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MisMatch: Calibrated Segmentation via
Consistency on Differential Morphological

Feature Perturbations With
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Abstract— Semi-supervised learning (SSL) is a promis-
ing machine learning paradigm to address the ubiquitous
issue of label scarcity in medical imaging. The state-of-the-
art SSL methods in image classification utilise consistency
regularisation to learn unlabelled predictions which are
invariant to input level perturbations. However, image level
perturbations violate the cluster assumption in the setting
of segmentation. Moreover, existing image level perturba-
tions are hand-crafted which could be sub-optimal. In this
paper, we propose MisMatch, a semi-supervised segmenta-
tion framework based on the consistency between paired
predictions which are derived from two differently learnt
morphological feature perturbations. MisMatch consists of
an encoder and two decoders. One decoder learns positive
attention for foreground on unlabelled data thereby gen-
erating dilated features of foreground. The other decoder
learns negative attention for foreground on the same
unlabelled data thereby generating eroded features of
foreground. We normalise the paired predictions of the
decoders, along the batch dimension. A consistency reg-
ularisation is then applied between the normalised paired
predictions of the decoders. We evaluate MisMatch on four
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different tasks. Firstly, we develop a 2D U-net based Mis-
Match framework and perform extensive cross-validation
on a CT-based pulmonary vessel segmentation task and
show that MisMatch statistically outperforms state-of-the-
art semi-supervised methods. Secondly, we show that 2D
MisMatch outperforms state-of-the-art methods on an MRI-
based brain tumour segmentation task. We then further
confirm that 3D V-net based MisMatch outperforms its 3D
counterpart based on consistency regularisation with input
level perturbations, on two different tasks including, left
atrium segmentation from 3D CT images and whole brain
tumour segmentation from 3D MRI images. Lastly, we find
that the performance improvement of MisMatch over the
baseline might originate from its better calibration. This
also implies that our proposed AI system makes safer
decisions than the previous methods.

Index Terms— Semi-supervised segmentation, calibra-
tion, differential morphological augmentations, consis-
tency regularisation.

I. INTRODUCTION

TRAINING of deep learning models requires a large
amount of labelled data. However, in applications such

as in medical image analysis, anatomic pathologic labels are
prohibitively expensive and time-consuming to obtain, with
the result that label scarcity is almost inevitable. Advances in
the medical image analysis field requires the development of
label efficient deep learning methods and accordingly, semi-
supervised learning (SSL) has become a major research inter-
est within the community. Among the myriad SSL methods
used, consistency regularisation based methods have achieved
the state-of-the art in classification [1], [2], [3], [4], thus we
focus on this genre in this paper.

Existing consistency regularisation methods [1], [2], [3], [4],
[5], [6], [7], [8] are mainly focusing on producing predictions
which are invariant against different input level perturbations.
In other words, we can interpret that consistency regularisation
methods aim at training networks which generate confidence
invariant predictions. For example, if we apply weak aug-
mentation such as flipping on an input image, the model will
assign a high probability of this image belonging to its correct
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Fig. 1. Different strategies for consistency regularisation. (a) Previous
methods [1], [2], and [5] use hand-crafted augmentation at input level
to create predictions with different confidences. (b) Previous method [6]
uses hand-crafted augmentation at feature level to create predictions
with different confidences. (c) Our method end-to-end learns to create
predictions with different confidences.

label, hence, the prediction of the weakly augmented image is
with high confidence; if we apply strong augmentation such
as rotation on an input image, then the testing is much more
difficult and the model might assign a low probability of this
image to its correct label, therefore, such a prediction of a
strongly augmented image is with low confidence. A consis-
tency regularisation is enforced to align the paired predictions.
The relationship between consistency regularisation and con-
fidence invariant predictions imply that such networks should
be having better calibration, which will be empircally verified
in Section VIII. However, data augmentation techniques used
in existing semi-supervised learning are typically hand-crafted
which might be sub-optimal. Practically, such augmentation
techniques are not adaptive across pixels which may be
problematic as spatial correlations amongst pixels are crucial
for segmentation, e.g. neighbouring pixels might belong to the
same category. Most importantly, direct adaption of input level
perturbations in segmentation violates the cluster assumption
which is the foundation of semi supervised learning, we will
explain this issue further in later Section III.

In this paper, we propose an end-to-end learning framework
to generate predictions with different confidences. In order
to change prediction confidences at a pixel-wise level in
a realistic way, we use two different attention mechanisms
to respectively dilate and erode foreground features which
correspond to the areas of “ground truth.” A preliminary
version of this manuscript has been presented at MIDL
2022 [9]. Comparing to the previous MIDL version, we now
included extra experiments on two 3D data sets using a
different base network; a more detailed explanation of the
motivation; a more principled method section under the guid-
ance of the theory of effective receptive field. The code is
here: https://github.com/moucheng2017/MisMatchSSL. Our
contributions are summarised as:

• We provide an intuition of the relationship between con-
sistency regularisation and semi-supervised learning, and
why consistency regularisation with data augmentation
wouldn’t work well in segmentation.

• We propose a framework called MisMatch for semi
supervised segmentation, by combining differential
morphological feature perturbations with consistency
regularisation.

• We discovered that our consistency regularisation
improves model calibration, leading to safer AI deploy-
ment for medicine.

• We intensively evaluated our framework on four medical
applications including: 1) 2D segmentation of lung vessel
of CT images; 2) 2D segmentation of brain tumour of
MR images; 3) 3D segmentation of left atrium of MR
images; 4) 3D segmentation of whole tumour from MRI
images. We conclude that our consistency regularisation
on feature perturbations is more effective than consistency
on input level perturbations.

II. RELATED WORK

Popular classes of common SSL methods have been com-
pared on a benchmark in [10]. A direct application of
smoothness assumption is called label propagation which
propagate the labels to unlabelled data according to the
similarity between labelled and unlabelled data [11], obvi-
ously, those similarity graphs need computationally heavy
Laplacian matrices which encounter scalability issue. Another
common method is called entorpy minimisation method which
drives models to attain low entropy predictions on unlabelled
data [12], [13]. One drawback of entropy minimisation method
is the risk at overfitting leading to wrong decision boundary
for data points close to low density regions (see Appendix E
in [10]). Other attempts include generative models such as the
one in [14] which combines GAN in training, suffering from
unstable training. The state-of-the-art methods are dominated
by consistency regularisation methods becuase they are easy
to use and effective across different tasks. Of the consistency
regularisation methods, Mean-Teacher [1] is the most repre-
sentative example, containing two identical models which are
fed with inputs augmented with different Gaussian noises. The
first model learns to match the target output of the second
model, while the second model uses an exponentially moving
average of parameters of the first model. One of the state-of-
the-art SSL methods [2], [3] combines entropy minimisation
and consistency regularisation.

SSL in Segmentation: In semi-supervised image segmenta-
tion, consistency regularisation is commonly used [5], [15],
[16], [17], [18], [19] where different data augmentation tech-
niques are applied at the input level. Another related work [8]
forces the model to learn rotation invariant predictions. Apart
from augmentation at the input level, recently, feature level
augmentation has gained popularity for consistency based
SSL segmentation [6], [7]. There also have been attempts
of creating perturbations via using dual network branch
[20], [21]. Different from [20] and [21], the perturbations we
use are also learnt via network itself. Apart from consistency
regularisation methods in medical imaging, there also have
been other attempts, including the use of generative models
for creating pseudo data points for training [22], [23] and
different auxiliary tasks as regularisation [24], [25]. Since our
method is a new consistency regularisation method, we focus
on comparing with state-of-the-art consistency regularisation
methods.
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Fig. 2. Cluster assumptions in semi supervised classification and semi supervised segmentation. (a) In classification, limited labels will cause wrong
decision boundary (red straight line), where each dot is an image. (b) In classification, cluster assumption with consistency regularisation on input
level perturbations at images helps to find a better decision boundary, because low density regions of images align well with the correct decision
boundary. (c) In segmentation, limited labels will cause wrong decision boundary (red straight line), where each dot is a pixel. (d) In segmentation,
cluster assumption with consistency regularisation on input level perturbations at pixels will not help to find a better decision boundary, because low
density regions of pixels do not align with the correct decision boundary (tight boundaries between objects).

III. MOTIVATIONS

A. Cluster Assumption
In this section, we will explain the cluster assumption

for semi-supervised classification and how it is violated
if we straightforwardly transfer existing consistency regu-
larisation methods from classification to segmentation. The
cluster assumption is a variant of smoothness assumption.
The smoothness assumption states that if two data points
(x1 and x2) are adjacent to each other, their outputs or labels
(y1 and y2) should also be close to each other. The cluster
assumption directly derives from the smoothness assumption,
for example, if there is a dense population of data points
in a space, then highly likely that cluster of those densely
neighbouring data points are in the same class. In other words,
the cluster assumptions implies there exists low density regions
among different classes or different clusters of data points and
the correct decision boundary should lie at the low-density
regions. Equivalently, the key is to find the low-density regions
which leads to rightful decision boundary.

B. Consistency With Data Augmentation in Classification
We start with a classical two moon example to explain how

consistency regularisation with data augmentation works in
semi-supervised classification. Each moon represents a class
and each dot represents an image for semi-supervised classi-
fication. As shown in the two moons example in Fig. 2(a),
if there are very limited labelled data points such as two
data points, any decision boundary between the two labelled
data points is possible, for example, the examplar decision
boundary shown in Fig. 2(a) can wrongly classify half of
the data points. The two moon example in Fig. 2(a) and (b)
is also a perfect example for cluster assumption that the
low density region between the two moons can separate the
two moons from each other. In Fig. 2(b), let’s focus on
the two images x and y which are from upper moon class
and lower moon class respectively. If we apply two random
augmentations (directional arrows in Fig. 2(b)) on the images,
we will get p1(x) and p2(x) from x , p1(y) and p2(y) from y.
Since x is closer to the low-density region, the augmented x
could across the decision boundary thereby p2(x) could be
wrongly classified as the lower moon class, meanwhile, p1(x)

still stays in the cluster of upper moon class. In this case,
p1(x)! = p2(x) although they are derived from the same
data point x . The difference between p1(x) and p2(x) will
be more than 0 which can be back-propagated to optimise the
model parameters. On the contrary, the image y is closer to
the centre of the cluster of lower moon class, that p1(y) and
p2(y) are the same, resulting in 0 differences which does not
affect the model parameters. Hence, it is easy to tell that the
consistency regularisation with data augmentation makes the
model parameters sensitive to the images closer to the low-
density regions. This property will naturally drive the model to
locate the low-density regions which happen to be the correct
decision boundary.

C. Consistency With Data Augmentation
in Segmentation

However, consistency regularisation with data augmentation
will have clear limitations in segmentation. In segmentation,
as shown in Fig. 2(c), now we have each dot as a pixel
and all of the pixels are densely distributed across the image
space. In Fig. 2(c) and (d), we highlight the object boundary
with continuous red and blue dots along the two sides of
the boundary respectively. As there are hardly low-density
regions between objects, it becomes hard to align the objects
boundaries with low-density regions. If we have only two
labelled pixels from each class, we will not be able to locate
the correct decision boundary as illustrated in Fig. 2(c). If we
apply two different augmentations on x and y with consistency
regularisation as shown in Fig. 2(d), although the model can
still locate the pixels which are sensitive to the consistency
regularisation, due to the lack of clear low-density regions, the
model will not correctly locate the right decision boundaries.

D. Practical Limitations of Strong Data Augmentations
in Segmentation

Common strong data augmentation techniques typically
distort the spatial characterisation of the objects such as
shearing. As shown in Fig. 3, the image-wise label stay the
same, regardless of the data augmentation is applied. However,
strong data augmentation will modify the pixel-wise labels,
leading to difficulty of applying consistency regularisation
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Fig. 3. Strong data augmentations (e.g. shearing) change pixel-wise
labels therefore they might make pixel-wise consistency regularisation
not feasible for segmentation.

at pixel-wise if two different strong data augmentations are
applied on the same image. To avoid this practical issue,
specific strong data augmentation such as CutMix was chosen
in order to use consistency regularisation in segmentation [5].
In our paper, we propose an alternative solution. We use
augmentation at the feature level in lieu of augmentation of
the data level, to completely avoid this practical issue.

E. Proposal

Although the low-density regions do not align with the
objects boundaries anymore, a few evidences in [5] and [6]
suggested that the low-density regions actually align well with
the objects boundaries in the feature space. Meaning that it
might be possible to use consistency regularisation on the pre-
dictions which are invariant to feature perturbations to identify
the correct decision boundaries in segmentation. This directly
inspired us to focus on feature perturbations in our work
that we want to design learnable feature perturbations which
are realistic and semantically meaningful. More specifically,
we decide to apply morphological-alike perturbations on the
features. In the following sections, we show how to use induc-
tive biases of neural network topology to ask the networks to
end-to-end learn morphological feature perturbations.

IV. METHODS

A. Background: ERF and the Foreground

1) Effective Receptive Field: We introduce how to control
the size of the foreground features by controlling the effective
receptive field (ERF). ERF [26] measures the size of the
effective area at the centre of receptive field and it impacts
the most on the prediction confidence of the central pixel of
the receptive field, which should overlap with the foreground
objects with the highest confidence at the foreground central
pixel. If we want to apply morphological operations on fea-
tures of foreground objects, equivalently, we need to adjust
the ERF on the foreground. As found in [26], larger ERF
means the model can effectively take a larger area of the image
into account during inference of decision making, resulting in
higher prediction confidence at the centre, meanwhile, smaller
ERF leads to less confident prediction on the central pixel
due to the lack of visual information of neighbouring pixels.
More importantly, ERF is highly affected by the network
architecture. In particular, the dilated convolutional layer can

increase the ERF to an extent dependent on the dilation
rate [26]. Skip-connections conversely can shrink the ERF,
though the extent of this effect is as yet unknown [26]. We are
therefore inspired by [26] to design a network to control the
ERF, in order to deliberately change the prediction confidence
to morph the foreground features.

2) Overview of MisMatch: In this paper, we learn to realisti-
cally morph the foreground features by controlling the ERF for
consistency regularisation. In order to create a paired predic-
tions with different confidences for consistency regularisation,
our strategy is to dilate the foreground features and erode the
foreground features, we also compare our strategy with other
possible strategies in an ablation study in later Section VI.
As introduced in the last section, the prediction confidence
can be affected by the ERF while the ERF is decided by
the network topology. More specifically, we use the dilated
convolutional layer to raise the ERF on one hand to dilate the
foreground features, and we use skip-connections to decrease
the ERF on the other hand to erode the features of foreground.
However, we do not know how much confidence should be
changed at each pixel. To address this, we introduce soft
attention mechanism to learn the magnitude of the confidence
change for each pixel. Now we introduce how we achieve this
in the next section.

3) Differences Between Proposed Methods and Classical
Morphological Operations: We also would like to highlight
the difference between our approach at feature space and the
classical morphological operations at image space. Traditional
morphological operations simply remove/add boundary pixels
using local neighbouring information which is not differen-
tiable, in contrast, our approach is differentiable and can be
fully integrated in neural networks.

B. Architecture of Mismatch
As shown in Fig. 4, MisMatch is a framework which can

be integrated into any encoder-decoder based segmentation
architecture. In this section, we use 2D U-net [27] due to its
popularity in medical imaging, although later we also have an
experiment using a MisMatch based on a 3D V-net. Our U-net
based MisMatch (Fig. 4) has two components, an encoder
( fe) and a two-head decoder ( fd1 and fd2). The first decoder
( fd1) comprises of a series of Positive Attention Shifting
Blocks, which shifts more attention towards the foreground
area, resulting in dilating high-confidence predictions on the
foreground. The second decoder ( fd2) containing a series
of Negative Attention Shifting Blocks, shifts less attention
towards the foreground, resulting in eroding high-confidence
predictions on the foreground.

C. Positive Attention Shifting Block
Positive Attention Shifting Block aims at increasing the ERF

of the foreground, therefore dilating the foreground features.
In a standard U-net, a block ( f (.)) in the decoder comprises
two consecutive convolutional layers with kernel size (K )
3 followed by ReLU and normalisation layers. If the input
of f (.) is x and the output of f (.) is f (x), to increase the
ERF of f (x), we would aim to generate an attention mask
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Fig. 4. MisMatch (U-net based): decoder fd1 leads to dilated high confidence detection of foreground and decoder fd2 leads to eroded high
confidence detection of foreground. The final prediction is the average between outputs of fd1 and fd2. Any other encoder-decoder segmentation
network could be used.

with a larger ERF than the ERF of f (x). To do so, we add a
parallel side branch f ′(.) next to the main branch f (.). The
side branch intakes x but outputs f ′(x) with a larger ERF.
We apply Sigmoid on the output of the side branch as an
attention mask to increase the confidence of f (x). The new
block containing both f (.) and f ′(.) is our proposed Positive
Attention Shifting Block (PASB). The side branch of the PASB
is a dilated convolutional layer with dilation rate 5.

1) ERF Size in Positive Attention Shifting Block: Given the
size of ERF of nth layer as,

√
n [26], which is the input

x , as output from the previous layer. The ERF of f (x) is
E RF f (x) = K

√
n + 2. To make sure the ERF of f ′(x) is

larger than K
√

n + 2:

E RF f ′(x)

E RF f (x)

=
K ′

K

√
1

1 +
1

n+1

> lim
n→+0

K ′

K

√
0.5 > 1 (1)

From Eq1, we find K ′ > 1
√

0.5
K ≈ 1.5 K . We double the

condition as our design choice, then K ′ is 9 when K = 3.
However, the large kernel sizes significantly increase model
complexity. To avoid this, we use a dilated convolutional
layer to achieve K ′ at 9, which requires a dilation rate 5.

As the side branch has a larger ERF than the main branch,
it can raise the confidence on the foreground of the main
branch. Previous work [28], [29] has reported similar uses
of a dilated convolutional layer to increase the ERF for other
applications, without explaining the rationale for their use. See
visual evidence in Fig. 4(q) and (r).

D. Negative Attention Shifting Block

Negative Attention Shifting Block aims at decreasing the
ERF on the foreground, therefore eroding the foreground
features. Following PASB, we design the Negative Atten-
tion Shifting Block (NASB) again as two parallel branches.
In NASB, we aim to shrink the ERF of the f (x) in order to
produce a smaller ERF than the one from the main branch.
In the side branch in NASB, we use the same architec-
ture as the main branch, but with skip-connections as skip-
connections restrict the growth of the ERF with increasing
depth [26].

1) ERF Size in Negative Attention Shifting Block: Neural
networks with residual connections are equivalent to an ensem-
ble of networks with short paths where each path follows a
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Fig. 5. Visulisation of confidences in the last positive attention shifting decoder and the last negative attention shifting decoder. We focus on the
zoomed-in regions on the foreground area containing one vessel. As shown in (p) from the positive attention shifting block, the confidence on the
foreground has been raised that even the surrounding areas outside the foreground contour have a high confidence as the foreground. Meanwhile,
the confidence on the centre of the foreground remains high as the confidence is already high at the central areas before positive attention is
applied. As for the negative attention shifting block, as shown in (t), the confidence on the peripheral areas on the foreground has been decreased
as shown in green and blue colours. Additionally, the difference between before and after negative attention in (v) further confirms the effectiveness
of the negative attention, as the difference values are negative (see the colour bars in (v)). As shown in the attention weights in (j) and (n), both
the attention blocks focus on changing the confidence on the edges of the foreground, this is because the edges are normally the most ambiguous
areas.

binomial distribution [30]. If we define p as the probability
of the model going through a convolutional layer and 1 − p
as the probability of the model skipping the layer, then each
short path has a portion of

(N
k

)
pk(1 − p)n−k , contributing to

the final ERF. If we assume p is 0.5, the ERF of the side
branch is guaranteed to be smaller than the ERF of the main
branch, see Eq.2.

E RF f ′(x)

E RF f (x)

= 0.25

√
1

1 +
2
n

+ 0.5

√
1

1 +
1

n+1

+ 0.25

< lim
n→+∞

0.25 + 0.5 + 0.25 = 1 (2)

As the side branch has a smaller ERF than the main branch,
it can reduce the confidence on the foreground of the main
branch. See visual evidence in Fig. 4(u) and (v).

E. Loss Functions
For experiments on BRATS 2018 and CARVE 2014, We use

a streaming training setting to avoid over-fitting on lim-
ited labelled data so the model doesn’t repeatedly see the
labelled data during each epoch. When a label is available,
we apply a standard Dice loss [31] between the output of
each decoder and the label. When a label is not available,
we apply a mean squared error loss between the outputs of
the two decoders. This consistency regularisation is weighted
by hyper-parameter α. For experiments on LA 2018, we train
simultaneously on labelled and unlabelled images by combine
consistency regularisation loss with Dice loss.

V. EXPERIMENTS

We perform a few sets of experiments: 1) comparisons
with baselines including supervised learning and state-of-
the-art SSLs [1], [2], [6], [25] using either data or feature

augmentation; 2) investigation of the impact of the amount of
labelled data and unlabelled data on MisMatch performance;
3) ablation study of the decoder architectures; 4) ablation study
on the hyper-parameter such as α

A. Data Sets & Pre-Processing
1) CARVE 2014: The Classification of pulmonary arteries

and veins (CARVE) dataset [32] has 10 fully annotated non-
contrast low-dose thoracic CT scans. Each case has between
399 and 498 images, acquired at various spatial resolutions
between (282 × 426) to (302 × 474). 10-fold cross-validation
on the 10 labelled cases is performed. In each fold, we split
cases as: 1 for labelled training data, 3 for unlabelled training
data, 1 for validation and 5 for testing. We only use slices
containing more than 100 foreground pixels. We prepare
datasets with differing amounts of labelled slices: 5, 10, 30,
50, 100. We crop 176 × 176 patches from four corners of each
slice. Full label training uses 4 training cases. Normalisation
was performed at case wise.

2) BRATS 2018: BRATS 2018 [33] has 210 high-grade
glioma and 76 low-grade glioma MRI cases, each case con-
taining 155 slices. We focus on binary segmentation of whole
tumours in high grade cases. We randomly select 1 case for
labelled training, 2 cases for validation and 40 cases for test-
ing. We centre crop slices at 176 × 176. For labelled training
data, we extract the first 20 slices containing tumours with
areas of more than 5 pixels. To see the impact of the amount
of unlabelled training data, we use 3100, 4650 and 6200 slices
respectively. Case-wise normalisation was performed and all
modalities were concatenated. We train each model 3 times
and take the average.

3) LA 2018: Atrial Segmentation Challenge Data set [34]
has 100 volumes of 3D gadolimium-enhanced MR scans with
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TABLE I
MISMATCH (MM) VS BASELINES ON CARVE. METRIC IS INTERSECTION OVER UNION (IoU)

corresponding left atrium segmentation masks. Each scan is
isotropic with resolution at 0.625 × 0.625 × 0.625 mm3.
We follow [35] and split 100 scans into 80 for training
and 20 for testing. We also directly use the pre-processing
from [35] to normalise the centre crop each scan.

4) Task 01 Brain Tumour: Task01 Brain Tumour from Med-
ical Segmentation Decathlon consortium [36] is based on
BRATS 2017 with different naming format from BRATS
2018. Each case in The Task01 Brain Tumour has 155 slices
with 240 × 240 spatial dimension. We merge all of the
tumour classes into one tumour class for simplicity. We do
not apply centre cropping in the pre-processing here. In the
training, we randomly crop volumes on the fly with size of
96 × 96 × 96. We separate the original training cases as
labelled training data and testing data. We use the original
testing cases as unlabelled data. For the labelled training data,
we use 8 cases with index number from 1 to 8. We have
476 cases for testing and 266 cases for unlabelled training data.
We apply normalisation with statistics of intensities across the
whole training data set. We keep all of the MRI modalities as
4 channel input.

B. Implementation

We use Adam optimiser [37]. Hyper-parameters are:
α = 0.002, batch size 1 (GPU memory: 2G), learning rate
2e-5, 50 epochs. Each complete training on CARVE takes
about 3.8 hours. The final output is the average of the outputs
of the two decoders. In testing, we take an average of models
saved over the last 10 epochs across experiments. Our code is
implemented using Pytorch 1.0 [38].

C. Baselines
In the current study the backbone is a 2D U-net [27]

with 24 channels in the first encoder. To ensure a fair
comparison we use the same U-net as the backbone across
all baselines. The first baseline utilises supervised training
on the backbone, is trained with labelled data, augmented
with flipping and Gaussian noise and is denoted as “Sup1.”
To investigate how unlabelled data improves performance,
our second baseline “Sup2” utilises supervised training on
MisMatch, with the same augmentation. Because MisMatch
uses consistency regularisation, we focus on comparisons
with five consistency regularisation SSLs: 1) “mean-teacher”
(MT) [1], with Gaussian noise, which has inspired most of the

current state-of-the-art SSL methods; 2) the current state-of-
the-art model called “FixMatch” (FM) [2]. To adapt FixMatch
for a segmentation task, we use Gaussian noise as weak
augmentation and “RandomAug” [39] without shearing for
strong augmentation. We do not use shearing for augmentation
because it impairs spatial correspondences of pixels of paired
dense outputs; 3) a state-of-the-art model with multi-head
decoder [6] for segmentation (CCT), with random feature
augmentation in each decoder [6]. This baseline is also similar
to models recently developed [5], [7]; 4) a further recent model
in medical imaging [25] using image reconstruction as an
extra regularisation (MTA), augmented with Gaussian noise;
5) a U-net with two standard decoders, where we respectively
apply erosion and dilation on the features in each decoder,
augmented with Gaussian noise (Morph)”; 6) an uncertainty
aware mean-teacher based SSL segmentation model [35]. Our
MisMatch model has been trained without any augmentation.

VI. SEGMENTATION RESULTS

MisMatch consistently and substantially outperforms super-
vised baselines, the improvement is especially obvious in low
data regime. For example, on 5 labelled slices with CARVE,
MisMatch achieves 24% improvement over Sup1. MisMatch
consistently outperforms previous SSL methods [1], [2], [6],
[25] in Table I, across different data sets. Particularly, there
exists statistical difference between Mismatch and other base-
lines when 6.25% labels (100 slices comparing to 1600 slices
of full label) are used on CARVE (Table III). Qualitatively,
we observed in Fig. 8 that, the main performance boost of
MisMatch comes from the reduction of false positive detection
and the increase of true positive detection.

Interestingly, we found that Sup2 (supervised training on
MisMatch without unlabelled data) is a very competitive
baseline comparing to previous semi-supervised methods. This
might imply that MisMatch can potentially help with the
supervised learning as well.

We also found data diversity of training data highly affects
the testing performance (Fig. 6) in cross-validation experi-
ments. For example, in fold 3, 7 and 8 on CARVE, MisMatch
outperforms or performs on-par with the full label training,
whereas in the rest folds, MisMatch performs marginally
inferior to the full label training. Additionally, more labelled
training data consistently produces a higher mean IoU and
lower standard deviation (Table II). Lastly, we noticed more
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TABLE II
MISMATCH (MM) VS BASELINES ON BRATS. METRIC IS INTERSECTION OVER UNION (IoU)

Fig. 6. Full results of 10 fold cross-validation on CARVE. X-axis: number of labelled slices. Y-axis: IoU.

TABLE III
P-VALUE BETWEEN MM AND BASELINES. NON-PARAMETRIC

MANN-WHITNEY U-TEST. 100 LABELLED

SLICES OF CARVE

unlabelled training data can help with generalisation, until it
dominates training and impedes performance (Table II).

We further verify that consistency regularisation on feature
perturbations is better than consistency regularisation on input
perturbations by comparing MisMatch against UA-MT [35]
which is an representative example of the methods using
input perturbations. We compare MisMatch against UA-MT
on two 3D datasets left atrium and whole tumour areas (see
Section V-A). On the segmentation on left atrium, our method
not just outperform UA-MT but also converges faster, as illus-
trated in Fig. 9.

During testing of trained models on the whole tumour
segmentation from the Task01 Brain Tumour data set [36],
we noticed one emerging property of our model that the
our model achieves better performance when it is tested on
volumes larger than the size of the training volumes (see
Table VII and Table VIII). Also if the testing size is smaller

than the training size, the performance becomes worse (see
Table VII and Table IX).

A. Ablation Studies
We performed ablation studies on the architecture of the

decoders of MisMatch with cross-validation on 5 labelled
slices of CARVE: 1) “MM-a,” a two-headed U-net with
standard convolutional blocks in decoders, the prediction con-
fidences of these two decoders can be seen as both normal
confidence, however, they are essentially slightly different
because of random initialisation, we denote the decoder of
U-net as fd0; 2) “MM-b,” a standard decoder of U-net and a
negative attention shifting decoder fd2, this one can be seen as
between normal confidence and less confidence; 3) “MM-c,”
a standard decoder of U-net and a positive attention shifting
decoder fd1, this one can be seen as between normal confi-
dence and higher confidence; 4) “MM,” fd1 and fd2 (Ours).
As shown in Fig. 7, our MisMatch (“MM”) outperforms other
combinations in 8 out of 10 experiments and it performs on par
with the others in the rest 2 experiments. Among the results
when MisMatch outperforms, MisMatch outperforms MM-a
by 2%-14%; outperforms MM-b by 3%-18%; outperforms
MM-c by 4%-22%. We also tested α at 0, 0.0005, 0.001,
0.002, 0.004 with the same experimental setting. The optimal
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TABLE IV
ABLATION STUDIES ON ALPHA VALUE USING

CARVE WITH 5 LABELLED SLICES

TABLE V
ABLATION STUDIES ON DILATION RATE IN 3D V-NET BASED

MISMATCH USING LA 2018 WITH 2 LABELLED CASES, α AS

1 AND CUTTING GRADIENTS, NETWORK WIDTH 8.
METRIC IS DICE SCORE

TABLE VI
ABLATION STUDIES ON STOPPING GRADIENTS IN 3D V-NET BASED

MISMATCH USING LA 2018 WITH 2 LABELLED CASES, α AS 1,
NETWORK WIDTH 8. METRIC IS DICE SCORE

TABLE VII
TESTING RESULTS ON 3D SEGMENTING THE WHOLE TUMOUR FROM

TASK 01 BRAIN TUMOUR FROM MEDICAL SEGMENTATION

DECATHLON. TRAINING WITH LEARNING RATE 0.001 AND

3500 EPOCHS. TESTING ON 96 × 96 × 96 CUBES. JAC: JACCARD.
HD: HAUSDORFF DISTANCE. ASD: AVERAGE SURFACE DISTANCE

TABLE VIII
TESTING RESULTS ON 3D SEGMENTING THE WHOLE TUMOUR FROM

TASK 01 BRAIN TUMOUR FROM MEDICAL SEGMENTATION

DECATHLON. TRAINING WITH LEARNING RATE 0.001 AND

3500 EPOCHS. TESTING ON 48 × 48 × 96 CUBES. JAC: JACCARD.
HD: HAUSDORFF DISTANCE. ASD: AVERAGE SURFACE DISTANCE

TABLE IX
TESTING RESULTS ON 3D SEGMENTING THE WHOLE TUMOUR FROM

TASK 01 BRAIN TUMOUR FROM MEDICAL SEGMENTATION

DECATHLON. TRAINING WITH LEARNING RATE 0.001 AND

3500 EPOCHS. TESTING ON 128 × 128 × 96 CUBES. JAC: JACCARD.
HD: HAUSDORFF DISTANCE. ASD: AVERAGE SURFACE DISTANCE

α appears at 0.002 in Table IV. We also found that gradient
cutting helps to improve segmentation performance too, see
Table VI. In terms of network topology, as shown in Table V,
it seems that larger dilation is not always beneficial.

VII. VISUALISATION OF THE EFFECTIVENESS OF
LEARNT ATTENTION MASKS

We visualise the confidences of feature maps before
and after attention, attention weights and how much the
confidences are changed in Fig. 5 on CARVE. We focus on
zoomed-in area of one vessel which is one region-of-interest.
As shown in (c) and (e), the confidence outputs between the
two decoders are different, the one from the positive attention
decoder has more detected high confidence areas on the top
of the anatomy of the interest. As illustrated in (j) and (n), the
attention weights in the two decoders are drastically different
from each other. More specifically, the attention weights in the
negative attention decoder have relatively low values around
the edges, as shown in green and blue colours, on the contrary,
the attention weights in the positive attention decoder have
high values in most of the regions of the interest.

Another evidence supporting the effectiveness of atten-
tion blocks are the changes of the confidences as shown
in (r) and (v). After positive attention weights are applied
on (g), it is clear to see in (r) that the surrounding areas
of the originally detected contours are now also detected as
regions of the interest. Besides, in (v), we observe expected
negative changes of the confidences around edges caused by
the negative attention shifting.

The histograms of the feature maps also support the effec-
tiveness of our learnt attention masks. Between the histograms
in (j) and (m), for the high confidence interval between 0.9 and
1.0, the negative attention block has more high confidence
pixels than the positive attention block. This is because the
negative attention block decreases confidence on foreground,
thereby ending up with increasing confidence on background,
where background class is the majority class naturally con-
taining more pixels than the foreground class.

VIII. CONFIDENCE AND CALIBRATION OF MISMATCH

A. Expected Calibration Error
To qualitatively study the confidence of MisMatch, we adapt

two mostly used metrics in the community, which are Relia-
bility Diagrams and Expected Calibration Error (ECE) [40].
Following [41], we first prepare M interval bins of predictions.
In our binary setting to classify the foreground, we use
5 intervals between 0.5 to 1. Say Bm is the subset of all
pixels whose prediction confidence is in interval Im . We define
accuracy as how many pixels are correctly classified in each
interval. The accuracy of Bm is formally:

acc(Bm) =
1

|Bm |

∑
i∈Bm

1(ŷi = yi ) (3)

where ŷi is the predicted label and yi is the ground truth label
at pixel i in Bm . The average confidence within Bm is defined
with the use of p̂i which is the raw probability output of the
network at each pixel:

con f (Bm) =
1

|Bm |

∑
i∈Bm

p̂i (4)
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Fig. 7. Ablation studies on decoder architectures, cross-validation on 5 labelled slices with CARVE. MM is ours.

Fig. 8. Visual results. Yellow: ground truth. Red: False Positive. Green:
True Positives. Blue: False Negatives. Row 1-4: CARVE. Row 5-6:
BRATS.

Ideally, we would like to see con f (Bm) = acc(Bm), which
means the network is perfectly calibrated and the predic-
tions are completely trustworthy. To assess how convinc-
ing the prediction confidences are, we calculate the gap
between confidence and accuracy as Expected Calibration
Error (ECE):

EC E =

M∑
m=1

|Bm |

n
|acc(Bm) − con f (Bm)| (5)

B. MisMatch Is Well-Calibrated and Effectively Learns to
Change Prediction Confidence

As shown in Fig. 11, both positive attention shifting decoder
and negative attention shifting decoder are better calibrated
than the plain U-net. Especially, positive attention shifting
decoder produces over-confident predictions. Meanwhile, neg-
ative attention shifting decoder produces under-confident pre-
dictions for a few confidence intervals. This verifies again

Fig. 9. Results on LA 2018 between UA-MT and MisMatch with
2 labelled cases, lr 0.01, batch 4, consistency 1 and network width 8.
This further confirms that consistency regularisation on feature pertur-
bations is more effective than consistency on input perturbations.

that MisMatch can effectively learn to differently change the
prediction confidences of the same testing images.

C. Robustness of MisMatch Against Calibration Errors

As shown in the scatter plot (Fig. 10) of paired IoU and
corresponding Expected Calibration Error (ECE) of all of the
testing images in cross-validation experiments on 50 labelled
slices of CARVE, higher calibration errors correlate positively
with low segmentation accuracy. In general, MisMatch has
predictions with less calibration errors and higher IoU values.
As shown in the 2nd order regression curves for each trend,
MisMatch appears to be more robust against calibration error,
as the fitted curve of U-net has a much more steep slope than
MisMatch. In other words, with the increase of calibration
error, MisMatch suffers less performance drops.

IX. LIMITATIONS AND FUTURE WORK

Computational Burden: Although MisMatch achieves supe-
rior performance over previous methods, it suffers from
increased model complexity. Parameter sharing should be
incorporated in the future work. For example, the main branch
can be shared across the two decoders.

Extensions: Future work will extend MisMatch to multi-
class 3D tasks. Consistency on multi-class predictions might
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Fig. 10. Expected calibration error [40] against accuracy in 10-fold cross-validation experiments on 50 labelled slices with CARVE. Y-axis: IoU.
X-axis: ECE. Each calibration error is calculated from the gap between the confidence and accuracy for each testing image. Each data point in
this figure is one testing image. The fitted 2nd order trends of our MisMatch are flatter than U-net, meaning MisMatch is more robust against the
calibration error.

Fig. 11. Reliability diagrams [40] from experiments on 50 labelled slices
with CARVE. Blue: Confidence. Red: Accuracy. Each row is on one
testing image. X-axis: bins of prediction confidences. Y-axis: accuracy.
Column 1: U-net. Column 2: outputs of positive attention decoders.
Column 3: outputs of negative attention decoders. Column 4: average
outputs of the two decoders. The smaller the gap between the accuracy
and the confidence, the better the network is calibrated.

bring in extra regularisation leading to better performances.
We also aim to enhance MisMatch by combining it with
existing temporal ensemble techniques [1]

X. CONCLUSION

We propose MisMatch, an augmentation-free SSL, to over-
come the limitations associated with consistency-driven SSL
in medical image segmentation. In lung vessel segmentation
tasks, the acquisition of labels can be prohibitively time-
consuming. For example each case may take 1.5 hours of man-
ual refinement with semi-automatic segmentation [32]. Longer
timeframes may be required for cases with severe disease.
MisMatch however shows strong clinical utility by reducing

the number of training labels requried by more than 90%.
MisMatch requires 100 slices of one case for training whereas
the fully labelled dataset comprises 1600 slices across 4 cases.
MisMatch when trained on just 10% of labels achieves a
similar performance (IoU: 75%) to models that are trained
with all available labels (IoU: 77%).
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