𝐼𝑧𝑀𝐼 𝑔 = − ¤𝛾𝑘′𝛿𝑔𝑧 . In
vector form, then, the final transformation of the vibrational 𝑡 vectors is given by

𝒕𝑘,𝛼′ = 𝒕𝑘′,𝛼′ + ¤𝛾𝑘′𝒕𝑧,𝛼′ . (6.A.16)

As before, since 𝒕𝑘,𝛼 = 𝜕𝑘𝑟𝛼𝑔 𝒆̂𝑔 , in the new BF frame the components of the transformed
𝒕𝑘,𝛼 can be obtained by performing the vibrational coordinate transformation on the old
BF components of 𝒕𝑘,𝛼.

6.A.4 Rotational 𝑠 vector transformation

Collecting the other transformations, we thus have so far

𝒔𝑘,𝛼′ = 𝒔𝑘′,𝛼′

𝒕𝑔,𝛼′ = 𝑁𝑙 𝑔𝒕𝑙 ,𝛼′

𝒕𝑘,𝛼′ = 𝒕𝑘′,𝛼′ + ¤𝛾𝑘′𝒕𝑧,𝛼′ .
(6.A.17)

From these we can find the transformation property of the rotational 𝑠 vectors. They
transform as

𝒔𝑔,𝛼′ = 𝑁𝑙 𝑔𝒔𝑙 ,𝛼′ − ¤𝛾𝑘𝒔𝑘,𝛼′𝑁𝑧𝑔 . (6.A.18)

One can show that the transformed 𝑠 and 𝑡 vectors are then inverses. The components
of the transformed vector in the new BF frame are again the components in the old BF
frame with the vibrational coordinate transformation applied, which are denoted as
𝑠𝑔,𝛼ℎ .

6.A.5 Momentum and angular momentum operator transformation

Applying a symmetry operation𝒫 on 𝐽𝑔𝜓, we have

𝐽𝑔𝜓(𝒫(Ξ, 𝑞)) =𝑊−1
𝑔ℎ 𝜕ℎ𝜓(𝒫(Ξ, 𝑞))

=𝑊−1
𝑔ℎ
′𝜕ℎ𝜓(𝒫(Ξ, 𝑞))

(6.A.19)

where 𝑊−1′ is the transformed 𝑊−1 as a function of the angular coordinates and
𝜕ℎ𝜓(𝒫(Ξ, 𝑞)) is, by the chain rule

𝜕ℎ(𝜓 ◦𝒫)(Ξ, 𝑞) = 𝜕ℎ𝒫
𝑚(Ξ, 𝑞)𝜕𝑚𝜓(𝒫(Ξ, 𝑞)) = ±𝜕ℎ𝜓(𝒫(Ξ, 𝑞)) (6.A.20)
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so 𝜕ℎ𝜓(𝒫(Ξ, 𝑞)) = ±𝜕ℎ(𝜓 ◦𝒫)(Ξ, 𝑞) depending on the sign of the transformed angle in
Table 6.4.1. We shall say

𝜕ℎ𝜓(𝒫(𝑞)) = Tℎℎ′𝜕ℎ′(𝜓 ◦𝒫)(𝑞) (6.A.21)

where T is the identity for the right transformation of Table 6.4.1 and

T = ©­«
−1 0 0
0 1 0
0 0 −1

ª®¬ (6.A.22)

for the left transformation of Table 6.4.1.
𝑊−1′ can be found by determining 𝑊 ′ (the transformed 𝑊) as 𝑊−1′ must be its

inverse. Using Eq Eq. (2.C.3) once again, we have

𝑊 ′ℎ𝑔 =
1
2𝑀̃𝐹 𝑓

(
𝜕𝑀𝐹𝑔′

𝜕Ξℎ

)′
𝜀𝑔 𝑓 𝑔′ =

1
2(𝑀𝑁)𝐹 𝑓

(
𝜕𝑀𝐹𝑔′

𝜕Ξℎ

)′
𝜀𝑔 𝑓 𝑔′ (6.A.23)

so what must be found is (𝜕𝑀𝐹𝑔′
/
𝜕Ξℎ )′. The chain rule gives

𝜕ℎ(𝑀𝐹𝑔′ ◦𝒫)(Ξ, 𝑞) = 𝜕ℎ𝒫
𝑚(Ξ, 𝑞)𝜕𝑚𝑀𝐹𝑔′(𝒫(Ξ, 𝑞))

𝜕ℎ𝑀̃𝐹𝑔′(Ξ, 𝑞) = Tℎℎ′(𝜕ℎ′𝑀𝐹𝑔′)′
𝜕ℎ(𝑀𝑁)𝐹𝑔′(Ξ, 𝑞) = Tℎℎ′(𝜕ℎ′𝑀𝐹𝑔′)′
(𝜕ℎ𝑀𝐹𝑙)𝑁𝑙 𝑔′ = Tℎℎ′(𝜕ℎ′𝑀𝐹𝑔′)′

(6.A.24)

where in the last line we used that 𝑁 was not a function of the angles. Putting it together,

𝑊 ′ℎ𝑔 =
1
2𝑀𝐹𝑙′𝑁𝑙′ 𝑓 Tℎℎ′(𝜕ℎ′𝑀𝐹𝑙)𝑁𝑙 𝑔′𝜀𝑔 𝑓 𝑔′

=
1
2𝑀𝐹𝑙′Tℎℎ′(𝜕ℎ′𝑀𝐹𝑙)𝜀 𝑓 ′𝑙′𝑙𝑁 𝑓 ′𝑔

= Tℎℎ′𝑊ℎ′ 𝑓 ′𝑁 𝑓 ′𝑔

(6.A.25)

where second line we used the determinant formula. Thus,

𝑊−1
𝑔ℎ
′ = T𝑔′ℎ𝑊−1

ℎ′𝑔′𝑁ℎ′𝑔 . (6.A.26)

Combining both transformations

𝐽𝑔𝜓(𝒫(Ξ, 𝑞)) = T𝑔′ℎ𝑊−1
ℎ′𝑔′𝑁ℎ′𝑔Tℎ 𝑓 𝜕 𝑓 (𝜓 ◦𝒫)(Ξ, 𝑞)

= 𝑁ℎ′𝑔 𝐽ℎ′(𝜓 ◦𝒫)(Ξ, 𝑞)
(6.A.27)

In summary, 𝐽′𝑔 = 𝑁𝑙 𝑔 𝐽𝑙 . For the vibrational momentum operators, we have, assuming
𝑞𝑘 transforms to 𝑞𝑘′,

𝜕𝑘′(𝜓 ◦𝒫)(Ξ, 𝑞) = 𝜕𝑘′𝑃𝑚(Ξ, 𝑞)𝜕𝑚𝜓(𝒫(Ξ, 𝑞))
= 𝜕𝑘𝜓(𝒫(Ξ, 𝑞)) + ¤𝛾𝑘′𝜕3𝜓(𝒫(Ξ, 𝑞)). (6.A.28)
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Using (𝜕3𝜓) ◦𝒫 = −𝜕3(𝜓 ◦𝒫)we thus have

𝜕𝑘𝜓(𝒫(𝑞)) = (𝜕𝑘′ + ¤𝛾𝑘′𝜕3)(𝜓 ◦𝒫)(Ξ, 𝑞). (6.A.29)

If we apply the right hand side operator on the 𝐺 matrix elements, only the first term is
non-zero. Thus, we can use the right hand side operator in general. The momentum
operators are defined as 𝜋̂𝑘 = −𝑖ℏ 𝜕/𝜕𝑞𝑘 and transform as

𝜋̂′𝑘 = 𝜋̂𝑘′ + ¤𝛾𝑘′𝐽𝑧 . (6.A.30)

Appendix 6.B KEO invariance

If 𝑞𝑖′ = 𝑞 𝑗 and 𝑞𝑖′′ = 𝑞 𝑗′ then the KEO (without the pseudo potential) transforms as

𝜋̂′𝑖𝐺𝑖𝑖′
′𝜋̂′𝑖′ = (𝜋̂ 𝑗 + ¤𝛾𝑗 𝐽𝑧)𝐺 𝑗 𝑗′(𝜋̂ 𝑗′ + ¤𝛾𝑗′𝐽𝑧)

= 𝜋̂ 𝑗𝐺 𝑗 𝑗′𝜋̂ 𝑗′ + 𝜋̂ 𝑗 ¤𝛾𝑗′𝐺 𝑗 𝑗′𝐽𝑧︸      ︷︷      ︸
1

+ ¤𝛾𝑗 𝐽𝑧𝐺 𝑗 𝑗′𝜋̂ 𝑗′︸      ︷︷      ︸
2

+ ¤𝛾𝑗 ¤𝛾𝑗′𝐽𝑧𝐺 𝑗 𝑗′𝐽𝑧︸         ︷︷         ︸
3

,

𝜋̂′𝑖𝐺𝑖 𝑔
′𝐽′𝑔 = (𝜋̂ 𝑗 + ¤𝛾𝑗 𝐽𝑧)(𝑁ℎ𝑔𝐺 𝑗ℎ − ¤𝛾𝑘𝐺 𝑗𝑘𝑁𝑧𝑔)𝑁𝑙 𝑔 𝐽𝑙

= 𝜋̂ 𝑗𝐺 𝑗𝑙 𝐽𝑙 + ¤𝛾𝑗 𝐽𝑧𝐺 𝑗𝑙 𝐽𝑙︸    ︷︷    ︸
4

− 𝜋̂ 𝑗 ¤𝛾𝑘𝐺 𝑗𝑘 𝐽𝑧︸      ︷︷      ︸
1

− ¤𝛾𝑘 ¤𝛾𝑗 𝐽𝑧𝐺 𝑗𝑘 𝐽𝑧︸        ︷︷        ︸
3

,

𝐽′𝑔𝐺𝑔𝑖
′𝜋̂′𝑖 = 𝑁𝑙 𝑔 𝐽𝑙(𝑁ℎ𝑔𝐺ℎ 𝑗 − ¤𝛾𝑘𝐺𝑘 𝑗𝑁𝑧𝑔)(𝜋̂ 𝑗 + ¤𝛾𝑗 𝐽𝑧)

= 𝐽𝑙𝐺𝑙 𝑗𝜋̂ 𝑗 + ¤𝛾𝑗 𝐽𝑙𝐺𝑙 𝑗 𝐽𝑧︸    ︷︷    ︸
5

− ¤𝛾𝑘 𝐽𝑧𝐺𝑘 𝑗𝜋̂ 𝑗︸      ︷︷      ︸
2

− ¤𝛾𝑘 ¤𝛾𝑗 𝐽𝑧𝐺𝑘 𝑗 𝐽𝑧︸        ︷︷        ︸
6

,

𝐽′𝑔𝐺𝑔𝑔′
′𝐽′𝑔′ = 𝑁𝑙 𝑔 𝐽𝑙[𝑁ℎ𝑔𝑁ℎ′𝑔′𝐺ℎℎ′ + ¤𝛾𝑘 ¤𝛾𝑘′𝐺𝑘𝑘′𝑁𝑧𝑔′𝑁𝑧𝑔 − ¤𝛾𝑘𝐺𝑘ℎ(𝑁ℎ𝑔′𝑁𝑧𝑔 + 𝑁ℎ𝑔𝑁𝑧𝑔′)]𝑁𝑙′𝑔′𝐽𝑙′

= 𝐽ℎ𝐺ℎℎ′𝐽ℎ′ + ¤𝛾𝑘 ¤𝛾𝑘′𝐽𝑧𝐺𝑘𝑘′𝐽𝑧︸          ︷︷          ︸
6

− ¤𝛾𝑘 𝐽𝑧𝐺𝑘ℎ 𝐽ℎ︸      ︷︷      ︸
4

− ¤𝛾𝑘 𝐽ℎ𝐺ℎ𝑘 𝐽𝑧︸      ︷︷      ︸
5

.

(6.B.1)

Terms under-braced with the same number cancel. What remains when all is summed
together is the original Hamiltonian, showing invariance.

This derivation assumed that the change in Euler angles was of the form of the
left column of Table 6.4.1. If the transformation was as of the right column, then the
rotational 𝑠 vectors change as

𝒔𝑔,𝛼′ = 𝑁𝑙 𝑔𝒔𝑙 ,𝛼′ + ¤𝛾𝑘𝒔𝑘,𝛼′𝑁𝑧𝑔 (6.B.2)

and the vibrational momentum operators change as

𝜋̂′𝑘 = 𝜋̂𝑘′ − ¤𝛾𝑘′𝐽𝑧 (6.B.3)
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so only the sign in front of ¤𝛾𝑘 changes and can be absorbed into its definition, meaning
invariance is maintained. Likewise, if, during an MS operation, 𝑞′𝑘 = −𝑞𝑘′, then the
rotational 𝑠 vector change is the same, the vibrational 𝑠 vectors change as

𝒔𝑘,𝛼′ = −𝒔𝑘′,𝛼′ (6.B.4)

and the vibrational momentum operators change as

𝜋̂′𝑘 = −(𝜋̂𝑘′ + ¤𝛾𝑘′𝐽𝑧) (6.B.5)

so that, in any Hamiltonian term 𝜋̂𝑘𝐺𝑘𝑎𝜋̂𝑎 , the two minus signs cancel out and again the
invariance is maintained. Finally, if the transformation of 𝑞𝑘 and 𝑞𝑘′ is of the form(

𝑞𝑘′
𝑞𝑘′′

)
=

(
𝑎 𝑏
−𝑏 𝑎

) (
𝑞𝑘
𝑞𝑘′

)
, (6.B.6)

where 𝑎2 + 𝑏2 = 1, then the vibrational 𝑠 vectors transform as

𝒔𝑘,𝛼′ = 𝑎𝒔𝑘,𝛼′ + 𝑏𝒔𝑘′,𝛼′ , (6.B.7)

and likewise for 𝒔𝑘′,𝛼, the rotational operators and rotational 𝑠 vectors change in the
same way as previously, and the vibrational operators transform as

𝜋̂′𝑘 = 𝑎(𝜋̂𝑘 + ¤𝛾𝑘 𝐽𝑧) + 𝑏(𝜋̂𝑘′ + ¤𝛾𝑘′𝐽𝑧) (6.B.8)

and similarly for the other operator. To show invariance, we express the kinetic energy
operator as ∑

𝑐𝑑

∑
𝛼

1
𝑚𝛼

𝜋̂𝑐𝒔𝑐,𝛼 · 𝒔𝑑,𝛼𝜋̂𝑑 . (6.B.9)

Let us show only the relevant terms in the 𝑐 summation:∑
𝑑

∑
𝛼

1
𝑚𝛼
(𝜋̂𝑘𝒔𝑘,𝛼 + 𝜋̂𝑘′𝒔𝑘′,𝛼) · 𝒔𝑑,𝛼𝜋̂𝑑 (6.B.10)

Then, when the kinetic energy is transformed and the relevant terms simplified, we have∑
𝑑

∑
𝛼

1
𝑚𝛼
(𝜋̂′𝑘𝒔𝑘,𝛼′ + 𝜋̂′𝑘′𝒔𝑘′,𝛼′) · 𝒔𝑑,𝛼′𝜋̂′𝑑

=
∑
𝑑

∑
𝛼

1
𝑚𝛼
((𝜋̂𝑘 + ¤𝛾𝑘 𝐽𝑧)𝒔𝑘,𝛼 + (𝜋̂𝑘′ + ¤𝛾𝑘′𝐽𝑧)𝒔𝑘′,𝛼) · 𝒔𝑑,𝛼′𝜋̂′𝑑

(6.B.11)

so the expression in brackets is the same as that of the prior transformed 𝑠 vectors and
operations and thus the result is an invariant Hamiltonian. More complicated examples
work the same way. The proof of the invariance of the pseudo potential is given in Ref.
[4].
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Chapter 7

𝒢36(EM) MS Group for C2H6

7.1 Introduction

The final core chapter of this thesis combines the knowledge of previous chapters,
namely group theory, analytic KEOs, and geometric frames, to the study of the ethane
molecule (H3

12C12CH3), shown in Figure 7.1.1. The bulk of it is based on the publication
Ref. [5]. Unfortunately, while some progress has been made to the ultimate goal of a
line list calculation, there are no adequate numerical results to speak of, yet. Due to the
molecule’s size and the complexity of the symmetry group, significant challenge is to be
expected. The next chapter briefly describes the current (as of writing this thesis) issues.

The remainder of this chapter primarily discusses the MS group of 𝒢36 and its
extension for rovibrational calculations 𝒢36(EM). As explained in Section 2.7, trove
requires, for each irrep of the symmetry group in question [74], a group of matrices
constituting that irrep. However, for𝒢36 or𝒢36(EM), these matrices were not available
in the literature prior to the publication of Ref. [5]. This chapter aims at describing
fully the groups 𝒢36 and 𝒢36(EM) and, in particular, determining matrix groups that
define the irreps. The matrix groups obtained are used for symmetrising the PES and
the rovibrational basis functions for ethane.

The MS group𝒢36 has been the subject of a number of studies (see, for example, [161,
162]). The EMS group𝒢36(EM) was studied in detail by Di Lauro and Lattanzi [163, 164].
Examples of the application of the𝒢36(EM) group include studies of the rotation-torsional
spectra of various ethane-type molecules [165–169].

C

H

HH

C

H

H H

Figure 7.1.1: The structure of ethane in the staggered configuration.
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7.2 The structure of the𝒢36 group

Longuet-Higgins [73] showed that the group𝒢36 can be written as a direct product of
two smaller groups 𝒞(−)3v and 𝒞(+)3v

𝒢36 = 𝒞(−)3v ⊗ 𝒞(+)3v ; (7.2.1)

both of these subgroups are of order 6 and isomorphic to the 𝒞3v point group. The top
row and leftmost column of Table 7.2.1 define the elements of these two groups. For
convenience, we label the elements of 𝒞(±)3v as ℊ(±)𝑗 , 𝑗 = 1, 2, . . . , 6; this notation is also
defined in Table 7.2.1. The nuclei are labelled as in Figure 7.2.1.

a

1

32

b

4

5 6

Figure 7.2.1: The labelling of the ethane nuclei.

In Table 7.2.1, the productsℊ(−)𝑗 ℊ
(+)
𝑘 =ℊ(+)𝑘 ℊ

(−)
𝑗 , whereℊ(−)𝑗 ∈𝒞(−)3v andℊ(+)𝑘 ∈𝒞

(+)
3v are

listed. Since𝒢36 = 𝒞
(−)
3v ⊗ 𝒞(+)3v , the 36 possible products ℊ(−)𝑗 ℊ

(+)
𝑘 = ℊ(+)𝑘 ℊ

(−)
𝑗 constitute

the complete group𝒢36. Due to the product group structure, we may also label elements
in𝒢36 by the ordered pair (ℊ(−)𝑗 ,ℊ(+)𝑘 ).

Each of the groups 𝒞(−)3v and 𝒞(+)3v has three conjugacy classes, 𝒞(±)1 = {ℰ} = {ℊ(±)1 },
𝒞
(±)
2 = {ℊ(±)2 ,ℊ(±)3 }, and 𝒞(±)3 = {ℊ(±)4 ,ℊ(±)5 ,ℊ(±)6 }. With the direct product structure of

𝒢36, it is clear that the conjugacy clases of 𝒢36 are obtained as 𝒞(−)𝑖 × 𝒞(+)𝑗 , that is, a

conjugacy class of 𝒢36 contains all elements ℛ𝒮 where ℛ ∈ 𝒞(−)𝑖 and 𝒮 ∈ 𝒞(+)𝑗 . The
top row and leftmost column of Table 7.2.1 indicates the conjugacy class structures of
𝒞
(+)
3v and 𝒞(−)3v , respectively. A conjugacy class 𝒞(+)𝑖 of 𝒞(+)3v is simultaneously, in the

form 𝒞
(−)
1 ×𝒞(+)𝑖 , a conjugacy class of𝒢36. Similarly, the conjugacy classes of 𝒞(−)3v are

simultaneously conjugacy classes of𝒢36. In Table 7.2.1 indicates the complete set of𝒢36

conjugacy classes 𝒞(−)𝑖 ×𝒞(+)𝑗 .
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Table 7.2.1: The conjugacy class structure of𝒢36
𝑎 .

ℊ
(−
)

1
=
ℊ
(+
)

1
=
𝐸

ℊ
(−
)

2
=
(13

2)(
45

6)

ℊ
(−
)

3
=
(12

3)(
46

5)

ℊ
(−
)

4
=
(14
)(2

5)(
36
)(𝑎
𝑏)

ℊ
(−
)

5
=
(16
)(2

4)(
35
)(𝑎
𝑏)

ℊ
(−
)

6
=
(15
)(2

6)(
34
)(𝑎
𝑏)

ℊ
(+)
2 = (123)(456) (465) (132) (153426)(𝑎𝑏) (143625)(𝑎𝑏) (163524)(𝑎𝑏)
ℊ
(+)
3 = (132)(465) (123) (456) (162435)(𝑎𝑏) (152634)(𝑎𝑏) (142536)(𝑎𝑏)

ℊ
(+)
4 = (14)(26)(35)(𝑎𝑏)∗ (152436)(𝑎𝑏)∗ (163425)(𝑎𝑏)∗ (23)(56)∗ (12)(46)∗ (13)(45)∗
ℊ
(+)
5 = (16)(25)(34)(𝑎𝑏)∗ (142635)(𝑎𝑏)∗ (153624)(𝑎𝑏)∗ (13)(46)∗ (23)(45)∗ (12)(56)∗
ℊ
(+)
6 = (15)(24)(36)(𝑎𝑏)∗ (162534)(𝑎𝑏)∗ (143526)(𝑎𝑏)∗ (12)(45)∗ (13)(56)∗ (23)(46)∗

𝑎 The top row and leftmost column contain the𝒢36 elements that also belong to the 𝒞(−)3v
or 𝒞(+)3v group, respectively. The remaining entries are the products ℊ(−)𝑗 ℊ

(+)
𝑘 = ℊ(+)𝑘 ℊ

(−)
𝑗 ,

where ℊ(−)𝑗 ∈ 𝒞(−)3v is at the top of the column and ℊ(+)𝑘 ∈ 𝒞
(+)
3v is at the left end of the row.

The horizontal and vertical lines denote the separation of the conjugacy classes.

7.3 Irreducible representations of𝒢36

The sum over group elements of the square of the trace of the representation ma-
trix ℳ(Γ(−) ,Γ(+))[(ℊ(−),ℊ(+))], defined by direct product irrep matrices ℳΓ(−)(ℊ(−)) and
ℳ

Γ(+)(ℊ(+)), is

1
|𝒢36 |

∑
ℊ∈𝒢36

𝜒(Γ
(−) ,Γ(+))(ℊ)𝜒(Γ(−) ,Γ(+))(ℊ)∗ = ©­­«

1
|𝒞(+)3v |

∑
ℊ(−)∈𝒞(−)3v

𝜒Γ(−)(ℊ(−))𝜒Γ(−)(ℊ(−))∗ª®®¬×©­­«
1
|𝒞(−)3v |

∑
ℊ(+)∈𝒞(+)3v

𝜒Γ(+)(ℊ(+))𝜒Γ(+)(ℊ(+))∗ª®®¬ = 1

(7.3.1)

so that the product representation is an irreducible representation. Since there are nine
conjugacy classes for𝒢36 and nine such irreps, every irrep is of this form. The𝒢36 irreps
could therefore in principle be labelled as (Γ(−), Γ(+)), where Γ(−) is an irrep of 𝒞(−)3v and
Γ(+) is an irrep of 𝒞(+)3v . 𝒞(−)3v and 𝒞(+)3v both have the one-dimensional irreps𝒜1 and𝒜1
together with the two-dimensional irrepℰ (Table 7.A.1 in Appendix 7.A). Customarily,
the irreps of 𝒢36 are labelled as in Table 12 of Longuet-Higgins [73]. Table 7.3.1 is
the character table for 𝒢36, obtained from Table 12 of Longuet-Higgins [73], with the
irreducible representations labelled by their customary labels Γ36 and the combination
labels (Γ(−), Γ(+)). The bottom row of the table indicates the𝒞(−)𝑖 ×𝒞(+)𝑗 label of each class.
For each conjugacy class of𝒢36 , Table 7.3.1 gives a representative element together with
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the number of group elements in the conjugacy class. The complete conjugacy classes
are obtained from Table 7.2.1.

Of particular concern are the doubly-degenerate irreducible representationsℰ1 =
(ℰ,𝒜1),ℰ2 = (ℰ,𝒜2),ℰ3 = (𝒜1,ℰ), andℰ4 = (𝒜2,ℰ) together with the four-dimensional
irreducible representation𝒢 = (ℰ,ℰ).

In Section 12.4 of Ref. [74], and in Section 3.1 of Ref. [153], it is discussed how the point
group 𝒞3v and any group isomorphic to it can be defined in terms of two generating
operations, one of which belongs to the two-member class 𝒞(±)2 of 𝒞3v and the other to
the three-member class 𝒞(±)3 . For the group 𝒞(−)3v , the generating operations selected
are ℊ(−)2 = (123)(465) and ℊ

(−)
4 = (14)(25)(36)(𝑎𝑏), whereas for 𝒞(+)3v , the operations

ℊ
(+)
2 = (123)(456) and ℊ(+)4 = (14)(26)(35)(𝑎𝑏)∗ are chosen. We then have ℊ(±)3 = (ℊ(±)2 )2,
ℊ
(±)
6 = ℊ(±)2 ℊ

(±)
4 , and ℊ(±)5 = ℊ(±)2 ℊ

(±)
6 .

Table 7.3.1: Character table of𝒢36.

Γ36 (Γ(−), Γ(+)) ℰ (12
3)(

45
6)

(14
)(2

6)(
35
)(𝑎
𝑏)∗

(12
3)(

46
5)

(12
3)

(14
26

35
)(𝑎
𝑏)∗

(14
)(2

5)(
36
)(𝑎
𝑏)

(14
25

36
)(𝑎
𝑏)

(12
)(4

5)∗

1 2 3 2 4 6 3 6 9
𝒜1 (𝒜1,𝒜1) 1 1 1 1 1 1 1 1 1
𝒜2 (𝒜2,𝒜1) 1 1 1 1 1 1 −1 −1 −1
𝒜3 (𝒜1,𝒜2) 1 1 −1 1 1 −1 1 1 −1
𝒜4 (𝒜2,𝒜2) 1 1 −1 1 1 −1 −1 −1 1
ℰ1 (ℰ,𝒜1) 2 2 2 −1 −1 −1 0 0 0
ℰ2 (ℰ,𝒜2) 2 2 −2 −1 −1 1 0 0 0
ℰ3 (𝒜1,ℰ) 2 −1 0 2 −1 0 2 −1 0
ℰ4 (𝒜2,ℰ) 2 −1 0 2 −1 0 −2 1 0
𝒢 (ℰ,ℰ) 4 −2 0 −2 1 0 0 0 0

𝒞
(−
)

1
×𝒞

(+
)

1

𝒞
(−
)

1
×𝒞

(+
)

2

𝒞
(−
)

1
×𝒞

(+
)

3

𝒞
(−
)

2
×𝒞

(+
)

1

𝒞
(−
)

2
×𝒞

(+
)

2

𝒞
(−
)

2
×𝒞

(+
)

3

𝒞
(−
)

3
×𝒞

(+
)

1

𝒞
(−
)

3
×𝒞

(+
)

2

𝒞
(−
)

3
×𝒞

(+
)

3

7.4 𝒢36 irrep matrices

The representation matrices for the non-degenerate irreps 𝒜1, 𝒜2, 𝒜3, and 𝒜4 of 𝒢36
are uniquely defined as equal to the representation characters; these can be found
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in Table 7.3.1. The 2 × 2 representation matrices of the irreps ℰ1, ℰ2, ℰ3, and ℰ4 are,
however, defined up to equivalent representation. Having found one such set of matrices
ℳ
ℰ𝑖 [ℊ], where ℊ ∈ 𝒢36, we can generate infinitely many equivalent representations

with representation matrices U𝑀ℰ𝑛U−1, where U is an arbitrary and invertible 2 × 2
matrix. In practice, representation matrices in trove are real and orthogonal, and that
drastically limits the possible choices. One particular set of representation matrices is
selected here forℰ1 by initially choosing the representation matrix for ℊ(−)2 = (123)(465),
one of the generating operations of 𝒞(−)3v . It is set to

ℳ
ℰ[(123)(465)] =

(
cos

( 2𝜋
3
) − sin

( 2𝜋
3
)

sin
( 2𝜋

3
)

cos
( 2𝜋

3
) )

=

(
−1

2 −
√

3
2√

3
2 −1

2

)
. (7.4.1)

The 2×2 orthogonal matrixℳℰ[(123)(465)] satisfies the relationℳℰ[(123)(465)]3 = 𝐼,
the 2 × 2 unit matrix, imposed by the fact that [(123)(465)]3 =ℰ. An alternative choice
would be the matrix with the signs of the sin(2𝜋/3) terms reversed. The other generating
operation of 𝒞(−)3v , ℊ(−)4 = (14)(25)(36)(𝑎𝑏), is self-inverse: (ℊ(−)4 )2 = [(14)(25)(36)(𝑎𝑏)]2 =

ℰ. The 2 × 2 orthogonal matrix representing ℊ(−)4 is also self-inverse and we can choose
it as

ℳ
ℰ[(14)(25)(36)(𝑎𝑏)] =

(
cos𝜃 sin𝜃
sin𝜃 − cos𝜃

)
(7.4.2)

where 𝜃 is arbitrary. All such matrices satisfyℳℰ[(14)(25)(36)(𝑎𝑏)]2 = 𝐼. 𝜃 = 0 is chosen,
so that

ℳ
ℰ[(14)(25)(36)(𝑎𝑏)] =

(
1 0
0 −1

)
. (7.4.3)

The two matrices ℳℰ[(123)(465)] and ℳℰ[(14)(25)(36)(𝑎𝑏)] have traces of −1 and
0, respectively, and it is seen in Table 7.A.1 that they generate the irrepℰ of 𝒞(−)3v . We
can now use the relations in Section 12.4 of Ref. [74] or, equivalently, in Section 3.1
of Ref. [153] to determine, by matrix multiplication involving ℳℰ[(123)(465)] and
ℳ
ℰ[(14)(25)(36)(𝑎𝑏)], the representation matrices for all operations in 𝒞(−)3v .
It was discussed above how the irrep ℰ1 of 𝒢36 can be classified as (Γ(−), Γ(+)) =

(ℰ,𝒜1), where Γ(−) and Γ(+) are irreps of 𝒞(−)3v and 𝒞(+)3v , respectively. We have already
determined a group of representation matrices belonging to theℰ irrep of 𝒞(−)3v , and to
obtain one for the𝒜1 (totally symmetric) irrep of 𝒞(+)3v , the 1 × 1 representation matrices

ℳ
𝒜1[(123)(456)] =ℳ𝒜1[(14)(26)(35)(𝑎𝑏)∗] = 1 (7.4.4)

are introduced for its generating operationsℊ(+)2 = (123)(456) andℊ(+)4 = (14)(26)(35)(𝑎𝑏)∗.
Again, we can use the relations in Section 12.4 of Ref. [74] or in Section 3.1 of Ref. [153]
to determine the representation matrices for all operations on 𝒞(+)3v . It is rather trivial
here since these representation matrices all are the 1 × 1 matrix 1.

We now have ℰ representation matrices for the six operations in 𝒞
(−)
3v and 𝒜1

representation matrices for the six operations in𝒞(+)3v , and we can formℰ1 representation
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matrices for the 36 operations in 𝒢36 by forming the 36 products of ℳℰ[ℊ(−)], ℊ(−) ∈
𝒞
(−)
3v , with the constant (= 1 always in this case)ℳ𝒜1[ℊ(+)], ℊ(+) ∈ 𝒞(+)3v .

Forℰ2 = (ℰ,𝒜2), we can obtain the representation matrices in the same vein as for
ℰ1. The only difference is that we replace the 𝒞(+)3v representation matrices by

ℳ
𝒜1[(123)(456)] = 1 and ℳ

𝒜2[(14)(26)(35)(𝑎𝑏)∗] = −1. (7.4.5)

For ℰ3 = (𝒜1,ℰ) and ℰ4 = (𝒜2,ℰ), the representation matrices are determined by
interchanging the 𝒞(−)3v and 𝒞(+)3v representation matrices in the determination made for
ℰ1 andℰ2, respectively.

Finally, the direct product of the representation matrices of the twoℰ representations
gives the𝒢 = (ℰ,ℰ) representation.

7.5 Ro-vibrational coordinates used for ethane

For ethane, there are 3 × 8 − 7 = 17 small-amplitude vibrational coordinates. These
will be referred to as the rigid coordinates as they have an equilibrium value. The
torsional coordinate (describing the independent rotations of the CH3 groups) does not
have one equilibrium geometry. Instead, it has three. Figure 7.5.1 shows representative
members of three of the vibrational coordinate classes: the C –C bond length denoted
by RC, one of six C –H𝑘 bonds denoted by R, and one of six bond angles (H𝑘–C–C)
denoted by 𝛼. The small-amplitude vibrational coordinates RC, R𝑘 , and 𝜃𝑘 (𝑘 = 1 . . . 6)
measure the displacements of the respective internal coordinates from their equilibrium
values, that is the coordinates actually used are RC − RC

e , R𝑖 − Re (𝑖 = 1, . . . , 6) and
𝜃𝑗 − 𝜃e (𝑗 = 1, . . . , 6). The R𝑘/𝜃𝑘 coordinates are equivalent and so they have a common
equilibrium value Re/𝜃e.

RC
R

𝜃

Figure 7.5.1: Representative members of three of the vibrational coordinate classes.
Here, R𝐶 is the C –C bond length, R is one of the six C–H𝑘 bond lengths R𝑖 , and 𝜃 is
one of the six (H𝑗-C-C) bond angles 𝜃𝑗 .

The last vibrational class is obtained from six dihedral angles 𝜙12, 𝜙23, 𝜙31, 𝜙45, 𝜙56,
𝜙64, one of which is labelled 𝜙 in Figure 7.5.2. 𝜙𝑖 𝑗 is the angle between the H𝑖 – C– C
and H𝑗 – C– C planes, where protons 𝑖 and 𝑗 belong to the same CH3 group. Only
four of the six angles are linearly independent due to the constraints 𝜙12 + 𝜙23 + 𝜙31
= 𝜙45 + 𝜙56 + 𝜙64 = 2𝜋. The positive directions of rotation for the 𝜙𝑖 𝑗 angles are from
proton 1→ 2→ 3 for the one CH3 group, and from proton 4→ 5→ 6 for the other. The
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independent coordinates constructed from the six 𝜙𝑖 𝑗 angles are

𝛾1 =
1√
6
(2𝜙23 − 𝜙31 − 𝜙12),

𝛾2 =
1√
2
(𝜙31 − 𝜙12),

𝛿1 =
1√
6
(2𝜙56 − 𝜙64 − 𝜙45),

𝛿2 =
1√
2
(𝜙64 − 𝜙45),

(7.5.1)

which transform as the 𝐺 representation of𝒢36.

5
4

6

2

3

1

𝑥

𝑦

𝜙

𝜏

Figure 7.5.2: A Newman projection of ethane, with the CH3 group containing protons 1,
2, and 3, being closest to the viewer. One of the dihedral angles used in the vibrational
classes is labelled by 𝜙 and the torsional angle is labelled by 𝜏 and is measured in the
counter-clockwise direction. The 𝑥 axis halves the dihedral angle between the H1 – C– C
and H4 – C– C planes.

To describe the orientation of the BF frame when the rigid coordinates are in
equilibrium, one approach is to attach coordinate axes on each CH3 group. Here, the
𝑧 axis is the same for both and points from Cb to Ca, while the 𝑥𝑎 and 𝑥𝑏 axes point in
the direction of Ca – H1 and Cb – H4, respectively, when the molecule is viewed in the
projection of Figure 7.5.3. The 𝑦 axes ensure that the Cartesian axes are right handed.
With this construction, the 𝜃 and 𝜙 Euler angles describing the direction of the 𝑧 axis
for CH3 group are the same while the 𝜒 angles describing the rotation about the 𝑧 axis
are different and are denoted by 𝜒𝑎 and 𝜒𝑏 . These increase in the counter-clockwise
direction due to the right hand rule.

As explained in Ref. [74], to achieve maximum separation of the torsional, and
rotational motion, it is expedient to define two new coordinates from 𝜒𝑎 and 𝜒𝑏 . The
rotational coordinate 𝜒 is set to

𝜒 =
1
2(𝜒𝑎 + 𝜒𝑏) (7.5.2)

and hence the 𝑥 axis shown in Figure 7.5.2 halves the angle between H1 – C– C and
H4 – C– C and increases in the counter-clockwise direction. The torsional angle 𝜏 could
be defined as

𝜏 = 𝜒𝑎 − 𝜒𝑏 (7.5.3)
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and hence, as indicated in Figure 7.5.2, is the angle from H4 – C– C to H1 – C– C in the
counter-clockwise direction. trove uses a different choice and defines 𝜏 as the average
of three dihedral angles. To define these, three pairs of protons (4, 1), (6, 2), and (5, 3)
are formed with the two members belonging to different CH3 groups. The pairs are
chosen such that the protons 𝑖 and 𝑗 in each (𝑖 , 𝑗) pair form a dihedral angle 𝜏𝑖 𝑗 of 𝜋 in
the staggered equilibrium geometry of Figure 7.1.1 and 𝜏𝑖 𝑗 = 0 for the eclipsed geometry
(see Figure 7.5.4), using the labelling of Figure 7.2.1. In a general instantaneous geometry,
each (𝑖 , 𝑗) pair defines a dihedral angle 𝜏𝑖 𝑗 (where the positive direction of rotation for
the 𝜏𝑖 𝑗 angles is from proton 1→ 2→ 3) and the torsional angle is then given by a
symmetric combination

𝜏 =
1
3(𝜏41 + 𝜏62 + 𝜏53). (7.5.4)

With this definition, 𝜏 = 0, 2𝜋/3, and 4𝜋/3 correspond to eclipsed configurations,
while, at 𝜏 = 𝜋/3, 𝜋, and 5𝜋/3, the molecule is in one of its three rigid coordinate
equilibrium geometries. The torsional angle 𝜏 has definite transformation properties
under the operations of𝒢36 (see also Appendix 7.B). As discussed in Section 7.5.2, the
two coordinate-pair values (𝜏, 𝜒) and (𝜏+2𝜋, 𝜒+𝜋) describe the same physical situation.
However, the coordinate which 𝜏 is based on, 𝜒𝑎 − 𝜒𝑏 , has a range of 4𝜋. Although a
given geometry can be specified by a value of 𝜏 in the interval [0, 2𝜋], we must allow 𝜏
to range over [0, 4𝜋] to obtain a correct correlation with 𝜒𝑎 − 𝜒𝑏 (see Section 7.5.2 below).

5

4

6

𝑥𝑏

𝑦𝑏

2

3

1
𝑥𝑎

𝑦𝑎

Figure 7.5.3: A Newman projection of ethane, with the CH3 group containing protons 1,
2, and 3 being closest to the viewer. The 𝑥 and 𝑦 components of the coordinate axes
attached to each CH3 group is shown, the subscript 𝑎 signifying that the coordinate axes
are for the CaH3 group. To ensure the coordinate system is right handed, the 𝑧 axis (the
same for both groups) points from Cb to Ca. With this construction, the 𝜃 and 𝜙 Euler
angles describing the direction of the 𝑧 axis are the same for each CH3 group while the
𝜒 angle describing the rotation about the 𝑧 axis are different and are denoted by 𝜒𝑎 and
𝜒𝑏 . These increase in the counter-clockwise direction due to the right hand rule.

In conclusion, the coordinate classes, used to diagonalise the reduced Hamiltoni-
ans, are

1. the C-C bond length RC;

2. six C-H bond lengths R𝑘 , 𝑘 = 1, 2, . . . , 6;

3. six bond angles (H𝑘-C-C) = 𝜃𝑘 , 𝑘 = 1, 2, . . . , 6;
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a

1

32

b

4

56
Figure 7.5.4: Ethane in the eclipsed configuration.

4. four dihedral-angle coordinates 𝛾1, 𝛾2, 𝛿1, and 𝛿2;

5. the torsional angle 𝜏; and

6. the three rotational angles (𝜃, 𝜙, 𝜒).
The primitive basis functions for classes 1, 2, and 3 are obtained using the Numerov–
Cooley approach [29, 98, 99], while, harmonic-oscillator eigenfunctions [74] are used
for class 4. The primative basis set for class 5 is constructed from the normalised,
4𝜋-periodic Fourier series functions

√
1/2𝜋 cos(𝑘𝜏/2) and

√
1/2𝜋 sin(𝑘𝜏/2). Both the

KEO and PES must be functions of 𝜏 in the extended interval [0, 4𝜋] (see Section 7.5.2).

7.5.1 Transformation of the vibrational coordinates under𝒢36

As detailed in Section 7.3, one can construct every operation of 𝒢36 with only four
generating operations. In the trove calculations, the generators ℊ(−)2 = (132)(456),
ℊ
(+)
2 = (123)(456), ℊ(+)4 = (14)(26)(35)(𝑎𝑏)∗ and ℊ(−)4 = (14)(25)(36)(𝑎𝑏) are used. Then,

to describe the transformation properties of a coordinate for all elements in 𝒢36, one
only needs to determine these properties for the four generating operations. In trove, a
procedure to generate the irreducible representations of𝒢36 based on these four group
generators and the multiplication rules in Table 7.2.1 was implemented. The latter can
be conveniently represented as the following recursive rule:

𝒯𝑖 = 𝒯𝑗𝒯𝑘 , (7.5.5)

where the operations𝒯𝑖 ,𝒯𝑗 and𝒯𝑘 (𝑖 , 𝑗 , 𝑘 = 1, . . . , 36) are as organised in Table 7.5.1.
Each of the vibrational coordinates and the torsional coordinate can be expressed as

a function of the nuclear Cartesian coordinates. The procedure of Appendix 2.J was
used to determine the transformation of these coordinates under the𝒢36 operations in a
systematic way, although in the majority of cases the result is intuitive.

The C –C bond length RC is invariant under all𝒢36 operations. The six C –Hk bond
lengths R𝑘 and the six Hk – C– C bond angles 𝜃𝑘 are given the generic labels 𝜍𝑘 , as
the two classes transform identically. (𝜍1, 𝜍2, 𝜍3) have the following transformation
properties under the generating operations:

©­«
𝜍′1
𝜍′2
𝜍′3

ª®¬ = ©­«
0 0 1
1 0 0
0 1 0

ª®¬ ©­«
𝜍1
𝜍2
𝜍3

ª®¬ for (123)(456),
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©­«
𝜍′1
𝜍′2
𝜍′3

ª®¬ = ©­«
1 0 0
0 0 1
0 1 0

ª®¬ ©­«
𝜍4
𝜍5
𝜍6

ª®¬ for (14)(26)(35)(𝑎𝑏)∗,

©­«
𝜍′1
𝜍′2
𝜍′3

ª®¬ = ©­«
0 1 0
0 0 1
1 0 0

ª®¬ ©­«
𝜍1
𝜍2
𝜍3

ª®¬ for (132)(456),

©­«
𝜍′1
𝜍′2
𝜍′3

ª®¬ = ©­«
1 0 0
0 1 0
0 0 1

ª®¬ ©­«
𝜍4
𝜍5
𝜍6

ª®¬ for (14)(25)(36)(𝑎𝑏) (7.5.6)

while for (𝜍4, 𝜍5, 𝜍6) they are given by

©­«
𝜍′4
𝜍′5
𝜍′6

ª®¬ = ©­«
0 0 1
1 0 0
0 1 0

ª®¬ ©­«
𝜍4
𝜍5
𝜍6

ª®¬ for (123)(456),

©­«
𝜍′4
𝜍′5
𝜍′6

ª®¬ = ©­«
1 0 0
0 0 1
0 1 0

ª®¬ ©­«
𝜍1
𝜍2
𝜍3

ª®¬ for (14)(26)(35)(𝑎𝑏)∗,

Table 7.5.1: The recursive rules to generate the elements of𝒢36 using the four generators
𝒯2 = ℊ

(+)
2 = (123)(465), 𝒯4 = ℊ

(−)
4 = (14)(25)(36)(𝑎𝑏), 𝒯7 = ℊ

(−)
2 = (132)(456), and

𝒯19 = ℊ
(+)
4 = (14)(26)(35)(𝑎𝑏)∗. See also Table 7.2.1 for the class structure of 𝒢36 and

Figure 7.5.5 for an illustration of the effects of the generators.

𝒯1 = ℰ 𝒯19 = (14)(25)(36)(𝑎𝑏) = ℊ(−)4
𝒯2 = (123)(456) = ℊ(+)2 𝒯20 = (16)(24)(34)(𝑎𝑏) = 𝒯7𝒯21
𝒯3 = (132)(465) = 𝒯2

2
𝒯21 = (15)(26)(34)(𝑎𝑏) = 𝒯7𝒯19

𝒯4 = (14)(26)(35)(𝑎𝑏)∗ = ℊ(+)4 𝒯22 = (153426)(𝑎𝑏) = 𝒯19𝒯2
𝒯5 = (16)(25)(34)(𝑎𝑏)∗ = 𝒯2𝒯6 𝒯23 = (162435)(𝑎𝑏) = 𝒯19𝒯3
𝒯6 = (15)(24)(36)(𝑎𝑏)∗ = 𝒯2𝒯4 𝒯24 = (143624)(𝑎𝑏) = 𝒯20𝒯2

𝒯7 = (132)(456) = ℊ(−)2 𝒯25 = (152634)(𝑎𝑏) = 𝒯20𝒯3
𝒯8 = (123)(465) = 𝒯7

2
𝒯26 = (163524)(𝑎𝑏) = 𝒯21𝒯2

𝒯9 = (465) = 𝒯7𝒯2 𝒯27 = (142536)(𝑎𝑏) = 𝒯21𝒯3
𝒯10 = (123) = 𝒯7𝒯3 𝒯28 = (23)(56)∗ = 𝒯19𝒯4
𝒯11 = (132) = 𝒯8𝒯2 𝒯29 = (13)(46)∗ = 𝒯19𝒯5
𝒯12 = (456) = 𝒯8𝒯3 𝒯30 = (12)(45)∗ = 𝒯19𝒯6
𝒯13 = (152436)(𝑎𝑏)∗ = 𝒯7𝒯4 𝒯31 = (12)(46)∗ = 𝒯20𝒯4
𝒯14 = (142635)(𝑎𝑏)∗ = 𝒯7𝒯5 𝒯32 = (23)(45)∗ = 𝒯20𝒯5
𝒯15 = (162534)(𝑎𝑏)∗ = 𝒯7𝒯6 𝒯33 = (13)(56)∗ = 𝒯20𝒯6
𝒯16 = (163425)(𝑎𝑏)∗ = 𝒯8𝒯4 𝒯34 = (13)(45)∗ = 𝒯21𝒯4
𝒯17 = (153624)(𝑎𝑏)∗ = 𝒯8𝒯5 𝒯35 = (12)(56)∗ = 𝒯21𝒯5
𝒯18 = (143526)(𝑎𝑏)∗ = 𝒯8𝒯6 𝒯36 = (23)(46)∗ = 𝒯21𝒯6

163 of 191



7.5. Ro-vibrational coordinates used for ethane 7.𝒢36(EM) MS Group for C2H6

©­«
𝜍′4
𝜍′5
𝜍′6

ª®¬ = ©­«
0 0 1
1 0 0
0 1 0

ª®¬ ©­«
𝜍4
𝜍5
𝜍6

ª®¬ for (132)(456),

©­«
𝜍′4
𝜍′5
𝜍′6

ª®¬ = ©­«
1 0 0
0 1 0
0 0 1

ª®¬ ©­«
𝜍1
𝜍2
𝜍3

ª®¬ for (14)(25)(36)(𝑎𝑏). (7.5.7)

The dihedral angle coordinates (𝛾1, 𝛾2, 𝛿1, 𝛿2) are mixed by the𝒢36 operations. The
transformation properties are most easily determined by using the correspondence with
the transformation of the R𝑘 and 𝜃𝑘 coordinates. For (𝛾1, 𝛾2), we write

©­«
𝛾1
𝛾2
2𝜋

ª®¬ = 𝑍 ©­«
𝜙12
𝜙23
𝜙31

ª®¬ (7.5.8)

with

𝑍 =
©­­«
− 1√

6
2√
6
− 1√

6
− 1√

2
0 1√

2
1 1 1

ª®®¬ (7.5.9)

where the third row of 𝑍 takes into account the constraint 𝜙12 + 𝜙23 + 𝜙31 = 2𝜋.
After the operation (123)(456), protons 1, 2, and 3 are found at the positions initially

occupied by protons 3, 1, and 2, respectively, and so the angles 𝜙12, 𝜙23, 𝜙31 are permuted
as follows ©­«

𝜙′12
𝜙′23
𝜙′31

ª®¬ = ©­«
𝜙31
𝜙12
𝜙23

ª®¬ = 𝑆 ©­«
𝜙12
𝜙23
𝜙31

ª®¬ = 𝑆𝑍−1 ©­«
𝛾1
𝛾2
2𝜋

ª®¬ (7.5.10)

with

𝑆 = ©­«
0 0 1
1 0 0
0 1 0

ª®¬ (7.5.11)

and so the transformed values of (𝛾1, 𝛾2) are

©­«
𝛾′1
𝛾′2
2𝜋

ª®¬ = 𝑍 ©­«
𝜙′12
𝜙′23
𝜙′31

ª®¬ = 𝑍𝑆𝑍−1 ©­«
𝛾1
𝛾2
2𝜋

ª®¬ (7.5.12)

where

𝑍 𝑆 𝑍−1 =
©­­«
−1

2 −
√

3
2 0√

3
2 −1

2 0
0 0 1

ª®®¬ . (7.5.13)

With the upper 2 × 2 corner of this matrix, we can express the transformed values
(𝛾′1, 𝛾′2) in terms of (𝛾1, 𝛾2). The transformation matrix for (𝛾1, 𝛾2) for (123)(456), and
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the ones for the other generating operations, obtained in a similar manner, are(
𝛾′1
𝛾′2

)
=

(
−1

2 −
√

3
2√

3
2 −1

2

) (
𝛾1
𝛾2

)
for (123)(456),(

𝛾′1
𝛾′2

)
=

(
1 0
0 −1

) (
𝛿1
𝛿2

)
for (14)(26)(35)(𝑎𝑏)∗,(

𝛾′1
𝛾′2

)
=

(
−1

2

√
3

2
−
√

3
2 −1

2

) (
𝛾1
𝛾2

)
for (132)(456),(

𝛾′1
𝛾′2

)
=

(
1 0
0 1

) (
𝛿1
𝛿2

)
for (14)(25)(36)(𝑎𝑏),

(7.5.14)

and those for (𝛿1, 𝛿2) are given by(
𝛿′1
𝛿′2

)
=

(
−1

2 −
√

3
2√

3
2 −1

2

) (
𝛿1
𝛿2

)
for (123)(456),(

𝛿′1
𝛿′2

)
=

(
1 0
0 −1

) (
𝛾1
𝛾2

)
for (14)(26)(35)(𝑎𝑏)∗,(

𝛿′1
𝛿′2

)
=

(
−1

2 −
√

3
2√

3
2 −1

2

) (
𝛿1
𝛿2

)
for (132)(456),(

𝛿′1
𝛿′2

)
=

(
1 0
0 1

) (
𝛾1
𝛾2

)
for (14)(25)(36)(𝑎𝑏).

(7.5.15)

The transformation of the torsional angle 𝜏 due to 𝒢36 operations is detailed in Ap-
pendix 7.B. The results are listed in Table 7.5.2, which also provides the equivalent
rotation of the BF frame which will be used in the next section.

7.5.2 The extended molecular symmetry group𝒢36(EM)

As described in Section 15.4.4 of Ref. [74], the separation of the rotational and torsional
degrees of freedom has led to 𝜒 and 𝜏 being double-valued. That is, there are two sets of
(𝜒, 𝜏) values associated with the same physical situation. This is most straightforwardly
seen by considering Eq. (7.5.2) and the three angles 𝜒𝑎 , 𝜒𝑏 , and 𝜒 appearing in it. The
angle 𝜒𝑎 is determined entirely by the positions in space of protons 1, 2, 3 and their
carbon nucleus C𝑎 ; 𝜒𝑏 is determined by the positions of protons 4, 5, 6 and their carbon
nucleus C𝑏 ; and 𝜒 is the average of the two. Due to the 2𝜋 periodicity of 𝜒𝑎 , increasing
it by 2𝜋 does not change the positions in space of the nuclei in CaH3, however, in this
case, 𝜒→ 𝜒 +𝜋 and 𝜏→ 𝜏+ 2𝜋. Thus, the two coordinate pairs (𝜒,𝜏) and (𝜒 +𝜋,𝜏+ 2𝜋)
describe identical physical situations.

One way of avoiding this ambiguity would be to use a BF frame system with, for
example, 𝜒 = 𝜒𝑏 . This BF frame is attached to the CH3 group with protons 4, 5, and
6, and not influenced by the other CH3 group. A 𝜒 coordinate chosen in this manner
has no ambiguity. However, this choice precludes the separate symmetrisation of the
rotational basis set, a requirement of trove and thoroughly explained in Chapter 6.
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For non-rigid molecules, the Eckart conditions are amended by the Sayvetz condition
[170] ∑

𝛼

𝑚𝛼𝑎′𝛼(𝜏) · (𝑟𝛼 − 𝑎𝛼) = 0 (7.5.16)

where now the reference Cartesian coordinates 𝑎(𝜏) are functions of a non-rigid vibra-
tional coordinate 𝜏 and the BF frame is set to the PAS frame for every value of 𝜏 while all
other coordinates are in equilibrium. The prime on 𝑎′(𝜏) signifies that it is a derivative.
The frame in this case is the bisector of Section 7.5. If a reference frame based on 𝜒 = 𝜒𝑏
was chosen with the 𝑧 axis parallel to the C–C bond and the origin in the middle of the
C–C bond, the reference coordinates would be

𝑎H1(𝜏) = ©­«
𝑐 cos(𝜏)
𝑐 sin(𝜏)
𝑑

ª®¬ , 𝑎H4(𝜏) = ©­«
𝑐
0
−𝑑

ª®¬ (7.5.17)

for some 𝑐 and 𝑑. The coordinates of the other atoms would be

𝑎H2 = 𝐴𝑎H1 , 𝑎H3 = 𝐴2𝑎H1 , 𝑎H6 = 𝐴𝑎H4 , 𝑎H5 = 𝐴2𝑎H4 , 𝑎C𝑏 = −𝑎C𝑎 (7.5.18)

where 𝐴 = 𝑀𝑧(2𝜋/3). The carbons would only have a 𝑧 component and would be
constants. The Eckart conditions would be

𝐶 = 𝑚C(𝑎C𝑎 × 𝑟C𝑎 − 𝑎C𝑎 × 𝑟C𝑏 )
+ 𝑚H(𝑎H1 × 𝑟H1 + 𝐴𝑎H1 × 𝑟H2 + 𝐴2𝑎H1 × 𝑟H3

+ 𝑎H4 × 𝑟H4 + 𝐴2𝑎H4 × 𝑟H5 + 𝐴𝑎H4 × 𝑟H6) = 0. (7.5.19)

The operation (123)(456) changes the hydrogen labels in the usual way. However, due
to the change in the 𝜏 angle, the PAS equilibrium coordinates would change according
to 𝑎 → 𝐴𝑎 for hydrogens 1, 2, and 3. The hydrogens 4, 5, and 6 and the carbons would
be unchanged. We would have

𝐶′ = 𝑚C(𝑎C𝑎 × 𝑟C𝑎 − 𝑎C𝑎 × 𝑟C𝑏 )
+ 𝑚H(𝐴𝑎H1 × 𝑟H3 + 𝐴2𝑎H1 × 𝑟H1 + 𝑎H1 × 𝑟H2

+ 𝑎H4 × 𝑟H6 + 𝐴2𝑎H4 × 𝑟H4 + 𝐴𝑎H4 × 𝑟H5). (7.5.20)

It is not possible to apply a rotation of 2𝜋/3 or 4𝜋/3 about the 𝑧 axis for 𝐶′ = 0. Thus,
we cannot symmetrise the rotational basis set with this frame.

On the other hand, the bisector reference frame for the Eckart-Sayvetz conditions
can be used for this purpose, and in the process of proving this we will determine the
equivalent rotations of the BF frame for the 𝒢36 operations. Later, a geometric frame
will also be introduced.

For the transformation of the torsional angle 𝜏 due to 𝒢36 operations, we use the
results of Appendix 7.B. The results are listed in Table 7.5.2, which also provides the
equivalent rotation of the BF frame.

For the bisector PAS, the coordinates of H1 and H4 are given by

𝑎H1(𝜏) = ©­«
𝑐 cos(𝜏/2)
𝑐 sin(𝜏/2)

𝑑

ª®¬ , 𝑎H4(𝜏) = ©­«
𝑐 cos(𝜏/2)
−𝑐 sin(𝜏/2)
−𝑑

ª®¬ (7.5.21)
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for some 𝑐 and 𝑑. The coordinates of the other atoms are Eq. (7.5.18) for the new 𝑎H1
and 𝑎H4 where 𝐴 = 𝑀𝑧(2𝜋/3). The carbons only have a 𝑧-component and are constants.
The Eckart conditions are the same as Eq. (7.5.19) (except the 𝑎s depend on 𝜏) and the
Sayvetz condition is given by

𝑆 = 𝑚C(𝑎′C𝑎
· 𝑟C𝑎 − 𝑎′C𝑎

· 𝑟C𝑏 ) − 𝑚C(𝑎′C𝑎
· 𝑎C𝑎 − 𝑎′C𝑎

· 𝑎C𝑏 )
+ 𝑚H(𝑎′H1

· 𝑟H1 + 𝐴𝑎′H1
· 𝑟H2 + 𝐴2𝑎′H1

· 𝑟H1 + 𝑎′H4
· 𝑟H4 + 𝐴2𝑎′H4

· 𝑟H5 + 𝑎′H4
· 𝑟H6)

− 𝑚H(𝑎′H1
· 𝑎H1 + 𝐴𝑎′H1

· 𝑎H2 + 𝐴2𝑎′H1
· 𝑎H1 + 𝑎′H4

· 𝑎H4 + 𝐴2𝑎′H4
· 𝑎H5 + 𝑎′H4

· 𝑎H6) = 0.
(7.5.22)

Table 7.5.2: The generators of the extended group𝒢36 of C2H6 and their effect on the
torsional angle (𝜏) and the equivalent rotation of the generator.

Transformed 𝜏 Equivalent rotation 𝒢36 generator
𝜏 − 4𝜋/3 ℰ (123)(456)
𝜏 ℛ

2𝜋/3
𝑧 (132)(456)

2𝜋 − 𝜏 ℰ (14)(26)(35)(𝑎𝑏)∗
𝜏 ℛ

𝜋
0 (14)(25)(36)(𝑎𝑏)

The operation (123)(456) changes the PAS equilibrium coordinates according to
𝑎 → 𝐴2𝑎 for hydrogens 1, 2, and 3 and 𝑎 → 𝐴𝑎 for hydrogens 4, 5, and 6. The carbons
are unchanged. We thus have

𝐶′ = 𝑚C(𝑎C𝑎 × 𝑟C𝑎 − 𝑎C𝑎 × 𝑟C𝑏 )
+ 𝑚H(𝐴2𝑎H1 × 𝑟H3 + 𝑎H1 × 𝑟H1 + 𝐴𝑎H1 × 𝑟H2

+ 𝐴𝑎H4 × 𝑟H6 + 𝑎H4 × 𝑟H4 + 𝐴2𝑎H4 × 𝑟H5) = 0. (7.5.23)

which is the original equation and therefore there is no equivalent rotation. The
derivatives of the PAS equilibrium coordinates transform the same way under a change
in 𝜏 and thus the Sayvetz condition is trivially satisfied.

For the operation (132)(456), the angle 𝜏 does not change, but the rotationℛ2𝜋/3
𝑧 is

applied and thus the instantaneous Cartesian coordinates change by 𝑟 → 𝐴𝑇𝑟 = 𝐴2𝑟.
We thus have

𝐶′ = 𝑚C(𝑎C𝑎 × 𝐴2𝑟C𝑎 − 𝑎C𝑎 × 𝐴2𝑟C𝑏 )
+ 𝑚H(𝑎H1 × 𝐴2𝑟H2 + 𝐴𝑎H1 × 𝐴2𝑟H3 + 𝐴2𝑎H1 × 𝐴2𝑟H1

+ 𝑎H4 × 𝐴2𝑟H6 + 𝐴2𝑎H4 × 𝐴2𝑟H4 + 𝐴𝑎H4 × 𝐴2𝑟H5). (7.5.24)

We apply 𝐴𝑇𝐴 to the conditions and using the same technique as before, the result is
𝐴𝑇 applied to the original conditions, and this is zero. For the Sayvetz condition, we
use that 𝐴𝑎 · 𝐴𝑏 = 𝑎 · 𝑏 and pre-apply 𝐴 to both terms of all dot products. The original
condition is re-obtained.
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The operation (14)(26)(35)(𝑎𝑏)∗ has no rotation and changes 𝑎H1 → −𝑎H4 and vice
versa. The result is

𝐶′ = −𝑚C(𝑎C𝑎 × 𝑟C𝑏 − 𝑎C𝑎 × 𝑟C𝑎 )
+ 𝑚H(𝑎H1 × 𝑟H1 + 𝐴𝑎H4 × 𝑟H6 + 𝐴2𝑎H4 × 𝑟H5

+ 𝑎H1 × 𝑟H1 + 𝐴2𝑎H1 × 𝑟H3 + 𝐴𝑎H1 × 𝑟H2)). (7.5.25)

which is the original set of conditions and thus is zero. The Sayvetz condition is satisfied
in the same way.

The element (14)(25)(36)(𝑎𝑏) does not transform 𝜏 but has the equivalent rotation
ℛ

𝜋
0 . Thus it transforms the instantaneous coordinates to 𝑟 → 𝑁𝑟, where 𝑁 = 𝑀𝑥(𝜋),

and changes the conditions to

𝐶′ = 𝑚C(𝑎C𝑎 × 𝑁𝑟C𝑏 − 𝑎C𝑎 × 𝑁𝑟C𝑎 )
+ 𝑚H(𝑎H1 × 𝑁𝑟H4 + 𝐴𝑎H1 × 𝑁𝑟H5 + 𝐴2𝑎H1 × 𝑁𝑟H6

+ 𝑎H4 × 𝑁𝑟H1 + 𝐴2𝑎H4 × 𝑁𝑟H2 + 𝐴𝑎H4 × 𝑁𝑟H1). (7.5.26)

The matrix 𝑁 changes the equilibrium Cartesian coordinates of the carbons by 𝑁𝑎 = −𝑎
and H1’s by 𝑁𝑎H1 = 𝑎H4 . Also, 𝑁𝐴 = 𝐴2𝑁 and 𝑁𝐴2 = 𝐴𝑁 . Thus, in applying 𝐼 = 𝑁𝑁
to the transformed condition, we have

𝐶′ = 𝑁(𝑚C(−𝑎C𝑎 × 𝑟C𝑏 + 𝑎C𝑎 × 𝑟C𝑎 )
+ 𝑚H(𝑎H4 × 𝑟H4 + 𝐴2𝑎H4 × 𝑟H5 + 𝐴𝑎H4 × 𝑟H6

+ 𝑎H1 × 𝑟H1 + 𝐴𝑎H1 × 𝑟H2 + 𝐴2𝑎H1 × 𝑟H1)) = 0. (7.5.27)

which is zero. The Sayvetz condition works the same way as in the previous operations.
Before completing this proof, we must deal with the double-valuedness of (𝜏, 𝜒).

This involves extending𝒢36 to the extended molecular symmetry group𝒢36(EM) in the
manner first introduced by Hougen [171], as detailed in Section 15.4.4 of Ref. [74]. This
extension involves the introduction of a fictitious operationℰ′ (taken to be different from
the identityℰ) which, for ethane, we can think of as letting the CaH3 do a full torsional
revolution relative to the CbH3. That is,ℰ′ has the effect of transforming 𝜒→ 𝜒 + 𝜋 and
𝜏→ 𝜏 + 2𝜋. After the application of (ℰ′)2 the BF frame is back where it started, and so
we take (ℰ′)2 =ℰ. ℰ′ does not affect the rigid coordinates; it has the same effect as the
identity operation on the complete rotation-torsion-vibration wavefunction of ethane.

Table 7.5.3 shows the transformations of the𝒢36 operations on 𝜒 using the equivalent
rotations of Table 7.5.2, as well as repeating the effect on 𝜏. It also includes the effect
ofℰ′ to show all generators of𝒢36(EM). Asℰ′ does not affect any other coordinate, it
commutes (for those coordinates) with𝒢36 operations. Actually,ℰ′ also commutes with
the𝒢36 operations for 𝜏 and 𝜒. This can be checked with Table 7.5.3. Therefore,𝒢36(EM)
has the structure of a direct product

𝒢36(EM) = 𝒢36 ⊗ {ℰ,ℰ′}. (7.5.28)

The two-element group {ℰ,ℰ′} is cyclic of order 2 and has two irreps𝒜 and𝒜′, both
one-dimensional, with the representation matrices 1 or −1, respectively, underℰ′. The
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irreps of 𝒢36(EM) are straightforwardly constructed from those of 𝒢36. Each irrep Γ
of𝒢36 in Table 7.3.1 gives rise to two irreps of𝒢36(EM), Γ𝑠 = (Γ,𝒜) and Γ𝑑 = (Γ,𝒜′) as
given in Table A-33 of Ref. [74]. An irrep Γ𝑠 has identical characters for the operations
ℰ and ℰ′, 𝜒𝑠(ℰ′) = 𝜒𝑠(ℰ), whereas for the irrep Γ𝑑, 𝜒𝑑(ℰ′) = −𝜒𝑑(ℰ). As long as we
pretend thatℰ′ ≠ℰ, we must also pretend that the coordinate values (𝜏, 𝜒) andℰ′ (𝜏, 𝜒)
= (𝜏+ 2𝜋, 𝜒+𝜋) describe different physical situations. As a consequence, we must allow
𝜏 to be periodic with a period of 4𝜋 as already mentioned in connection with Eq. (7.5.4).
The torsional potential energy function 𝑉1D(𝜏) is periodic with period 2𝜋, 𝑉1D(𝜏) =
𝑉1D(𝜏 + 2𝜋) for 𝜏 ∈ [0, 2𝜋], and this symmetry causes the torsional wavefunctions to be
either symmetric (of Γ𝑠 symmetry) or antisymmetric (of Γ𝑑 symmetry) underℰ′.

Table 7.5.3: Transformation of the torsion angle 𝜏 and the rotation angle 𝜒 under the
generators of𝒢36(EM).

Transformed 𝜏 Transformed 𝜒 𝒢36(EM) generator
𝜏 − 4𝜋/3 𝜒 (123)(456)
𝜏 𝜒 + 2𝜋/3 (132)(456)
2𝜋 − 𝜏 𝜒 + 𝜋 (14)(26)(35)(𝑎𝑏)∗
𝜏 𝜒 (14)(25)(36)(𝑎𝑏)
𝜏 + 2𝜋 𝜒 + 𝜋 ℰ

′

We know that, in reality, ℰ′ = ℰ, and so only functions and coordinates with Γ𝑠
symmetries occur in nature. Since we can form, for example, basis functions of an
allowed Γ𝑠 symmetry as products of an even number of factors, each with a forbidden
symmetry Γ′𝑑, say, we need to consider also the Γ𝑑 symmetries initially for the torsional
and rotational basis functions. The final wavefunctions resulting from our theoretical
calculations should be subjected to a “reality check”: they must necessarily have a Γ𝑠
symmetry in𝒢36(EM). In particular, torsional basis functions of 𝑑 symmetry must be
combined with rotational basis functions of 𝑑 symmetry to produce a torsion-rotation
basis function of an allowed 𝑠 symmetry.

We may now return to the rotational basis symmetrisation with a Sayvetz frame.
Once again,ℰ′ only changes 𝜏 by 𝜏→ 𝜏 + 2𝜋. The Euler angle 𝜒 changes by 𝜒→ 𝜒 + 𝜋
with an associated equivalent rotation ℛ𝜋

𝑧 . Due to the 𝜏 change, the equilibrium
𝑎s transform as 𝑎 → 𝑀𝑧(𝜋)𝑎; the frame rotation changes the 𝑟𝛼s by 𝑟𝛼 → 𝑀𝑧(𝜋)𝑟𝛼.
Applying 𝐼 = 𝑁𝑁 , where 𝑁 = 𝑀𝑧(𝜋), to the transformed condition then results in
𝑀𝑧(𝜋) applied to the original condition and is thus zero. The Sayvetz condition again
works the same way. Therefore we may use the Sayvetz frame with a PES bisector to
symmetrise the rotational basis set.

As for the geometric frame, it has the 𝑥 axis pointing at an angle

𝜙 =
(𝛾2 + 𝛿2)

3
√

2
(7.5.29)

from the bisector between H1–H4. See Figure 7.5.6. The proof that this frame can be
used to symmetrise a rotational basis set is given in Appendix 3 of Ref. [4].
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Figure 7.5.5: Newman projections of ethane showing the effects of the𝒢36(EM) generators
(see Table 7.5.3) on 𝜏 and 𝜒; the change of 𝜏 is represented by the curved arrow encircling
the C–C axis and the change of 𝜒 is illustrated by the change in 𝑥 axis orientation. (A)
Starting configuration with 𝜏 = 4𝜋/9 and the 𝑥 axis forming the clockwise angle 8𝜋/9
with the horizontal. (B) The effect of (123)(465) which causes 𝜏 to decrease by 4𝜋/3
(equivalent to an increase of 8𝜋/3) and 𝜒 to remain constant. (C) The effect of (132)(456)
with 𝜏 remaining constant and 𝜒 changing by +2𝜋/3. (D) The effect of (14)(26)(35)(𝑎𝑏)∗
with 𝜏→ 2𝜋 − 𝜏 and 𝜒→ 𝜒 + 𝜋. (E) The effect of (14)(25)(36)(𝑎𝑏) under which 𝜏 and
𝜒 are both invariant. (F) The effect ofℰ′ which has no 𝒢36 partner, ℰ′𝜏 = 𝜏 + 2𝜋 and
ℰ
′𝜒 = 𝜒 + 𝜋.
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𝜏 𝜙

H1

H2

H3

𝑦

𝑥

Figure 7.5.6: The geometric frame for C2H6. The 𝑧 axis is parallel to the C–C bond.
The 𝑥 axis is at an angle 𝜙 = (𝛾15 + 𝛿17)/(3

√
2) from the bisector of the dihedral angle

between the planes formed by C–C–H1 and C–C–H4 which is denoted by the red line.

7.5.3 Rigid-symmetric-rotor function representations

As explained in Section 2.7.4, trove uses rigid-symmetric-rotor eigenfunctions |𝐽𝑘𝑚⟩ [74]
as primitive rotational basis functions. For 𝐾 ≠ 0 (where 𝐾 = |𝑘 |), the corresponding
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symmetrised functions are defined as

|𝐽𝐾𝑚𝜂⟩ = 𝑖𝜂(−1)𝜎√
2
(|𝐽𝑘𝑚⟩ + (−1)𝐽+𝐾+𝜂 |𝐽−𝑘𝑚⟩) (7.5.30)

where {
𝜎 = 𝐾 mod 3 𝜂 = 1
𝜎 = 0 𝜂 = 0,

(7.5.31)

while for 𝐾 = 0 it is |𝐽00𝜂⟩ = 𝑖𝜂 |𝐽 , 0, 0⟩ where 𝜂 = 𝐽 mod 2. With the rigid rotor
transformation properties given in Equations (12-46) and (12-47) of Ref. [74], along with
Tables 12-1 and 15-6 of Ref. [74], we can determine the irreps of the rigid rotor basis
functions by using the characters of the transformation; the results are summarised in
Table 7.5.4. While these are the correct irreps up to equivalence, the functions as defined
in Eq. (7.5.30) do not have the correct transformation properties using the choice made
in Eq. (7.4.3). In particular, for 𝐾 = 3𝑛 + 1 and 𝐾 odd the transformation for operation
ℊ = (14)(25)(36)(𝑎𝑏) is

𝒪ℊ

(|𝐽𝐾𝑚0⟩
|𝐽𝐾𝑚1⟩

)
=

(
0 1
1 0

) (|𝐽𝐾𝑚0⟩
|𝐽𝐾𝑚1⟩

)
(7.5.32)

which is an equivalent representation of the operation.
The function combinations in Eq. (7.5.30) are desirable because their associated

Hamiltonian matrix elements are real; trove assumes real rotational matrix elements.
To continue using these combinations, the representation of Eq. (7.5.32) is used in 𝒞(−)3v ,
that is, the irreps of 𝒞(−)3v are (𝒜1,𝒜1, ℰ̃) where the matrix for the ℰ̃ representation of
(14)(25)(36)(𝑎𝑏) is the reflection matrix of Eq. (7.5.32). The representations of 𝒞(+)3v are as
provided in Section 7.3.

Table 7.5.4: The irreps of the rigid rotor wavefunctions. For 𝐾 > 0, the two functions
with 𝜂 = 0, 1 generate a two-dimensional irrep or the direct sum of two one-dimensional
irreps. For a given 𝐾 value, we list first the 𝜂 = 0 function and then the 𝜂 = 1 one. 𝑛 is a
positive integer.

𝐾 Γ

0 (𝐽 even) 𝒜1𝑠
0 (𝐽 odd) 𝒜2𝑠
𝐾 = 3𝑛 (𝐾 even) 𝒜1𝑠 ⊕𝒜2𝑠
𝐾 = 3𝑛 (𝐾 odd) 𝒜4𝑑 ⊕𝒜3𝑑
𝐾 = 3𝑛 + 1 (𝐾 even) ℰ1𝑠
𝐾 = 3𝑛 + 1 (𝐾 odd) ℰ2𝑑
𝐾 = 3𝑛 + 2 (𝐾 even) ℰ1𝑠
𝐾 = 3𝑛 + 2 (𝐾 odd) ℰ2𝑑
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7.6 PES coordinates

Originally, the PES was represented in the coordinates

Q1 = 1 − exp
(
−𝑎(RC − RC

e )
)

(7.6.1)

Q𝑘 = 1 − exp (−𝑏(R𝑖 − Re)) ; 𝑘 ∈ {2, . . . , 7}, 𝑖 = 𝑘 − 1, (7.6.2)
(𝑎 is used for the C–C internal coordinate RC, and 𝑏 is used for the six C–H internal
coordinates R1,R2, R3, R4, R5 and R6) the bending angular coordinates

Q𝑘 = (𝜃𝑖 − 𝜃e) ; 𝑘 ∈ {8, . . . , 13}, 𝑖 = 𝑘 − 7, (7.6.3)

the dihedral coordinates from Equation (7.5.1)

(Q14,Q15,Q16,Q17) = (𝛾1, 𝛾2, 𝛿1, 𝛿2) (7.6.4)

and, finally, the torsional term
Q18 = 1 + cos 3𝜏 (7.6.5)

where 𝜏 is defined in Eq. (7.5.4). The quantities RC
e , Re, and 𝜃e are the equilibrium

structural parameter values of C2H6. Unfortunately, a PES expanded in these coordinates
does not correctly fit the ab initio points at all, with the problem arising from the torsional
coordinate. As of writing this thesis, this is an ongoing problem and is discussed in the
next chapter.

7.7 Class 5 numerical example

This section applies the symmetrisation procedure on a small test basis set for the
torsional coordinate. For ethane, the sampling procedure in trove was modified by
applying it to the five group generators only (out of 72) and then using the group
multiplication properties to derive the rest. This simple modification led to a significant
speedup of the sampling part of the code and is now the standard part of trove.

Figure 7.7.1 shows the torsional potential energy as a function of 𝜏. To solve this
Schrödinger equation in a Fourier-series basis, 𝜏 is let to vary from 0 to 4𝜋 so that the
potential energy curve in Figure 7.7.1 has six minima. The figure indicates the lowest
allowed torsional energies. Some of these energies are degenerate, i.e., associated with
more than one eigenfunction of a given irreducible representation. In the limit of an
infinite barrier height, the energies should be six-fold degenerate. With the actual, finite
height of the barrier, the energies form near-degenerate clusters with a total multiplicity
of 6 as shown in Figure 7.7.2. However, since the description of the torsional angle 𝜏 ∈
[0, 4𝜋] is unphysical, only three of the states in the cluster (of 𝑠 symmetry) exist in nature
if they are combined with rigid-rotor basis functions of 𝑠 symmetry. The other three
states (of 𝑑 symmetry) must be combined with rigid-rotor basis functions of 𝑑 symmetry
in order that the total rotation-torsion state can exist in nature. For 𝐽 = 0, only the 𝑠-type
torsional states will exist since only 𝑠-type rigid-rotor basis functions are available. The
𝑑-type rovibrational functions are disregarded in trove as they are assigned a nuclear
spin statistical weight of zero. The 𝑠-type nuclear spin statistical weights are 6, 10, 6, 10,
4, 4, 2, 6, and 12 for the𝒢36(EM) symmetries𝒜1𝑠 ,𝒜2𝑠 ,𝒜3𝑠 ,𝒜4𝑠 ,ℰ1𝑠 ,ℰ2𝑠 ,ℰ3𝑠 ,ℰ4𝑠 , and𝒢𝑠 ,
respectively.

172 of 191



7.7. Class 5 numerical example 7.𝒢36(EM) MS Group for C2H6

0 𝜋
2

𝜋 3𝜋
2

2𝜋 5𝜋
2

3𝜋 7𝜋
2

4𝜋

0

200

400

600

800

1,000

𝜏 (rad)

En
er

gy
/ℎ
𝑐

(c
m
−1

)

Figure 7.7.1: The torsional potential energy as a function of the torsion angle 𝜏. The
allowed energy values are marked by blue horizontal lines. Each energy may correspond
to more than one eigenfunction of a given irreducible representation. Dashed lines
indicate states of 𝑑-type symmetry.
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Figure 7.7.2: A enlarged detail of Figure 7.7.1, showing the lowest energy cluster with
the𝒢36(EM) symmetry labels indicated.
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7.8 Chapter summary

This chapter has presented a detailed description of the 𝒢36 and 𝒢36(EM) molecular
symmetry groups. A full set of irreducible representation matrices have been derived and
tested for constructing symmetry-adapted potential energy functions and basis functions
of ethane C2H6. Both the construction of the transformation matrices and the symmetry
adaption can be implemented as numerical procedures as part of computational
approaches to the solution of the rovibrational Schrödinger equation. A self-consistent
choice of the vibrational, torsional and rotational coordinates for ethane, satisfying the
𝒢36(EM) symmetry requirements, has been introduced and analysed in full detail. The
irreducible representation matrices as well as the coordinate choice made for ethane in
this chapter have been implemented in trove. These results will be important in the
future line-list calculation of ethane.

Appendix 7.A Character table of 𝒞
(−)
3v and 𝒞

(+)
3v .

𝒢36 is the direct product of 𝒞(−)3v and 𝒞(+)3v ,𝒢36 = 𝒞
(−)
3v × 𝒞(+)3v , and so the irreps of𝒢36 are

obtained from those of 𝒞(−)3v and 𝒞(+)3v . These latter irreps are given in Table 7.A.1.

Table 7.A.1: Common character tables of 𝒞(−)3v and 𝒞(+)3v .

Γ 𝒞
(±)
1 𝒞

(±)
2 𝒞

(±)
3

1 2 3
𝒜1 1 1 1
𝒜1 1 1 −1
ℰ 2 −1 0

We label the elements of 𝒞(±)3v as ℊ(±)𝑗 , 𝑗 = 1, 2, . . . , 6 (see Table 7.2.1). The nuclei are

labelled as in Figure 7.2.1. 𝒞(±)3v has three classes,𝒞(±)1 = {ℰ} = {ℊ(±)1 },𝒞(±)2 = {ℊ(±)2 ,ℊ(±)3 },
and 𝒞(±)3 = {ℊ(±)4 ,ℊ(±)5 ,ℊ(±)6 }.

Appendix 7.B Transformation of 𝜏

The torsional coordinate 𝜏 is defined by Equation (7.5.4):

𝜏 =
1
3(𝜏41 + 𝜏62 + 𝜏53), (7.B.1)

and we investigate how this coordinate transforms under the generating operations of𝒢36,
ℊ
(+)
2 = (123)(456), ℊ(−)2 = (132)(456), ℊ(+)4 = (14)(26)(35)(𝑎𝑏)∗, and ℊ(−)4 = (14)(25)(36)(𝑎𝑏)

used in the trove calculations. The transformation properties of the dihedral angles 𝜏𝑖 𝑗
are derived as outlined in Appendix 2.J.
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The operation (123)(456) permutes the protons 1, 2, 3, 4, 5, and 6 to the positions
previously occupied by the protons labelled 3, 1, 2, 6, 4, and 5, and the transformed
value of 𝜏 is given by

𝜏′ =
1
3(𝜏63 + 𝜏51 + 𝜏42) (7.B.2)

where

𝜏63 = 𝜏62 + 𝜙23, (7.B.3)
𝜏51 = 𝜏53 + 𝜙31, (7.B.4)
𝜏42 = 𝜏41 + 𝜙12. (7.B.5)

For example, 𝜏51 = 𝜏53 + 𝜙31, the plus sign coming about because the positive
direction of rotation for the 𝜏𝑖 𝑗 dihedral angles (proton 1→ 2→ 3) is the same as that of
𝜙12, 𝜙23, and 𝜙31. Hence

𝜏′ =
1
3

(
𝜏41 + 𝜏62 + 𝜏53 +

[
𝜙12 + 𝜙23 + 𝜙31

] )
(7.B.6)

=
1
3 (𝜏41 + 𝜏62 + 𝜏53 + 2𝜋) = 𝜏 + 2𝜋/3 (7.B.7)

or, equivalently, 𝜏′ = 𝜏 − 4𝜋/3 as given in Table 7.5.3, to ensure that (123)3(456)3 =ℰ.
After carrying out the operation (132)(456), the protons 1, 2, 3, 4, 5, and 6 are found at

the positions previously occupied by the protons labelled 2, 3, 1, 6, 4, and 5, respectively.
Consequently, the transformed value of 𝜏 is given by

𝜏′ =
1
3(𝜏62 + 𝜏53 + 𝜏41) = 𝜏. (7.B.8)

For (14)(26)(35)(𝑎𝑏)∗,

𝜏′ =
1
3(𝜏14 + 𝜏26 + 𝜏35) (7.B.9)

=
1
3(−𝜏41 − 𝜏62 − 𝜏53) = −𝜏 (7.B.10)

or, equivalently, 2𝜋 − 𝜏 as given in Table 7.5.3.
Finally, for (14)(25)(36)(𝑎𝑏),

𝜏′ =
1
3(−𝜏14 − 𝜏26 − 𝜏35) (7.B.11)

=
1
3(𝜏41 + 𝜏62 + 𝜏53) = 𝜏. (7.B.12)

The transformation properties derived here are summarised in Table 7.5.3.
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Chapter 8

Summary and Future Work

8.1 Summary

The two main focal points in this thesis were an analytic KEO approach and the
exploitation of symmetry groups, both of which facilitated rovibrational line list
calculations in trove.

Chapter 3 explores an analytic representation of the KEO, with a focus on valence
coordinates. On the theoretical side, we found the fundamental functions present in the 𝑠
vectors expressed in valence coordinates. This also established the necessary conditions
for the KEO to maintain a sum-of-product form, a prerequisite for trove calculations and
a highly desirable property in general. Moreover, we derived the relationship between 𝑠
vector components in different BF frames. This is a generalisation of a previous result
of Ref. [105] which applied to the 𝐺 matrix. The advantage in relating the 𝑠 vector
components is that they have a more compact structure than the 𝐺 matrix and therefore
are easier to transform. Finally, the flexibility of the Sørensen method was demonstrated
from the derivation of the 𝑠 vectors expressed in polyspherical coordinates. Here again,
the more compact 𝑠 vector representation is more favourable to work with.

On the practical side, we wrote a general Mathematica script that generates analytic
KEOs. With it, relatively few input changes are needed for each molecule. We also
modified trove such that it could read the Mathematica output in multiple formats
and perform the calculations. The first (and worst) approach was hard-coding the 1D
functions present in the KEO. An on-the-fly procedure was also developed to read the
1D functions in the trove input. In both formats, the numbering of the functions was
based on and exploited trove’s bĳection between a 3N − 6 dimensional index and a
single index. For larger molecules this was no longer tenable and trove was modified so
that it would read the full 3N − 6 dimensional index.

Utilising the results of the previous chapter, Chapter 4 detailed the line list calculation
of H2CS. This built upon the previous work of Ref. [142] by using the ab initio PES
of Ref. [143]. The H2CS Hamiltonian was expressed in valence coordinates and
employed an analytic KEO derived with the aforementioned Mathematica script. The
accuracy of the PES was insufficient so this was refined by Sergey Yurchenko. The
refinement parameters were taken from the results of the H2CS marvel project. Here,
all experimentally available transitions were collated and used the marvel program
to convert it to a set of 4254 experimental energy levels. The very close band centres
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between the 𝜈4 and 𝜈6 modes meant a large number of transitions involving those states
had to be relabelled to ensure consistency. Using a refined PES and analytic KEO proved
worthwhile as the resulting line list was of high quality. The line list covered the 0 cm−1

to 8000 cm−1 range for states up to 𝐽 = 120 was calculated. By marvelising this line
list, the calculated rovibrational energy levels were replaced with marvel energy levels
where possible.

Chapter 5 was a change of pace where which describes a symmetry group whose
motivation was not based on physical reality but nevertheless still proved useful for
trove’s 3N−6 implementation for linear molecules. Here, an artificial group was created
(and programmed in trove) in such a way to set the condition 𝑘 = ℓ neatly within
trove’s pre-existing infrastructure. It is an unconventional way to use groups, not being
motivated by the physics but rather for as a convenient solution to a practical issue.

For C2H6, it was eventually realised that a bisector frame could not be used to
symmetrise a rotational basis set. Chapter 6 provides a systematic approach to the
transformation of the coordinates and the frame under different BF frames. This resulted
in a condition which dictated whether rotational symmetrisation is possible. Using
the method described to find symmetrisable frames, we defined geometric frames for
the CH3Cl and C2H6 that were not Eckart and Sayvetz frames. This knowledge may
hopefully prove useful for related molecules and be expanded for others. It also suggests
a possible link between symmetry-separated rotational and vibrational coordinates and
the magnitude of the coupling between them. This would have to be studied further.

The final chapter, and the work for C2H6 in general, combines much of the knowledge
from the previous chapters. Being a much larger molecule, the disadvantage of Taylor
expanding a KEO begins to rear its head. Practically, it is only possible to expand the
KEO up to second order, where already there are of the order of 107 coefficients 𝑎𝔭
of Eq. (3.2.2). The value in using an analytic KEO then becomes clear, both due to its
accuracy but also because it is much more compact. A KEO in valence coordinates
is also ideally suited for a non-rigid molecule such as C2H6. The requirement of a
(non-bisector) geometric frame for rotational symmetrisation also makes use of the 𝑠
vector relations between frames of Chapter 3 as calculating the KEO in the final frame
by using the (complicated) rotational conditions is far more difficult than using a bond
vector frame and applying a subsequent frame rotation and transforming the 𝑠 vectors
accordingly.

Chapter 7 also made substantial use of the group theory of Chapter 2. Previously it
was found that𝒢36 can be written as a direct product of two 𝒞3v groups and there are
only four generators. This heavily reduced the workload required in the implementation
of𝒢36 and its manifestation in C2H6 in trove. We used this structure for the generation
of the irreps and the transformation of the coordinates: only the transformations for the
generator operations were programmed. We also exploited it in trove’s symmetrisation
step where the sampling procedure, used to determine the representation matrices, was
only applied to the generators. In all cases, the remaining transformations/matrices
were derived from the𝒢36 product table.

The extension to the𝒢36(EM) group and the use of the 𝜏 dihedral angle had a few
subtleties that stalled progress. First, we did not immediately understand that there
is an ambiguity in the transformation of 𝜏 using the method of Appendix 7.B . For
all transformations, there are two possible choices. Transformations with an order of
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3 only had one choice which respected the group properties, and must be used. For
transformations with an order of two, there is freedom, but either choice locks in a
specific transformation of the rotational coordinates. They must be internally consistent
and satisfy the rules laid out in Section 6.2. Section 7.5.2 debunks the notion that
one may use a bond vector frame attached to one of the CH3 groups in equilibrium,
even for the Sayvetz frame. Finally, the particularly-defined rigid-rotor functions of
Section 7.5.3 did not transform as the irreps programmed in trove but rather by an
equivalent representation. The irreps for the 𝒞3v groups needed to be modified to
respect this.

In summary, while there is much work to do with the line list calculation of C2H6, a
lot of groundwork has already been laid.

8.2 Future work

Looking further, there are currently two issues. The first relates to the analytic represen-
tation, and the second more general. For the former, the externally calculated analytic
KEO is not presently compatible with the PES internally expanded in trove. Specifically,
for basis sets beyond the minimal size, Eq. (2.5.1) is non-zero between certain states of
differing symmetry. The magnitude of the error is of the order of 1 cm−1 and does not
appear to grow substantially with the size of the basis set. The number of non-zero
terms also is much smaller than the number of basis functions. The final vibrational
energies are comparable to those calculated with the Taylor expanded KEO, but of
course the final calculations should not have these errors.

The source of the error is not clear. It is fairly difficult to match precisely the coordinate
definition in trove to those in Mathematica, specifically the dihedral coordinates, owning
to the slightly different way they are defined in both. In trove, a Z-matrix is used to
define the initial vibrational coordinates of each atom, which does use the equation
for the dihedrals in terms of the Cartesian coordinates. The equation for the dihedrals
has a “sign” attached to it in that the angle from a first plane to a second plane is
negative the angle from the second to the first. The symmetry adapted coordinates
in trove, which are linear combinations of dihedrals, are just algebraic expressions of
the coordinate variables. In fact, the Z-matrix dihedrals (of which there are five) are
not the un-symmetrised dihedrals, of which there are nine. The latter are also linear
combinations of the former.

The analytic KEO must have the symmetrised dihedrals expressed as equations
of the Cartesian coordinates. The symmetrised variables must also be expressed
in terms of the un-symmetrised. The two must be internally compatible but they
must also be compatible with trove. There are many correct ways for compatibility
within Mathematica, but they will not necessarily be compatible with trove. These
incompatibilities boil down to sign differences and are hard to pinpoint, although this
may not be the cause at all.

The KEO which ran in trove for a small basis set was tested by equating the KEO at a
random point and then compared to the KEO transformed under MS operations (using
the transformation properties of the coordinates programmed in trove) and equated
at the same point. The result was an invariant Hamiltonian. Nevertheless, the issue
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remains.
The other more general problem concerns fitting of the KEO. As explained in

Section 2.7.6, the functional form of the ab initio PES must be invariant under MS
operations. The highly symmetric nature of C2H6 invariably means that many of the
expansion parameters are identical. In general, the more symmetric (and therefore
fewer expansion parameters for a given expansion order), the higher the expansion
order must be to fully fit the ab initio energies while maintaining the symmetry. Related
to this is the torsional coordinate. It was mentioned that the coordinate expansions of
Eq. (7.6) are not sufficient. One example of this is the second order bend expansion,
modulated by a function of the torsional coordinate. The torsional function cos 3𝜏 does
not respect the symmetry. Instead terms of the form

cos 𝜏(𝛼1𝛼4 + 𝛼2𝛼6 + 𝛼3𝛼5)
+ cos(𝜏 − 4𝜋/3)(𝛼3𝛼6 + 𝛼1𝛼5 + 𝛼2𝛼4)
+ cos(𝜏 + 4𝜋/3)(𝛼2𝛼5 + 𝛼3𝛼4 + 𝛼1𝛼5)

(8.2.1)

are needed. In general, combinations of cos 𝜏, sin 𝜏, cos 3𝜏, and sin 3𝜏 will be present.
An adequate model is a work in progress.

For the experimental side of C2H6, a marvel project has started, with help from
Mikhail Semenov and Jaya Chand, but this has paused after the data was compiled
as the states are assigned in the 𝒟3h group. There is no one-to-one correlation from
𝒟3h to𝒢36. Accurate calculated energies in the𝒢36 group are required to match to the
experimental energies and thus reassign the latter. We hope that in surmounting the
PES fitting problem, and, ideally, in ensuring the analytic KEO is compatible with trove,
that proper rovibrational calculations for C2H6 can commence. In reality, other obstacles
probably remain. For example, because of the sheer number of vibrational modes and
subsequent basis set size, more effective basis set pruning techniques will likely be
required.
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