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Abstract. We discuss several algorithms for sampling from unnormalized
probability distributions in statistical physics, but using the language of
statistics and machine learning. We provide a self-contained introduction to
some key ideas and concepts of the field, before discussing three well-known
problems: phase transitions in the Ising model, the melting transition on a
two-dimensional plane and simulation of an all-atom model for liquid water.
We review the classical Metropolis, Glauber and molecular dynamics sam-
pling algorithms before discussing several more recent approaches, including
cluster algorithms, novel variations of hybrid Monte Carlo and Langevin dy-
namics and piece-wise deterministic processes such as event chain Monte
Carlo. We highlight cross-over with statistics and machine learning through-
out and present some results on event chain Monte Carlo and sampling from
the Ising model using tools from the statistics literature. We provide a sim-
ulation study on the Ising and XY models, with reproducible code freely
available online, and following this we discuss several open areas for inter-
action between the disciplines that have not yet been explored and suggest
avenues for doing so.
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1. INTRODUCTION

Sampling algorithms are commonplace in statistics and machine learning – in particular, in
Bayesian computation – and have been used for decades to enable inference, prediction and
model comparison in many different settings. They are also widely used in statistical physics,
where many popular sampling algorithms first originated (Metropolis et al., 1953; Alder and
Wainwright, 1957, 1959, 1960). At a high level, the goals within each discipline are the same
– to sample from and approximate expectations with respect to some probability distribution
– but the motivations, nomenclature and methods of explanation differ significantly.

Practitioners in Bayesian inference estimate parameter expectations based on fixed hyper-
parameters and input data. To provide for this, researchers in Bayesian computation typically
strive to establish general-purpose sampling algorithms (most notably Markov chain Monte
Carlo) and therefore develop theory concerning how a given sampler behaves in a variety of
different settings, characterised by features such as how the tails of a distribution decay (e.g.
Jarner and Hansen (2000)) or how much the sampler exploits some particular structure of the
model (e.g. Papaspiliopoulos, Roberts and Sköld (2007)). The main concern for a given algo-
rithm is often the extent to which it can be widely implemented with little problem-specific
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tuning. Different samplers are compared by assessing how performance depends on the di-
mension of the parameter space (e.g. Roberts and Rosenthal (2001)) where ‘performance’ is
typically defined as either the mixing time or the asymptotic variance of ergodic averages.
Comparisons are usually based on theoretical results, which are complemented with numeri-
cal studies to corroborate the theory.

In statistical physics, expectations are studied as functions of the hyperparameters (e.g. the
temperature) in order to predict the effect of their variation on the physical system of interest.
The primary goal is to describe complex many-particle phenomena in terms of a reduced set
of simplified particle–particle interactions, typically using a Boltzmann–Gibbs distribution.
Unlike the Bayesian posterior, these distributions do not depend on input data, but the normal-
ising constant is nonetheless typically intractable. Physicists compare estimated expectations
with experimental data – both as functions of the relevant hyperparameters – which leads ei-
ther to model modifications if there are discrepancies between the results, or to a successful
description of the complex phenomena in terms of the simplified set of interactions; the latter
may be followed by further predictions that experimentalists then attempt to confirm or refute.
As regards sampling algorithms, there is of course concern for wide applicability, but another
and perhaps stronger imperative is to assess sampler performance on a class of important
benchmark models. Algorithm performance is often defined as the number of computational
steps required to generate independent samples, though mixing times are also measured (e.g.
Lei and Krauth (2018)). Comparisons are made based on the scaling of performance with the
number of particles, which is proportional to the dimension of the parameter.

In addition, distributions of interest in statistical physics very often exhibit multi-modality
or anisotropy at low temperature, and the ability of an algorithm to navigate this is also a
key measure of sampling efficiency. By contrast, while anisotropy is a common feature of
Bayesian posterior distributions – typically caused by parameter dependencies induced by
the data or built into the prior – multi-modality is usually confined to specific classes of
models that have known non-identifiability issues, such as mixture models (Jasra, Holmes
and Stephens, 2005) or neural networks (Neal, 2012). Nevertheless, anisotropy in statistical
physics informs Bayesian computation, and indeed Bayesians should also be wary of the crit-
ical slowing down that can accompany either feature near the critical temperature. Examples
of multi-modality, anistropy and critical slowing down are given in Section 6.

The objective of this work is therefore to review some model problems and sampling al-
gorithms used in statistical physics, but from the perspective of the statistician or machine
learner. The timing of our contribution is pertinent, as there have been recent parallel ad-
vances in nonreversible sampling algorithms in both Bayesian computation and statistical
physics. Statisticians have established much theory assessing the merits of these algorithms
(e.g. Bierkens, Kamatani and Roberts (2018); Bierkens, Roberts and Zitt (2019); Andrieu
et al. (2021); Andrieu and Livingstone (2021); Deligiannidis et al. (2021)), while physicists
have applied them to great effect in many practical scenarios of interest (Bernard, Krauth
and Wilson, 2009; Bernard and Krauth, 2011; Michel, Kapfer and Krauth, 2014; Kapfer
and Krauth, 2015; Kampmann, Boltz and Kierfeld, 2015a; Michel, Mayer and Krauth, 2015;
Faulkner et al., 2018; Höllmer et al., 2020; Faulkner, 2022). Interdisciplinary understanding
has been at times lacking, however, so that one goal of the present contribution is to sup-
port improved communication between these fields – to aid the cross-pollination of ideas and
innovations.

We do not aim to provide an exhaustive review, as this would be impossible within the
confines of a single article. Instead we give a brief overview of statistical physics in Section 2,
before focusing attention on three well-known problems in Section 3: phase transitions in the
Ising model, the melting transition on a two-dimensional plane and an all-atom model of
water. In Section 4 we discuss three classical sampling algorithms used in statistical physics:
the Metropolis algorithm (Metropolis et al., 1953), Glauber dynamics (Glauber, 1963) and
molecular dynamics (Alder and Wainwright, 1959, 1960). In Section 5 we review some more
modern alternatives, before presenting some simulation studies in Section 6 and a discussion
in Section 7, in which we suggest open areas for potential collaboration between disciplines.



SAMPLING ALGORITHMS IN STATISTICAL PHYSICS 3

2. STATISTICAL PHYSICS

2.1 Microscopic statistical models

The fundamental aim of statistical physics is to predict macroscopic physical phenomena
using statistical models of microscopic particle–particle interactions. Physical systems of in-
terest tend to be viewed as collections of particles either restricted to locations on a shared
d-dimensional lattice (as in Figure 1) or moving around on a shared compact d-dimensional
manifold (as in Figure 3). Models of the former are used in hard condensed matter to study
solid materials, as well as lattice-confined quantum gases (Roscilde et al., 2016) and other
similar systems. Their constituent particles typically remain fixed to each lattice site and in-
teract as a function of their positions and/or some other microscopic quantity, such as their
spin. Models of the latter are predominantly used in soft-matter physics to study and compare
the solid, liquid and gaseous states of a variety of materials, and their constituent particles
typically interact as a function of their positions. Statistical physics is therefore the bridge
between microscopic particle–particle interactions and the macroscopic world.

A microscopic statistical model consists of a collection of particles and a set of simplified
rules governing their interactions, all of which is encoded in a joint probability distribution
for the particle positions or spins. The state of an N -particle model encodes the microscopic
information and is represented by the parameter x := (x1, ..., xN )T ∈MN , where MN is
the configuration space and M is the one-particle configuration space. In hard condensed
matter, xi ∈M typically describes the spin (or some other microscopic quantity) of particle
i, M is often a subset of Z, R or R2, and N = N1N2 . . .Nd with Ni the number of lattice
sites along the ith dimension of the lattice. In soft-matter physics, the picture is somewhat
simpler, with xi ∈M the position (and occasionally the spin) of particle i andM a compact
d-dimensional manifold. In both cases, the model is then defined by the Boltzmann–Gibbs
probability distribution

(1) π(x;β, θ,N)∝ e−βU(x;θ,N),

where the inverse temperature β > 0 is the reciprocal of the system temperature with units
such that βU is dimensionless, and the potential energy U :MN → R encodes the particle–
particle interactions, the number of particles N and a vector of additional hyperparameters θ.
In soft matter, the particle density η := γN/V is always a component of θ, with V the volume
ofM and γ > 0 a dimensionless constant.

In addition, physicists view some microscopic model recast in terms of different hyperpa-
rameters as the same model but in a different statistical ensemble. For example, the soft-matter
model described at the end of the previous paragraph is in the canonical ensemble in which
N , V and β are fixed, but it may be re-expressed in some other statistical ensemble, such
as the grand canonical ensemble in which V and β are fixed, but the number of particles
can fluctuate with some fixed potential cost. Thermodynamic theory then provides a bridge
between different statistical ensembles, which can be useful when comparing numerical sim-
ulations with physical experiments. In the remainder, we assumeN , V and β are fixed, unless
otherwise stated.

2.2 Periodic boundary conditions and the thermodynamic limit

To remove boundary effects in hard condensed matter, researchers typically apply peri-
odic boundary conditions by choosing the shared d-dimensional lattice (on which particle
locations are restricted) to have d-dimensional toroidal topology: for a lattice of N1 . . .Nd

particle sites, we identify lattice site (y1, y2, . . . , yd) with (y1 + N1, y2, . . . , yd) ∼ · · · ∼
(y1, y2, . . . , yd + Nd). For example, the one-dimensional Ising configuration in Figure 1 is
on a ring lattice. This better reflects the macroscopic systems under consideration, in which
boundary effects are usually negligible compared to the large bulk of the system. Analysis
is performed on the N1 . . .Nd-site lattice before the thermodynamic limit is taken by letting
N1, . . . ,Nd→∞ with the ratio N1 : · · · :Nd fixed.

In soft-matter physics, the one-particle configuration space M is typically chosen to be
the d-dimensional torus Td of volume V = Ld, which can be defined as d-dimensional
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Euclidean space under the identification (x1, x2, . . . , xd) ∼ (x1 + L,x2, . . . , xd) ∼ · · · ∼
(x1, x2, . . . , xd + L), where L > 0 is the linear size of the torus (note that differing linear
sizes can also be chosen along each dimension). For example, the right and left / top and
bottom ‘boundaries’ in Figure 3 are identified with each other. More formally, this is the quo-
tient space Rd/Ld, where L := LZ. Again, this better reflects the negligible boundary effects
in macroscopic systems. Analysis is typically performed on N particles on a torus of finite
volume V , and the thermodynamic limit is then taken by setting N ∝ V and letting N →∞.
In this paper, the minimal separation vector xij between particles i and j is defined as the
shortest vector from xj to xi on Td, and

d(xi, xj) := ‖xij‖2(2)

is their minimal separation distance. The metric d can also be induced from the quotient space
representation of Td given above.

2.3 Observables, phase transitions and fundamental axiom

An observable of the model is any function of its state and hyperparameters, and well-
chosen observables allow for the study of thermodynamic phase space and phase transitions.
For an observable χ(x;β, θ,N) the expected observable1 will be denoted

χ̌(β, θ,N) := E[χ(x;β, θ,N)].(3)

The thermodynamic phase space of some observable is the space of all possible values of the
thermodynamic observable

lim
N→∞

χ̌(β, θ,N).(4)

A thermodynamic phase is any open and connected region of thermodynamic phase space in
which the thermodynamic observable is analytic in both β and θ, and a phase transition is
any boundary between two distinct thermodynamic phases. Different thermodynamic phases
therefore correspond to strikingly different values of some thermodynamic observable, and
distinct thermodynamic phases are separated by one or more non-analytic boundaries, each of
which indicates a phase transition. For example, two thermodynamic observables associated
with the two-dimensional Ising model (introduced in Section 3.1) are presented in Figure 2,
both of which exhibit a phase transition.

Typically when studying phase transitions an observable is a sum of O(1) random vari-
ables per particle (e.g. the magnetic density of the Ising model in (11)). This leads us to a
fundamental axiom of statistical physics. For any such observable, if the ratio of the standard
deviation and expectation of its norm can be made arbitrarily small with increasing particle
number N , then there exists some finite particle number at which the expectation is con-
sidered to have ‘reached the thermodynamic limit,’ as fluctuations from the thermodynamic
value are immeasurably small. This tends to apply to macroscopic physical systems composed
of large numbers of particles, though exceptions do occur near phase transitions and other re-
gions of thermodynamic phase space that exhibit power-law correlations (e.g. Archambault,
Bramwell and Holdsworth (1997); Faulkner (2022)). The consequence of this axiom is that
simulations based on a large but finite number of particles can approximate behaviour in the
thermodynamic limit.

2.4 Entropy, free energy and equation of state

The (dimensionless) entropy S(β, θ,N) :=−E[log π(x;β, θ,N)] is well-known to statis-
ticians as a measure of the uncertainty associated with the probability distribution π.
Boltzmann–Gibbs distributions can exhibit varying degrees of multi-modality or anisotropy
depending on the values of hyperparameters such as the temperature, meaning phase transi-
tions are often captured by changes in entropy. Indeed, if not carefully designed, a sampling

1Rather than E [·], physicists tend to represent expectations using the notation 〈·〉.
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algorithm might lose access to certain regions of non-negligible probability mass in some
low-entropy thermodynamic phase (on a timescale that diverges with particle number N ).
This may also reflect a loss of physical ergodicity (Palmer, 1982) if the dynamics of the sam-
pling algorithm are sufficiently similar to those found in nature.

The free energy F (β, θ,N) := Ǔ(β, θ,N) − β−1S(β, θ,N) describes the competition
between the expected potential and the entropy. It provides a toolkit for making predic-
tions about thermodynamic phases because it can be expressed analogously to a marginal
log-likelihood function: F (β, θ,N) = −β−1 log [Z(β, θ,N)], where the partition function
Z(β, θ,N) :=

∫
exp [−βU(x;θ,N)]dx is the normalising constant of the Boltzmann–Gibbs

distribution. Free energies at different fixed values of θ can then be compared to predict the
most likely state of matter at any given temperature β−1. For example, simulations of a model
fluid can be performed at some fixed temperature with two different values of the particle den-
sity η (with the rest of θ fixed) where one is a possible density of the gaseous phase (ηg) and
the other is a possible density of the liquid phase (ηl > ηg). If the free energy at ηg is less than
the free energy at ηl, it would follow that the fluid is more likely to be in a gaseous state than
a liquid state at the chosen temperature. This is analogous to marginal log-likelihood model
comparison in Bayesian inference, where the two fixed values of η are equivalent to the two
models being compared, and analogies can be drawn between the single fixed temperature
and the fixed data of the Bayesian statistical model.

The free energy is also a cumulant generating function, so that it can be used to derive
useful expected observables such as the expected (dimensionless) specific heat

Č(β, θ,N) =−β2∂2
β (βF (β, θ,N)) = β2Var [U(x;θ,N)] .(5)

This can be useful when classifying phase transitions. In addition, the equation of state in a
soft-matter model is defined via the expected pressure

p̌(β, θ,N) :=−∂V F (β, θ(N,V ),N) .(6)

This may be familiar to the statistician, as the original work of Metropolis et al. (1953) en-
titled ‘Equation of State Calculations by Fast Computing Machines’ applied the Metropolis
algorithm to the two-dimensional hard-disk model in an attempt to estimate its equation of
state. Moreover, higher quality estimations of this equation of state were used to identify the
fluid–hexatic phase transition described in Section 3.2.3 (Bernard and Krauth, 2011).

3. SOME EXAMPLE MODELS

In this section, we present some common models from statistical physics. In Section 3.1,
we present the Ising model and an analysis of its thermodynamic phases. This is a hard-
condensed-matter model of magnetism and provides an example of both analytically tractable
free energies and critical slowing down at a phase transition. We then comment on the Potts
and XY models before devoting the remainder of the section to soft-matter physics. In Section
3.2, we present the two-dimensional hard-disk model. This is possibly the simplest model of
particle–particle interactions in soft matter and captures the physics of the melting transition
in two spatial dimensions. With this basis, we then move on to the more complex physical
interactions used in molecular modelling, where researchers model materials such as pure
water or a collection of polymers in a liquid solvent. The full potential of an all-atom model
of some molecular system is typically formed by combining several sub-potentials, each of
which models a specific force. In Sections 3.3 and 3.4, we present (respectively) the Lennard-
Jones potential and the Coulomb potential. We then introduce two common potentials used
to represent molecular-bond bending and stretching in Section 3.5, before using all four sub-
potentials to construct a full all-atom model of water in Section 3.6.

3.1 Ising model

The d-dimensional Ising model is possibly the most well-known model of statistical
physics and describes a collection of N particles fixed at the sites y1, . . . , yN of a regular
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FIG 1. Example configuration of the one-dimensional Ising model on a circular ring lattice. Each up/down arrow
represents the spin value xi =±1 of some particle i.

d-dimensional cubic lattice (with toroidal topology). It was originally constructed as a sim-
ple model of d-dimensional magnets (Ising, 1925), but has since been implemented to model
many other physical and non-physical systems. Most importantly, it is commonly viewed as
a paradigmatic model of phase transitions as it is possible to compute its free energy ana-
lytically in d = 1 (Ising, 1925) and d = 2 (Onsager, 1944) dimensions. Physicists refer to
analytical free-energy computation as ‘exactly solving’ the model in question (Baxter, 2008).

The ferromagnetic Ising model is defined by the potential

UIsing(x;J,h,N) :=−J
2

N∑
i=1

∑
j∈Si

xixj − h
N∑
i=1

xi,(7)

where J > 0 is the exchange constant, h ∈ R controls the strength of an external magnetic
field, Si is the set of the 2d neighbours of particle i, and xi = ±1 is the spin of particle i.2

An example configuration in d= 1 dimensions is shown in Figure 1. The exchange constant
J controls the level of correlation between spin values at neighbouring sites. Setting J < 0
defines the antiferromagnetic Ising model, in which neighbouring spin values are negatively
correlated.

3.1.1 One-dimensional case. Ising showed that the one-dimensional Ising model can be
solved analytically (Ising, 1925). We show in the supplement that the free energy is

FIsing,d=1(β,J,h,N) =−β−1 log
[
λN+ (β,J,h) + λN− (β,J,h)

]
.(8)

where

λ±(β,J,h) = eβJ
[
cosh (βh)±

√
sinh2(βh) + e−4βJ

]
.

The free energy and all of its derivatives are therefore analytic. It follows that no thermody-
namic observable constructed from derivatives of the free energy exhibits a phase transition.

3.1.2 Two-dimensional case. Building on the initial work of Kramers and Wannier
(1941a,b), Onsager (1944) showed that the two-dimensional Ising model can also be solved
analytically. The calculations are more involved, but the thermodynamic zero-field (h = 0)
specific heat (see (5)) per particle is

lim
N→∞

(
1

N
ČV (β,J,h= 0,N)

)
= β2∂2

βγ(βJ),(9)

2The notation 2
∑
〈i,j〉 is often used in place of

∑N
i=1

∑
j∈Si

.
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FIG 2. Thermodynamic zero-field (h = 0) specific heat per particle (black curve; left-hand axis; see (9)) and
spontaneous magnetic density (red curve; right-hand axis; see (12)) of the two-dimensional Ising model, both as
functions of βc/β.

where

γ(βJ) := ln (2 cosh(2βJ)) +
1

π

∫ π/2

0
ln

[
1

2

(
1 +

√
1− 4 sinh2(2βJ) sin2w

cosh4(2βJ)

)]
dw.(10)

It then follows that the thermodynamic zero-field specific heat per particle diverges logarith-
mically at the inverse critical temperature βc := ln(1 +

√
2)/(2J). This predicts a phase tran-

sition at β = βc, h= 0, as supported by the black curve in Figure 2. In addition, the magnetic
density

m(x;β,J,h,N) :=
1

N

∑
i

xi(11)

can also be used to demonstrate the phase transition, where Onsager (1949) and Yang (1952)
proved a non-differentiability in the spontaneous magnetic density

m0(βJ) := lim
h↓0

lim
N→∞

m̌(β,J,h,N) =

{(
1− (sinh(2βJ))−4

)1/8
for β > βc,

0 for β < βc.
(12)

This provides further evidence of the phase transition at β = βc, h= 0 (as supported by the red
curve in Figure 2) with the additional insight that it is one between a low-temperature (β > βc)
ferromagnetic (ordered) phase and a high-temperature (β < βc) paramagnetic (disordered)
one. We present a detailed simulation study of this model in Section 6.1.

3.1.3 Comments on Potts and XY models. The d-dimensional Potts model (Potts, 1952) is
a generalisation of the d-dimensional Ising model, this time with xi ∈ {1,2, . . . , q} (q ≥ 2 is
an integer) and potential

UPotts(x;J,N) :=−J
2

N∑
i=1

∑
j∈Si

I[xi = xj ].(13)

When q = 2, the Potts model is equivalent to the zero-field Ising model. As well as to phase
transitions, the Potts model has been successfully applied to image processing (Storath et al.,
2015).

The d-dimensional XY model can be thought of as another generalisation of the d-
dimensional Ising model. Rather than on {−1,+1}, each XY spin is contained in [0,2π),
and the XY potential is

UXY(x;J,h,N) :=−J
2

N∑
i=1

∑
j∈Si

cos (xi − xj)− hXY ·
∑
i

(
cosxi
sinxi

)
,(14)

where hXY ∈ R2. The d = 2 case leads to incredibly rich physics which has been a signif-
icant focus of theoretical statistical-physics research since the 1960s (Salzberg and Prager,
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(a) (b)

FIG 3. Examples of configurations that have non-zero (a) and zero (b) probability density in the two-dimensional
hard-disk model. Two disks pass through the periodic ‘boundaries’ in each example. The red disks in (b) induce its
zero-valued probability density. These configurations are accepted (a) and rejected (b) by the Metropolis algorithm
described in Section 4.1.

1963; Mermin and Wagner, 1966; Hohenberg, 1967; Berezinskii, 1971; Kosterlitz and Thou-
less, 1973; Kosterlitz, 1974; José et al., 1977; Bramwell and Holdsworth, 1993; Vallat and
Beck, 1994; Archambault, Bramwell and Holdsworth, 1997; Bramwell, Holdsworth and Pin-
ton, 1998; José et al., 2013; Faulkner, Bramwell and Holdsworth, 2015; Faulkner, 2022). We
present a simulation study of this model in Section 6.2.

3.2 Two-dimensional hard-disk model

The two-dimensional hard-disk model is perhaps the simplest approach to modelling short-
range repulsive particle–particle interactions in soft-matter physics. It is defined by the prob-
ability density

(15) π(x;η,N)∝
∏

1≤i<j≤N
I [d(xi, xj)> 2σ]

and describes a collection of N identical circular disks of radius σ > 0, where each exists
on the compact manifold T2 and η = Nπσ2/L2 is the disk density. All configurations in
which no two disks overlap are equally likely, while all others have zero probability den-
sity (examples of two such configurations are shown in Figure 3). The model is therefore
independent of the inverse temperature β and the sole hyperparameter of interest is the disk
density η. It can be viewed as the k→∞ limit of the two-dimensional soft-disk model, which
is defined on the same parameter space but with the potential Usoft−disk(x;k, η, ε,N) :=∑

i<j Usd(xi, xj ;k, η, ε), where

(16) Usd(xi, xj ;k, η, ε) := ε

[
2σ

d(xi, xj)

]k
is the two-particle soft-disk potential, with ε > 0 some constant with units of energy. The
hard-disk model is usually studied on its own, but is also used as a sub-potential in more
complex models of attractive particle–particle interactions in which the other sub-potentials
contain divergences at d(xi, xj) = 0.

Despite its simplicity, the hard-disk model is able to recreate both fluid and solid structures
on a two-dimensional plane, and can therefore be used to investigate the melting transition
in two spatial dimensions. In the three-dimensional analogue of hard spheres (each) on T3,
the surface area through which each particle can move is sufficiently large that the effect of
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FIG 4. A close-packed configuration of hard disks on a two-dimensional torus of volume (16σ)× (8
√

3σ). This
configuration has six-point rotational symmetry about the centre of any disk in the analogous close-packed limit
on R2.

movement on other particles diminishes rapidly with d(xi, xj), so that the three-dimensional
model can easily form a solid at densities below the high-density limit. Conversely, in the
one-dimensional analogue, each particle can move only along the single axis of the one-
dimensional torus T, so that the effect of movement is significant at all separation distances,
and the system cannot form a solid at any density below the high-density limit. The two-
dimensional hard-disk model is an intermediate case whose complete thermodynamic be-
haviour had eluded researchers for around sixty years (Metropolis et al., 1953; Alder and
Wainwright, 1957; Kosterlitz and Thouless, 1973; Halperin and Nelson, 1978; Young, 1979)
until event chain Monte Carlo simulations (Bernard and Krauth, 2011) led to a theory for
its melting transition. The theory was then corroborated by both molecular dynamics and
massively parallel Metropolis simulations (Engel et al., 2013) and subsequently confirmed in
physical experiments on a collection of colloids on a two-dimensional plane (Thorneywork
et al., 2017). This provides a basis for the melting transition in more complex soft-matter
systems, such as films, suspensions and the crossover between two- and three-dimensional
behaviour (Peng et al., 2010). Here we review the theory.

3.2.1 Positional correlations and solid phase. The positional correlation function is

(17) gp(x; r, ε, η,N) :=
∑
i<j

I [|r− d(xi, xj)|< ε]

for all r > 2σ. For a fixed configuration x and a chosen r and ε > 0, it measures the number
of particle pairs whose separation distance is within ε of r. This provides information about
the transition into the solid phase. Its expected value exhibits a drastic change in behaviour as
a function of r at the particle density η = ηs ' 0.720. More precisely, Figures 3(b) and S8 of
Bernard and Krauth (2011) show that for suitably small ε and N = 10242

ǧp(r, ε, η,N)∝

{
exp (−r/ξp(η)) for η = 0.718, r > 10σ,

r−1/3 for η = 0.720, r > 10σ,
(18)

where ξp(η) is the positional correlation length of the non-solid phases and x∝ y implies that
x=Cy for some C 6= 0. This demonstrates exponentially decaying positional correlations for
all r > 10σ at η = 0.718 and power-law decaying positional correlations for all r > 10σ at
η = 0.720. These results are consistent with a phase transition from positional disorder to a
solid phase with quasi-long-range positional order as η increases through η = ηs ' 0.720, in
agreement with earlier analytical thermodynamic predictions (Kosterlitz and Thouless, 1973;
Halperin and Nelson, 1978; Young, 1979).
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FIG 5. A schematic illustration of the three possible forms of long-distance behaviour of the expected orientational
correlation function ǧo(r, ε, η,N) defined in (20). Short-range / quasi-long-range / long-range order corresponds
to exponentially decaying / power-law / constant correlations on distances comparable to the linear system size L
(L> 103σ here).

3.2.2 Orientational correlations and non-solid phases. The exponentially decaying posi-
tional correlations at η = 0.718 indicate a non-solid phase, but this is not enough to charac-
terise the fluid phase, as the model also possesses orientational correlations. To quantify this,
we define the local orientation Ψi of particle i via the complex number

Ψi(x) :=
1

|S̃i|

∑
j∈S̃i

exp (6iφij) .(19)

Here S̃i is the set of neighbours of particle i, with particles i and j defined as neighbours
if the centre of their minimal separation vector xij is closer to particles i and j than to any
other particle. The angle φij ∈ [0,2π) is found by expressing xij in polar coordinates xij :=
(rij , φij). The factor of 6 ensures that the local orientation Ψi(x) preserves the six-point
rotational symmetry of the close-packed limit (see Figure 4). For a depiction of the local
orientation Ψi(x) within an example hard-disk configuration, see Figures 1(b-d) of Bernard
and Krauth (2011).

The orientational correlation function is then defined as

(20) go(x; r, ε, η,N) :=
1

E |Ψi|2
∑
i<j

I [|r− d(xi, xj)|< ε] Ψ∗i (x)Ψj(x)

for all r > 2σ. Figure S9 of Bernard and Krauth (2011) and Figure 4.13 of Bernard (2011)
show that for N = 10242 particles

ǧo(r, ε, η,N)∝


exp (−r/ξo(η)) , for η = 0.700, r > 200σ

r−αo(η), for η = 0.718, r > 100σ

C̃ for η = 0.720, r > 100σ,

(21)

where ξo(η) > 0 is the orientational correlation length of the fluid phase, αo(η) > 0 is an
orientational exponent and C̃ > 0 is some constant. This indicates exponentially decaying
orientational correlations for all r > 200σ at η = 0.700, power-law decaying orientational
correlations for all r > 100σ at η = 0.718 and non-decaying orientational correlations for all
r > 100σ at η = 0.720. These results are consistent with i) an orientationally (and position-
ally) disordered fluid phase for all η < ηf ' 0.700, ii) quasi-long range orientational order
(and positional disorder) in an hexatic phase at η = 0.718, and iii) long-range orientational
order (and quasi-long range positional order) in the solid phase (η > ηs).

For clarity, Figure 5 provides a schematic illustration of the three possible forms of long-
distance behaviour (short-range order, quasi-long-range order and long-range order) of the
expected orientational correlation function. It is worth noting that the expected positional
correlation function also exhibits long-range order (constant positive long-distance correla-
tions) in the close-packed limit, where the particles form the precise hexagonal lattice with
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FIG 6. Two-particle Lennard–Jones potential.

six-point rotational symmetry shown in Figure 4. Moreover, in the two-dimensional zero-field
Ising model presented in Section 3.1.2, an analogously defined spin–spin correlation function
exhibits long/short-range order at low/high temperature, and quasi-long-range order at the
phase transition.

3.2.3 Equation of state and fluid–hexatic phase transition. The above characterises the
fluid, hexatic and solid phases, but does not identify a fluid–hexatic phase transition, as this
requires analysis of the equation of state (6). For the two-dimensional hard-disk model, this
is given by (Metropolis et al., 1953; Engel et al., 2013)

βp̌(η,N) =
η

πσ2

(
1 + 2η lim

r↓2σ
ǧp(r, η,N)

)
.(22)

Equation-of-state calculations then show that, upon transforming to a model in which the
pressure p is a hyperparameter, continuously increasing the pressure leads to a discontinuous
jump in the expected particle density from ηf to ηhex ' 0.716 at some critical value of the
pressure (Bernard and Krauth, 2011). This is the fluid–hexatic phase transition and the interval
(ηhex, ηs) is the hexatic phase.

3.3 Lennard–Jones model

The Lennard–Jones model describes soft-matter systems composed of N electrically
charge-neutral atoms, each on the compact manifold T3. It can be viewed as a more sophis-
ticated version of the soft-disk model presented in Section 3.2 and is defined by the potential
ULJ(x;η,σ, ε,N) =

∑
i<j Ulj(xi, xj ;σ, ε), where

Ulj(xi, xj ;σ, ε) := 4ε

[(
σ

d(xi, xj)

)12

−
(

σ

d(xi, xj)

)6
]

is the two-particle Lennard–Jones potential between atoms (or particles) i and j (see Fig-
ure 6). Here, σ > 0 determines the most probable minimal separation distance between any
two atoms and ε > 0 is the potential-well depth. 3 The d(xi, xj)

−12 Pauli-repulsion term is
the three-dimensional analogue of a two-particle soft-disk potential and represents the Pauli
repulsion between the composite electrons of each atom. This quantum effect is significant
for nearby particles, but diminishes rapidly at larger d(xi, xj). The attractive d(xi, xj)

−6 dis-
persion term describes the electrical atom–atom attraction due to the instantaneous electric-
dipole moment of each atom, where the electric-dipole moments are caused by electron-
density fluctuations within each atom. The resultant regions of high electron density within
one atom are attracted to resultant regions of low electron density in another.

3System sizes are typically chosen such that the probability density is negligible where d(xi, xj) ∼ L. This
ensures that the periodic boundaries do not qualitatively affect the physics. For computational efficiency, the two-
particle potential is then often set to zero for all d(xi, xj)> 2σ.
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Using techniques similar to those presented in Section 3.2, the model can be studied on
its own in order to analyse the liquid–gas phase transition in simple three-dimensional fluids
and other physical phenomena. The two-particle potential is also used as a sub-potential in
all-atom models of more complex fluids such as water, as described in Section 3.6.

3.4 Electrostatic Coulomb potential

The toroidal Coulomb potential models electrostatic interactions between N electrically
charged particles, each on the compact manifold T3. It is derived from the Coulomb law of
electrostatics, which states that each Cartesian component of the electrostatic force between
particles i and j is proportional to cicj/d(xi, xj)

2, where ci ∈ R is the electric charge of
particle i (Coulomb, 1785). On R3, the two-particle Coulomb potential is given by

Uc(xi, xj ; ci, cj) =
1

4πε0

cicj
d(xi, xj)

,

with ε0 > 0 the vacuum permittivity. This is the solution of the Poisson equation on R3. In
simulation, one must use the more involved solution Uc(xi, xj ; ci, cj)∝ cicjG(xi, xj) to the
toroidal Poisson equation

∫
T3∇2

xG(x,x′)f(x′)dx′ =−f(x) for all test functions f : R3→R,
as presented in de Leeuw, Perram and Smith (1980). Charge neutrality is also required on the
torus, either via

∑
i ci = 0 or some charge-neutralisation technique.

If particles i and j have charge values of opposite sign, then cicj < 0 andUc(xi, xj ; ci, cj)→
−∞ as d(xi, xj)→ 0, which strongly encourages particles of opposite charge to exist arbi-
trarily closely together. When combined with the two-particle Lennard–Jones potential (or a
suitable alternative), however, the total potential Uc(xi, xj ; ci, cj) + Ulj(xi, xj ;σ, ε)→∞ as
d(xi, xj)→ 0, due to the Pauli-repulsion term. This combination regularises the Coulomb po-
tential and allows for the simulation of collections of particles with charge values of opposite
sign, such as the all-atom model of water presented in Section 3.6. We add that, when applied
to collections of particles with charge values of the same sign, the electrostatic Coulomb
potential can also be studied on its own.

3.5 Bonded potentials

A molecule is an electrically charge-neutral group of atoms held together by chemical
bonds. Molecular fluids are composed of collections of molecules that interact via intermolec-
ular potentials, such as the Lennard–Jones and Coulomb potentials. In addition, intramolecu-
lar or bonded potentials describe the chemical-bond interactions between the composite atoms
of each molecule. Two of the most common types of bonded potential are bond-stretching and
bond-angle potentials, where the former dictate atom–atom minimal separation distances and
the latter dictate the angle formed by the positions of three atoms (see Figure 7). For three
bonded atoms i, j and k on T3, the harmonic bond-stretching potential is

Us(xi, xj ; r0, kb) :=
1

2
kb (d(xi, xj)− r0)2 ,

and the harmonic bond-angle potential is

Ua(xi, xj , xk;φ0, ka) :=
1

2
ka (φ(xi, xj , xk)− φ0)2 .

Here, r0 > 0, kb > 0, φ0 > 0 and ka > 0 are constants that depend on the molecular fluid, and

φ(xi, xj , xk) := arccos

(
xTijxjk

d(xi, xj)d(xj , xk)

)
is the bond angle between three bonded atoms i, j and k.

The quadratic bond-stretching potential is derived from Hooke’s law, but non-quadratic
bond-stretching potentials are also used. For example, graphene typically uses quartic bond-
stretching potentials to reflect the enhanced strength of its atomic bonds (Wei, Song and
Wang, 2011). Similarly, non-quadratic bond-angle potentials are also used.
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FIG 7. Water molecule with indexing as described in Section 3.6. Oxygen/hydrogen atoms are red/blue. The bond
angle φ123 := φ(x1, x2, x3) and the minimal separation distance dij := d(xi, xj).

3.6 An all-atom model of water

The electrostatic Coulomb and Lennard–Jones potentials can be combined with the bonded
potentials described above to produce an all-atom model of water. In molecular modelling,
an all-atom model is any microscopic model that accounts for the interactions between the
individual atoms that form the molecules. This projects the fundamental quantum-mechanical
many-body system onto a simplified classical model of the atomic positions. Given this sig-
nificant simplification, many different all-atom models of water exist, where the most suitable
model is situation-dependent.

The simple point-charge water model with flexible molecules (Wu, Tepper and Voth, 2006)
is composed of sub-potentials that describe i) two-body oxygen–hydrogen bond stretching, ii)
three-body hydrogen–oxygen–hydrogen angle bending, iii) oxygen–oxygen Lennard–Jones
interactions, and iv) electrostatic Coulomb interactions between all (intermolecular) atoms,
so that its two-molecule potential is given by

Umol−mol(x1, . . . , x6) =
∑

j∈{1,3}

Us(x2, xj) +
∑

j∈{4,6}

Us(x5, xj) +Ua(x1, x2, x3)

+Ua(x4, x5, x6) +Ulj(x2, x5) +

3∑
i=1

6∑
j=4

Uc(xi, xj ; ci, cj),

where particles 2 and 5 are oxygen atoms, particles 1, 3, 4 and 6 are hydrogen atoms, and this
two-molecule potential generalises to an arbitrary number of molecules. Similar techniques
to those presented above are used to analyse the various thermodynamic phases of the model.

4. CLASSICAL SAMPLING ALGORITHMS

4.1 Metropolis

In the first instance of Markov chain Monte Carlo, Metropolis et al. (1953) developed
an algorithm to sample from the Boltzmann–Gibbs distribution and applied it to the two-
dimensional hard-disk model. The algorithm is typically referred to as either ‘the Metropolis
algorithm’ or ‘Monte Carlo’ within the statistical physics community. Modern-day statisti-
cians, however, may feel more comfortable with the term Metropolis–within–Gibbs, as only
a subset of the state is updated at each iteration. Evolving a single particle at each iteration of
the algorithm is generally preferred in high-density particle systems, as evolving all particles
at once very often leads to slow mixing.

When applied to some d-dimensional soft-matter model, each iteration of the Metropolis
algorithm consists of proposing the movement of some particle i to a new candidate position
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x′i = xi ⊕ u, where xi ∈ Td is the original position of particle i, each uj ∼ U [−ε, ε] for j ∈
{1, . . . , d} for some appropriately chosen ε > 0, and⊕ is addition on Td. This candidate move
is then accepted with probability

α(xi, x
′
i) := min

(
1, e−β∆U(xi,x′i)

)
,

where ∆U(xi, x
′
i) denotes the change in the potential when replacing xi with x′i. This is sim-

ply a ratio of Boltzmann–Gibbs distributions. The original algorithm is a systematic scan sam-
pler, meaning the particles are cycled through in a deterministic fashion, rather than randomly
selected at each iteration. When applied to the hard-disk model this probability becomes

α(xi, x
′
i) = min

(
1,

∏
j 6=i I [d(x′i, xj)> 2σ]∏
j 6=i I [d(xi, xj)> 2σ]

)
.

Since this target distribution is uniform, α(xi, x
′
i) simplifies to being one / zero if particles

do not / do overlap in the proposed configuration (see Figure 3 for examples of accepted and
rejected configurations).

Metropolis et al. investigated the melting transition in two spatial dimensions by simulating
the hard-disk model at various choices of disk density. In the simulations the linear torus size
L= 1 and the number of particlesN = 224, and the particle density η was varied by adjusting
the disk diameter σ. At each chosen disk density the initial state was set to be a 14×16
hexagonal grid, and the simulations consisted of 16 burn-in sweeps followed by another 48−
64 sampling sweeps, where a single sweep is N iterations of the algorithm. Each sweep took
around 3 minutes, meaning a total running time of 4-5 hours using the MANIAC computer
at Los Alamos National Laboratory. In fact no evidence of a thermodynamic phase transition
was found in the simulations. This is due to the Metropolis algorithm exhibiting extremely
slow mixing in the vicinity of both the liquid-hexatic and hexatic-solid phase transitions,
because particle moves will very often result in disk overlaps at high particle density, leading
to rejections. To alleviate this, one must choose a very small step size ε, which typically leads
to very high auto-correlation within the chain and slow convergence to equilibrium. Similar
results were found when applying the Metropolis algorithm to the two-dimensional Lennard–
Jones potential and the three-dimensional hard-spheres model in Rosenbluth and Rosenbluth
(1954). Wood and Parker (1957) found, however, some evidence of a phase transition when
applying the Metropolis algorithm to the three-dimensional Lennard–Jones potential.

4.2 Glauber dynamics

The Metropolis algorithm can also be applied to the Ising model. At each iteration a can-
didate move is generated by randomly selecting a particle (meaning a site on the lattice) and
flipping the sign of the spin of that particle. This proposal distribution is symmetric and hence
the Metropolis rule can be used to accept or reject the move. Another very similar algorithm
introduced in Glauber (1963) and now known as Glauber dynamics is also commonly used
for this application.

Glauber dynamics is most easily understood by the statistician as a random scan Gibbs
sampler for the Ising model. At each iteration of the algorithm a particle is selected uniformly
and a new value for the spin at that site is drawn from the conditional distribution given the
spin values of neighbouring particles.

It is natural to compare the two approaches, and in fact this can be done straightforwardly
using some well-known tools of the statistician. To do this consider the Glauber dynamics
transition as proceeding in three stages. In the first a particle i is randomly selected. In the
second a candidate move is considered in which the spin of that particle is changed. In the
third the candidate move is accepted with probability

αGD(xi, x
′
i) =

e−β∆U(xi,x′i)

1 + e−β∆U(xi,x′i)
.

From this representation, it can be seen that Glauber dynamics can also be viewed as a version
of Metropolis–Hastings, whose acceptance rate has been replaced with that advocated by
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FIG 8. A collision of two equal-mass hard disks in a molecular-dynamics simulation. The dashed line is the
perpendicular bisector of the minimal separation vector x21(t∗) = (2σ,0) at the collision time t∗ (x21(t∗) is
not shown). The black arrows represent the particle velocities before and after the collision, with arrow length
proportional to the norm of the vector. All changes in velocity are proportional to the component of v21(t∗) =

v2(t∗) − v1(t∗) perpendicular to the dashed line: v0
1 := v1(t0) = (1,1/3)ι, v∗1 := v1(t∗) = (−1/2,1/3)ι,

v0
2 := v2(t0) = (−1/2,1/2)ι and v∗2 := v2(t∗) = (1,1/2)ι, where ι > 0 has units of velocity.

Barker (1965). Using this observation the superiority of Metropolis in terms of asymptotic
variance can be established. The proposition below is an immediate consequence of Theorem
4 in Łatuszyński and Roberts (2013).

PROPOSITION 1. Let PM denote the Markov chain produced by the Metropolis algorithm
and PG denote that produced by Glauber dynamics for the Ising model. For any f such that∑

x∈MN f(x)2e−βUIsing(x) <∞ it holds that

ν(PM , f)≤ ν(PG, f)≤ 2ν(PM , f) + Varπ(f)

where ν(P,f) := limn→∞ nVar(f̂n) is the asymptotic variance of the ergodic average f̂n :=
n−1

∑n
i=1 f(Xi), with Xi|Xi−1 ∼ P (Xi−1, ·) and X1 a sample from the stationary distribu-

tion of P .

4.3 Molecular dynamics

In a molecular dynamics simulation Newton’s equations of motion are (approximately)
solved to directly compute all particle trajectories, after setting random initial velocities. This
approach differs in many ways from the Metropolis algorithm, in which only a single particle
is perturbed at each iteration and only the equilibrium behaviour of the system is modelled.
The approach constitutes a direct numerical solution to the N -body problem, in order to un-
derstand dynamical properties of the system. The samples produced from certain molecular
dynamics simulations can still be used to estimate expected observables at equilibrium, pro-
vided the simulation is run for a sufficiently long time.

The molecular dynamics algorithm (abbreviated MD) was first applied to the two-
dimensional hard-disk model (Alder and Wainwright, 1957) before a general method was
developed by Alder and Wainwright (1959, 1960). Unlike the Metropolis algorithm, MD did
eventually find convincing evidence of a phase transition in the two-dimensional hard-disk
model (Alder and Wainwright, 1962). This empirical finding motivated Kosterlitz and Thou-
less (1973); Halperin and Nelson (1978); Young (1979) to develop a two-step theory for the
melting transition in two spatial dimensions, which predicted two phase transitions through
an intermediate hexatic phase. Strong particle–particle positional correlations in the vicinity
of the transition, however, meant that contemporary molecular dynamics simulations could
neither disprove nor corroborate this more nuanced theory.

4.3.1 Molecular dynamics for hard disks. The hard-disk model is composed of N parti-
cles of equal mass, which we set to unity for simplicity. Newtonian dynamics take a simple
form: particles move at constant velocity until two collide, at which point the velocities are
updated based on the speed and angle of the collision. In a typical molecular dynamics simu-
lation the particles are initialised at some chosen positions (e.g. a hexagonal lattice) and given
random initial velocities vi ∈ R2 for i ∈ {1, ...,N} at time t0 (often the magnitudes are set
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to be equal and the directions are sampled uniformly). After this point the system evolves
deterministically, with the position of particle i at time t≥ t0 calculated as

(23) xi(t) = xi(t0) + (t− t0)vi(t), vi(t) = vi(t0).

The above equation is correct assuming that no boundary has been crossed. To incorporate
periodic boundary conditions the positions must be adjusted modulo L upon hitting a bound-
ary. Each particle evolves simultaneously in this manner until two collide. The time of the
first pair-wise collision between any two particles is again completely pre-determined, and is
the first time t∗ at which

(24) d(xi(t
∗), xj(t

∗)) = 2σ

for some (i, j) pair. This can be calculated exactly. Assuming no boundary has been crossed
and no other collisions have occurred, the minimal separation vector between particles i and
j (i.e. the shortest vector from xj to xi) is xij(t) = xij(t0) + (t− t0)(vi(t0)− vj(t0)) for any
t≤ t∗. In this case (24) becomes a simple quadratic in t∗, and denoting vij(t) := vi(t)− vj(t)
it has minimum (positive) solution

t∗ = t0 −
xij(t0)T vij(t0) +

√
(xij(t0)T vij(t0))2 − vij(t0)2(xij(t0)− 4σ2)

‖vij(t0)‖22
,

provided that the expression inside the square root is positive and xij(0)T vij(0)< 0. To ac-
count for periodic boundary conditions, the above procedure can be straightforwardly mod-
ified by re-evaluating t∗ each time a particle passes through a boundary. When a collision
occurs the velocities of the two involved particles are updated such that the total energy (or
the quadratic kinetic energy in this case) is conserved, using the formulae

vi(t
∗) = vi(t0)−

(
vij(t0)Txij(t

∗)

4σ2

)
xij(t

∗),(25)

vj(t
∗) = vj(t0) +

(
vij(t0)Txij(t

∗)

4σ2

)
xij(t

∗).(26)

Note that ‖xij(t∗)‖= 2σ at all collision times t∗. The second term in each equation therefore
contains two xij(t∗)/‖xij(t∗)‖ terms and all changes in velocity are proportional to the com-
ponent of vij parallel to xij(t∗), or perpendicular to the dashed line in the example collision
depicted in Figure 8. After any such collision, t0 is updated to t∗ and the process is repeated.
An example implementation of molecular dynamics for the hard-disk model is given in Al-
gorithm 1 below.

Algorithm 1: Molecular simulation for the hard-disk model
1 Require {(xi(0), vi(0)) : 1≤ i≤N}, desired collisions C∗ <∞;
2 Set t0← 0, C← 0;
3 for (i, j) ∈ {1, ...,N}2 do
4 Compute next collision time t∗ij ;
5 end
6 Set t∗←min(i,j) t

∗
ij ;

7 if t∗ = t∗ij then
8 Update velocities for particles i and j using (25)-(26);
9 end

10 Set t0← t0 + t∗, C←C + 1;
11 for i ∈ {1, ...,N} do
12 Compute xi(t∗) using (23) with boundary corrections;
13 end
14 if C <C∗ then
15 Return to line 3;
16 end
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Algorithm 1 is an exact description of the dynamics of the hark-disk system. The only nu-
merical errors introduced into molecular dynamics simulation of the model are from floating
point arithmetic calculations at collision times. It may be surprising, therefore, to learn that
such errors can sometimes accumulate rapidly. The reason, put simply, is due to the nature of
pair-wise collisions between particles, in which small differences in calculation of the angle
of refraction can result in amplified differences in the positions of particles at the next colli-
sion. Further discussion of this phenomenon is provided in Section 2.1.2 of Krauth (2006).
The hard-disk dynamics are often called event driven, as ballistic movement of particles is
interrupted by collision events. The idea of using event driven dynamics has more recently
been applied in statistics to construct sampling algorithms based on Hamiltonian dynamics in
the presence of general discontinuous distributions in Nishimura, Dunson and Lu (2020).

It is natural to consider the ergodic properties of this approach, which in its simplest form is
completely deterministic apart from the random choice of initial particle velocities. Ergodic
properties of various forms of the hard-disk model have now been established under mild
conditions by Simányi (2003) after pioneering earlier work by Sinai (1970) establishing er-
godicity for the case of two particles. The result is significant in forging a concrete connection
between Newtonian dynamics (on which the equations of motion are based) and the Boltz-
mann distribution (from which the equilibrium properties of the system are deduced). Among
mathematicians, models such as the hard-disk system are often referred to as the study of
dynamical billiards (e.g. Tabachnikov (2005)).

4.3.2 Smooth potentials: the microcanonical ensemble. Newton’s equations of motion for
smooth potentials are given by the dynamical system

(27) mi
d2xi
dt2

= Fi(x),

where mi ∈ [0,∞) denotes the mass of particle i and Fi(x) := −∇iU(x) is the total force
acting on particle i. Here ∇i is the gradient operator of particle i. It is common to introduce
an auxiliary velocity variable vi := ẋi, reducing the second order system (27) into a first order
system

(28)
ẋi = vi,

v̇i = Fi(x)/mi.

The above dynamics can also be described in terms of position and momenta pi := mivi.
This Hamiltonian formulation of classical mechanics gives rise to a dynamical system with
several appealing features, such as volume preservation and invariance of the Hamiltonian
function H(x,p) = U(x) +

∑
i p
T
i pi/(2mi), which describes the total energy of the system

by combining the potential U(x) with a quadratic kinetic energy term.
The system (28) cannot usually be solved analytically, but in many cases numerical inte-

grators that preserve many geometrical features of the original system exist. A general survey
is beyond the scope of this article, but see Hairer, Lubich and Wanner (2003); Bou-Rabee
and Sanz-Serna (2018) for comprehensive reviews or Leimkuhler and Reich (2004); Hairer,
Lubich and Wanner (2006) for book-length treatments. The most popular algorithm in use
today is the velocity Verlet algorithm (Verlet, 1967), in which the dynamics are approximated
by first taking a half-step in the momentum component pi(ε/2) = pi(0) + (ε/2)Fi(x(0)) for
each particle (where ε > 0 is the step-size) and then iterating the leapfrog dynamics for each
n ∈ {1, ..., `}

(29)
xi(nε) = xi((n− 1)ε) + εpi((n− 1/2)ε)/mi

pi((n+ 1/2)ε) = pi((n− 1/2)ε) + εFi(x(nε)),

before a half-step in the momentum component is taken at the final iteration, in order to
generate a skeleton trajectory up to time `ε (the alternative position Verlet algorithm begins
and ends with a half-step in the position). The momentum update is referred to as the ‘kick’
and the position update the ‘drift’. The algorithm is also known as the leapfrog scheme, owing
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to the intermediate leapfrogging action of the position and momentum coordinates, and is
popular because only one force evaluation F (x) is needed per time step (ignoring the initial
and final kicks) while achieving O(ε2) global error over fixed time scales (Bou-Rabee and
Sanz-Serna, 2018). The algorithm was originally used within the contemporary molecular
dynamics literature by Loup Verlet to simulate a system of 864 particles interacting under a
Lennard–Jones potential, but had been used much earlier than this by Störmer (1907), and
is sometimes called Störmer–Verlet integration for this reason. The positions of particles are
then updated again after each leapfrog step to incorporate periodic boundary conditions by
applying the modular transformation described in Section 2.2.

The molecular dynamics algorithm described above is restricted to exploring the micro-
canonical ensemble, meaning the space of possible states

{(x,p) ∈MN ×RNd :H(x,p) =H0},

where H0 := H(x(0), p(0)), combined with the uniform probability measure over these
states. The total energy of the system hence remains constant. On configuration spaceMN ,
this usually will not correspond to the support of the Boltzmann–Gibbs distribution e−βU(x),
as the potential is restricted to the set {U(x)≤H0} owing to the non-negativity of the kinetic
energy. This was of no concern for the hard-disk model as the potential is almost everywhere
constant, meaning that each level set of H allows exploration of the entire space. For gen-
eral potentials, this requires the ability to move between contours of the Hamiltonian. The
collection of states

{(x,p) ∈MN ×RNd : e−βH(x,p) > 0}

combined with the probability measure ∝ e−βH(x,p)dxdp over these states, is known as the
canonical ensemble. In some physical settings the microcanonical ensemble is of direct inter-
est, but if the canonical ensemble is desired then the above approach to molecular simulation
is no longer sufficient.

4.3.3 Smooth potentials: the canonical ensemble. There are various approaches to sim-
ulating the canonical ensemble, and hence exploring the entirety of the Boltzmann–Gibbs
distribution π(x)∝ e−βU(x). From the physical perspective sampling from the canonical en-
semble can be understood as allowing the system of particles to exchange energy with the
outside world. The system is often assumed to be contained within a heat bath or thermal
reservoir meaning that the system temperature β−1 can be controlled whilst still allowing
for heat exchange with the external environment. Here we will primarily discuss Langevin
dynamics to sample from the canonical ensemble, although there are many other approaches
for this task (Leimkuhler and Matthews, 2016, Chapter 6).

Langevin dynamics consist of adding some stochasticity to Newton’s equations of motion
(27), which allows the total system energy to fluctuate over time. The deterministic system
(28) is combined with an Ornstein–Uhlenbeck process on the momentum coordinate, result-
ing in the system of stochastic differential equations

(30)
dxi(t) =m−1

i pi(t)dt

dpi(t) = Fi(x(t))dt− γm−1
i pi(t)dt+

√
2γβ−1dWi(t),

where each (Wi(t))t≥0 is a standard Wiener process on Rd, and γ > 0 controls the strength
of frictional forces. The linear drift term −γm−1

i pi(t)dt taken in isolation results in an expo-
nential decay in the momentum, with γ dictating the rate at which energy dissipates from the
system due to friction. The final term dWi(t) represents an injection of stochastic force, and
its coefficient can be determined using the fluctuation-dissipation theorem (Pavliotis, 2014,
Chapter 9). We direct the interested reader to Section 6.3.2 of Leimkuhler and Matthews
(2016) for more precise physical intuition.

The system (30) is commonly known as underdamped Langevin dynamics. It can be solved
numerically in various ways. One popular approach is to split the dynamics into two separate
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systems, the first being simply the Hamiltonian system (28), and the second the Ornstein–
Uhlenbeck process dpi(t) =−γm−1

i pi(t)dt+
√

2γβ−1dWi(t), which has explicit solution

(31) pi(t)|pi(0)∼N
(
pi(0)e−γm

−1
i t,miβ

−1(1− e−2γm−1
i t)
)
.

The full system (30) can then be approximated by iterating between numerically solving (29)
for a short time increment and exactly solving the Ornstein–Uhlenbeck dynamics for the
same length of time. Justification for solving in this manner is given by the Baker–Campbell–
Hausdorff formula (e.g. Leimkuhler and Reich (2004)). Ergodic properties and mixing times
of underdamped Langevin dynamics are an area of constant study in the applied mathematics
literature (e.g. Wu (2001); Talay (2002); Mattingly, Stuart and Higham (2002)) as well as the
behaviour of discretisation schemes (e.g. Mattingly, Stuart and Higham (2002); Durmus et al.
(2021)). Interest in the approach has also grown recently within the machine learning com-
munity in the context of establishing non-asymptotic mixing-time bounds for approximate
sampling algorithms (e.g. Dalalyan and Riou-Durand (2020)).

A simplified form of the above dynamics that will be very familiar to statisticians and
machine learners can be found by considering a particular limiting regime of (30). Taking
mi = 1 for simplicity, in the overdamped limit γ→∞ the right-hand side of (31) becomes
N(0, β−1), thereby flushing all memory of previous momenta from the system. Alternating
(31) and (29) in this limit results in the transition xi(ε) = xi(0) + ε2Fi(x(0))/2 + εζi, where
ζi ∼ N(0, β−1), which is the Euler–Maruyama numerical scheme applied to the stochastic
differential equation

(32) dyi(t) = Fi(y(t))dt+
√

2β−1dBi(t),

where y(t) := x(γt). A rigorous derivation of the above is provided in Section 6.5 of Pavliotis
(2014), see also Section 1.2.2 of Stoltz (2021). Among the statistical physics community
(32) is often called Brownian dynamics, as introduced by Rossky, Doll and Friedman (1978).
Among statisticians (32) is the starting point of the Metropolis-adjusted Langevin algorithm
popularised by Roberts and Tweedie (1996) and used extensively since this point.

4.4 Hybrid algorithms

We end this section by briefly mentioning hybrid Monte Carlo, which is now more com-
monly known as Hamiltonian Monte Carlo (Neal, 2011). Following the above discussion the
original name should seem natural, as among physicists the algorithm is easily understood as a
hybrid of the molecular dynamics and Metropolis approaches. The algorithm was introduced
in lattice field theory by Duane et al. (1987), and was popularised in the statistics literature by
Neal (1993). Today it is considered to be among the state-of-the-art approaches to sampling
in many statistical applications. Two notable examples where the method has found success
are posterior distributions for Bayesian neural networks (Neal, 2012) and hierarchical models
(Betancourt and Girolami, 2015).

Today it is widely used in both disciplines and has been extensively studied. Indeed, many
recent algorithmic innovations have been made by statisticians and machine learners, such as
the automated tuning of the time for which Hamilton’s equations should be simulated before
a Metropolis step is applied and the momentum is re-sampled (Hoffman and Gelman, 2014;
Sherlock, Urbas and Ludkin, 2021), and the incorporation of geometric ideas to allow for
position-dependent masses that use local information about π for sampling highly anisotropic
distributions (Girolami and Calderhead, 2011; Betancourt et al., 2017).

5. ADVANCED ALGORITHMS

5.1 Cluster algorithms for lattice models

The potential associated with the Ising model induces strong correlations between spin
values at neighbouring lattice sites when the inverse temperature β is large. This can make
the sampling task very challenging using a site-by-site updating strategy as employed by the
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Metropolis algorithm and Glauber dynamics, leading to poorly mixing Markov chains. An
alternative approach is to consider changing the spins of several particles in a single step of
the algorithm. A popular strategy for doing this was proposed by Swendsen and Wang (1987),
and later modified by Wolff (1989a). In the following we set h= 0 (see (8)) for brevity.

The Swendsen–Wang algorithm is based on the idea of changing the spin values of entire
clusters of particles together. The key ingredient is to introduce an auxiliary variable for each
edge joining adjacent lattice sites (excluding edges passing through the periodic boundaries).
Consider a lattice of N sites (corresponding to N particles) and label each with an index
1≤ i≤N . Each edge in the lattice can then be assigned an auxiliary bond variable indexed
by the two particles that it connects. In the one-dimensional Ising model this equates to in-
troducing N − 1 auxiliary variables, and for a d-dimensional lattice dN (d−1)/d(N1/d − 1)
such variables. For two neighbouring particles i and j we denote the associated bond vari-
able bij ∈ {0,1}. If bij = 1 then particles i and j are grouped in the same cluster, and if not
they belong to different clusters. The edge variables therefore partition the set of particles. If
xi 6= xj then bij = 0, meaning only particles with the same spin can be in the same cluster. If
xi = xj then bij = 0 with probability e−2βJ , meaning

P[bij = 1|xi, xj ] = qij(x) := 1− exp{−2βJI(xi = xj)} .
Once all edge variables have been sampled, all spins within each cluster are flipped with
probability 1/2, and for each cluster the decision of whether or not to flip the spins is taken
independently of all other clusters. In this way, large numbers of particles can be flipped
simultaneously. A proof of the following well-known result is provided in the supplement.

PROPOSITION 2. The Markov chain induced by the Swendsen–Wang algorithm tar-
geting the Boltzmann–Gibbs distribution π(x) ∝ e−βUIsing(x;J,0,N) is ergodic for any choice
β ∈ (0,∞), J > 0 and N ∈N.

Conditions for rapid mixing of the algorithm are discussed in Gore and Jerrum (1999), and
convergence has also been considered by Huber (2003). Generalizations and further discus-
sion are provided in Edwards and Sokal (1988) and elsewhere.

The Wolff algorithm (Wolff, 1989a) differs from the approach of Swendsen & Wang in that
only a single cluster is flipped at each iteration. The approach can be uncovered by sampling
each bond variable as in the Swendsen–Wang algorithm, but then simply choosing a particle
uniformly at random and flipping the spins within the cluster to which that particle belongs.
There is, however, another mathematically equivalent way to construct the cluster to be flipped
that does not require every bond variable to be sampled, and is therefore computationally
more efficient. We do not provide details here but refer the interested reader to Section 5.2.3
of Krauth (2006). Wolff (1989b) reports superiority of the single cluster approach through
simulations on a 643 lattice near the critical temperature.

Nott and Green (2004) applied the Swendsen–Wang approach to Bayesian variable se-
lection. In Bayesian variable selection auxiliary variables γj ∈ {0,1}p are often introduced,
allowing a spike-and-slab prior to be placed on each βj by specifying that if γj = 0 then
βj = 0 with probability 1, and otherwise βj |(γj = 1) has a continuous prior distribution.
When appropriate priors are chosen the marginal posterior distribution for γ ∈ {0,1}p can
often be obtained directly, meaning that Markov chain Monte Carlo methods can be em-
ployed directly on this space. As in the Ising model, the result is a distribution to be sampled
from that is defined over a large space of correlated random variables that can each take two
possible values. Nott and Green (2004) found that the Swendsen–Wang approach can yield
substantial improvements compared to component-wise Metropolis in the presence of high
multi-collinearity. Improvements were not always observed, however. The models are not
of course identical. In particular the correlations between γj variables in Bayesian variable
selection are dictated by the data, and therefore some can be high and others low in an un-
structured manner. This contrasts with the rigid correlations imposed by the lattice structure
of the Ising model discussed here.

Following the success of the cluster approach, similar ideas were used to design algorithms
for the hard-disk and other soft-matter models (Dress and Krauth, 1995). A different strategy
has, however, proved more successful in these systems, which we turn to next.
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5.2 Jaster’s algorithm for hard disks and spheres

A key weakness of the Metropolis algorithm applied to the hard-disk model at high particle
density is that randomly perturbing the position of a particle is very likely to cause overlap
with another, leading to a rejected move. Jaster (1999a,b) proposed a simple approach to
combat this. In Jaster’s algorithm an initial uniform innovation u is drawn and a particle i is
selected uniformly at random. The first proposal is then to move particle i to xi⊕ u, as in the
Metropolis algorithm. If this results in an overlap with particle j, then a new position xj⊕u is
proposed for this particle. The process continues until either a configuration is found in which
no particles overlap, a particle overlaps with more than one other, or a pre-specified maximum
number of attempted moves have been made without finding a new non-overlapping configu-
ration. If the first of these three scenarios occurs then the new configuration is accepted, and
in either of the others it is rejected.

Jaster’s algorithm can be described as a particular case of the delayed-rejection algorithm
(Mira, 2001a) from statistics. It can also be cast in the more recent sequential proposal Markov
chain Monte Carlo framework of Park and Atchadé (2020). Full details of this are given in
Section 7.5 of Andrieu, Lee and Livingstone (2020).

Jaster’s algorithm is an improvement on Metropolis in the sense that the probability of re-
jection is strictly lower. This in turn improves the asymptotic variance of the resulting Markov
chain per iteration (e.g. Mira (2001b)), although each iteration is now also more expensive.
The improvements, however, are often small in the case of high-density particle systems, in
which it is very likely that the first stage proposal will result in the active particle i overlap-
ping with more than one other. Jaster acknowledges this and suggests a modification in which
the same particle is moved by very small amounts in one direction at each iteration, in order
to reduce the chances of multiple particle overlaps. The idea has since been fully developed
and will be introduced in the next section.

5.3 Event chain Monte Carlo

Event chain Monte Carlo can be viewed as a natural innovation of Jaster’s algorithm to
alleviate the issue of collisions involving more than two disks. The central idea is embed-
ded in Jaster’s remark that if disks are perturbed by smaller increments then configurations
involving multiple disk overlaps are less likely to occur. The same logic suggests that the lim-
iting continuous-time algorithm in which a single particle makes infinitesimally small moves
(until collision) would completely remove the danger of collisions involving more than two
particles. The resulting sampling algorithm applied to hard-disks is the event chain Monte
Carlo algorithm of Bernard, Krauth and Wilson (2009), which was later extended to general
potentials by Michel, Kapfer and Krauth (2014).

The event chain Monte Carlo algorithm simulates a continuous-time stochastic process
known as a piecewise deterministic Markov process (PDMP), which involves deterministic
dynamics and jumps, but no diffusive behaviour. This form often lends itself well to exact
simulation. PDMPs have also been proposed as sampling algorithms in statistics, notably
by Bouchard-Côté, Vollmer and Doucet (2018); Bierkens, Fearnhead and Roberts (2019). A
recent review is given in Fearnhead et al. (2018).

5.3.1 Event chain Monte Carlo for the hard-disk model. To simulate event chain Monte
Carlo for the hard-disk model an initial configuration and active particle i ∈ {1, ...,N} must
be chosen. A single-particle velocity u is then simulated from some initial two-dimensional
distribution on the unit circle. The configuration of the process x(t) at time t ≥ 0 is then
determined in a manner that has some parallels with molecular dynamics simulations for the
hard-disk model. The active particle i moves at unit speed in the direction u while all other
particles remain still. The time to the first collision can then be calculated using (24) as in a
molecular dynamics simulation. When a collision occurs the active particle is updated.

This can be described mathematically by defining the flow operator

(33) φt(x, v, i) := (x+ tv, v, i)
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for configuration x with N -particle velocity vector v ∈ R2N , which will have only two non-
zero entries corresponding to the velocity u of the active particle i. We define the colliding
particle as

c(x, i) :=

{
arg minj 6=i d(xi, xj) if minj 6=i d(xi, xj)≤ 2σ

i otherwise.

It is of course still possible that two particles could be equidistant from i, meaning c(x, i)
takes multiple values. At equilibrium this is a measure-zero event, but care must be taken
to initialise the algorithm so that this does not occur. Upon collision the velocity can be
updated in numerous ways. Of course it must be transferred such that the active particle is
now c(x, i). But the non-zero part of the velocity u can also be modified. In reflected event
chain Monte Carlo it is adjusted according to the angle of the collision, as in a molecular
dynamics simulation. This strategy did not perform as well, however, as the version known as
straight event chain Monte Carlo in which u is not modified after collisions. In this case the
new N -particle velocity s(v, i, c(x, i)) is calculated by simply swapping the ith and c(x, i)th
two-dimensional components of v, which results in the c(x, i)th component becoming u and
the ith component becoming zero. The swap-upon-collision operator can therefore be defined
as

S(x, v, i) := (x, s(v, i, c(x, i)), c(x, i)).

Iterating the maps φε for some small ε > 0 and S then leads to an algorithm in which a particle
moves in a straight line until collision, at which point the active particle and velocity vector
are updated. Defining the augmented state z := (x, v, i), event chain dynamics can therefore
be formally defined as z(t) := ξt(z(0)), where

ξt(z(0)) := lim
ε→0

[S ◦ φε]bt/εc(z(0))

for any t≥ 0, which is a completely deterministic trajectory through time.
The event chain algorithm also involves a final ‘refreshment’ step, which plays a similar

role to momentum refreshment in hybrid Monte Carlo. At certain times the single-particle
velocity u is changed in some way. This is to help the process reach equilibrium. This re-
freshment can be done in several ways, one example being complete uniform re-sampling
from the unit circle. In the best-performing implementation, however, the initial value of u is
chosen to be either (1,0) or (0,1), each with probability 1/2, and each refreshment simply
entails swapping the elements of u (Bernard, Krauth and Wilson, 2009). This implementa-
tion is called the xy-version of event chain Monte Carlo, as the active particle will always be
travelling parallel to either the x- or y-axis.

If the single-particle velocity refreshments are implemented according to the xy-version
of the algorithm at fixed times, then the event chain algorithm for hard-disk systems is in fact
completely deterministic. If, however, the refreshment times occur according to a Poisson
process, then some stochasticity is introduced.

5.3.2 (Generalized) Event chain Monte Carlo for smooth potentials. In the hard-disk
model the form of the potential leads to a natural definition of both collisions and updates
of the active particle. It is not immediately obvious, however, how to extend these ideas to
sampling from continuous potentials. Fortunately these hurdles were overcome by Michel,
Kapfer and Krauth (2014) following earlier work from Peters and de With (2012).

We will consider the case of a potential composed of generic pairwise components
Ug(xi, xj). As in the case of hard-disks let z := (x, v, i) be the augmented state of the process.
The algorithm proceeds by defining a Poisson process for each pair of particles. The process
associated with particles j and k has event rate defined by the function

λjk(z) := βI(i= j) max (0, 〈∇xUg(xj , xk), v〉) .

This will only be non-zero if j is the current active particle. If an event associated with this
process occurs then the active particle is swapped from j to k. As in the hard-disk model this
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is achieved by swapping the jth and kth d-dimensional components of the velocity vector
v. In the absence of an event the process advances deterministically according to the flow
map (33), which results in the active particle moving with constant velocity v with all others
remaining in place. The algorithm also includes a velocity refreshment step.

5.3.3 The generator and its properties. Recall that the infinitesimal gener-
ator of a continuous-time Markov process is defined point-wise as Lf(z) :=
limδ→0 δ

−1 (E[f(z(t+ δ))|z(t) = z]− f(z)), whenever such a limit is well-defined
(we will skip the technicalities here in favour of a more intuitive discussion). The generalized
event chain algorithm can be described through the PDMP with infinitesimal generator
(34)

Lf(z) := 〈v,∇xf(z)〉+
∑
j<k

λjk(z)[f(Sjk(z))− f(z)] + λref

∫
[f(z′)− f(z)]R(z, dz′)

where

Sjk(z) := (x, s(v, j, k), k)

and the function s(v, j, k) swaps the jth and kth (d-dimensional) elements of v. In the final
term on the right-hand side λref > 0 denotes the refreshment rate for the active velocity com-
ponent, and R(z, dz′) is a Markov kernel only changing the active component of the velocity.
In different implementations R can either perform uniform refreshment for vi = u on the
unit sphere or apply the xy transformation, which in the d-dimensional case we will treat as
shifting each element of u one space to the right modulo d.

Properties of the Markov process associated with the event chain algorithm can be extracted
by studying (34) as an operator on a suitably defined Hilbert space. Here we will consider
the space L2(µ), where µ(dz) is the product measure formed by combining π(dx) with the
discrete uniform distribution on {1, ...,N} for i and a uniform distribution on the (Nd− 1)
unit sphere for v (an alternative choice is the conditional probability measure for v|i for which
the ith d-dimensional component of v is uniform on the unit (d − 1)-sphere and all other
elements are 0). Recall that on such a space a µ-reversible process will have the property
that the associated generator is self-adjoint, meaning 〈f,Lg〉µ = 〈Lf, g〉µ, where 〈f, g〉µ :=∫
f(z)g(z)µ(dz) is the L2(µ) inner product. The operator (34) is not self-adjoint, meaning

the process is not µ-reversible. We can, however, consider a more general property introduced
in Andrieu and Livingstone (2021) known as (µ,Q)-self-adjointness. This means that there is
another operator Q on L2(µ) satisfying Q2 = I and 〈f, g〉µ = 〈Qf,Qg〉µ (called an isometric
involution) and for which

(35) 〈f,Lg〉µ = 〈QLQf,g〉µ.

Clearly making the choice Q = I equates (35) with µ-reversibility, but other choices are
possible. It is shown in Appendix E of Andrieu, Lee and Livingstone (2020) that the gen-
erator associated with event chain Monte Carlo satisfies (35) with Qf(x, v, i) := f(x,−v, i)
when the refresh kernel R is taken to be uniform. We extend this to the xy implementa-
tion below when d = 2 (a proof is provided in the supplement). For this particular choice
(µ,Q)-self-adjointness can be related to the notion of skew-detailed balance for a discrete
time Markov chain with a velocity component (e.g. Vucelja (2016); Turitsyn, Chertkov and
Vucelja (2011)), since the associated transition kernel Pt(z, dz) satisfies skew-detailed bal-
ance for any choice of t≥ 0 (see Theorem 9 in Andrieu and Livingstone (2021)).

PROPOSITION 3. The event chain Monte Carlo infinitesimal generator (34) with xy-
refreshments is (µ,Q)-self-adjoint with the choice Qf(x, v, i) := f(x,−v, i) when d= 2.

REMARK 1. Note that Proposition 3 is not wholly satisfactory because in the xy-version
of event chain Monte Carlo the active velocity component u only ever takes one of d values
on the (d − 1)-dimensional unit sphere (in contrast with uniform refreshment on the unit
sphere). The algorithm therefore satisfies (µ,Q)-self-adjointness with the indicated µ when
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d = 2, but is not µ-irreducible, meaning that µ is not the limiting distribution for the chain.
More generally no rigorous proof of ergodicity for the xy-version of the straight event chain
algorithm is known to the authors at the time of writing.

REMARK 2. The potential associated with the hard-disk model is not smooth, meaning
a generator-level definition akin to (34) is not straightforward. One route to such an object
is to consider a sequence of processes associated with the soft-disk potential (16) indexed
by k, and then letting k→∞. Similar ideas underpin the extension of Hamiltonian Monte
Carlo to non-smooth models discussed in Nishimura, Dunson and Lu (2020). Recent work
by Monemvassitis, Guillin and Michel (2023) has provided a generator-level description via
a different approach and established conditions under which ergodicity can be shown for the
uniform refreshment process.

5.3.4 Implementation details. The generator-level description given in (34) assumes that
the potential can be broken into factors at the pair-wise level, but in practice other factori-
sation schemes are possible. In the case of pair-wise factorisation the continuous-time al-
gorithm can be derived by taking an appropriate limit of a discrete-time Metropolis algo-
rithm in which the usual acceptance rate is replaced with the factorized Metropolis filter∏
i 6=j min(1, e−β(Ug(x′i,x

′
j)−Ug(xi,xj))) (Michel, Kapfer and Krauth, 2014). This is of course

less efficient in the sense of Peskun as fewer proposed moves will be accepted, but has a
computational advantage as each component of the acceptance rate/event rate only requires
evaluation of one pair-wise interaction.

To simulate a PDMP in practice it must be possible to either directly simulate from a Pois-
son process with intensity

∑
j 6=k λij(z), or to establish a tractable upper bound and then per-

form thinning. One approach to the latter is called the cell veto method (Kapfer and Krauth,
2016), in which the manifold M is partitioned into cells and a local upper bound is found
within each cell. This approach has proved to be particularly effective for systems in which
particles interact over long distances and has been applied by Faulkner et al. (2018) to the all-
atom model of water presented in Section 3.6. In this case the Metropolis algorithm requires
prohibitively high per iteration costs, and molecular dynamics approaches are numerically
unstable unless a very small step-size is chosen. Event chain Monte Carlo circumvents both
issues, although work is still ongoing to improve molecular rotational mixing within the algo-
rithm. The cell-veto method has connections to a recently proposed approach for simulating
PDMPs in the statistics literature by Corbella, Spencer and Roberts (2022).

Alternative events are possible other than simply swapping the active particle using either
the straight or reflected event chain strategies described above. Michel, Durmus and Sénécal
(2020) introduce forward event chain Monte Carlo, in which the velocity v is stochastically
perturbed in a prescribed way when a collision event occurs. The motivation is that if enough
randomness is introduced during this step then the algorithm can perform well even without
introducing additional velocity refreshment events. Klementa and Engel (2019) and Höllmer,
Maggs and Krauth (2022) employ similar ideas in Newtonian event chain Monte Carlo. We
add that parallel implementations of event chain Monte Carlo involving multiple active parti-
cles have also been considered in Kampmann, Boltz and Kierfeld (2015b).

5.4 The Xtra chance algorithm

The philosophy of continuing on the same path upon a rejection in the hope of reaching
acceptance has also been proposed by Campos and Sanz-Serna (2015) in the context of hybrid
Monte Carlo. In this algorithm Hamiltonian dynamics are numerically simulated for a period
of time T := `ε and then an accept-reject decision is taken by sampling u ∼ U [0,1] and
assessing whether or not u ≤ exp[−β(H(x′, p′) − H(x,p))], where (x′, p′) := ψε` (x,p) is
the Hamiltonian proposal. Upon rejection, however, a second-stage proposal is computed
as (x′′, p′′) := ψε` (x

′, p′). In other words, the dynamics are simulated for an additional time
T = `ε. This second stage proposal is accepted if u < exp[−β(H(x′′, p′′)−H(x,p))], where
u is the same uniform random variable used in the first stage accept-reject decision. The
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scheme has the appealing interpretation that first a u is simulated, and then proposals are
repeatedly tested until one is encountered for which the Metropolis ratio is larger than u.
Typically a maximum number of attempts are tried until this goal is attained, otherwise all
proposals are rejected.

The Xtra chance algorithm was designed so that the expensive computations associated
with simulating Hamiltonian dynamics are re-used in the case of a rejection, as the end point
of this simulation is used as the starting point for the next stage proposal. As in the case
of Jaster’s algorithm the probability of rejection is strictly decreased compared to ordinary
hybrid Monte Carlo, but similarly more computation is associated with each iteration. The
Xtra Chance algorithm can also be regarded as a particular case of the sequential proposals
algorithm of Park and Atchadé (2020), as is remarked in that work. In addition it can again
be fitted into the delayed rejection framework of Mira (2001a). One surprising feature of the
Xtra chance algorithm when viewed through the lens of delayed rejection is its attractively
simple acceptance rate at the second stage (and beyond). In contrast, the usual acceptance rate
for a delayed rejection algorithm is

α2(x,x′, x′′) = min

(
1,
π(x′′)q1(x′′, x′)q2(x′′, x′, x)(1− α1(x′′, x′))

π(x)q1(x,x′)q2(x,x′, x′′)(1− α1(x,x′))

)
,

where q1(x, ·) and q2(x,x′, ·) are the first and second stage proposal kernels and α1(x,x′)
is the usual Metropolis–Hastings acceptance probability for the first stage proposal x′. In
addition, a fresh uniform random variable must be drawn to decide whether or not to accept
the second stage proposal as compared to that used in the first stage. The reason that a much
simpler algorithm can be used in both the Xtra chance and Jaster algorithm is in part owing
to the symmetries of the dynamics of the transition, but also to the augmented slice sampler
target density µ(x,u) := I(u < π(x)) (Neal, 2003). When viewing delayed rejection with
µ as the target distribution, the acceptance rates for these algorithms reduce to being either
1 or 0, and the persistent uniform sample that determines when a proposal is accepted is
nothing more than a transformed sample from the conditional distribution of u|x. Andrieu
and Livingstone (2021) prove that taking extra chances in this manner reduces the asymptotic
variance of ergodic averages (the result does not, however, account for computational cost).

5.5 Shadow hybrid Monte Carlo

Izaguirre and Hampton (2004) introduced a modification to the hybrid Monte Carlo
method that was later developed and introduced to the statistics community by Radivoje-
vić and Akhmatskaya (2020). The shadow hybrid Monte Carlo method is motivated by the
field of backward error analysis for ordinary differential equations (ODEs). Given an ODE
ẋ(t) = f(x(t)) and a numerical scheme for simulating this ODE, forward error analysis is
concerned with understanding how far apart the numerical and exact solutions of the ODE
are at some time step t, usually as a function of the numerical step-size ε > 0. A scheme is
called pth order accurate if this global error can be bounded by some function C(t)εp. The
idea of backward error analysis is to instead seek a modified ODE system ẋ(t) = f̃ε(x(t)) for
which the numerical scheme that is used for the original ODE will be accurate to a higher
order. The differences between f̃ε and f can then be studied to understand qualitative dif-
ferences in behaviour between the numerical scheme and the true solution to the original
ODE. As a simple example, consider numerically simulating the system ẋ(t) = f(x(t)) us-
ing a first order scheme. Under sufficient smoothness assumptions on f , finding a modi-
fied system ẋ(t) = f̃ε(x(t)) for which the scheme is second order accurate involves setting
f̃ε(x) = f(x) + εf1(x) and then considering a Taylor series expansion of the one step er-
ror x̃(t+ ε)− x̃(t) to choose an f1 that results in a cancellation of the relevant lower order
terms in ε (here x̃(t) denotes the true solution of the modified system). See e.g. Chapter 5 of
Leimkuhler and Reich (2004) for a more detailed explanation and examples.

Backward error analysis has found success in the study of symplectic numerical schemes
for Hamiltonian systems, such as the velocity Verlet approach introduced in Section 4.3. Us-
ing this approach it is possible to show that in many cases the modified system is also Hamil-
tonian, and that the numerical scheme preserves the value of the modified or shadow Hamilto-
nian over surprisingly long time scales (Leimkuhler and Reich, 2004, Chapter 5). This gives
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some insight into the success of the hybrid Monte Carlo method. It also presents opportu-
nities to develop alternative approaches. The shadow hybrid Monte Carlo method works by
simulating a hybrid Monte Carlo algorithm, but in place of the true Hamiltonian H in the
acceptance rate a chosen shadow Hamiltonian H̃k of order k is used (the choice of order usu-
ally depends on trading off accuracy with computational cost). The shadow Hamiltonian H̃k

will typically also depend on the momentum in a less straightforward way than H , meaning
that in place of re-sampling the momentum directly from its marginal distribution a proposed
change in momentum is drawn (from its marginal distribution in the true Hamiltonian sys-
tem) and then accepted or rejected. Izaguirre and Hampton (2004) propose to use rejection
sampling, whereas Radivojević and Akhmatskaya (2020) introduce a Metropolis step. Rather
than simple Monte Carlo averages of the algorithm output, which would give expectations
with respect to the modified distribution with density ∝ e−βH̃k , importance sampling esti-
mators using weights e−β(H−H̃k) can be employed, allowing expectations with respect to the
true distribution of interest to be computed. Radivojević and Akhmatskaya (2020) consider
several further modifications to the original algorithm, including different numerical integra-
tors as introduced in Radivojević et al. (2018) and partial momentum refreshment as proposed
in ordinary hybrid Monte Carlo by Horowitz (1991).

REMARK 3. Combining importance sampling and Markov chain Monte Carlo in this
way has also been proposed and studied in the statistics literature (e.g. Franks and Vihola
(2020); Vihola, Helske and Franks (2020)). The intriguing property of the above scheme
is the level of stability provided to the importance weights by the modified Hamiltonian.
Traditional importance sampling typically performs poorly in high-dimensional settings, but
there is much numerical evidence that this is not true of shadow hybrid Monte Carlo.

5.6 Sampling with modified kinetic energies

The underdamped Langevin diffusion (30) can be generalized in such a way that the in-
variant density for momentum is changed while that for the position variable x remains
π(x)∝ e−βU(x). The resulting system of stochastic differential equations can be written anal-
ogously to (30) as

(36)
dxi(t) =∇iK(p(t))dt

dpi(t) = Fi(x(t))dt− γ∇iK(p(t))dt+
√

2γβ−1dWi(t).

whereK is some kinetic energy function. The choiceK(p) = pTM−1p/2 leads to (30), where
M is a diagonal matrix with entriesMii =mi. Artemova and Redon (2012) propose to modify
the standard quadratic form choice of K in such a way that a particle does not move if it
has momentum below a chosen threshold pmin > 0, with the aim of reducing computational
cost by freezing particles in place unless they will move by an appreciable amount. This is
achieved by setting K(p) :=

∑
i k(pi) where

k(pi) :=

{
0 ‖pi‖2 < pmin

1
2mi

pTi pi ‖pi‖2 > pmax.

In between the constants pmin and pmax the function smoothly interpolates between 0 and
p2

max/(2mi) (Stoltz and Trstanova, 2018, Section 4.1.1). Ergodicity properties of (36) are
studied in Redon, Stoltz and Trstanova (2016) and guidelines for the choice of step-size as
compared to the standard choice of kinetic energy are given in Stoltz and Trstanova (2018).
A parallel implementation is introduced in Singh, Marin and Redon (2017).

Experiments in Artemova and Redon (2012) indicate that the resulting adaptively re-
strained Langevin dynamics induce stronger autocorrelations over time among the particle
positions, which is intuitive given that their movement is restricted. This is more than off-
set, however, by the seven-fold computational speed up exhibited by the restrained dynamics
when compared to the standard underdamped Langevin approach, resulting in around four
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FIG 9. Estimations of the expected specific heat per particle (a) and expected absolute magnetic density (b) of the
two-dimensional Ising model as functions of βc/β and number of particles N at h= 0. Results were generated
from 104 Wolff samples (104 burn-in iterations were discarded) and then averaged over 28 simulations. The black
curves in (a) and (b) correspond to the analytical thermodynamic predictions in (9) and (12).

times better accuracy overall when comparing the error in estimating some chosen test func-
tions in an example simulation of 343 Argon particles in which intra-molecular interactions
were modelled using a Lennard–Jones potential. Stoltz and Trstanova (2018) also consider
the problem of metastability when sampling from multi-modal distributions, and provide nu-
merical evidence that this can be reduced through an appropriate choice of kinetic energy.

REMARK 4. The closely related idea of modifying the choice of kinetic energy within
hybrid Monte Carlo has been considered in the statistics and machine learning literature in
Lu et al. (2017); Zhang et al. (2016) and studied in terms of ergodicity properties in Liv-
ingstone, Faulkner and Roberts (2019). The main focus of these works, however, is on the
increased robustness and numerical stability that can be achieved by using a slower growing
kinetic energy than the standard choice. Nishimura, Dunson and Lu (2020) also consider dif-
ferent choices of kinetic energy in order to sample from discrete distributions and those with
discontinuous potentials.

6. SIMULATION STUDIES

In this section we present simulation studies of the two-dimensional Ising and XY mod-
els, comparing the Metropolis algorithm with two of the advanced algorithms presented in
Section 5. For storage reasons, only an N -skeleton of the Metropolis chain is retained, cor-
responding to storing the system state after each N -particle sweep. The elapsed simulation
time during each N -particle sweep defines one unit of Metropolis simulation time ∆tMetrop.
The elapsed simulation time during each Wolff iteration defines one unit of Wolff simulation
time ∆tWolff .

6.1 Two-dimensional Ising model

Figure 9 shows estimates of the expected zero-field (h= 0) specific heat per particle (see
(5)) and expected zero-field absolute magnetic density (see (11)) of the two-dimensional Ising
model, as functions of βc/β and N (recall that βc := ln(1 +

√
2)/(2J) is the inverse critical

temperature). The output was generated using the Wolff algorithm and provides evidence for
the phase transition predicted by Onsager (1944) at β = βc, h = 0. The specific-heat output
in Figure 9(a) appears to approach the analytical thermodynamic prediction in (9) with in-
creasing N . The magnetic-density output in Figure 9(b) suggests that the expected zero-field
absolute magnetic density tends to the spontaneous magnetic density m0(βJ) defined in (12)
and corresponding to the solid black line in the figure. The output tends to one for all N as
β→∞ because the Boltzmann–Gibbs distribution puts all probability mass on two equally
likely states (xi = 1 for all i and xi = −1 for all i) in this limit, while it appears to tend
to zero in the thermodynamic limit for all β < βc because the magnetic density m satisfies
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using both the Metropolis (a, c) and Wolff (b, d) algorithms. In each case 104 burn-in iterations were discarded.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
c/

0

200

400

600

|m
|/

t M
et

ro
p/

W
ol

ff

N = 4x4 Wolff
N = 4x4 Metrop
N = 8x8 Wolff
N = 8x8 Metrop
N = 16x16 Wolff
N = 16x16 Metrop
N = 32x32 Wolff
N = 32x32 Metrop
N = 64x64 Wolff
N = 64x64 Metrop

FIG 11. Estimations of the normalised magnetic-norm integrated autocorrelation time τ|m|/∆tMetrop/Wolff of
the two-dimensional Ising model as a function of βc/β and number of particles N , with respect to the Metropolis
and Wolff algorithms. Autocorrelation functions were generated from 104 samples (104 burn-in iterations were
discarded) and then averaged over 28 simulations.

P [m(x;β,J,h= 0,N) 6= 0]→ 0 as N →∞ for all β < βc. Both outputs become noisier as
β becomes smaller and N larger, which we discuss below.

We now compare the Metropolis and Wolff algorithms in the context of spontaneous sym-
metry breaking. At h= 0 the potential is symmetric in x for all β,J,N , but numerical simu-
lations (of the system) constrained to single spin flips spontaneously break this Z2 symmetry
at finite β > βc, leaving the system stuck close to one of the two β→∞ states on a timescale
that diverges with N . This is an example of spontaneous symmetry breaking and is reflected
in the low-temperature (β > βc) zero-field magnetic-density trace plots in Figures 10(a) and
(b). On the presented simulation timescale, the Metropolis simulation starts at m = 1 and
stays in this state, while the Wolff simulation mixes between m= 1 and m=−1.This case of
symmetry breaking is caused by the multi-modality of the Boltzmann–Gibbs distribution, but
anisotropic distributions can also result in the phenomenon (e.g. the asymmetric Metropolis
simulation output in Section 6.2).

The Wolff algorithm also combats the related phenomenon of critical slowing down. As βc

is approached from small values of β, strong particle–particle correlations begin to set in on
increasingly long lattice-site-separation distances. Near βc, this results in increasingly large
clusters of particles with the same spin value, which slows mixing significantly for simula-
tions constrained to single spin flips, resulting in very noisy m̌ statistics. This is remedied
by flipping large clusters of spins, as reflected in the output in Figures 10(c-d) and 11. Fig-
ures 10(c) and (d) show (respectively) trace plots of the magnetic density at small |β − βc|
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FIG 12. Evolution of the magnetic density m of the two-dimensional XY model using the Metropolis (a-c) and
event-chain (d-f) algorithms. The size of the Metropolis skeleton chain is 105 (with acceptance probability ' 0.6)
while that of the event-chain algorithm is 103.

using the Metropolis and Wolff algorithms. The Metropolis output is strongly time corre-
lated, while the Wolff output mixes on the presented simulation timescale. Figure 11 shows
estimates of the magnetic-norm integrated autocorrelation times τ|m| of the zero-field two-
dimensional Ising model as functions of βc/β and N , using both the Metropolis and Wolff
algorithms. The Metropolis estimates appear to diverge with system size as β → βc, while
those of the Wolff algorithm depend only weakly on N for all βc/β < 1.2, before developing
a stronger N -dependence at smaller β, due to smaller typical cluster sizes. This results in the
development of noise in the output in Figure 9 at small β. Physicists tend to remove any N -
dependence from the Wolff timescale by multiplying it by some metric for the typical cluster
density at any given temperature (e.g. Tamayo, Brower and Klein (1990)).

6.2 Two-dimensional XY model

In addition to its use in the development of the theory of the two-dimensional melting tran-
sition presented in Section 3.2, event chain Monte Carlo applied to the XY model has also
enjoyed success analogous to that of the Wolff algorithm for the Ising model. Figure 12 shows
the evolution of the two-dimensional magnetic density vector (as defined in (11)) of the zero-
field two-dimensional XY model (presented in Section 3.1.3) using both the Metropolis and
event chain Monte Carlo algorithms. The expected value is (0,0) at all nonzero temperatures,
but the low-temperature Metropolis mean converges to this expected value on a timescale that
diverges with N , as described in detail in Faulkner (2022) and reflected in Figures 12(a-c)
(‘low temperature’ corresponds to all finite β > βBKT, where βBKT ' 1.13/J is the inverse
critical temperature of the model). The event-chain output (Figures 12(d-f)) by contrast sug-
gests N -independence for all β. The event chain algorithm was simulated for a time period
proportional to N .

7. DISCUSSION

It is important to acknowledge that there has been much successful cross-pollination of
ideas between statistical physics and statistics/machine learning for many decades now. The
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perhaps unfortunately named Gibbs sampler is so-called from its initial use in sampling from
Ising models applied to pixel distributions in black and white images (Geman and Geman,
1984). The now well-established use of energy-based models in image processing (LeCun
et al., 2006) is an example of how such cross-pollination can lead to new approaches and
insights. Nonetheless, we believe that there is still much that each field can learn from the
other, and speculate on some possible avenues below.

The ergodicity properties of the most successful version of (generalized) event chain Monte
Carlo are, to the best knowledge of the authors, still largely unknown (see Remark 1 of Section
5.3). Statisticians have recently found success in studying ergodicity properties of piecewise
deterministic Markov processes (e.g. Bierkens, Roberts and Zitt (2019)) and may have some-
thing to offer here. In addition, there is a need to establish theoretical results comparing the
straight and reflected versions of event chain Monte Carlo, as well as uniform versus xy re-
freshment of particle velocities, to support empirical findings. Statisticians have some track
record in establishing orderings among sampling algorithms, and the accumulated knowledge
within the field could be suitable for this task.

Often when hybrid (or Hamiltonian) Monte Carlo is described in statistics and machine
learning, an analogy is given to the movement of a single Nd-dimensional fictitious ‘parti-
cle’ (e.g. Neal (2011)). Physicists, by contrast, think separately about the movement of each
individual d-dimensional physical particle within a system. With this mindset interactions be-
tween particles become a natural consideration, and it may be that such a mindset is beneficial
in the context of probabilistic models. One example is sampling under ordering constraints,
such as learning the positions of histogram breaks (Worrall et al., 2022) or knot positions in a
nonparametric regression model (Smith and Kohn, 1996). One-dimensional implementations
of molecular or event chain dynamics would trivially preserve the necessary monotonicity re-
quirements imposed by such models. Repulsive potentials such as Lennard–Jones could also
be incorporated into prior distributions for parameters in a Bayesian setting to ensure that suf-
ficiently different posterior distributions are attained, such as in the estimation of parameters
in mixture models.

In the field of dimension reduction ideas from statistical physics are implicitly used. In
multi-dimensional scaling (Torgerson, 1952) d-dimensional representations xi for 1≤ i≤N
of some higher dimensional data points y1, ..., yN are sought in order to reduce the dimen-
sion of the problem. In metric multi-dimensional scaling, estimates for x1, ..., xN are found by
minimising the stress function S(x1, ..., xN ) :=

∑
i 6=j(dij−d(xi, xj))

2, where dij is some ap-
propriate notion of dissimilarity between yi and yj computed in the original high-dimensional
space.4 The stress function, when viewed through the lens of statistical physics, is nothing
more than a bonded potential. This observation has in fact already been noted (Andrecut,
2009), but there is still much scope to build on the connection. In particular there is recent
interest in quantifying uncertainty in the parameters x1, ..., xN through a Bayesian treatment
(e.g. Ren et al. (2017)), and viewing the problem through the lens of Boltzmann–Gibbs distri-
butions, in particular when combined with recent advances in model-free Bayesian inference
(Bissiri, Holmes and Walker, 2016; Jewson, Smith and Holmes, 2018; Knoblauch, Jewson
and Damoulas, 2022), may be a fruitful avenue for this problem.

This article has emphasised that the study of phase transitions is central to statistical
physics. In a typical problem, samples are drawn from several different Boltzmann–Gibbs
distributions, each corresponding to a different fixed temperature (or some other fixed hyper-
parameter of the system), and the qualitative behaviour of some observable is studied as a
function of temperature. One example of a ‘phase transition’ in statistics/machine learning is
the estimator for a coefficient value in L1-penalised regression, as a function of the weight λ.
The inverse temperature parameter is also present (albeit with the addition of a prior) as the
learning rate in Gibbs posterior distributions (e.g. Haddouche et al. (2021); Bissiri, Holmes
and Walker (2016); Syring and Martin (2020); Grünwald and Van Ommen (2017)). Typi-
cally the goal has been to choose a unique optimal value for this parameter (Wu and Martin,

4Often the square root of S is defined as the stress, but this operation has no impact on the minima.
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2022), but summary statistics of interest could also be treated as ‘observables’ and studied for
evidence of phase transitions as the learning rate varies.

There are numerous approaches to sampling from Boltzmann–Gibbs distributions that were
omitted for brevity. Nothing is mentioned of thermostats, such as Nosé–Hoover dynamics and
extensions (e.g. Evans and Holian (1985); Martyna, Klein and Tuckerman (1992); Leimkuh-
ler, Noorizadeh and Theil (2009)). Details of this approach and a simulation study comparing
to hybrid Monte Carlo are provided in Cances, Legoll and Stoltz (2007). Biasing methods
such as the Wang–Landau algorithm (Wang and Landau, 2001) and the adaptive biasing force
method (Darve, Rodríguez-Gómez and Pohorille, 2008) were also not discussed. We refer the
interested reader to book-level treatments of the subject such as Lelièvre, Rousset and Stoltz
(2010); Leimkuhler and Matthews (2016); Krauth (2006).

We have also omitted the estimation of dynamical properties. Barrier-crossing techniques
such as metadynamics (Barducci, Bonomi and Parrinello, 2011) or multicanonical sampling
(Berg and Neuhaus, 1991) can be integrated into sampling algorithms to estimate the depths
and shapes of potential wells, providing a route to order-of-magnitude estimates of chemical-
reaction rates, rare-event timescales, and other similar phenomena. More direct dynamical
quantities may also be estimated when simulating steady-state systems (such as transport
coefficients describing particle flow in response to an applied field). These are typically the
solution of a partial differential equation, though Metropolis simulations of such systems
often produce remarkably accurate results (e.g. Kaiser et al. (2013, 2015)).

Finally, we have said very little here of algorithms that have been developed in statis-
tics/machine learning but may have uses in statistical physics. Recent advances in sampling
on discrete state spaces such as the locally-informed approach of Zanella (2020) and the
non-reversible strategies outlined in Power and Goldman (2019) are a good example of this.
Several methods for estimating normalising constants have also been developed, such as An-
nealed Importance Sampling (Neal, 2001). These methods could well be useful in the context
of free energy calculations. We have deliberately restricted ourselves to algorithms that origi-
nated from statistical physics, but a future article could certainly be written introducing these
methods to an audience of physicists.

Code and data availability. All code used in this article is freely available on GitHub
at https://github.com/michaelfaulkner/super-aLby, commit hash 1c014ca (Ising simulations)
and https://github.com/michaelfaulkner/xy-type-models, commit hash 95093aa (XY simu-
lations). All published data can be reproduced using these applications (as outlined in
each README) and are available at the University of Bristol data repository, data.bris, at
https://doi.org/10.5523/bris.sju7uasr7e2b2n518hk72p3ur.
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SUPPLEMENTARY MATERIAL

APPENDIX A: FREE ENERGY DERIVATION FOR ONE-DIMENSIONAL ISING MODEL

For a two-particle system, the partition function of the one-dimensional Ising model is

ZIsing,d=1(β,J,h,N = 2) =
∑
x1=±1

∑
x2=±1

eβJx1x2+ βh

2
(x1+x2)eβJx2x1+ βh

2
(x2+x1)

=e2βJ
(
e2βh + e−2βh

)
+ 2e−2βJ .

Defining the matrix

P (β,J,h) :=

[
eβ(J+h) e−βJ

e−βJ eβ(J−h)

]
,

this can be rewritten as

ZIsing,d=1(β,J,h,N = 2) = tr
[
P 2(β,J,h)

]
.
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For N > 1 particles, this then generalises to

ZIsing,d=1(β,J,h,N) = tr
[
PN (β,J,h)

]
,

which follows from the factorisation of the partition function into the product of N two-
particle terms:

ZIsing,d=1(β,J,h,N) =
∑
x1=±1

· · ·
∑

xN=±1

eβJx1x2+ βh

2
(x1+x2) . . . eβJxNx1+ βh

2
(xN+x1).

Since P (β,J,h) is a symmetric, real-valued matrix, tr
[
PN (β,J,h)

]
= λN+ + λN− , where

λ±(β,J,h) = eβJ
[
cosh (βh)±

√
sinh2(βh) + e−4βJ

]
are the two eigenvalues of P (β,J,h). It then follows that the free energy is

FIsing,d=1(β,J,h,N) =−β−1 log
[
λN+ (β,J,h) + λN− (β,J,h)

]
.(37)

APPENDIX B: MISCELLANEOUS PROOFS

PROOF OF PROPOSITION 2. Consider the augmented state space (x, b) and the joint dis-
tribution

(38) µ(x, b)∝ e−βUIsing(x;J,0,N)

 N∏
i=1

∏
j∈Si

qij(x)bij/2(1− qij(x))(1−bij)/2

 .

We first consider π-invariance, followed by irreducibility and aperiodicity. On this augmented
state space the Swendsen-Wang transition can be viewed as the combination of two updates
applied sequentially. In the first we simply re-sample b|x from its conditional distribution,
which is clearly a µ-preserving transition. In the second we update x|b by flipping the signs
of spins within each cluster with probability 1/2. The transition probability associated with
this second step can be written

PSW((x, b), (x′, b′)) = 2−C(b)I(b= b′)

 N∏
i=1

∏
j∈Si

bijI(x′i = x′j)I(xi = xj)

 1

2

.

The first term on the right-hand side is a normalising constant, in which C(b) denotes the
number of clusters in the partition induced by b. The second term stipulates that b does not
change. The third ensures that if a bond exists between particles i and j then they must take
the same value. The final indicator function I(xi = xj) is not strictly necessary as provided
b is drawn from its conditional distribution given x then bijI(xi = xj) = bij , as a bond can
only exist between particles i and j if they have the same spin. It does, however, make it clear
that PSW((x, b), (x′, b′)) = PSW((x′, b′), (x, b)), meaning that µ−reversibility follows from
showing that

(39) e−β(UIsing(x′;J,0,N)−UIsing(x;J,0,N)) =

N∏
i=1

∏
j∈Si

qij(x)bij/2(1− qij(x))(1−bij)/2

qij(x′)bij/2(1− qij(x′))(1−bij)/2
.

This can be seen by first considering the left-hand side of (39) and noting that xixj = 2I(xi =
xj)− 1 when xi and xj can only take the values {−1,+1}, meaning

UIsing(x′;J,0,N)−UIsing(x;J,0,N) =−J
N∑
i=1

∑
j∈Si

[
I(x′i = x′j)− I(xi = xj)

]
.

This can be further modified by noting that under the Swendsen–Wang update the function
I(xi = xj)− I(x′i = x′j) can only be non-zero for neighbouring particles i and j if bij = 0,
meaning that if x′ is generated from such an update then

UIsing(x′;J,0,N)−UIsing(x;J,0,N) =−J
N∑
i=1

∑
j∈Si

[
I(x′i = x′j)− I(xi = xj)

]
(1− bij).
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Turning to the right-hand side of (39) notice first that since qij(x) = 1− e−2βJI(xi=xj) then
qij(x) = qij(x

′) when bij = 1, meaning that upon substituting in the definition of qij(x) the
fraction can be re-written

N∏
i=1

∏
j∈Si

e−βJI(xi=xj)(1−bij)

e−βJI(x
′
i=x

′
j)(1−bij)

,

which from the calculations above is clearly equal to e−β(UIsing(x′;J,0,N)−UIsing(x;J,0,N)) as re-
quired.

Establishing irreducibility and aperiodicity is straightforward. Aperiodicity can be seen by
noting that the algorithm has a positive probability of not moving. Irreducibility can be seen
by simply noting that for any fixed N there is a positive probability that

∏N
i=1

∏
j∈Si bij = 0

regardless of the value of the current state x. In this instance each particle belongs to its
own cluster and therefore x′ can take any value in {−1,+1}N with the same (non-zero)
probability. Any x′ can be arrived at from any x in a single iteration of the algorithm. Similarly
any b′ can be arrived at from any b by first transitioning through an appropriate x′, since for
every configuration of bonds b′ there is a configuration of spins x′ for which b′|x′ has non-zero
probability. The chain therefore has limiting distribution µ(x, b), and the marginal process on
x has limiting distribution π(x)∝ e−βUIsing(x;J,0,n), from which ergodicity follows.

PROOF OF PROPOSITION 3. The result has already been established for the first two parts
of the right-hand side of (34) in Appendix E of Andrieu, Lee and Livingstone (2020). To
extend to the xy-version, it suffices therefore to show (µ,Q)-self-adjointness of the last part
when R implements the xy transformation.

For the case d = 2 note that R(z, dz′) simply swaps (u1, u2)→ (u2, u1). We write v→
S(v) for this transformation and note that S(−v) =−S(v) and S ◦ S(v) = v, meaning S is
an involution. Since 〈f, g〉µ = 〈Qf,Qg〉µ and Q2 = I then setting

(40) L′f(x, v, i) := λref[f(x,S(v), i)− f(x, v, i)]

one can equivalently show that 〈QL′f, g〉µ = 〈f,QL′g〉µ, meaning that theQ-symmetrization
QL′ is µ-self-adjoint (see Andrieu and Livingstone (2021) for more detail). Direct calculation
gives

(41)
λ−1

ref 〈QL
′f, g〉µ =

∫
[f(x,−S(v), i)− f(x,−v, i)]g(x, v, i)dµ

=

∫
f(x,−S(v), i)g(x, v, i)dµ−

∫
f(x,−v, i)g(x, v, i)dµ.

We can apply the change of variables v → −S(v) to the first integral and v → −v to the
second. Since µ is invariant to both, the expression becomes

(42)
∫

[g(x,−S(v), i)− g(x,−v, i)]f(x, v, i)dµ= λ−1
ref 〈f,QL

′g〉µ,

which completes the proof.

REMARK 5. The d > 2 setting can also be considered. In this case S is no longer an invo-
lution, but it is invertible, with S−1(v) simply shifting each element of u one space to the left
modulo d. Following Remark 5 of Andrieu, Lee and Livingstone (2020) we can therefore in-
troduce the auxiliary w ∈ {−1,+1} and define the involution S(v,w) := (Sw(v),−w) on an
extended space. We can then incorporate w into the augmented state (x, v, i,w) and augment
the measure µ to include a symmetric component for w, then perform analogous calculations
to those above to establish the result. We omit the details for brevity.

Supplementary materials
Additional derivations and results.
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