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Abstract 

Well-established animal models of depression have described a proximal relationship 

between stress and central nervous system (CNS) inflammation, a relationship mirrored in the 

peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that 

stress-induced pro-inflammatory states may contribute to the neurobiology of treatment-resistant 

depression. Interestingly, ketamine, a rapid-acting antidepressant, may partially exert its 

therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary-adrenal (HPA) 

axis, kynurenine pathway, or cytokine suppression. Further investigations into the relationship 

between ketamine, inflammation, and stress may provide insight into ketamine’s unique 

therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based 

antidepressants.  
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Teaser: This review investigates the role of inflammation in chronic stress and depression, as 

well as how the rapid-acting antidepressant ketamine may exert some of its therapeutic effects 

via anti-inflammatory mechanisms.    
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1. Introduction 

Depression is the leading cause of disability worldwide, affecting 322 million people [1]. 

In the United States, research suggests that approximately one-third of sufferers have treatment-

resistant depression (TRD), broadly defined as non-response to conventional antidepressants [2]. 

One of the primary obstacles to understanding depression is its characteristic heterogeneity in 

course of illness, biomarkers, treatment response, and genetic polymorphisms. As such, recent 

efforts within psychiatry have sought to establish clinically-relevant biomarker and symptom-

based subgroups under the umbrella of depressive disorders. 

For over three decades, researchers have studied the relationship between depressive 

symptoms and inflammatory states [3]. This interest began with the observation that chronic 

administration of interferon-alpha (IFN-α)—a pro-inflammatory cytokine used to treat hepatitis 

C and other malignancies—precipitated depressive symptoms that responded to standard 

antidepressant interventions [4]. Preclinical studies also found that peripheral immune system 

activation via systemic administration of lipopolysaccaharide (LPS), an endotoxin, reliably 

triggered “depressive-like” behaviors in rodents [5]. Acute and chronic stressors that play an 

integral role in the etiology of depression [6] also reliably trigger inflammatory responses [7].  

Indeed, emerging evidence from population-based studies supports the notion that chronic, 

low-grade inflammation—while not present in all individuals with depression—may 

nevertheless play a key role in the pathophysiology of depression for a subset of patients [8]. 

Data from longitudinal studies suggest that dysregulation of the inflammatory response is 

associated with a more severe course of illness, higher recurrence of depressive symptoms, and 

worse outcomes, including impaired brain connectivity within motivation and reward circuits 
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[9], increased suicidality [10], and—notably—greater resistance to conventional therapies [11]. 

Reward circuits may also impact a hallmark symptom of TRD, anhedonia, which has also been 

consistently linked to inflammation [12]. Other factors such as obesity and other conditions 

associated with chronic inflammation also appear to increase the development of inflammation-

associated sickness and depressive symptoms, as well as their persistence [13].  

Subanesthetic doses of the glutamatergic modulator racemic ketamine, as well as its 

enantiomers, have consistently been shown to exert rapid-acting antidepressant effects in patients 

with TRD and treatment-resistant bipolar depression (reviewed in [14]). Ketamine has also been 

found to successfully treat traditionally treatment-refractive symptoms domains such as 

anhedonia, suicidality, and amotivation [15,16]. Within the context of this review, it is important 

to note that although researchers primarily attribute ketamine’s therapeutic effects to upregulated 

neuroplasticity induced via glutamatergic modulation [17], growing evidence suggests that it 

may also regulate acute and chronic inflammatory reactions and restore immune homeostasis 

[18,19]. 

This review of previous and emerging research: 1) discusses the links between 

depression, stress, and inflammation, particularly inflammation as an potential indicator of TRD; 

and 2) summarizes the preclinical and clinical evidence for ketamine’s anti-inflammatory and 

immunomodulatory properties in the context of its antidepressant effects. Potential mediators of 

the process—including the kynurenine pathway and the hypothalamic-pituitary-adrenal (HPA) 

axis—are also discussed, as is the hypothesis that ketamine’s unique ability to reduce depressive 

symptoms in TRD may in fact be due to its ability to reduce stress-induced inflammation.  

 

2. Chronic Stress, Depression, and Inflammation: An Overview  
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Stress is an inherent physiologically or emotionally coordinated response that activates 

processes in the body to maintain homeostasis after threatening stimuli or, under acute stress 

conditions, helps anticipate challenges or respond to dangerous situations. Chronic stress is 

loosely defined as a sustained threat lasting at least several weeks that is accompanied by a 

resulting negative emotional state and deleterious effects on body systems. Under chronic, 

prolonged stress conditions, the brain and body lose their ability to restore homeostasis. The link 

between inflammation and chronic stress likely results from an evolutionary adaptation [7]. In 

prehistoric environments, this connection between the perception of danger and the risk of 

subsequent tissue injury or pathogen exposure was believed to be so reliable that evolution 

favored anticipatory inflammatory responses to many environmental stressors, including 

psychosocial stressors. In the context of the present review, chronic stress is known to be a major 

risk factor for depression [6].   

The relationship between chronic stress and depression holds true in preclinical models, 

where chronic stress protocols (e.g. social defeat, unpredictable mild stress, and chronic 

corticosterone (CORT) administration) are the gold standard for producing depressive-like 

behaviors in animals, including symptom profiles such as learned helplessness and anhedonia 

[20]. In animal models, the upregulation of stress hormones was found to robustly increase 

inflammatory markers such as tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) 

[21]. Preclinical studies also found that chronic stress induces central nervous system (CNS) 

inflammation characterized by the secretion of cytokines and neuroinflammation [22]. 

Interestingly, one study found that chronic social instability stress did not alter hippocampal pro-

inflammatory cytokines; however, the study was conducted in females, suggesting potential sex 

differences in the links between chronic stress and inflammation [23]. 
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Multiple clinical studies have reported elevated levels of pro-inflammatory cytokines in 

individuals with depression. For instance, meta-analyses found that elevated levels of C-reactive 

protein (CRP)—a common marker of inflammation—predicted subsequent depressive symptoms 

[24] and were strongly associated with a diagnosis of depression [25]. Another recent meta-

analysis of individuals with depression found that a quarter of participants had low-grade 

inflammation (CRP >3 mg/L), and half had elevated CRP levels (CRP >1 mg/L) [26]. Other 

meta-analyses reported cerebrospinal fluid (CSF) and peripheral elevations of other pro-

inflammatory markers such as IL-6, IL-8, and TNF-α [27,28]. Supporting the notion that higher 

levels of inflammation play a causative role in depression, one longitudinal study found that 

participants with elevated IL-6 and CRP levels at age nine were more likely to be evaluated as 

depressed at age 18 [29]. Nevetheless, many other studies have found no such association 

between increased levels of CRP and IL-6 (reviewed in [30]), suggesting that any putative 

relationship between depression and inflammation remains unclear. Thus, the presence of 

increased inflammatory markers may represent a distinct subgroup within the depressive 

diagnostic label, and the mixed results warrant further investigation.  

It is also important to acknowledge the potential role of sex in the interplay between 

chronic stress, depression, and inflammation. Rates of depression have consistently been found 

to be two-to three-fold higher in females [31], and clinical research also suggests that women 

may be particularly vulnerable to the effects inflammation on depressive symptomatology [32]. 

In contrast, some preclinical models found that males were more vulnerable to developing 

depressive-like behaviors after inflammatory insult [33]. Throughout this review, sex differences 

will be discussed wherever possible.  
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3. The Relationship Between Inflammation and TRD 

As noted above, evidence suggests that individuals with MDD with heightened 

inflammatory markers may constitute a subpopulation uniquely associated with treatment-

refractory symptoms [34]. For example, body mass index (BMI)-corrected serum CRP levels 

were recently found to be significantly elevated in TRD participants relative to treatment-

responsive MDD participants, unmedicated MDD participants, and healthy volunteers [35]. 

These findings are complemented by two randomized, controlled trials that found that baseline 

CRP levels predicted lack of response to conventional antidepressants [36,37]. Another study 

found distinct results in whole blood samples, with a significant upregulation in mRNA-

indicated inflammasome activation and glucocorticoid resistance in the MDD population 

(untreated versus treatment-responsive versus TRD). Of the mRNAs identified, six (P2RX7, IL-

1β, IL-6, TNF-α, CXCL12, and GR) differentiated between TRD and treatment-responsive 

subgroups [38]. In contrast, another study found no evidence of large inflammatory differences 

in the peripheral blood mononuclear cells (PBMCs) of healthy volunteers versus MDD patients 

(untreated versus treatment-responsive versus TRD), but did find strong evidence of increased 

biological aging in the MDD sample [39]. 

One study of unmedicated MDD participants found that those who, on average, had 

failed to respond to three or more antidepressant trials had significantly higher levels of CRP, IL-

6, TNF receptor 2 (sTNF-R2), and TNF-α than those who, on average, had failed to respond to 

less than one trial [34]. A meta-analysis found that higher baseline levels of inflammatory 

markers in general were associated with poor treatment response, and that high TNF-α levels in 

particular were associated with TRD [40]. An analysis of participants with MDD and bipolar 

depression who participated in a randomized, controlled trial of escitalopram versus 
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nortriptyline found that cutoffs for absolute mRNA levels of IL-1β and macrophage migration 

inhibitory factor (MIF) in blood accurately predicted 100% of the non-responders in their study 

[41]. Interestingly, a randomized, controlled trial of the anti-inflammatory agent infliximab 

found that its antidepressant effects were specific to a subset of TRD participants with elevated 

baseline plasma CRP levels greater than 5mg/L [42]; because this impact was not consistent with 

results observed in individuals with bipolar I and II depression, it suggests a potential unique 

efficacy for TRD [43]. Finally, adjunctive use of the anti-glucocorticoid therapeutic metyrapone 

actually increased IL-6 levels in individuals diagnosed with TRD, an increase associated with 

poorer outcomes to treatment; this finding was hypothesized to result from potential 

glucocorticoid system overcompensation [44].  

Imaging studies are also beginning to confirm that this peripheral inflammation is 

mirrored in the brain itself. Positron emission tomography (PET) studies of translocator protein 

18 kDa (TSPO)—a biomarker of neuroinflammation—have typically reported greater TSPO 

binding in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) of individuals 

experiencing a major depressive episode [45]. In an open-label trial of TRD participants who 

received the anti-inflammatory agent celecoxib, investigators plotted the reduction in Hamilton 

Depression Rating Scale (HAM-D) score against baseline TSPO volume in the PFC and ACC 

and found that HAM-D scores rapidly dropped post-treatment as baseline TSPO distribution 

volume decreased [46]. A recent parallel study measured the impact of minocycline, a 

tetracycline antibiotic with anti-inflammatory properties, on TRD participants experiencing a 

major depressive episode; minocycline did not significantly impact TSPO binding [47], though 

another study found that it significantly decreased HAM-D scores in participants with elevated 

CRP levels (CRP ≥3mg/mL) [48]. Other studies investigating minocycline as an adjunctive 
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treatment for TRD found no significant change in depressive symptoms [49]. Finally, increases 

in immune factors after ex-vivo LPS stimulation of PBMCs were associated with reduced reward 

anticipation in the ventral striatum, as measured via functional magnetic resonance imaging 

(fMRI) [50]. This builds on previous research that found that endotoxin administration to healthy 

volunteers significantly increased depressed mood over time and reducted ventral striatum 

responses to reward [51]. This effect may also be sex-dependent, given that females 

demonstrated greater reductions in ventral striatum activity in response to reward [52].  

Inflammation may mediate motivational behavioral responses by dampening dopamine 

activity within reward circuits, resulting in disrupted fronto-striatal functional connectivity [53]. 

Inflammatory processes are therefore well-situated to influence the neural circuits underlying 

motivational symptoms related to anhedonia. This is particularly critical because behavioral 

responses to reward and social stimuli in patients with anhedonia have been associated with both 

suicidality [54] and treatment resistance [55]. Interestingly, depressive symptoms such as 

reduced motivation and anhedonia correlate significantly with central IL-6 soluble receptor (IL-

6sr) [56] as well as peripheral CRP levels [9,56]. A resting-state fMRI study of depressed 

participants found that plasma CRP levels correlated with decreased connectivity between the 

ventral striatum and ventromedial PFC (vmPFC), and that this change in connectivity was itself 

correlated with the severity of anhedonia [9]. Consistent with this finding, administration of IFN-

α for four to six weeks in 14 individuals with hepatitis C not only induced anhedonia but also 

reduced bilateral activation of the ventral striatum in an fMRI reward task [57]; change in striatal 

activity again correlated with anhedonia scores.  

Relatedly, reduced motivation has been correlated with central levels of TNF-α [56]. 

Anhedonia, anergia, and amotivation all fall under the symptom interest-activity dimension of 
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depression; in the large Genome-Based Therapeutic Drugs for Depression (GENDEP) (n = 811) 

and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (n = 3637) studies, this 

dimension was shown to best predict poor antidepressant response [58].  

Glutamate may also modulate the interplay between inflammation and depression. Higher 

glutamate release from microglial cells appears to increase concentrations of extracellular 

glutamate, promote maladaptive glutamate metabolism, contribute to loss of synaptic fidelity, 

and decrease the specificity of neurotransmission—all of which can worsen depressive-like 

behaviors and increase circuit dysfunction [59]. While most research in this area has focused on 

chronic stress, acute traumatic stress can similarly provoke glutamatergic signaling dysfunction 

[60]. Administration of the pro-inflammatory cytokine IFN-α increased glutamate concentrations 

in the dorsal anterior cingulate cortex and basal ganglia [61,62]. Notably, individuals with 

depression who also had high concentrations of plasma CRP and high levels of basal ganglia 

glutamate were significantly more likely to have more severe symptom presentations of 

anhedonia and cognitive slowing [63]. Despite these intriguing findings, the role of glutamate in 

depression remains unclear. As an example, magnetic resonance spectroscopy (MRS) [64] 

studies found decreased levels of glutamate, or no differences at all [65] in individuals with 

depression. Other studies found that the glutamatergic neurons of individuals with depression 

exhibited decreased mitochondrial energy production [66]. One important caveat is that 

glutamate is often measured using Glx—a composite measure that includes both glutamate and 

glutamine. At least one study that separated these measures found no significant differences in 

glutamate levels in participants with depression [67]. 

Preliminary research is also investigating the response of inflammatory proteins to 

psychological therapy. In one study, poor response to treatment was associated with higher 
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baseline levels of TNF-α, IL-6, and soluble intracellular adhesion molecule-1 and with higher 

post-therapeutic levels of CRP, thymus and activation-regulated chemokine, and macrophage 

chemoattractant protein-4 [68]. At least one review of the literature also reported a general 

reduction in inflammation after cognitive behavioral therapy for depression [69].  

Taken together, inflammatory markers seem to cause bona fide alterations in brain 

network activity that may, in turn, cause depressive symptoms. Thus, the evidence suggests that 

inflammation contributes to depressive pathology in at least some cases and that determining 

potential mediators of the stress response may inform the development of therapeutic 

interventions. 

 

4. Potential Mediators Between Depression and Inflammation 

4.1 Hypothalamic-Pituitary-Adrenal (HPA) Axis 

HPA axis hyperactivity is one of the most consistent findings in studies exploring the 

underlying pathophysiology of depression. In healthy states, the HPA axis is activated by acute 

stress, stimulating the release of corticotropin-releasing hormone (CRH) and vasopressin (AVP) 

from the hypothalamus. This, in turn, stimulates the release of adrenocorticotrophic hormone 

(ACTH) and glucocorticoids (primarily cortisol in humans and corticosterone in rodents). After 

an acute stressor, these glucocorticoids interact with their widely expressed receptors (either 

mineralocorticoid or glucocorticoid receptors), some of which interact with the hypothalamus to 

form a negative feedback loop to shut off HPA axis activity. Chronic stress disrupts this 

feedback loop, causing a downregulation of glucocorticoid receptors that impairs the ability to 

shut off the HPA axis, leading to dysfunctional hyperactivity [70]. 
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Many individals with depression exhibit HPA axis dysfunction, such as continuously 

elevated levels of cortisol and CRH [71]. This hypersecretion can cause hypercortisolism and, as 

a result, decreased dopaminergic reward-system responsivity [72]. In females, increased hair 

cortisol concentrations were associated with poor performance on measures of cognition and 

memory, an association that appeared to be mediated by CRP levels [73]. Early-life adversity has 

also been shown to increase vulnerability to acute social stress, an effect mediated by HPA-axis 

and immune activation [74], and was also found to impact later diurnal HPA axis functioning in 

adulthood [75]. 

One of the most compelling theories regarding the clinical relevance of inflammation in 

depression is that inflammation may differentiate depressive subtypes and mediate specific 

symptoms. For example, a recent study found that biomarkers of HPA axis activity and 

subsequent inflammation (such as cortisol and CRP) were more strongly associated with the 

presence of somatic symptoms than cognitive-affective symptoms [76]. For instance, a recent 

review found that cancer patients—who are significantly more likely to have depressive 

symptoms and a worsened symptom profile—may exhibit increased depressive-like behaviors 

due to hyperactivity of the HPA axis caused by cancer and anti-cancer treatments [77]. In a 

CORT-injected mouse model, the antidepressant-like effects of catalpol, an iridoid glucoside, 

also appeared to be mediated through the HPA axis, suppressing levels of CORT, ACTH, and 

CRH [78]. 

 

4.2 The Kynurenine Pathway 

One hypothesis of inflammation-mediated depressive pathogenesis is that stress and 

inflammatory cytokines promote kynurenine pathway signaling [79]. Tryptophan, a precursor for 
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serotonin synthesis, is competitively consumed by the kynurenine pathway. One of the rate-

limiting enzymes of this pathway, indoleamine-2,3-dioxygenase (IDO), is expressed mainly in 

immune and neuronal cells and induced by cytokines, cortisol, and LPS, generally indicating a 

pro-inflammatory state [80]. Tryptophan-2,3-dioxygenase (TDO), the other main enzyme in the 

kynurenine pathway that catalyzes tryptophan catabolism, is also induced under pro-

inflammatory states [81]. Thus, increased cytokine and cortisol levels may reduce serotonin 

levels via tryptophan depletion, a process that has been experimentally shown to induce 

depressive symptoms in vulnerable persons [82], though these findings have not always been 

consistent [83]. Tryptophan-kynurenine metabolism may also provide a link between the gut-

brain axis that connects inflammatory bowel disease and depression, two disorders that are 

strongly associated with one another [84]. Acute and chronic stress also impact the rate-limiting 

enzymes involved in the tryptophan/kynurenine balance (see Figure 1). For example, IFN-

gamma and Il-1β are potent inducers of IDO and TDO, which are highly impacted by immune 

activation in the brain. In addition, stress-induced corticosterone release and the consequent 

cascading activation of hepatic TDO to tryptophan metabolism ultimately lead to the production 

of kynurenine, which provokes a depression-related behavioral phenotype [85]. Both IDO and 

TDO may therefore represent promising targets for the treatment of depression associated with 

stress-related disorders marked by kynurenine pathway activation (see Figure 1). 

Kynurenine pathway products are biologically active. Kynurenic acid (KA) is considered 

both neuroprotective [86] and a potential therapeutic target for drug development in mood 

disorders. Another product, quinolinic acid (QA), is an endogenous neurotoxin that generates 

free radicals [87] and causes excitotoxicity by inducing the release and inhibiting the reuptake of 

glutamate [88]. One major component of the kynurenine pathway is its ability to affect the 
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glutamatergic system, where it both directly and indirectly influences ionotropic and 

metabotropic glutamate receptors and vesicular glutamate transport [89]. These effects are 

hypothesized to act as a main link between chronic stress, depression, and inflammation [90]. 

For instance, QA directly activates N-methyl-D-aspartate receptors (NMDARs), increases 

synaptosomal glutamate release, and inhibits glutamate uptake, making it uniquely placed to 

mediate interactions between ketamine and inflammation [91]. KA and QA are metabolized from 

kynurenine by astrocytes and microglia, respectively, and evidence suggests that individuals with 

MDD have reduced astrocyte density [92] and function [93] along with increased microglial 

activation and number [94].  

Supporting the clinical relevance of this pathway, studies have reported higher ratios of 

kynurenine to tryptophan levels [95,96], lower levels of KA [97], and lower KA:QA ratios [98] 

at baseline in MDD participants. In addition, QA elevations were found in the CSF of recent 

suicide attempters [99], and more QA-positive cells were found in the brain of suicide decedents 

[100]. Finally, altered peripheral ratios of KA:QA levels were shown to correlate with increased 

anhedonia in MDD participants [101] as well as with both depression and fatigue in cancer 

patients [102]. Taken together, this evidence suggests that the kynurenine pathway may play a 

key role in mediating the links between inflammation and depression.  

 

5. Ketamine and Inflammation 

The NMDAR antagonist ketamine is uniquely effective for treating TRD, with a response 

rate ranging from 25% to 85% at 24 hours post-infusion [103]. It has also been shown to 

effectively reduce suicidal ideation and anhedonia [15,16], as well as fatigue and amotivation 

symptoms [104,105]. Recent clinical and preclinical evidence indicates that, at antidepressant 



Ketamine, Chronic Stress, & Inflammation 
 

 
 

15 

doses, ketamine may exert these unique therapeutic effects in part by modulating inflammation 

[19,95]. It is important to note that most of the studies described below reflect acute, not chronic, 

ketamine administration, which could affect the interpretation of results.  

 

5.1 Preclinical Evidence of Ketamine’s Anti-inflammatory Effects 

Substantial preclinical evidence suggests that ketamine reduces inflammation by 

regulating the immune system. In vitro ketamine application to rodent glial cells [106] and 

macrophages [107] attenuated markers and mediators of LPS-induced inflammatory responses, 

such as TNF-α, IL1-β, high mobility group box 1 (HMGB1), nitric oxide (NO), inducible nitric 

oxide synthase (iNOS), and prostaglandin E-2.  

In animal models, administration of intraperitoneal ketamine had a prophylactic effect 

against both LPS- and chronic stress-induced depressive behaviors [108-110]. Ketamine’s 

neuroprotective effects appear to be, at least in part, regulated through the NLRP3 

inflammasome pathway [111]. Concurrent with the aforementioned behavioral changes, 

ketamine also attenuated plasma cytokine elevations [112] and cytokine expression in rodent 

tissue samples from the PFC, hippocampus, cerebellum, and spinal cord [110,113]. 

Interestingly, ketamine appears to act directly on immune cells. For instance, S-

ketamine—the S-enantiomer of racemic ketamine—decreased micoglial activity levels in the 

CNS after chronic stress exposure [110]. An immunohistochemistry study performed on rodent 

hippocampus samples found that ketamine reversed stress-induced activation of microglia caused 

by chronic restraint by downregulating Toll Like Receptor (TLR)/p38 pathway activation and 

P2X7 receptors [113]. In chronically stressed mice, pharmacological inhibition of TGF-β1-

signalling in microglia eliminated ketamine’s antidepressant effects [114]. In addition, ketamine 
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and its antidepressant metabolites altered the localization of signal transducer and activation of 

transcription 3 (STAT3) in human microglial cells to regulate the “response to interferon I” 

inflammatory pathway [115]. 

More recently, acute intraperitoneal ketamine administration in mice was shown to skew 

the distribution of macrophage populations away from pro-inflammatory and cytokine-inducing 

M1 phenotypes towards tissue-supporting M2 phenotypes [116]. This finding was also observed 

in vitro in human monocyte cultures, where the effect could be abolished by inhibiting 

mammalian target of rapamycin (mTOR), a key protein implicated in ketamine’s antidepressant 

effects [117]. PBMC samples collected from healthy volunteers and participants with MDD after 

a suicide attempt or with active suicidal ideation found that macrophages in MDD participants 

also skewed towards the inflammatory M1 phenotype [116]. 

Ketamine may also indirectly affect inflammation by mediating HPA axis function. In 

chronically stressed mice, acute ketamine administration restored hippocampal glucocorticoid 

receptor expression, counteracting the negative feedback associated with HPA over-activation 

[118]. In mice injected with LPS, ketamine significantly reduced corticosterone and ACTH 

production six hours later [119]. Similarly, both single and repeated seven-day ketamine 

administration reduced corticosterone and ACTH levels in mice that had undergone 40 days of 

chronic mild stress [120]. 

Ketamine and kynurenine appear to converge during stress conditions in order to affect 

brain and behavior. One study found that while ketamine did not affect QA production after LPS 

administration, it mediated the effects of QA by blocking NMDARs, where QA generally binds 

to contribute to inflammation [91,109]. In a chronic unpredictable mild stress model, ketamine 

decreased the KYN:tryptophan ratio in addition to other measures of inflammation [121].  
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5.2 Clinical Evidence of Ketamine’s Anti-inflammatory Effects 

Multiple inflammatory markers have been linked to ketamine’s clinical therapeutic 

efficacy. In a recent randomized, controlled trial, subanesthetic-dose ketamine (0.5mg/kg) 

acutely decreased TNF-α levels in TRD patients, and these decreases correlated with reductions 

in Montgomery-Åsberg Depression Rating Scale (MADRS) scores [18]. A smaller study of 

individuals with TRD similarly found that higher baseline levels of IL-6 were associated with 

antidepressant response to ketamine [122]. In an open-label trial, ketamine robustly reduced 

peripheral levels of multiple cytokines elevated at baseline in TRD participants, but these levels 

returned to baseline within 24 hours and did not correlate with antidepressant response [123]. In 

addition, a recent study in remitted depressed participants found significant decreases and time x 

treatment interactions for multiple cytokines [124]. However, other studies obtained mixed 

results. For example, a post-hoc analysis of three ketamine randomized, controlled trials of 

participants with TRD and treatment-resistant bipolar depression found that ketamine decreased 

levels of soluble tumor necrosis factor receptor 1 (sTNFR1) but increased peripheral levels of IL-

6 and TNF-α [125]. Interestingly, a recent open-label ketamine trial found that IL-8 did not 

predict antidepressant response to ketamine, but that there was a trend towards prediction in 

females, suggesting a potential sex-specific effect [126]. 

The effects of ketamine on the HPA system are less clear. One case study found that 

cortisol levels—as measured by the dexamethasone suppression test—normalized in a TRD 

participant who received three standard ketamine infusions; cortisol levels rose to baseline a 

week later as depressive symptoms returned [127]. In contrast, a randomized, controlled trial of 

12 healthy volunteers who received two back-to-back ketamine infusions (0.29mg/kg for 1 hour, 
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then 0.57mg/kg for 1 hour) reported doubled plasma cortisol levels 200 minutes later [128]. 

Furthermore, another randomized, placebo-controlled trial of healthy volunteers found that the 

post-ketamine increase in cortisol was specific to ketamine, as the NMDA antagonist memantine 

caused no such effect [129]. For now, the dearth of properly-powered studies examining 

potential HPA biomarkers post-ketamine treatment in TRD participants makes it difficult to draw 

firm conclusions.  

Echoing preclinical findings, modulation of the kynurenine pathway may be involved in 

ketamine’s anti-inflammatory effects. A randomized, controlled trial of TRD participants found 

that those who responded to ketamine had significantly lower plasma kynurenine:tryptophan 

ratios as well as lower kynurenine levels 230 minutes and 24 hours post-ketamine administration 

[95]. Furthermore, among participants with TRD and treatment-resistant bipolar depression who 

received six ketamine infusions over 12 days, those who responded had higher levels of serum 

KA, both absolute and relative to kynurenine, on Days 1 and 13 [96]. Moreover, at 24 hours, 

both of these metrics correlated with MADRS score reductions at Days 1, 13, and 26. Finally, a 

recent randomized, controlled trial of indiviuals with bipolar depression reported that one 

ketamine infusion increased KA levels one and three days later and decreased IDO levels from 

230 minutes post-infusion to three days later [130]. Despite these promising findings, it should 

be noted that another study found only trend-level decreases in serum kynurenine after repeated 

ketamine infusions and no change in cortisol-awakening response [97].  

There is also indirect evidence of ketamine’s anti-inflammatory effects. One post-hoc 

analysis of four randomized, controlled trials (n=108) found that greater BMI predicted 

antidepressant response to ketamine in individuals with MDD or bipolar depression [131], which 

may be linked to the finding that pro-inflammatory agents are often deposited in adipose tissue 
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[132]. Subsequently, researchers examined adipokine levels and found that ketamine reduced 

plasma levels of resistin, and that low baseline levels of adiponectin predicted antidepressant 

response [133]. These findings are congruent with anti-inflammatory effects; resistin is a potent 

pro-inflammatory agent [134] associated with obesity, while adiponectin is an anti-inflammatory 

molecule [135]. Another study of medication-free TRD participants found that ketamine 

decreased the expression of receptor activator of nuclear factor kappa-B ligand (RANKL), a 

downstream inflammatory mediator [136]. In TRD participants, gene expression signatures 

related to interferon signaling pathway activation were upregulated in comparison to healthy 

volunteers, but this did not mediate response to ketamine [137].  

Despite these promising findings, it is clear that more research is necessary to clarify 

ketamine’s effects on inflammation in general, and on clinical depression subtypes linked to 

inflammation in particular. The mixed results suggest that future studies should compare acute 

versus chronic ketamine administration as well as the short- and long-term effects of ketamine, 

given that some of the aforementioned studies observed an immediate increase in inflammatory 

indicators post-ketamine administration that decreased with time. Promising preclincial evidence 

and strong associations between TRD and inflammation warrant further investigation into the 

mechanisms by which ketamine may either directly or indirectly mediate inflammatory response.  

 

6. Conclusion 

In this era of personalized medicine, the quest to identify subpopulations of individuals 

with MDD based on pathophysiology, symptom dimensions, and prognostic biomarkers of 

treatment efficacy holds considerable promise for improving the thus far inadequate therapeutic 

response associated with many currently available pharmacotherapies. This review presents 
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evidence that chronic stress-induced, systemic, pro-inflammatory states may constitute a 

pathogenic factor that may negatively impact treatment-responsiveness in depression. 

Meanwhile, preliminary but growing evidence suggests that ketamine’s unique efficacy in 

treating these same treatment-refractory symptoms may partly be due to its anti-inflammatory 

effects, perhaps by directly counteracting the inflammatory consequences of chronic stress; these 

unique effects are not associated with conventional antidepressants. These effects may occur via 

some combination of cytokine suppression, alteration of the kynurenine pathway or HPA axis, 

direct actions on microglia and other monocytes, and additional mechanisms not discussed here.  

In this context, the need to verify ketamine’s anti-inflammatory properties with rigorous, 

prospective, clinical research is clear, as is the need to use preclinical models to elucidate the 

molecular and cellular basis underlying these effects. The effects of sex must also be considered, 

given the mixed results regarding sex differences in inflammation. This is particularly important 

because few preclinical or clinical studies have explored the links between TRD, ketamine, and 

inflammation in a female population. Nevertheless, future research efforts in this area are likely 

to be complicated by several challenges. First, depressive symptoms that may derive from 

inflammation and respond to ketamine are neither universal nor specific to any one diagnostic 

category. Thus, advances in psychiatric nosology are likely needed in order to replicate research 

with greater inter-study validity. Second, immune system dysregulation has a multitude of other 

consequences that span multiple systems and that may be further confounded by other factors 

such as gender and BMI. A more complete understanding of these complex interactions, 

combined with improved identification of the heterogeneous etiologies of depressive symptoms, 

are critically needed to move this field forward.  
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Regardless, further systematic research into the connections between inflammation, 

treatment-resistant symptom severity, and response to ketamine is warranted. Ideally, such 

investigations should measure central levels of inflammatory markers and products of related 

pathways such as the HPA and kynurenine pathways and correlate these with suicidal ideation, 

anhedonia, and other hallmark symptoms of TRD.  
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Figure Legends 
  

 
Figure 1.  The hypothesized impact of ketamine on stress and inflammatory pathways. Chronic 

stress leads to over-activation of the hypothalamic-pituitary-adrenal (HPA) axis, which increases 

levels of corticotropin releasing hormone (CRH) and cortisol while decreasing expression of 

glucocorticoid receptors (GRs). This decrease in GR expression prevents the shut-off of the HPA 

axis, leading to prolonged activation that can have negative consequences. Ketamine, an N-

methyl-D-aspartate receptor (NMDAR) antagonist, appears to mediate this stress response by 

increasing the number of GRs. Studies examining ketamine’s effect on cortisol levels have 

yielded mixed results. Under chronic stress conditions, the kynurenine pathway, another 

potential mediator between stress and inflammation, demonstrates increased levels of 

indoleamine-2,3-dioxygenase (IDO), tryptophan-2,3-dioxygenase (TDO), and quinolinic acid, as 

well as decreased levels of kynurenic acid. Ketamine decreases IDO levels and the ratio of 

kynurenine:tryptophan through indirect mechanisms while blocking the action of quinolinic acid 

through direct NMDAR antagonism. Ketamine also decreases pro-inflammatory cytokine levels 

(increased by chronic stress) through the NLPR3-inflammasome pathway, decreasing microglial 

activation via TLR/p38 signaling, P2X7 receptors, and signal transducer and activator of 
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transcription 3 (STAT3) activation, as well as switching macrophages to the anti-inflammatory 

M2 phenotype. Created using Biorender.
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