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Abstract 
We present a full-likelihood method to estimate and quantify polygenic adaptation from 

contemporary DNA sequence data. The method combines population genetic DNA sequence  
data and GWAS summary statistics from up to thousands of nucleotide sites in a joint likelihood 
function to estimate the strength of transient directional selection acting on a polygenic trait. 
Through population genetic simulations of polygenic trait architectures and GWAS, we show 
that the method substantially improves power over current methods. We examine the 
robustness of the method under uncorrected GWAS stratification, uncertainty and 
ascertainment bias in the GWAS estimates of SNP effects, uncertainty in the identification of 
causal SNPs, allelic heterogeneity, negative selection, and low GWAS sample size. The method 
can quantify selection acting on correlated traits, fully controlling for pleiotropy even among 
traits with strong genetic correlation (|rg|  = 80%; c.f. schizophrenia and bipolar disorder) while 
retaining high power to attribute selection to the causal trait. We apply the method to study 56 
human polygenic traits for signs of recent adaptation. We find signals of directional selection on 
pigmentation (tanning, sunburn, hair, P=5.5e-15, 1.1e-11, 2.2e-6, respectively), life history traits 
(age at first birth, EduYears, P=2.5e-4, 2.6e-4, respectively), glycated hemoglobin (HbA1c, 
P=1.2e-3), bone mineral density (P=1.1e-3), and neuroticism (P=5.5e-3). We also conduct joint 
testing of 137 pairs of genetically correlated traits. We find evidence of widespread correlated 
response acting on these traits (2.6-fold enrichment over the null expectation, P=1.5e-7). We 
find that for several traits previously reported as adaptive, such as educational attainment and 
hair color, a significant proportion of the signal of selection on these traits can be attributed to 
correlated response, vs direct selection (P=2.9e-6, 1.7e-4, respectively). Lastly, our joint test 
uncovers antagonistic selection that has acted to increase type 2 diabetes (T2D) risk and 
decrease HbA1c (P=1.5e-5). 
 
Introduction 
  Genome-wide association studies (GWAS) have shown that many human complex 
traits, spanning anthropometric, behavioral, metabolic, and many other domains, are highly 
polygenic.1–3 GWAS findings have strongly indicated the action of purifying and/or stabilizing 
selection acting pervasively on complex traits.4–7 Some work has also utilized biobank data to 
measure the fitness effects of phenotypes using direct measurements of reproductive success.8 
However, there are few, if any, validated genomic signals of directional polygenic adaptation in 
humans. 

Several factors have contributed to this uncertainty. Chief among them, polygenicity can 
allow adaptation to occur rapidly with extremely subtle changes in allele frequencies.9 Classic 
population genetics-based methods to detect adaptation using nucleotide data have historically 
been designed to detect selective sweeps with strong selection coefficients, unlikely to occur 
under polygenic architecture.10  Polygenic adaptation, after a shift in the fitness optimum, can 
occur rapidly while causal variants only undergo subtle changes in allele frequency.11  After a 
transient period during which the mean of the trait changes directionally, a new optimum is 
reached and the effect of selection will then largely be to reduce the variance around the 
mean.12  However, identifying the genomic footprints of the transient period of directional 
selection is of substantial interest because it provides evidence of adaptation. 
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To this end, the advent of GWAS has ushered in a series of methods which take 
advantage of the availability of allele effect estimates by aggregating subtle signals of selection 
across association-tested loci. For example, some methods (e.g., the 𝑄!test) compare 
differences in population-specific polygenic scores -- an aggregate of allele frequencies and 
allele effect estimates --  across populations, and tests whether they deviate from a null model 
of genetic drift.13 Other methods have generalized this test, e.g. to identify and map polygenic 
adaptations to branches of an admixture graph.14 Whereas the aforementioned methods exploit 
between-population differentiation to detect polygenic adaptation, another class of methods is 
based on within-population variation. For example, selection scans based on singleton density 
score (SDS) have demonstrated utility in detecting polygenic adaptation via the correlation of 
SNPs’ effect estimates and their SDSs.15 Another test looks for dependence of derived allele 
frequencies (DAF) on SNP effect estimates.16  

Several powerful tests for selection were developed to take advantage of recent 
advances in ancestral recombination graph (ARG17) and whole-genome genealogy inference. 
Such methods enjoy better power in detecting selection as the ARG, if observed directly, fully 
summarizes the effects of selection on linked nucleotide data. We note that several methods, 
notably ARGweaver18 infer the strictly-defined ARG; by contrast, methods such as Relate19 infer 
a series of trees summarizing ancestral histories spanning chunks of the genome. For example, 
the 𝑇!test estimates changes in the population mean polygenic score over time by using the 
coalescent tree at a polymorphic site as a proxy for its allele frequency trajectory; the sum of 
these trajectories weighted by corresponding allelic effect estimates forms an estimate of the 
polygenic score’s trajectory20. Speidel, et al. (2019) also designed non-parametric test for 
selection based on coalescence rates of derived- and ancestral-allele-carrying lineages 
calculated empirically from the coalescent tree inferred by Relate.19 However, these methods 
ultimately treat the coalescent tree as a fixed, observed variable, where it is actually hidden and 
highly uncertain. Furthermore, most methods infer the tree under a neutral model, and thus 
provide biased estimates of the genealogy under selection. 

To address these issues, we recently developed a full-likelihood method, CLUES, to test 
for selection and estimate allele frequency trajectories.21 The method works by stochastically 
integrating over both the latent ARG using Markov Chain Monte Carlo, and the latent allele 
frequency trajectory using a dynamic programming algorithm, and then using importance 
sampling to estimate the likelihood function of a focal SNP’s selection coefficient, correcting for 
biases in the ARG due to sampling under a neutral model.  

Beyond the issue of statistical power, tests for polygenic adaptation can in general be 
biased when they rely on GWAS containing uncorrected stratification. For example, several 
groups found strong signals of height adaptation in Europe 13–15,22–24; later, it was shown that 
summary statistics from the underlying meta-analysis (GIANT, a.k.a. Genetic Investigation of 
ANthropometric Traits) were systematically biased due to uncorrected stratification, and 
subsequent tests for selection on height failed to be reproduced using properly corrected 
summary statistics 20,25,26. However, beyond this case, the extent to which other signals of 
polygenic selection may be inflated by uncorrected stratification is an open question. Here, we 
investigate the robustness of the new likelihood method to uncorrected stratification and 
compare it to another state-of-the-art method (tSDS), showing that our likelihood method is less 
prone to bias but has substantially improved power. 
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Another issue faced by current methods to detect polygenic adaptation is confounding 
due to pleiotropy. For example, direct selection on one trait may cause a false signal of 
selection on another, genetically-correlated trait. While a variant of the 𝑄!test has been 
proposed for the purpose of controls for pleiotropy, this method relies of signals of between-
population differentiation to test for selection, and is not directly applicable to test multiple traits 
jointly.24  

Here, we present a full-likelihood method (Polygenic Adaptation Likelihood Method, 
PALM) that uses population DNA sequence data and GWAS summary statistics to estimate 
direct selection acting on a polygenic trait. We demonstrate robustness by exploring potential 
sources of bias, including uncorrected GWAS stratification. We also introduce a variant on our 
method which controls for pleiotropy by testing ≥2 traits for selection jointly. We show our 
method not only fully controls for this bias, but retains high power to distinguish direct selection 
from correlated response even in traits with strong genetic correlation (up to 80%), and has 
unique power to detect cases of antagonistic selection on genetically correlated traits. We 
explore the behavior of the test when traits with causal fitness effects are excluded to illustrate 
limitations and proper interpretation of these selection and correlated response estimates.  

 
Model 
Linking SNP effects to selection coefficients 

Let 𝛽 be the effect of a SNP on a trait. We model the selection coefficient acting on this 
SNP using the Lande approximation27 𝑠 ≈ 𝛽 𝜔, where 𝜔 is the selection gradient, the derivative 
of fitness with respect to trait value. If 𝛽 is measured in phenotypic standard deviations, then 𝜔 
is the so-called selection intensity. Chevin and Hospital (2008) showed that for a neutral ‘tag’ 
SNP with frequency 𝑢 = 1 − 𝑣	and genotypic correlation 𝑟 to a SNP with selection coefficient 𝑠, 
and allele frequencies p and q=1-p, to a first approximation the linked neutral SNP effectively 
undergoes selection with 𝑠"#$ ≈ 𝑟𝑠.𝑝𝑞/√𝑢𝑣.28 Applying this principle to the multivariate Lande 
approximation, we find that 𝑠"#$ ≈ 𝛽"#$𝜔, where  𝛽"#$ = 𝛽 ⋅ 𝑟.𝑝𝑞/√𝑢𝑣is the marginal effect of 
the tag SNP, assuming no linkage disequilibrium between the tag SNP and any other causal 
SNP other. 
 
Inferring the selection gradient using a full-likelihood model 

Our likelihood model builds heavily on Stern, et al. (2019), which developed importance 
sampling approaches for estimating the likelihood function of the selection coefficient acting on 
a SNP, 𝐿%&'(𝑠).21 Let 𝛽())be the effect of SNP i on the trait. Based on these SNP-level selection 
likelihoods, we model the likelihood function for the selection differential acting on a trait as the 
product of the SNP likelihoods evaluated at selection coefficients under the Lande 
approximation: 

𝐿(𝜔) = ∏+
),- 𝐿)%&'9𝛽())𝜔:    [Eq. 1] 

We provide details for calculating this likelihood function using an importance sampling 
approach based on Stern, et al. (2019) (see Methods).21 Given this likelihood function, we 
estimate 𝜔using its maximum-likelihood estimate. This model is used by our so-called marginal 
test PALM. 
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Fitness effects of multiple traits 

To model fitness effects of multiple traits jointly, here we propose a multivariate 
extension of the Lande approximation which links pleiotropic SNP effects to the selection 
coefficient. Let 𝛽 be a vector of a particular SNP’s effects on 𝑑 distinct traits. We assume the 
selection coefficient acting on this SNP follows a multivariate version of the Lande 
approximation,27 

𝑠 ≈ ∑./,- 𝛽/𝜔/    
 [Eq. 2] 

where 𝜔 now is a vector of selection gradients for each of the 𝑑 traits. The results of Chevin and 
Hospital (2008) apply directly given this approximation for the selection coefficient, and we now 

express the likelihood of the selection gradient using Eq. 2: 𝐿(𝜔) = ∏+
),- 𝐿)%&' =𝛽())0 𝜔>. We 

can solve for the maximum-likelihood estimate of 𝜔jointly using standard optimization. This 
model is used by our joint test J-PALM.  
 
Results 
Simulations 
Overview of simulations 

We conducted evolutionary simulations of polygenic adaptation acting on a wide range 
of multi-trait polygenic architectures. Our simulated traits are based on SNP heritability and 
genetic correlation estimates for 23 real human traits29,30; unless otherwise stated, we simulate 
positive selection on/test for selection on a trait modeled after the heritability of 
schizophrenia(ℎ1 = 0.45), and in most of our pleiotropy analyses we used parameters based on 
schizophrenia and its genetic correlation with 3 other traits: bipolar disorder, major depression, 
and anorexia. In most of our analysis we refer to these traits as Trait I/II/III/IV (corresponding to 
models of schizophrenia/bipolar/depression/anorexia, respectively). As our method is based on 
aggregating population genetic signals of selection with GWAS summary statistics, we also 
simulated GWAS in samples of modern-day individuals (𝑁 = 102). Our simulated summary 
statistics incorporate all of the following sources of bias found in GWAS, unless stated 
otherwise: random noise in the effect estimates; Winner’s Curse bias in the effect estimates 
(unless stated otherwise, we ascertain SNPs with associations 𝑃 < 5 × 1034 for at least 1 trait 
analyzed); uncertainty in the location of the causal SNP (we ascertain the top GWAS hit 
throughout the linked region); and environmentally correlated noise across traits (only relevant 
to simulations of pleiotropic architectures). Average selection coefficients, allele frequency 
changes, and population phenotype changes are detailed in Supp. Tab. 1. Furthermore, we also 
simulate a number of scenarios which violate our model assumptions, to assess our method’s 
robustness: these include uncorrected GWAS stratification; purifying/stabilizing selection; 
underpowered/uneven GWAS sample sizes; and allelic heterogeneity (i.e., multiple linked 
causal SNPs).  

For each causal locus, we simulate haplotype data for a sample of	𝑛 = 400 1Mbp-long 
chromosomes (mutation and recombination rates 𝜇 = 𝑟 = 1034 and effective population size 
𝑁5 = 106unless stated otherwise), on which we applied Relate, a state-of-the-art method for tree 
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inference19, to infer the coalescent tree at SNPs ascertained in this GWAS. However, we point 
out that our approach can be applied to any pre-existing method for estimating/sampling these 
trees (e.g. ARGweaver18). We then conduct importance sampling to estimate the likelihood 
function of the selection gradient – i.e., the effect of a unit increase in phenotypic values on 
fitness – for individual traits (i.e., estimated marginally), as well as sets of genetically correlated 
traits (i.e., estimated jointly). Our method, Polygenic Adaptation Likelihood Method (PALM), can 
be used to estimate 𝜔 for polygenic traits.  
 
Improved power to detect selection and estimates of the selection gradient 
 We ran PALM to test for selection on our simulations of polygenic trait architectures, 
described above (and in more detail in Appendix). We estimate the selection gradient and 
standardize this quantity by its standard error, estimated through block-bootstrap, to conduct a 
Wald test on whether the selection gradient is non-zero.  
 First, we conducted simulations at different values of the selection gradient, ranging from 
neutral (𝜔 = 0) to strong(𝜔 = 	0.1, average change of mean phenotype of ~2 standard 
deviations), and compared the statistical power of PALM to that of tSDS (Fig 1A). Summaries of 
SNP selection coefficients, allele frequency changes, and phenotypic changes are detailed in 
Supp. Tab. 1. We simulate 5Mb haplotypes for a trait with polygenicity (i.e., number of causal 
SNPs) 𝑀 = 1,000; we sample 𝑛 = 178haplotypes for PALM and 𝑛 = 6,390for tSDS, 
corresponding to the sample sizes we used in our application to 1000 Genomes British (GBR) 
individuals vs the sample used by Field, et al. (2016) from the UK10K. Here we ascertain only 
causal SNPs, but SNP effects are still estimated through an association test (unless otherwise 
stated, all other simulations incorporate uncertainty in the causal SNP). Both methods are well 
calibrated under the null (𝜔 = 0, Fig 1A). But we find that despite having a much smaller sample 
size, PALM has substantially improved power to detect selection at all levels (Fig 1A), especially 
at weaker values of the selection gradient, where tSDS has essentially no power (𝜔 ≤ 0.05). 
PALM is also capable of estimating the selection gradient (Fig. 1A, Table 1). These estimates 
are well-calibrated, with empirical standard errors closely matching estimated standard errors, 
except when the selection gradient is exceptionally strong (𝜔 ≥ 0.1) (Table 1).   

We also examined the calibration and power of the marginal test in simulations of a 
polygenic trait with varying polygenicity (Fig. 1D). Across a wide range of polygenicities, PALM 
is well-powered to detect selection (>90% for 100 ≤ 𝑀 ≤ 1000), with slightly lower power for 
extremely polygenic architectures (∼ 65%for	𝑀 = 106) and the false positive rate (FPR) was 
well-calibrated in all circumstances (Fig. 1D). In comparisons to tSDS, we found substantially 
improved statistical power across this range of polygenicity values (Fig. 1D). We also conducted 
similar tests for a short pulse of selection (𝜔 = 0.05for 35 generations, or ~1000 years assuming 
29 years/generation) under a model of British demography19; we found that overall power was 
comparable to that of constant population size simulations with 𝜔 = 0.025, consistent with 
previous work showing that the product of selection strength and timespan largely determines 
statistical power (Supp. Fig 2).  
 
Robustness to uncorrected GWAS stratification 

We compared the power curve to the false positive rate (FPR) of both methods under a 
model of uncorrected GWAS stratification (Fig 1B). We simulated polygenic trait architectures 
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and GWAS such that estimated SNP effects (𝛽U) were both systematically biased and correlated 
with differences in the coalescence rate, stratified by DAF (e.g., SDS), matching the findings of 
25,26 that allele frequency differentiation between British (GBR) and Toscani in Italia (TSI) 
individuals was positively correlated with both 𝛽Uand SDS  (Supp. Fig 1).  

To model this scenario, we ascertained a set of 40,320 SNPs with MAF > 0.5% in the 
UKBB and SDS calculated by Field et al. (2016) using the UK10K cohort.15 We then sampled 
coalescence times at these SNPs in 1KG Phase 3 British (GBR) individuals using Relate. For 
each SNP, we simulated GWAS summary statistics by assuming that the GWAS cohort is 
comprised of some ratio, 𝑁7%8/𝑁9:; ,of TSI to GBR individuals, where population identity 
determines an individual’s stratified effect. This induces a correlation between SNP effects and 
the difference in allele frequency between TSI and GBR. Baseline parameter values were 𝜎% =
0.1, 𝑁7%8/𝑁9:;= 1%, 𝑀 = 1,000, and 𝑃 = 5 × 1034. We varied the strength of the stratified effect 
(𝜎%, in phenotypic standard deviations) and found that both methods are well-calibrated when 
𝜎%is sufficiently small, but as 𝜎%grows past 0.1 the FPR of tSDS was inflated over 100% more 
than that of PALM (Fig 1B).  

We stress that this disparity is most likely not caused by higher sensitivity of tSDS, as we 
simulated polygenic adaptation under similar parameters and found PALM was better-powered 
to detect selection, with up to 8x improvement in power for smaller values of the selection 
gradient (Fig. 1A). We also found that for highly polygenic traits (e.g. 𝑀 = 2 × 10<), the tSDS 
test is overconfident (>10% at 5% nominal), while PALM remains well-calibrated (Fig. 1B). We 
observe the same pattern as we increase the size of the cohort subgroup receiving the stratified 
effect (𝑁7%8/𝑁9:;); at 𝑁7%8/𝑁9:; = 2.5% the tSDS test is overconfident (>10% at 5% nominal), 
while PALM remains well-calibrated (Fig. 1B).  

Lastly, we tested the sensitivity of these methods to the stringency of the P-value 
threshold used, and found that the tSDS test was increasingly overconfident as the threshold 
was relaxed, whereas, PALM was well-calibrated regardless of P-value threshold (Fig. 
1B).These results suggest that PALM is more robust to uncorrected stratification than the tSDS 
test, while obtaining superior statistical power even at lower sample sizes. However, we 
emphasize that PALM, like any other available test, is not fully robust to the effects of 
uncontrolled population stratification. Sufficiently strong uncorrected population stratification can 
lead to false inferences of polygenic selection when there is none. 

 
Robustness to ascertainment bias and uncertainty in GWAS estimates 

Next, we considered the effects of different levels of uncertainty and ascertainment on 
performance of PALM (Fig. 1C). We considered the effects of conditioning on the true local tree 
vs using Relate-inferred trees combined with importance sampling, conditioning on the true 
marginal SNP effect vs estimating this effect with noise in a GWAS; and conditioning on the 
causal SNP vs taking the top tag SNP in a local GWAS on linked SNPs. PALM was well-
calibrated both using true trees and importance sampling, with highest statistical power (100%) 
using true trees and a slight drop in power under importance sampling (90-92%) (Fig 1C). Our 
test was well-calibrated despite bias (from Winner’s Curse) and noise in the estimated SNP 
effects, with no discernible difference from using the true SNP effects (Fig 1C); however, for 
smaller sample sizes (𝑁 << 102) this may not be the case. Lastly, using the causal SNPs vs 
GWAS-ascertained tag SNPs did not diminish test power, and FPR remained well-calibrated 
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(Fig 1C). We also explored the effects of GWAS sample size, which will affect the ascertainment 
process, and hence the degree of bias and uncertainty in ascertained SNP effect estimates 
(Supp. Tab. 2). We considered two different GWAS sizes; 𝑁 = 106	and 102. We found that 
under lower sample size, the test was slightly inflated (e.g. empirical FPR of 3.1% (±1.4%) and 
7.0% (±1.6%) at 𝑁 = 102	, 106 for Trait II respectively, where parentheses denote 95% CIs; 
Supp. Tab. 2). In terms of power, the test is still well-powered at lower sample sizes, but there is 
a noticeable drop (94.1% (±1.4%) and 69.0% (±3.0)% at at 𝑁 = 102, 106 respectively; Supp. 
Tab. 2).  

 
Robustness to model violations 

 We also conducted simulations of polygenic trait architectures under purifying selection, 
based on the model proposed by 7 (Supp. Fig 3). Under such a scenario, an inverse relationship 
between effect size magnitude and derived allele frequency (DAF) is expected, in contrast to 
our baseline simulation model in which effect size is independent of frequency prior to the onset 
of selection. We found that across a range of polygenicities (𝑀 = 3 × 10<, 106, 3 × 106	) and 
selection strengths (2𝑁�̄� = 3,10,30, where �̄� denotes mean selection coefficient of causal 
SNPs), PALM is not confounded by purifying selection and is well-calibrated to a nominal FPR 
of 5% (Supp. Fig 3); in fact, under very strong selection and/or low polygenicities, PALM is 
slightly conservative (Supp. Fig 3).  
 As our model and baseline simulations assume a single causal SNP per linked locus, we 
conducted simulations of allelic heterogeneity (Supp. Fig 4) using forward simulations in SLiM 
31. We simulated a trait architecture with ℎ1 = 50%and a mutational target of 100 ×1Mbp linked 
loci, considering two cases: (1) 5% of incoming mutations are causal, and (2) 50% of incoming 
mutations are causal. In each of these scenarios we conducted simulations with neutral 
evolution and adaptation. We found that in each case, the test is well-calibrated under the null, 
and well-powered to detect selection (Supp. Fig 4). 
 Lastly, we explored the time specificity of PALM’s test for selection. Testing under a 
nominal model of selection in the last 50 generations, we consider the rate at which PALM’s 
estimate of selection timing can be biased by older selection (Supp. Fig. 5). We found that as 
selection recedes into the past, the FPR decays towards the nominal rate, with limited 
confounding when the pulse of selection occurred 200-250 generations ago.  
 
Pleiotropy can cause bias in tests for polygenic adaptation 

Traits with no fitness effect can undergo correlated response due to direct selection on 
pleiotropically related traits. Without accounting for pleiotropy, standard tests for polygenic 
adaptation cannot be interpreted as statements regarding direct selection.  To illustrate how 
pleiotropy can affect tests for polygenic adaptation, we simulated pleiotropic trait architectures 
for 23 traits based on estimates of SNP heritability and genetic correlation for real human 
traits.30 This builds largely off our aforementioned simulation approach, with the introduction of a 
parameter 𝜚, the degree of pleiotropy, i.e. the probability that a causal SNP is pleiotropic. As a 
brief illustration of how pleiotropy causes bias in polygenic selection estimates, we used our 
pleiotropic traits simulations to estimate maximum-likelihood selection coefficients for SNPs 
ascertained for associations to two genetically correlated traits, Trait I and II, modeled after 
schizophrenia and bipolar disorder (𝑟$ ≈ 80%; Supp. Fig. 6). We simulate a pulse of selection to 
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increase Trait I (𝜔 = 	0.05,	approximately +1 SD change in population mean over 50 
generations, Supp. Tab. 1); Trait 2 has no causal effect on fitness. Selection coefficients were 
estimated by taking the maximum-likelihood estimate of 𝑠 for each SNP independently, where 
the likelihood is estimated using our importance sampling approach. Here we show results for 
polygenicity 𝑀 = 1000 and degree of pleiotropy 𝜚 = 	60% (Supp. Fig 6). 

Under the Lande approximation 𝑠 ≈ 𝛽0𝜔, we expect a non-constant linear relationship 
between 𝛽Uand �̂� for traits under selection. But due to the strong correlation between these two 
traits, it is difficult to disentangle which of the traits has a causal effect on fitness (Supp. Fig 6A). 
We performed an ad-hoc test for a systematic relationship between 𝛽U	and �̂� (Spearman test) to 
detect polygenic adaptation; while this test is well-powered to detect selection on Trait I, it is 
prone to spurious hits for selection on Trait II, which has no effect on fitness (Supp. Fig 6B). 
Thus, marginal tests for selection on traits can be significantly biased due to pleiotropy (in this 
case, genetic correlation).  
 
Joint test for polygenic adaptation controls for pleiotropy 

We also introduce a variant on our method, J-PALM, which is designed to disentangle 
correlated traits under selection and control for confounding due to pleiotropy.  Briefly, J-PALM 
uses the same likelihood approach as PALM, but we jointly infer the selection gradient 𝜔on a 
set of 𝑑traits jointly, rather than inferring the selection gradient on a single trait marginally (see 
Model and Appendix for details). Under the joint model, the likelihood is still a function of the 
selection coefficient of each SNP, but we allow that these selection coefficients depend on the 
fitness effects of d traits jointly (see Model, Eq. 2).  

We applied both our marginal test PALM and our joint test J-PALM to our cluster of four 
simulated traits, Traits I-IV, modeled after SNP heritabilities and genetic correlations for four 
psychiatric traits: schizophrenia, bipolar disorder, major depression and anorexia (Fig 2A). All 
traits have significantly positive genetic correlation to one another; here we highlight their 
genetic correlations to the selected trait, Trait I (Fig 2A; genetic correlations and SNP 
heritabilities directly from 29,30). We assume a pulse of recent selection for increased Trait I 
prevalence, with all other traits selectively neutral. We tested traits marginally and jointly (i.e., all 
four simultaneously) for selection (Fig 2B,C). We found that marginal estimates are biased and 
cause inflation of the false positive rate (FPR) when testing for selection (Fig B,C). This bias 
largely follows the genetic correlation of the estimand trait to the selected trait (Fig 2A,B). Here 
we show results for polygenicity 𝑀 = 1000 and degree of pleiotropy 𝜚 = 	100% (Fig 2), but the 
results are similar for differing degrees of pleiotropy (holding 𝑟$ constant), such as 𝜚 = 	60% 
(Supp. Fig 7). This highlights that genetic correlation, regardless of the degree of pleiotropy, is 
the main cause of bias in marginal estimates of the selection gradient. 

Furthermore, our results show that if any trait in a genetically correlated cluster is under 
selection, marginal estimates of the selection gradient for the other traits is typically highly 
inflated. For example, a genetic correlation as low as 𝑟$ = 19% is sufficient to inflate the FPR for 
a neutral trait by nearly 150% (Fig 2A,C). Most traits studied in GWAS have large genetic 
correlations; Watanabe, et al. (2019) found an average Z𝑟$Z = 16% across 155,403 human trait 
pairs, with 15.5% of trait pairs significant (averageZ𝑟$Z = 38%).32 The extent of strong genetic 
correlation suggests that if any single heritable trait has evolved under selection, it is likely to 
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cause substantial ripple effects in terms of bias of selection estimates on other heritable traits. 
By contrast, estimates of selection obtained via our joint test, fully correct for these biases, if the 
relevant selected trait is included in the analysis (Fig 2B,C). We applied the joint test to the 
same set of simulations and find it can reliably detect and attribute selection to Trait I (Fig 2B,C). 
The joint test preserved ~80% power even with the leading genetic correlate, Trait II, having 
𝑟$ = 79.4% to Trait I, and produces well-calibrated FPR regardless of 𝑟$ (Fig 2C).  

We explored performance of J-PALM under a wide array of simulation scenarios of 
different polygenic architectures and types of selection (Fig. 4), varying the degree of pleiotropy 
𝜚 (Fig 3A), 𝑟$ to the selected trait (Fig 3B), polygenicity 𝑀 (Fig 3C), and antagonistic selection  
(Fig 3D). Baseline values of parameters used were positive selection on Scz with other traits 
neutral, jointly testing Trait I and Trait III (𝑟$ = 51%), 𝜚	 = 	60%, and  𝑀=1,000. All of our 
pleiotropic simulations include an environmental noise correlation across traits of 𝜌5 =
10%.Across this range of pleiotropic and polygenic architectures, we established that the joint 
test is well calibrated when no traits are under selection (Supp. Fig 8). Across different degrees 
of pleiotropy (40% ≤ 𝜚 ≤ 100%), we found J-PALM was well-calibrated and had good power to 
detect and attribute selection to Trait I (Fig 3A).  

Across a range of levels of polygenicity (100 ≤ 𝑀 ≤ 10,000), PALM was well calibrated 
and had good power to detect and attribute selection to Trait I (>75% for 𝑀	 ≤ 3,000), although 
the power is somewhat attenuated for extremely polygenic architectures (~40% for 𝑀 =
10,000)	(Fig 3B). This pattern is also found in the marginal tests on the same data, and there is 
only a modest reduction in power when switching to the joint test (Fig 1C, Fig 3B). We note that 
the reduction in power is sensitive to the strength of genetic correlation; joint test of Trait I vs 
Trait II (𝑟$ = 79%) had greater reduction in power from the marginal test than that of Trait I vs 
Trait III (Fig 1C, Fig 3B,C, Supp. Fig 9). Our method fully corrects the biases suffered by 
marginal tests for polygenic adaptation, while retaining good power to detect adaptation even 
when genetic correlation is strong. 

We also examined what happened when selection acted on different traits in the cluster, 
jointly testing each selected trait with Trait II (Fig 3C). The test is well-calibrated for all traits, but 
has less power to attribute selection to traits with a high genetic correlation to Trait II (e.g. Trait 
I, ℎ1 = 45%, 	𝑟$ = 7%), or low heritability (e.g. Trait III, ℎ1 = 17%, 	𝑟$ = 48%) (Fig 1E, Fig 3C). By 
contrast, traits with high heritability and/or low genetic correlation to Trait II (e.g. Trait IV, ℎ1 =
49%, 	𝑟$ = 11%) have little loss in power in the joint test (Fig 1E, Fig 3C).  

 
Detecting antagonistic selection 

We also considered the possibility of antagonistic selection (i.e., selection to both 
increase Trait I and decrease Trait II, Fig. 3D). We hypothesized that marginal tests would be 
underpowered to detect this mode of selection acting on traits with strong genetic correlation, 
and that joint testing might uncover this signal. Indeed, power to detect selection in this regime 
is quite low using marginal testing, with 3-13% power at a 5% threshold (Fig 3D). However, the 
joint testing boosts power significantly, with 40-51% power at a 5% threshold (Fig 3D). We also 
tested the opposite scenario, where Trait I and Trait II are both under positive (complementary) 
selection; we found the joint test is well-powered to detect that multiple genetically correlated 
traits are under selection (Supp. Fig. 10). Thus, J-PALM provides several gains in power over 
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the marginal test, such as uncovering antagonistic selection that is ‘cancelled out’ by genetic 
correlation, or confirming multiple traits are under selection.   

 
Testing for correlated response 
 Our method can also test for correlated response to selection, i.e., whether a trait has 
evolved (at least in part) due to selection on some other genetically correlated trait. 

We introduce the notion of an effective selection gradient (𝜔">#)",@A.5B), which measures 
attributable amounts of selection to each trait included in a model. Consider two traits, A and B. 
Suppose Trait A is under selection and Trait B is neutral. If 𝑟$ = 0, the effective selection 
gradient of B is 0, regardless of selection on Trait A or whether we include Trait A in the model, 
because no selection on A is attributable to B. Hence, 𝜔:,@#>$)C#B 	= 	𝜔:,/A)C". By contrast, if 
|𝑟$| > 0, marginally Trait B has a nonzero effective selection gradient; however, in a joint model 
with Trait I, the effective selection gradient of Trait II is 0, since all direct selection can be 
attributed to Trait I. Hence, due to correlated response, there is a difference in the effective 
selection gradient in the two models: 𝜔:,@#>$)C#B 	≠ 	𝜔:,/A)C". However, the converse is not true 
for Trait I; both marginally and jointly with Trait II, all selection can be attributed to Trait I, and so 
𝜔D,@#>$)C#B 	≠ 	𝜔D,/A)C". We developed a test statistic 𝑅 (see Appendix) which tests for correlated 
response under the null hypothesis 𝐻E: 𝜔/,@#>$)C#B = 𝜔/,/A)C", i.e. that the marginal and joint 
effective selection gradients are equal. 

We first looked at the performance of a Wald test on𝑅 for Trait I vs Trait V, a trait with 
60% shared causal SNPs but 𝑟$ = 0 (Fig. 3E, middle panel). We found that regardless of 
selection on Trait I or other traits, 𝑅	for Traits I and V jointly is null-distributed; this agrees with 
the fact that correlated response is limited by genetic correlation, which in this case is 0. We 
also looked at traits in strong 𝑟$ = 80%(Traits I and II; Fig. 3E, middle panel). We found that the 
test was well-calibrated; we show this both in simulations where I & II are neutral, and in 
simulations where Trait I (the focal trait) is selected, but Trait II (the conditional trait) is neutral 
(Fig. 3E, middle panel); in both cases, 𝑅 for Trait I is null-distributed. However, whether the focal 
trait is neutral or directly selected, 𝑅detects correlated response when conditioning on a 
selected trait (Fig. 3E, middle panel). The 𝑅statistic is well-powered under various forms of 
selection (indirect, complementary, and antagonistic selection) (Fig. 3E, middle panel), and we 
see that it generally tracks with the strength of genetic correlation between the correlated and 
directly selected traits (Fig. 3F, top panel). 
 
Interpretation and limitations of the joint test 

We also considered how both our tests for direct selection and correlated response 
behave when a trait with a causal fitness effect is excluded (Fig. 3E, bottom panel and Fig. 3F). 
We tested Traits II & III jointly, where Trait III was neutral in all scenarios (Fig. 3E). We found 
that when Trait I is under selection and excluded, and Trait II is neutral,𝑅ascribes correlated 
response of Trait III to Trait II, consistent with Trait II being the strongest genetic correlate of 
Trait I included (Fig. 3E). We also see this behavior in tests with >2 traits, where direct selection 
is estimated for Trait II, and Traits III and IV show significant signs of correlated response, when 
in reality no trait in the analysis is under direct selection (Fig. 3F, bottom panel).  
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This highlights an important limitation of our tests for both direct selection and correlated 
response: it is impossible to exhaust all possible genetic correlates in a joint analysis, and so, 
unequivocally, estimates of direct selection cannot be interpreted as any sort of causal 
statement about the fitness effect of the trait in question. The interpretation of correlated 
response is trickier: If we detect correlated response of a focal trait to some conditional trait, 
while it still appropriate to infer that the focal trait has evolved under correlated response, it is 
wrong to conclude the conditional trait is the target of direct selection (see e.g. Fig. 3E,F). 

 
Effect of small or uneven GWAS sample size 

We tested the effect of GWAS sample size on the joint test, considering not only lower 
sample size, but also uneven sample sizes (Supp. Tab. 2). Similar to the effect of lower sample 
size on the marginal test, we found that lower sample size for both traits reduced power and 
slightly inflated the FPR; e.g., testing for selection jointly on Trait I vs Trait II (simulating 
selection to increase Trait I), we found that at 𝑁 = 106 for Trait I and Trait II, the FPR for Trait II 
reached 8.0% (±1.8%) (Supp. Tab. 2). However, this was not always the case; e.g., for 𝑁8 =
102, 𝑁88 = 106, the FPR for Trait II was calibrated properly (4.6% ±1.4%) (Supp. Tab. 2).  

Power to assign selection to the causal trait was reduced when that trait’s GWAS was 
underpowered; e.g., 51.6% (±1.6%) to 45.7% (±1.6%) when 𝑁8was dropped from 102to 
106(𝑁88 = 102) (Supp. Tab. 2). Interestingly, we found an even bigger drop in power associated 
with reduced sample size for the correlated trait (Trait II); when 𝑁88was reduced from 102to 
106(𝑁8 = 106), power to detect selection on Trait I dropped from 45.7% (±1.6%) to 27.7% 
(±1.4%) (Supp. Tab. 2). These results indicate that as long as sample size is reasonably large, 
estimates are well-calibrated; furthermore, by increasing sample size of GWAS for one trait, the 
joint test is able to leverage that towards improving power to detect selection on other traits that 
have overlapping genetic architecture. 
 
Empirical analysis of trait evolution in British ancestry 

We analyzed 56 GWASs of metabolic, anthropometric, life history, behavioral, 
pigmentation- and immune response-related traits in humans (54 from the UKBB; see Supp. 
Tab. 3 for details) for signs of polygenic adaptation. We used GWAS summary statistics that 
were nominally corrected for population structure using either a linear mixed model33 or fixed 
PCs (K=20 PCs)34, and in some cases a family history-based approach35 to boost power for 
under-powered UKBB traits, such as type 2 diabetes. All traits used had at least 25 genome-
wide significant (GWS) loci(𝑃 < 5 × 1034) in independent LD blocks.36 For all of our empirical 
analyses, we used coalescent trees sampled using Relate for a sample of British ancestry 
(GBR, 𝑛 = 89) from the 1000 Genomes Project, assuming pre-established estimates of GBR 
demographic history.19,37 We specifically tested for selection in the last 2000 years (i.e., 68.95 
generations, assuming a generation time of 29 years). The selection gradient (𝜔) was estimated 
using maximum-likelihood, with standard errors estimated by block-bootstrapping. We first 
tested traits marginally for polygenic adaptation (Fig. 4). We include SNPs by pruning for LD 
using independent LD blocks, choosing the SNP with the lowest 𝑝-value in each independent 
block, and excluding blocks that do not have a SNP exceeding this threshold.36  
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Marginal tests for selection 
We report our estimates of the selection gradient (Fig. 4) normalized by their standard 

errors, highlighting significant traits (FDR = 0.05) and other traits of interest, with results also 
presented in Supp. Tab. 4. In the marginal tests with PALM, we found strong signals of selection 
acting to decrease pigmentation (Fig. 4, Supp. Tab. 4). We reported traits with selection 
gradient 𝑝-value exceeding a multiple testing-corrected threshold (FDR = 0.05, Benjamini-
Hochberg). Tanning showed the strongest signal of directional (in this case, negative) selection 
among all tested traits (𝜔 = 	−0.357	(±0.046), 𝑃 = 5.5 × 103-2; standard errors in parentheses). 
Sunburn (𝜔 = 	+0.356	(±0.052), 𝑃 = 1.1 × 103--) and hair color (𝜔 = 	+0.128	(±0.027), 𝑃 =
2.2 × 103F) also showed significant positive selection. Several life history traits also showed 
significant selection; e.g. age at first birth (𝜔 = 	+0.0546	(±0.0149), 𝑃 = 2.5 × 1036)	and 
EduYears (𝜔 = 	+0.389	(±0.0107), 𝑃 = 2.6 × 1036). We also found significant selection acting 
on an anthropometric trait, bone mineral density heel-T Z-score (BMD, 𝜔 =
	+0.0728	(±0.0222), 𝑃 = 1.1 × 103<), and negative selection acting on glycated hemoglobin 
levels (HbA1c, 𝜔 =	−0.0167	(±0.00518), 𝑃 = 1.2 × 103<) as well as neuroticism (𝜔 =
	−0.0706	(±0.0254), 𝑃 = 5.5 × 103<). 

Several traits of interest to have no or inconclusive evidence of directional selection. We 
found no evidence for any recent directional selection on height (𝜔 = 	−0.00148 ×
103<	(±0.0190), 𝑃 = 0.938). We also find inconclusive evidence for selection on body mass 
index (BMI, (𝜔 = 	−0.0585	(±0.0331), 𝑃 = 0.077), in contrast to previous findings that BMI has 
been under significant selection to decrease.16  

 
Joint tests for selection 

We analyzed 137 trait pairs (Bonferroni 𝑃>! < 0.005 and |𝑟$| > 0.2)32 using J-PALM to 
examine if  marginal signals of selection were due to a correlated response to selection on 
another trait (Table 2, Supp. Tab. 5). To aid clarity, we introduce the notion of focal vs 
conditional traits in a joint test. For example, if we estimate the selection gradient of Trait 1 and 
Trait 2, (𝜔-, 𝜔1), then 𝜔-is the estimate for Trait 1 (the focal trait), jointly tested estimated with 
Trait 2 (the conditional trait); similarly 𝜔1is the estimate for Trait 2 (the focal trait), jointly tested 
estimated with Trait 1 (the conditional trait). We establish significance of correlated response  
using a Wald test on the statistic 𝑅, the difference in the joint and marginal selection estimates 
for a focal trait, where the joint analysis is performed with some other conditional trait (see 
“Testing for correlated response” and Appendix for more details). Selected results are presented 
in Table 2, and results for the full analysis of all 137 trait pairs are available in Supp. Tab. 5.  

We found several significant signals (FDR = 0.05) of correlated response (Table 2, full 
results in Supp. Tab. 5). For example, although EduYears had strong evidence for selection in 
the marginal test (𝑃@#>$)C#B = 2.6 × 1036), we found after conditioning on sunburn ability (𝑟$ =
0.24, 𝑃 = 2.3 × 1036)32 a significant attenuation of this estimate (𝑃/A)C" = 0.020, 𝑃; = 2.6 × 103F). 
These results suggest that a large part of the signal of selection on EduYears is likely due to 
indirect selection via correlated response, vs direct selection. However, we stress that these 
results do not provide evidence of direct selection on the conditional trait, here e.g. childhood 
sunburn occasions (sunburn) (see e.g. Fig. 3E). 
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We also find significant attenuation of selection signals for pigmentation traits in our joint 
analyses (Table 2). In our joint analysis of hair color and tanning (𝑟$ = −0.17, 𝑃 = 3.6 × 103<)32, 
we found that after conditioning on tanning, there is no residual evidence for direct selection on 
hair color (𝑃@#>$)C#B = 2.2 × 103F; 	𝑃/A)C" = 0.056; 𝑃; = 1.7 × 1036). (The same caveat above 
regarding the interpretation of correlated response applies here to tanning ability).  

We identified one case in which the joint analysis uncovers selection acting on a trait 
that did not show significant selection marginally; we found that type 2 diabetes (T2D), 
conditioning on HbA1c (𝑟$ = 0.69)38, shows significant selection to increase in 
prevalence(𝑃@#>$)C#B = 0.75;	𝑃/A)C" = 0.0060;	𝑃; = 1.5 × 1032; see Table 2). Estimates of 
negative selection on HbA1c are also enhanced after accounting for T2D (𝑃@#>$)C#B =
1.2 × 103<; 𝑃/A)C" = 1.0 × 1032; 	𝑃; = 0.0016; see Table 2). This ‘cancelling-out’ effect of 
opposing selection on T2D and HbA1c, two traits with strong positive genetic correlation, is the 
second-strongest signal of correlated response in our joint analyses.  

We also illustrate our estimates of selection coefficients for ascertained T2D/HbA1c 
SNPs, found independently of one another, and their fit to our inferred model of antagonistic 
selection on T2D/HbA1c (Fig. 5A). In general, T2D-increasing and/or HbA1c-decreasing SNPs 
are under positive selection, and vise versa; however, a subset of HbA1c-increasing SNPs 
show extremely strong signs of positive selection (𝑠 > 0.03); these SNPs tend to have visibly 
higher positive effects on T2D than other SNPs with comparable HbA1c effect. In a joint 
analysis of HbA1c and diastolic blood pressure (as a proxy for hypertension), our estimate of 
direct selection on HbA1c was significantly attenuated at a nominal level(𝑃 = 0.019, Table 2), 
although it did not meet our FDR cutoff. We also did a joint analysis of T2D and diastolic blood 
pressure, finding a significant boost in the estimate of direct selection on T2D (𝑃 = 0.036, Table 
2), although it did not meet our FDR cutoff. 

Lastly, we tested our set of 𝑅	statistics among the pairs of genetically correlated traits for 
enrichment in the tail over the null (Fig. 5B). At the nominal 5% FPR level, we found significant 
(2.6-fold) enrichment for correlated response acting on these traits (𝑃 = 1.5 × 103G, one-sided 
binomial test), suggesting that many additional traits in this analysis have evolved under indirect 
selection due to correlated response. 

 
Discussion 

We have presented a method, PALM, for estimating the directional selection gradient 
acting on a polygenic trait. Our method works by estimating likelihood functions for the selection 
coefficients of a set of GWAS SNPs, and then aggregating these functions along with GWAS-
estimated SNP effects to find the likelihood of the selection gradient. Through simulations, we 
showed that PALM offers improved power over current methods across a range of selection 
gradients(𝜔 = 0.025 − 0.10) and polygenicities (𝑀 = 101 − 106), and is the first method to our 
knowledge that can estimate 𝜔from nucleotide data. We conducted robustness checks and 
showed that PALM is robust to typical sources of uncertainty and bias in GWAS summary 
statistics (e.g. sampling variation, ascertainment bias/Winner’s Curse) allelic heterogeneity, 
purifying selection, and underpowered GWAS.  

We also introduced a method, J-PALM, to jointly estimate the selection gradient on 
multiple traits in order to control for pleiotropy. We showed that, across a wide range of 
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polygenic architectures (𝑀 = 101 − 106, 𝜚 = 40%− 100%), J-PALM can reliably detect and 
assign selection to the causal trait when it is considered in the analysis, and can be used to 
uncover genetically correlated traits under antagonistic selection where the marginal approach 
(e.g. PALM) is underpowered. We considered several additional sources of bias unique to multi-
trait analyses (i.e. uneven GWAS sample sizes, correlation in trait environmental noise) and 
found J-PALM robust to these as well. 

We note several areas in which the study of polygenic adaptation can be advanced. Our 
operative model of polygenic adaptation is based on the Lande approximation, which over long 
time-courses will overestimate the efficiency of adaptation under stabilizing selection with a shift 
in the optimum.12,39 A model that incorporates these dynamics will potentially be better suited to 
detecting polygenic adaptation over longer time-courses, such as analyses of ancient DNA 
samples. Furthermore, under stabilizing selection more SNP heritability is expected to be 
sequestered to low-frequency alleles, and so common SNPs are expected to change less under 
adaptation than in our simulation model.5,12 

Advances might also be made through more nuanced models that make fuller use of 
GWAS summary statistics and LD among GWAS marker. We showed our thresholding and 
pruning scheme for selecting sites did not substantially decrease our method’s power. Pre-
existing methods for fine-mapping or ascertaining pleiotropic loci might increase power even 
further.40 It is also possible that for traits with extremely high polygenicity and/or low heritability, 
it will be necessary to utilize summary statistics that are sub-significant, and account for 
uncertainty in the location of the causal site. 

We showed that PALM is substantially less prone to bias due to uncorrected GWAS 
stratification than comparable methods such as tSDS. However, we stress that PALM can 
nonetheless be biased under sufficiently strong uncorrected stratification. Other forms of 
stratification that we did not explore, such as gene-by-environment (GxE) interactions, may be 
more difficult to account for via standard kinship-based approaches; however, new methods 
have recently arisen to this particular end.41  

Another limitation of our model is the interpretation of the estimates of the selection 
gradient and correlated response. We showed through simulations that when a genetically 
correlated trait with causal fitness effect is excluded from the analysis, estimates of direct 
selection have no causal interpretation. To address this, we introduced the notion of an effective 
selection gradient, which depends on which traits are modeled together. Estimates of the 
effective selection gradient allow us to determine whether a focal trait has evolved under 
correlated response another trait; however, this does not have the causal interpretation that the 
focal trait is under correlation response to a particular conditional trait. 

Applying PALM to study evolution of 56 human traits in British ancestry, we found 8 traits 
under significant directional selection, recovering several previously-reported targets, such as 
pigmentation traits, educational attainment, and glycated hemoglobin (HbA1c), in agreement 
with previous findings of selection on these traits in Europe.15,16,42 We also report several novel 
targets of directional selection, such as increased bone mineral density and decreased 
neuroticism. Despite historical claims of selection to increase height in Europe22,  we found no 
evidence for selection to increase height, consistent with recent analyses which showed that 
signals of directional selection on height have been drastically inflated by uncorrected 
population structure in GWAS summary statistics.25,26  
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We applied J-PALM to study 137 pairs of genetically correlated traits for signatures of 
correlated response. We found a highly significant enrichment of correlated response acting on 
these traits. Particularly, we found significant correlated response acting on pigmentation and 
life history traits (hair color, educational attainment). We showed signatures of selection on traits 
such as hair color and educational attainment, which have been widely reported to date15,16,42,43, 
are more likely due to correlated response to selection on other traits than direct selection acting 
on these traits.  

One proposed theory for the diversification and increase of blonde hair color in Europe is 
sexual selection.44,45 However, our results do not support this, as we show that evidence for 
selection on hair color is attributable mostly to correlated response, beyond which there is little 
evidence for direct selection on this trait. This echos previous analysis showing selection at 
individual hair color loci may be indirect, via their pleiotropic effects (e.g. blonde hair gene 
KITLG responding to selection for tolerance to climate and UV radiation46), and conflict with 
arguments that hair color has been under direct sexual selection.  

In our marginal test for selection, we detected significant selection to increase 
educational attainment, consistent with some previous work.16 However, in a joint test with 
sunburn (i.e., “childhood sunburn occasions,” the number of times the individual was sunburned 
as a child), strong signals of selection to increase educational attainment were obviated. We 
conclude that signals of selection on educational attainment are driven significantly by 
correlated response. We caution that “childhood sunburn occasions” is a survey question, and is 
certainly not interpretable as a proxy for skin color; this trait can be driven by many exogenous 
factors (e.g., opportunity to visit the beach or use sunscreen). We propose that gene-by-
environment (GxE) interactions may be driving these signals of correlated response. Lewontin 
(1970), responding to Jensen (1968), pointed out that then-current estimates of intelligence 
quotient (IQ) heritability were inflated by GxE.47,48 Indeed, in modern-day GWAS, we see that 
educational attainment polygenic scores in the UKBB are only 50% as predictive in adoptees as 
in non-adoptees, indicating a significant role of GxE in the expression of educational attainment, 
as well as estimates of its heritability and genetic correlations 49. Hence, genetic correlation of 
sunburn and educational attainment may be overestimated (e.g., 𝑟$e = 0.24 using UKBB 
GWAS32). We do not have data to elucidate the mechanism of this proposed GxE interaction, 
but hypothesize that educational opportunities and other environmental influences could be 
affected by skin pigmentation. Even in the absence of GxE, we stress that our results are not 
interpretable as evidence of direct selection on “childhood sunburn occasions”--let alone skin 
pigmentation--following from our simulation study. Lastly, these signals of selection could also 
ultimately be due to uncorrected GWAS stratification.25,26  

We found one case of significant antagonistic selection: T2D shows significant selection 
to increase, but this signal was initially occluded by the positive genetic correlation of T2D with 
negatively-selected glycated hemoglobin (HbA1c). Our joint analysis with J-PALM disentangles 
this antagonism between T2D and HbA1c, revealing latent adaptation of T2D. T2D is a complex 
disease with a complex etiology, involving obesity and various metabolic risk factors. Selection 
may have favored some of these factors under previous environmental conditions where both 
obesity and diets rich in simple sugars were uncommon (also known as the thrifty gene 
hypothesis).50 HbA1c is a biomarker commonly used to not only diagnose pre-
diabetes/diabetes, but also to monitor chronic hyperglycemia as a risk factor for vascular 
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damage.51 T2D and HbA1c are strongly, although imperfectly genetically correlated (𝑟$ = 69%), 
and HbA1c is associated with hypertension and other cardiovascular disease independently of 
T2D incidence.38 It is therefore possible that selection might have favored some of the traits 
underlying increased T2D risk, but acted against some of the more specific negative effects of 
T2D which now are measured by HbA1c.38,51,52 These results provide evidence in support of the 
thrifty gene hypothesis.50 
  
Methods 
Simulations 
Pleiotropic polygenic trait architecture 

We sample effect sizes jointly for 𝑑 = 23 polygenic traits with previously estimated SNP 
heritability and genetic correlations.29,30 We consider different values of polygenicity (𝑀, the 
number of causal SNPs) and degrees of pleiotropy (𝜚, the probability that a causal SNP is 
pleiotropic). Let 𝐺 be the additive genetic covariance matrix (diagonal entries are the SNP 
heritabilities for each trait). Then the genetic correlation of traits 𝑖, 𝑗 is  𝑟$,)/ = 𝑔)//.𝑔))𝑔// =

𝑔)//jℎ)1ℎ/1. Under our simulation model, we assume that if a SNP is pleiotropic, then 𝛽 ∼

𝑀𝑉𝑁90, 𝐺∗/(𝑀𝜈):, where 𝑔∗)) = 𝑔)) ⋅ (1 − (1 − 𝜚)/𝑑)/𝜚	, 𝑔∗)I/ = 𝑔)I//𝜚.	If a SNP is non-

pleiotropic and is causal for trait 𝑗, then 𝛽/ ∼ 𝑁m0, ℎ/1/(𝑀𝜈)n where ℎ/1 ≔ 𝑔//, and 𝛽3/ = 0. We 
assume that if a SNP is non-pleiotropic, it is causal for a particular trait 𝑗with uniform probability 
1/𝑑. Under this model, we can see that averaging over pleiotropic and non-pleiotropic loci, we 
recover the overall genetic covariance 𝐺:  

𝜎J"
1 = (1 − 𝜚)/𝑑	 ⋅ ℎ/1 + 𝜚	 ⋅ (1 − (1 − 𝜚)/𝑑)/𝜚 ⋅ ℎ/1 = ℎ/1 = 𝑔//, 

𝜎J#,J" = 0 + 𝜚	 ⋅ 1/𝜚 ⋅ 𝑔)I/ = 𝑔)I/ 

Note that here 𝛽 is standardized by the phenotypic variance, but not the genotypic 
variance. Thus we normalize the variance by a factor of 𝜈 = 2 ⋅ 𝐸[𝑝𝑞], assuming some 
stationary distribution for 𝑝.	We assume the stationary distribution 𝑓(𝑝) ∝ 1/𝑝, which yields 𝜈 =
4 𝑙𝑜𝑔 𝑁5 	, where 𝑁5 is the diploid effective population size. This choice of 𝜈 ensures 
𝐸w∑+K,- 2𝛽K1𝑝K𝑞Kx = ℎ1 under the nominal allele frequency spectrum. The equation holds 
because we assume independence of effects and allele frequencies; we also performed 
simulations where 𝛽 and 𝑝 are allowed to depend strongly on each other due to purifying 
selection.  
 
Simulation of confounding due to population structure and uncorrected GWAS stratification 
 Previous estimates of selection to increase height in Europe have been biased by a 
combination of uncorrected stratification and GWAS and systematic differences in the 
coalescent rate at SNPs that depended on their allele frequency difference in 1000 Genomes 
(1KG) British (GBR) vs. Southern Italy (TSI) populations.25,26 We developed a simulation model 
based on empirical data from the 1KG data in order to assess the robustness of our method 
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compared to tSDS-based tests for polygenic selection.15 We model uncorrected stratification in 
summary statistics for a simulated polygenic trait architecture by drawing random SNP effects  

𝛽	 ∼ 	𝑁(0, ℎ1/(𝑀𝜈) ⋅ 𝐼) 
where 𝐼is the identity matrix. We assume that the phenotype follows the form 

𝜙 = 	𝑋𝛽 + 	𝑆 + 	𝜖 
where 𝑆 is some environmentally determined stratified effect experienced by an individual based 
on whether they belong to a subpopulation. If 𝑁-, 𝑁1 individuals (𝑁- +𝑁1 = 𝑁)	belong to 
subpopulations 1 and 2 (e.g., GBR and TSI) respectively, then 𝑆) =	+𝜎L/.𝑁-/𝑁1 if 𝑖 = 1, 𝑆) =
	−𝜎L	/.𝑁1/𝑁-	if 𝑖 = 2. (It can be shown then that phenotypic mean remains 0, and variance due 
to stratification is 𝜎L1.) Under this form of stratification, assuming random mating of genotypes, 
the expected effect estimate is biased: 

𝐸w𝛽U	|	𝑋x = 𝛽 +	𝑋⊺𝑆/(2𝑁𝑝𝑞) 

= 𝛽 + 	2𝜎L m.𝑁-𝑁1𝑓- −.𝑁-𝑁1 ⋅ (𝑁/𝑁1 ⋅ 𝑝 − 𝑁-/𝑁1 	 ⋅ 𝑓-)n /(2𝑁𝑝𝑞) 

= 𝛽 +	.𝑁-/𝑁1𝜎L(𝑓- − 𝑝)/(𝑝𝑞) 
where 𝑝 = 1 − 𝑞 = (𝑁-	𝑓- +𝑁1𝑓1)/𝑁) is the overall frequency of the SNP, and 𝑓- is the 
frequency of the SNP in subpopulation 1. The nominal standard error of 𝛽U  is the usual 𝑠𝑒9𝛽U: =
1/.2𝑁𝑝𝑞. 
 Hence, we can simulate GWAS-estimated SNP effects with uncorrected stratification 
using 
   𝛽 ∼ 𝑀𝑉𝑁(0, ℎ1/(𝑀𝜈) ⋅ 𝐼) 

𝛽U	|	𝛽	 ∼ 𝑁(𝛽 + .𝑁-/𝑁1𝜎L(𝑓- − 𝑝)/(𝑝𝑞), 𝜎51/𝑁 ⋅ 𝐼) 
where 𝑍 = .2𝑁𝑝𝑞	𝛽U  and 𝜎51: = 	1 − ℎ1 − 𝜎%1. Although in this simple model of GWAS with 
uncorrected stratification, we assume no LD between causal sites, the bias in the effect 
estimates does not depend on LD. We note that this is equivalent to the model of Bulik-Sullivan, 
et al. (2015)29, generalized to uneven sample sizes from subpopulations.  
   
Population genetic model of selection and ascertainment bias via GWAS 
 Given 𝛽, we simulate selection following the multivariate Lande approximation (see 
Model).  Because we simulate polygenic architectures of  𝑀 ≥ 100 without linked causal loci, 
out assumption of infinitesimal genetic architecture is appropriate. (We also explore the 
performance of our model when we allow LD between causal SNPs; see Supp. Fig. 4). We then 
simulate the trajectory of the allele forward in time using a normal approximation to the Wright-
Fisher model with selection, i.e. 𝑝"N- ∼ 𝑁(𝑝" + 𝑠𝑝"(1 − 𝑝"), 𝑝"(1 − 𝑝")/4𝑁5), where 𝑠 is 
calculated using the multivariate Lande approximation. For most of our simulations, we simulate 
forward for 50 generations (i.e., we assume selection began 50 generations before the present), 
unless otherwise stated. Let 𝑝 be the present-day allele frequency. We simulate the 
ascertainment of this SNP in a GWAS by simulating the SNP Z-scores 𝑍 ∼ 𝑀𝑉𝑁9.2𝑁𝑝𝑞𝛽, 𝐸:, 
where 𝐸)) = 1, 𝐸)I/ =	𝜌5, where 𝜌5 is a term that allows for cross-trait correlations in 
environmental noise. (Note that here 𝑍is the usual Z-score of 𝛽U, not to be confused with the 
selection Z-score we present earlier.) Unless stated otherwise, we set 𝑁 = 102, 𝜌5 = 0.1 in all 
simulations. We use a 𝑝-value threshold of 5 × 1034 to ascertain a SNP; this must be surpassed 
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by at least one trait. If a SNP is ascertained, we simulate its trajectory backwards in time using 
the normal approximation to the neutral Wright-Fisher diffusion conditional on loss, 𝑝"3- ∼
𝑁(𝑝"(1 − 1/4𝑁5), 𝑝"(1 − 𝑝")/4𝑁5). We use the coalescent simulator mssel to simulate a sample 
of haplotypes conditional on this allele frequency trajectory.20 We use 𝑛 = 400 haplotypes and 
𝜇 = 𝑟 = 1034/bp/gen and simulate regions of 1Mbp, centered on the causal SNP at the position 
5 × 102. 
 To simulate ascertainment of non-causal SNPs in a GWAS, we take the trait with the top 
Z-score at the causal SNP and jointly simulate Z-scores for that trait for all linked SNPs within a 
200kbp window centered on the causal SNP and surpassing a MAF threshold (MAF ≥ 0.01). We 
ascertain the SNP with the top Z-score (sometimes the causal SNP), and then simulate the Z-
scores for all traits, conditioned on the Z-score for the one aforementioned trait. We simulate 
this way rather than jointly simulating Z-scores for all traits at all SNPs because for two reasons; 
the top SNP will typically have the same top trait association as the causal, and jointly 
simulating all trait-by-SNP Z-scores increases computational time by >400 for the parameters 
we used. 
 To further reduce computational burden, we simulated libraries of 10 ×𝑀 causal loci and 
resampled sets of 𝑀loci without replacement (some proportion of which meet the ascertainment 
criteria), in order to model sampling variation in the test statistics.  

 
Inference of local genealogies 

Given a set of simulated haplotypes, we use the software package Relate19 to infer local 
genealogies along the sequence. Using positions of the SNPs ascertained through GWAS, we 
use the add-on module SampleBranchLengths to draw 𝑚 = 5,000 MCMC samples of the branch 
lengths of the local tree at the ascertained sites. We then extract coalescence times from these 
MCMC samples (thinned down to 𝑚 = 500 approximately independent samples), and partition 
the coalescence times for each sample tree based on whether they occur between lineages 
subtending the derived/ancestral alleles. We note that Relate, unlike ARGweaver, does not 
sample over different ARG or tree topologies, and it samples branch lengths for two distinct 
local trees independently, conditional on the observed data.  

 
Comparisons to tSDS in simulations 
 In order to calculate tSDS values for our simulated polygenic traits, we computed the 
Gamma shape parameters for a model with constant 𝑁5 = 106 using 250 simulations at a range 
of DAFs from 1% to 99%, with 2% steps between frequencies, and a sample size of 𝑛 = 400 
haplotypes. We randomly paired haplotypes in the sample to form diploid individuals and found 
singletons carried by each diploid. We then calculate raw SDS using the compute_SDS.R script 
with our custom Gamma-shapes file. To calculate SDS we find the Z-score of a SNP’s raw SDS 
value, where the mean and standard deviation are estimated from an aggregated set of 29,478 
completely unlinked SNPs from our neutral trait simulations. To calculate tSDS we calculate the 
𝑃-value of the Spearman correlation of (sign(𝛽U), 𝑆𝐷𝑆).  
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http://www.github.com/35ajstern/palm.  

● Formatted summary statistics/metadata and 1000 Genomes GBR selection likelihoods 
for ascertained SNPs are available for download on DataDryad: 
https://doi.org/10.6078/D11M62. 

● Other web resources: 1000 Genomes Phase 3 data, 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/; Neale Lab GWAS Round 2, 
https://tinyurl.com/ycg5bxq5; BOLT-LMM summary statistics, 
https://data.broadinstitute.org/alkesgroup/UKBB/UKBB_409K/; LT-FH summary 
statistics, https://data.broadinstitute.org/alkesgroup/UKBB/LTFH/sumstats/; Alzheimer’s 
Disease GWAS summary statistics, https://ctg.cncr.nl/software/summary_statistics; PGC 
summary statistics, https://www.med.unc.edu/pgc/download-results/; GWAS Atlas, 
http://atlas.ctglab.nl/; Relate software, https://myersgroup.github.io/relate/; SDS scripts, 
https://github.com/yairf/SDS. 

 
 
53–55 
 
References 

1. Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H.K., Bulik-Sullivan, B.K., Pollack, S.J., 
Schizophrenia Working Group of Psychiatric Genomics Consortium, de Candia, T.R., Lee, S.H., 
Wray, N.R., et al. (2015). Contrasting genetic architectures of schizophrenia and other complex 
diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392. 

2. Shi, H., Kichaev, G., and Pasaniuc, B. (2016). Contrasting the Genetic Architecture of 30 
Complex Traits from Summary Association Data. Am. J. Hum. Genet. 99, 139–153. 

3. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An Expanded View of Complex Traits: From 
Polygenic to Omnigenic. Cell 169, 1177–1186. 

4. Zeng, J., de Vlaming, R., Wu, Y., Robinson, M.R., Lloyd-Jones, L.R., Yengo, L., Yap, C.X., 



 

21 

Xue, A., Sidorenko, J., McRae, A.F., et al. (2018). Signatures of negative selection in the 
genetic architecture of human complex traits. Nat. Genet. 50, 746–753. 

5. Simons, Y.B., Bullaughey, K., Hudson, R.R., and Sella, G. (2018). A population genetic 
interpretation of GWAS findings for human quantitative traits. PLoS Biol. 16, e2002985. 

6. O’Connor, L.J., Schoech, A.P., Hormozdiari, F., Gazal, S., Patterson, N., and Price, A.L. 
(2019). Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. Am. J. 
Hum. Genet. 105, 456–476. 

7. Schoech, A.P., Jordan, D.M., Loh, P.-R., Gazal, S., O’Connor, L.J., Balick, D.J., Palamara, 
P.F., Finucane, H.K., Sunyaev, S.R., and Price, A.L. (2019). Quantification of frequency-
dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. 
Nat. Commun. 10, 790. 

8. Sanjak, J.S., Sidorenko, J., Robinson, M.R., Thornton, K.R., and Visscher, P.M. (2018). 
Evidence of directional and stabilizing selection in contemporary humans. Proceedings of the 
National Academy of Sciences 115, 151–156. 

9. Walsh, B., and Lynch, M. (2018). Evolution and Selection of Quantitative Traits (Oxford 
University Press). 

10. Stern, A.J., and Nielsen, R. (2019). Detecting Natural Selection. Handbook of Statistical 
Genomics: Two Volume Set 397–340. 

11. Pritchard, J.K., Pickrell, J.K., and Coop, G. (2010). The genetics of human adaptation: hard 
sweeps, soft sweeps, and polygenic adaptation. Curr. Biol. 20, R208–R215. 

12. Hayward, L.K., and Sella, G. Polygenic adaptation after a sudden change in environment. 

13. Berg, J.J., and Coop, G. (2014). A population genetic signal of polygenic adaptation. PLoS 
Genet. 10, e1004412. 

14. Racimo, F., Berg, J.J., and Pickrell, J.K. (2018). Detecting Polygenic Adaptation in 
Admixture Graphs. Genetics 208, 1565–1584. 

15. Field, Y., Boyle, E.A., Telis, N., Gao, Z., Gaulton, K.J., Golan, D., Yengo, L., Rocheleau, G., 
Froguel, P., McCarthy, M.I., et al. (2016). Detection of human adaptation during the past 2000 
years. Science 354, 760–764. 

16. Uricchio, L.H., Kitano, H.C., Gusev, A., and Zaitlen, N.A. (2019). An evolutionary compass 
for detecting signals of polygenic selection and mutational bias. Evol Lett 3, 69–79. 

17. Griffiths, R.C., and Marjoram, P. (1996). Ancestral inference from samples of DNA 
sequences with recombination. J. Comput. Biol. 3, 479–502. 

18. Rasmussen, M.D., Hubisz, M.J., Gronau, I., and Siepel, A. (2014). Genome-wide inference 
of ancestral recombination graphs. PLoS Genet. 10, e1004342. 



 

22 

19. Speidel, L., Forest, M., Shi, S., and Myers, S.R. (2019). A method for genome-wide 
genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329. 

20. Edge, M.D., and Coop, G. (2019). Reconstructing the History of Polygenic Scores Using 
Coalescent Trees. Genetics 211, 235–262. 

21. Stern, A.J., Wilton, P.R., and Nielsen, R. (2019). An approximate full-likelihood method for 
inferring selection and allele frequency trajectories from DNA sequence data. PLoS Genet. 15, 
e1008384. 

22. Turchin, M.C., Chiang, C.W.K., Palmer, C.D., Sankararaman, S., Reich, D., Genetic 
Investigation of ANthropometric Traits (GIANT) Consortium, and Hirschhorn, J.N. (2012). 
Evidence of widespread selection on standing variation in Europe at height-associated SNPs. 
Nat. Genet. 44, 1015–1019. 

23. Robinson, M.R., Hemani, G., Medina-Gomez, C., Mezzavilla, M., Esko, T., Shakhbazov, K., 
Powell, J.E., Vinkhuyzen, A., Berndt, S.I., Gustafsson, S., et al. (2015). Population genetic 
differentiation of height and body mass index across Europe. Nat. Genet. 47, 1357–1362. 

24. Berg, J.J., Zhang, X., and Coop, G. (2017). Polygenic adaptation has impacted multiple 
anthropometric traits. BioRxiv. 

25. Berg, J.J., Harpak, A., Sinnott-Armstrong, N., Joergensen, A.M., Mostafavi, H., Field, Y., 
Boyle, E.A., Zhang, X., Racimo, F., Pritchard, J.K., et al. (2019). Reduced signal for polygenic 
adaptation of height in UK Biobank. Elife 8,. 

26. Sohail, M., Maier, R.M., Ganna, A., Bloemendal, A., Martin, A.R., Turchin, M.C., Chiang, 
C.W., Hirschhorn, J., Daly, M.J., Patterson, N., et al. (2019). Polygenic adaptation on height is 
overestimated due to uncorrected stratification in genome-wide association studies. Elife 8,. 

27. Lande, R. (1975). The maintenance of genetic variability by mutation in a polygenic 
character with linked loci. Genet. Res. 26, 221–235. 

28. Chevin, L.-M., Billiard, S., and Hospital, F. (2008). Population and evolutionary genetics-
Hitchhiking both ways: Effect of two interfering selective sweeps on linked neutral variation. 
Genetics 180, 301. 

29. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working 
Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M.J., Price, A.L., and 
Neale, B.M. (2015). LD Score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat. Genet. 47, 291–295. 

30. Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.-R., ReproGen 
Consortium, Psychiatric Genomics Consortium, Genetic Consortium for Anorexia Nervosa of the 
Wellcome Trust Case Control Consortium 3, Duncan, L., et al. (2015). An atlas of genetic 
correlations across human diseases and traits. Nat. Genet. 47, 1236–1241. 

31. Haller, B.C., and Messer, P.W. (2019). SLiM 3: Forward Genetic Simulations Beyond the 



 

23 

Wright–Fisher Model. Mol. Biol. Evol. 36, 632–637. 

32. Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T.J.C., 
van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global overview 
of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348. 

33. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A.P., and Price, A.L. (2018). Mixed-model 
association for biobank-scale datasets. Nat. Genet. 50, 906–908. 

34. Churchhouse, C., Neale, B.M., Abbott, L., Anttila, V., Aragam, K., Baumann, A., Bloom, J., 
Bryant, S., Churchhouse, C., Cole, J., et al. (2017). Rapid GWAS of thousands of phenotypes 
for 337,000 samples in the UK biobank. Neale Lab. 

35. Hujoel, M.L.A., Gazal, S., Loh, P.-R., Patterson, N., and Price, A.L. (2019). Combining case-
control status and family history of disease increases association power. 

36. Berisa, T., and Pickrell, J.K. (2016). Approximately independent linkage disequilibrium 
blocks in human populations. Bioinformatics 32, 283–285. 

37. Siva, N. (2008). 1000 Genomes project. Nat. Biotechnol. 26, 256. 

38. Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., and Mars, N.J. (2019). Genetics of 38 blood 
and urine biomarkers in the UK Biobank. BioRxiv. 

39. Thornton, K.R. (2019). Polygenic Adaptation to an Environmental Shift: Temporal Dynamics 
of Variation Under Gaussian Stabilizing Selection and Additive Effects on a Single Trait. 
Genetics 213, 1513–1530. 

40. Pickrell, J.K., Berisa, T., Liu, J.Z., Ségurel, L., Tung, J.Y., and Hinds, D.A. (2016). Detection 
and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717. 

41. Dahl, A., Nguyen, K., Cai, N., Gandal, M.J., Flint, J., and Zaitlen, N. (2020). A Robust 
Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits. Am. J. 
Hum. Genet. 106, 71–91. 

42. Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterländer, M., Hollfelder, N., 
Potekhina, I.D., Schier, W., Thomas, M.G., et al. (2014). Direct evidence for positive selection of 
skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. U. 
S. A. 111, 4832–4837. 

43. Williamson, S.H., Hubisz, M.J., Clark, A.G., Payseur, B.A., Bustamante, C.D., and Nielsen, 
R. (2007). Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90. 

44. Cavalli-Sforza, L.L., Cavalli-Sforza, L., Menozzi, P., and Piazza, A. (1994). The History and 
Geography of Human Genes (Princeton University Press). 

45. Frost, P. (2006). European hair and eye color: A case of frequency-dependent sexual 
selection? Evol. Hum. Behav. 27, 85–103. 



 

24 

46. Yang, Z., Shi, H., Ma, P., Zhao, S., Kong, Q., Bian, T., Gong, C., Zhao, Q., Liu, Y., Qi, X., et 
al. (2018). Darwinian Positive Selection on the Pleiotropic Effects of KITLG Explain Skin 
Pigmentation and Winter Temperature Adaptation in Eurasians. Mol. Biol. Evol. 35, 2272–2283. 

47. Jensen, A. (1969). How much can we boost IQ and scholastic achievement. Harv. Educ. 
Rev. 39, 1–123. 

48. Lewontin, R.C. (1970). Race and Intelligence. Bulletin of the Atomic Scientists 26, 2–8. 

49. Cheesman, R., Hunjan, A., Coleman, J.R.I., Ahmadzadeh, Y., Plomin, R., McAdams, T.A., 
Eley, T.C., and Breen, G. (2020). Comparison of Adopted and Nonadopted Individuals Reveals 
Gene-Environment Interplay for Education in the UK Biobank. Psychol. Sci. 956797620904450. 

50. Neel, J.V. (1962). Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? 
Am. J. Hum. Genet. 14, 353–362. 

51. Lyons, T.J., and Basu, A. (2012). Biomarkers in diabetes: hemoglobin A1c, vascular and 
tissue markers. Transl. Res. 159, 303–312. 

52. Bower, J.K., Appel, L.J., Matsushita, K., Young, J.H., Alonso, A., Brancati, F.L., and Selvin, 
E. (2012). Glycated hemoglobin and risk of hypertension in the atherosclerosis risk in 
communities study. Diabetes Care 35, 1031–1037. 

53. Young, A.I., Frigge, M.L., Gudbjartsson, D.F., Thorleifsson, G., Bjornsdottir, G., Sulem, P., 
Masson, G., Thorsteinsdottir, U., Stefansson, K., and Kong, A. (2018). Relatedness 
disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 
1304–1310. 

54. Mostafavi, H., Harpak, A., Agarwal, I., Conley, D., Pritchard, J.K., and Przeworski, M. 
(2020). Variable prediction accuracy of polygenic scores within an ancestry group. Elife 9,. 

55. Mathieson, I., and McVean, G. (2012). Differential confounding of rare and common variants 
in spatially structured populations. Nat. Genet. 44, 243–246. 

  



 

25 

 
 

Figure 1: PALM power, calibration, and robustness to uncorrected stratification and 
ascertainment. (A) Left: Power/false positive rate (FPR) of PALM and tSDS. Error bars denote 
95% Bonferroni-corrected confidence intervals. Right: PALM selection gradient estimates (𝜔e). 
Error bars denote 25-75th percentiles (thick) and 5-95th percentiles (thin) of estimates; see 
Table 1 for more details of 𝜔e moments and error. Markers and colors in (A) also apply to (B,D). 
(B) False positive rate of PALM and tSDS applied to neutral simulations with uncorrected 
population stratification,  simulated using 1000 Genomes data. We used baseline values of 
𝜎%	 = 0.1, 𝑁7%8/𝑁9:; = 1%,𝑀 = 10<,ℎ1 = 50%,using SNPs ascertained at 𝑃 < 5 × 1034. Error 
bars denote 95% Bonferroni-corrected confidence intervals. (C) Comparison of PALM using true 
vs Relate-inferred trees; causal vs GWAS-ascertained tag SNPs; and true marginal SNP effects 
(solid) vs GWAS-estimated SNP effects (hatched). Error bars denote 95% Bonferroni-corrected 
confidence intervals. (D) Varying polygenicity (M) of the polygenic trait. Error bars denote 95% 
Bonferroni-corrected confidence intervals. Baseline parameters for all simulations except (C) 
were our constant-size model with 𝑀 = 10<,	with Scz under positive selection and testing Scz 
for selection. In (A,B) we use Relate-inferred trees and estimated SNP effects at the causal 
SNPs; in D; we use Relate-inferred trees and estimated effects at tag SNPs. In all panels, we 
use a 5% nominal FPR (dashed horizontal line) and simulated 10<replicates. 
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𝜔 mean 𝜔e sd(𝜔e) MSE(𝜔e) Mean se(𝜔e) 

0 0.0053 0.0226 0.0232 0.0246 

0.025 0.0306 0.0225 0.0232 0.0243 

0.05 0.0465 0.0243 0.0245 0.0266 

0.075 0.0931 0.0211 0.0278 0.023 

0.1 0.1223 0.0236 0.0325 0.0255 

 
Table 1: Selection gradient estimates and standard errors. Summary statistics for the 
accuracy and calibration of estimates also used in Figure 1 (see caption for simulation details). 
Mean s.e. is the mean nominal standard error. Simulations are the same as used in Figure 1A.  
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Figure 2: Joint testing for polygenic adaptation controls for pleiotropy. We simulated a 
cluster of four traits (I-IV) modeled after (A) real human heritability and genetic correlation 
estimates for schizophrenia (I), bipolar disorder (II), major depression (III), and anorexia (IV), 
with selection to increase Trait I in the last 50 generations. (B,C) We ran marginal and joint tests 
for selection on these four traits. While marginal selection tests were well-powered, they were 
strongly biased by even fairly low genetic correlations. (B,C) Conducting a joint test fully controls 
for genetic correlations while retaining high power to detect and isolate selection on Trait I. 
Simulations (1,000 replicates) were done under our constant effective population size model 
with 𝜚 = 60%,𝑀 = 1,000,	with Trait I under positive selection.  
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Figure 3: Simulations of joint testing power and calibration. (A) Differing the degree of 
pleiotropy 𝜚, (B) the trait truly under selection, (C) the polygenicity M of the traits, (D) 
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antagonistic selection on two traits with positive genetic correlation, (E) testing for correlated 
response on traits with 𝑟$ = 0%(Traits I/V) (top), 𝑟$ = 80%(Traits I/II) (middle), and leaving out 
the causal trait (Traits II/III, 𝑟$	to Trait I = 50%/80%) (bottom), and (F) 𝐾-way test with (top) and 
without (bottom) the causal trait included, showing tests for both direct selection and correlated 
response. (A-D) Red/pink/blue bars indicate estimates of selection for traits under positive 
selection/neutrality/negative selection, (E-F) bars are colored according to which trait selection 
is estimated on. Dashed horizontal lines indicate 5% nominal significance level and black lines 
indicate 95% Bonferroni-corrected confidence intervals. Baseline parameters for all simulations 
(1,000 replicates under each scenario) were our constant-size model with 𝜚 = 60%,𝑀 =
1,000,	with Trait I under positive selection. In panels (A,B) and (D,E) joint tests are performed on 
Trait I/Trait III and Trait I/Trait II, respectively.    
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Figure 4: Estimates of the selection gradient on 56 human traits. The selection gradient (𝜔e) 
was estimated using 1000 Genomes Great British (GBR) individuals and summary statistics 
from various GWASs (see Supp. Tab. 4 for full results), with standard errors (𝑠𝑒�O) estimated via 
block-bootstrap (𝑍 = 𝜔e/𝑠𝑒�O). Starred traits indicate significance at FDR = 0.05. 
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Traits Marginal test Joint test 
𝑅 𝑃; 

Focal Condition
al  𝑍 𝑃P	 𝑍 𝑃P 

Hair Tanning 4.74 2.2E-06 1.91 0.056 -3.77 1.7E-
04* 

EduYea
rs  Sunburn 3.65 2.7E-04 2.33 0.020 -4.68 2.9E-

06* 

Hb1A1c 
T2D 

-3.23 1.2E-03 
-4.41 1.0E-

05* -3.17 1.6E-
03* 

BP 
(diastolic) -1.95 0.051 2.36 0.019 

T2D 
Hb1A1c 

-0.32 0.75 
2.75 6.0E-

03* 4.34 1.5E-
05* 

BP 
(diastolic) 0.28 0.78 2.10 0.036 

 
Table 2: Selected trait pairs under correlated response in Great British ancestry. Selection 
on the focal trait is estimated jointly with the conditional trait. We report the Z-scores under both 
the marginal and joint tests, as well as the 𝑅 statistic of the difference in joint vs marginal 
selection gradient estimates, and their P-values. Results for all trait pairs are available in Supp. 
Tab. 5. T2D = Type 2 diabetes, HbA1c = glycated hemoglobin, BP = blood pressure. Asterisk (*) 
denotes significance at FDR = 0.05 (𝑛 = 2 × 137 = 274tests on 137 trait pairs with Bonferroni-
significant 𝑃>! < 0.005/ 2F

1
 and |𝑟$ > 0.20|).  
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Figure 5: Correlated response in real traits. (A) Expanded view of antagonistic selection on 
glycated hemoglobin (HbA1c) vs type 2 diabetes (T2D). We estimate individual SNP selection 
coefficients by taking the maximum-likelihood estimate �̂� for each SNP. We plot this value 
against the joint SNP effect estimates for HbA1c and T2D. Colored lines represent isocontours 
of 𝑠(𝛽) = 𝛽QRD-S𝜔eQRD-S + 𝛽71T𝜔e71T, the estimate of the Lande transformation from SNP effects 
to selection coefficients, where 𝜔eis inferred jointly for the two traits (Table 2). (B) Enrichment of 
correlated response in analysis of genetically-correlated traits. Enrichment in the tails of the 
distribution of our test statistic for correlated response 𝑅(𝑃 = 1.5 × 103G, binomial test) which 
had 2.6-fold enrichment at the nominal 5% level. We assessed 𝑛 = 2 × 137 = 274estimates of 
correlated response on 137 trait pairs with Bonferroni-significant 𝑃>! < 0.005/ 2F

1
 and |𝑟$ >

0.20|. Red area indicates pointwise 95% CI of the survival curve. 
 
 
 
 


