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Abstract

INTRODUCTION: Fluid biomarkers capable of specifically tracking tau tangle pathol-

ogy in vivo are greatly needed.

METHODS:We measured cerebrospinal fluid (CSF) and plasma concentrations of N-

terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD

cohort, consisting of 272 individuals assessed with amyloid beta (Aβ) positron
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emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive

assessments.

RESULTS: CSF and plasma NTA-tau concentrations were specifically increased in

cognitively impaired Aβ-positive groups. CSF and plasma NTA-tau concentrations dis-

played stronger correlations with tau PET than with Aβ PET and MRI, both in global

uptake and at the voxel level. Regression models demonstrated that both CSF and

plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma

NTA-tau was associated with longitudinal tau PET accumulation across the aging and

Alzheimer’s disease (AD) spectrum.

DISCUSSION:NTA-tau is a biomarker closely associated with in vivo tau deposition in

the AD continuum and has potential as a tau tangle biomarker in clinical settings and

trials.
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HIGHLIGHTS

∙ An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was

evaluated.

∙ NTA-tau is more closely associated with tau PET than amyloid PET or neurodegen-

eration.

∙ NTA-tau can successfully track in vivo tau deposition across the AD continuum.

∙ Plasma NTA-tau increased over time only in cognitively impaired amyloid-β positive
individuals.

1 BACKGROUND

Neuropathological examination is the gold standard for definitive diag-

nosis of Alzheimer’s disease (AD) through post mortem confirmation

of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs).1,2 In

2018, theNational Institute onAging and the Alzheimer’s Associations

(NIA-AA) Research Framework established AD as a biological con-

struct defined in vivo based on cerebrospinal fluid (CSF) and imaging

biomarkers, theA/T/(N) framework, where “A” stands for Aβ pathology,
“T” for NFT pathology, and “N” for neurodegeneration.3

Recently, blood-based biomarkers have shown great promise to

identify AD pathophysiological changes.4 Novel assays targeting blood

p-tau are highly AD specific; however, accumulating evidence suggests

that the neuropathological changes inducing increases in soluble p-tau

are not explained only by NFT pathology.5,6 First, p-tau concentra-

tions increase early during preclinical AD before tau positron emission

tomography (PET) positivity, and demonstrate an early association

with Aβ pathology.7 In later symptomatic stages, p-tau presents high

association with both Aβ and tau,5,8,9 but is often more closely linked

to Aβ compared to NFT accumulation in the brain measured by PET.10

In addition, plasmap-tauhasbeen found to increase in amyotrophic lat-

eral sclerosis and has been linked to spinal cord neuronal loss.11 Thus,

it is difficult to determine the specificity of soluble p-tau as amarker of

AD-related “T” in theA/T/(N) scheme.12 The spatiotemporal accumula-

tion ofNFTs inADcorrelatesmore stronglywith clinical symptoms and

cognitive decline than Aβ plaque depositions; thus, there is still a need
for a blood biomarker capable of specifically tracking tangle pathology.

Previously, we reported a novel immunoassay targeting N-terminal

tau fragments in CSF and plasma, referred to as NTA,13 using a sin-

gle molecule array (Simoa) platform. Here, we aimed to investigate

the biomarker potential for tangle pathology of NTA-tau in a well-

characterized cohort including participants across the AD continuum,

non-ADneurodegenerativediseases, andhealthy controls. Throughout

this paper the abbreviation NTA is used for the novel immunoassay,

whereas NTA-tau is used to describe the N-terminal tau fragments

detected by the NTA assay.
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2 METHODS

2.1 Participants

We included individuals from the TRIAD cohort (McGill University;14

n = 272), with data obtained from December 2017 to May 2021.

Details of the information gathered from participants can be found

elsewhere (https://triad.tnl-mcgill.com/). All participants underwent a

full neuropsychological evaluation, magnetic resonance imaging (MRI),

[18F]AZD4694 Aβ PET, [18F]MK6240 tau PET and plasma NTA assess-

ment within 6 months. A first subset of participants (n = 154) had

quantification of CSFNTA-tau. A second subset (n= 127) had a follow-

up visit for plasma, MRI, Aβ PET, and tau PET up to 3 years after

baseline (mean follow-up time of 1.86 [standard deviation (SD) 0.61]

years).

Diagnosis was determined using Mini-Mental State Examination

(MMSE), and Clinical Dementia Rating (CDR) scores and the NIA-AA

criteria.3 Cognitively unimpaired (CU) had no objective impairment, an

MMSE score of ≥26, and CDR score of 0.15 Mild cognitive impaired

(MCI) individuals had objective cognitive impairment, relatively pre-

served activities of daily life, an MMSE score of ≥26, and a CDR

score of 0.5.16 Diagnosis of AD dementia was assessed with an MMSE

score of < 26 and a CDR of ≥0.5, and met the NIA-AA criteria

for probable AD determined by a dementia specialist.17 Individuals

diagnosed with suspected non-AD neurodegenerative diseases were

AD biomarker negative based on visual assessment of tau PET and

Aβ PET scans and met clinical criteria for frontotemporal demen-

tia (n = 11), progressive supranuclear palsy (n = 3), corticobasal

degeneration (n = 2), or Duchenne muscular dystrophy (n = 1).

Non-AD individuals were categorized by a consensus panel of neurol-

ogists based on clinical symptoms and brain images. No participant

met the criteria for another neurological or major neuropsychiatric

disorder.

2.2 CSF and plasma biomarker measurements

CSF and plasma NTA-tau levels were quantified using an in-house

developed Simoa immunoassay using a Simoa HD-X platform (Quan-

terix) at the Clinical Neurochemistry Laboratory (Mölndal, Sweden).

Development and validation of the NTA assay has been previously

described.13 In brief, the NTA assay comprises a mouse monoclonal

antibody with epitope 159-163aa (HT7, Thermo Scientific) conjugated

to paramagnetic beads and used as capture antibody. A mouse mono-

clonal antibodywith epitope 6-18aa (Tau12, BioLegend) is biotinylated

and used as detector antibody. Recombinant non-phosphorylated

2N4R tauwas used as calibrator (SignalChem).

For CSF NTA, randomized samples were allowed to thaw at room

temperature for 45 minutes, vortexed (30 seconds, 2000 rpm), plated

and diluted 1:4 using Tau 2.0 assay diluent (Quanterix). An eight-point

calibrator curve was run in duplicate. For plasma NTA, randomized

samples were allowed to thaw at room temperature for 45 minutes,

vortexed (30 seconds, 2000 rpm), and subsequently centrifuged (10

RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the available

scientific literature on biofluid markers in Alzheimer’s

disease (AD) and tau pathology using PubMed. Several

publications report phosphorylated tau (p-tau), for exam-

ple, p-tau181, p-tau217, or p-tau231 as highly specific

for AD and associated with both amyloid-β (Aβ) and tau

pathology. Yet, no plasma biomarker can specifically track

tau deposition in the brain.

2. Interpretation: In this study, we included cross-sectional

and longitudinal cerebrospinal fluid (CSF) and plasma

samples, and measured N-terminal tau fragments (NTA-

tau) using a novel in-house Simoa assay. Our findings

demonstrate that NTA-tau is a biomarker closely associ-

ated with tau positron emission tomography (PET) accu-

mulation in the brain, and capable of tracking tau tangle

pathology progression across the AD continuum.

3. Future Directions: Validation studies will be needed to

further confirm the relationship between plasma andCSF

NTA-tau concentrations and tau deposition in the brain.

NTA-tau should also be explored in further neurodegen-

erative diseases characterized by tau pathology.

minutes, 4000 × g). Subsequently, samples were plated and diluted 1:2

using Tau 2.0 assay diluent (Quanterix). An eight-point calibrator curve

was run in duplicate. For both CSF and plasma measurements, two

internal quality control (iQC) samples were run in duplicate before and

after the analyzed TRIAD samples. The repeatability and intermediate

precision for TRIAD CSF measurements were 5.0% and 9.0%, respec-

tively, and forplasmameasurements6.1%and8.5%, respectively (Table

S1 in supporting information). Eight out of 531 samples (1.5%) were

under the calculated limit of detection (0.032 pg/mL).

2.3 Image processing

Detailed description concerning acquisition and processing of Aβ
PET, tau PET and MRI can be found in the supporting information.

Briefly, [18F]MK6240 images were acquired 90 to 110 minutes post-

injection and used the inferior cerebellar gray (CG) as the reference

region.18,19 [18F]AZD4694 images were acquired 40 to 70 minutes

post-injection, using the CG as the reference region.20 Global Aβ stan-
dardized uptake value ratio (SUVR) was determined using an average

of Aβ PET SUVR in the precuneus, prefrontal, orbitofrontal, parietal,

temporal, anterior, and posterior cingulate cortices. Individuals were

categorized as Aβ– or Aβ+ based on a threshold of 1.55 SUVR.21 in

vivo classification of PET-based Braak stages was done following Pas-

coal et al.,22 with cut-offs assessed as 2.5 SD above the mean of CU

young adults. Temporal meta-ROI SUVR of tau PET was acquired from
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4 LANTERO-RODRIGUEZ ET AL.

a composite mask including the entorhinal, amygdala, fusiform, infe-

rior, and middle temporal cortices, which capture changes associated

with AD.23,24 Finally, neurodegeneration was assessed using voxel-

based morphometry (VBM) to obtain gray matter volume in an AD

signaturemask containing regions related to neurodegeneration in AD

(entorhinal, inferior temporal, middle temporal cortices, and fusiform

gyrus).25

2.4 Statistical analyses

Non-imaging statistical analyses were performed with R statistical

software (version 4.0.0). Analysis of variance (ANOVA) tests were con-

ducted for continuous variables and Fisher tests for categorical vari-

ables for demographic information. ANOVAwith Tukey’smultiple com-

parison test compared plasma and CSFNTA-tau concentrations across

diagnostic groups. Non-AD and MCI Aβ– cases were only included in

statistical analyses when comparing diagnostic groups but removed

from further analyses. Spearman’s rank correlations (R) assessed the

relationship betweenNTA-tau concentrations andADpathophysiolog-

ical hallmarks. Linear regression models, adjusted for diagnosis, age,

and sex, tested the effect of different predictors: neocortical Aβ PET
(A), temporal meta-ROI tau PET (T), temporal neurodegeneration (N),

Aβ PET, and tau PET (A+T), and all predictors (A+T+N) on plasma and

CSF NTA (LM : NTA tau ∼ imaging + age + sex + diagnosis). To com-

pare these nested models, we used the Akaike information criterion

(AIC) and the adjusted coefficient of determination (R2), as measures

of how well the model fits the data and of how much of the out-

come variability is explained by the model. ΔAIC was calculated as

the difference between two AIC values for a given biomarker, and the

best model was defined as the simplest model presenting the lowest

AIC value. AIC values were considered significantly different when

the difference between them is higher than two (i.e., ∆AIC > 2), and

we further conducted likelihood ratio (LR) tests between the best fit-

ting models. Linear mixed models assessed changes in plasma NTA-tau

concentrations over time. The model included plasma NTA-tau as the

dependent variable and the interaction between time and diagnos-

tic group as the independent variable. The models’ covariates were

age at baseline, sex, and random intercept (LMM : NTA tau ∼ time ∗

baseline diagnosis + baseline age + sex + [1|ID]).

Voxel-wise analyses were performed on VoxelStats, a statistical

toolbox implemented inMATLAB.26 Linear models assessed the cross-

sectional relationship between NTA-tau concentrations and Aβ PET,

tau PET, and VBM images, correcting for age, sex, and diagnosis. Linear

mixed models had brain imaging (either Aβ PET, tau PET, or VBM) as

the dependent variable, and the interaction between time and plasma

NTA-tau as the independent variable. Other predictors were age at

baseline, sex, and diagnosis, and themixedmodelswere fittedwith ran-

dom intercepts on the participant level (LMM : Imaging ∼ NTA tau ∗

time + baseline age + sex + baseline diagnosis + [1|ID]). We further cor-

rected images for multiple comparisons using random field theory

(RFT) correction.27

3 RESULTS

3.1 Demographics

We included 272 individuals categorized as CUAβ–, CUAβ+, MCI Aβ–
, MCI Aβ+, AD Aβ+, and non-AD neurodegenerative condition. We

observed no significant between-group differences in sex or years of

education. However, there was a significant difference in terms of age,

with the non-AD neurodegenerative condition group being younger

than the other groups (Table 1). Demographic information on the CSF

and longitudinal subsamples can be found in, respectively, Table S2 and

Table S3 in supporting information.

3.2 NTA-tau concentrations across diagnostic
groups

In plasma, NTA-tau concentrations were significantly higher (P <

0.001) in AD Aβ+ individuals compared to all other diagnostic groups

(CU Aβ–, CU Aβ+, MCI Aβ–, MCI Aβ+, and non-AD neurodegenerative

conditions; Figure 1A). NTA-tau concentrations in CSF were increased

across all cognitively impaired (i.e., MCI and AD) Aβ+ groups. First,

NTA-tauwas significantly increased inADAβ+ individuals compared to

all other groups (CU Aβ–, CU Aβ+, MCI Aβ–, and non-AD dementia, P-

value< 0.001 for all), exceptMCI Aβ+. Moreover, MCI Aβ+ individuals

had higher CSF NTA-tau levels compared to CU Aβ– (P-value< 0.001),

CU Aβ+ (P-value < 0.05), MCI Aβ– (P-value < 0.05), and non-AD neu-

rodegenerative conditions (P-value < 0.001; Figure 1B). Additionally,

plasma and CSF NTA-tau measures were associated with each other

(R= 0.33, P-value< 0.001; Figure S1 in supporting information).

3.3 NTA-tau concentrations associate with global
measures of neuroimaging markers of A/T/(N)

PlasmaNTA-tau concentrations (n=254) correlated positivelywithAβ
PET SUVR (R = 0.36, P-value < 0.001) and tau PET SUVR (R = 0.49,

P-value < 0.001), and negatively with temporal VBM (R = –0.32, P-

value < 0.001; Figure 2A). Among the regression models with plasma

NTA-tau as outcome, the highest adjusted R2 value included the com-

bination of Aβ, tau, and neurodegeneration (A+T+N: R2 = 0.333), the

second highest was tau only (T: R2 = 0.325), and the third one included

Aβ and tau (A+T: R2 = 0.322). However, AICs of tau only and A+T+N

model were similar (∆AIC= 0.17) and LR tests between T and A+T+N

models did not show a significant difference (P-value = 0.112); thus,

the simplest model—that is, tau only—was considered the best-fitting

model (Figure 2A). We further assessed how linear models between

plasma NTA-tau and AD-related measures differed based on diag-

nostic groups. We observed that the cognitively impaired individuals

(MCI Aβ+ and ADAβ+) depicted the strongest associations, especially
with [18F]MK6240 temporal meta-ROI SUVR (Figure S2A in support-

ing information). In Aβ PET–positive individuals (n = 129), Aβ PET and
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TABLE 1 Demographics.

CUAβ–
(N= 104)

CUAβ+
(N= 41)

MCI Aβ–
(N= 21)

MCI Aβ+
(N= 44)

ADAβ+
(N= 44)

Non-AD

(N=18) P-value

Age (mean [SD]) 69.71 (9.0) 71.34 (10.3) 72.60 (5.2) 71.08 (5.5) 68.13 (8.6) 61.36 (8.6) <0.001

Sex 0.197

Female 62 (59.6%) 29 (70.7%) 8 (38.1%) 26 (59.1%) 27 (61.4%) 13 (72.2%)

Male 42 (40.4%) 12 (29.3%) 13 (61.9%) 18 (40.9%) 17 (38.6%) 5 (27.8%)

Years of education (mean

[SD])

15.54 (3.8) 14.66 (3.7) 15.00 (4.5) 15.50 (3.6) 14.62 (3.3) 13.83 (3.2) 0.314

Aβ PET neocortical SUVR
(mean [SD])

1.29 (0.1) 2.01 (0.3) 1.31 (0.1) 2.30 (0.5) 2.53 (0.4) 1.19 (0.1) <0.001

Tau PET temporal meta-ROI

SUVR (mean [SD])

0.81 (0.1) 0.94 (0.2) 0.94 (0.5) 1.38 (0.6) 2.42 (1.0) 0.81 (0.1) <0.001

PlasmaNTA-tau (pg/mL)

(mean [SD[)

0.24 (0.3) 0.25 (0.2) 0.23 (0.1) 0.29 (0.2) 0.63 (0.4) 0.35 (0.4) <0.001

APOE ε4 status <0.001

0 76 (73.1%) 30 (73.2%) 15 (71.4%) 15 (34.1%) 19 (43.2%) 16 (88.9%)

1 26 (25.0%) 10 (24.4%) 6 (28.6%) 19 (43.2%) 18 (40.9%) 2 (11.1%)

2 2 (1.9%) 1 (2.4%) 0 (0%) 9 (20.5%) 6 (13.6%) 0 (0%)

Missing 0 (0%) 0 (0%) 0 (0%) 1 (2.3%) 1 (2.3%) 0 (0%)

MMSE score 29.07 (1.0) 29.00 (1.2) 28.43 (1.4) 28.41 (1.5) 20.52 (5.3) 25.83 (5.6) <0.001

CDR score 0.00 (0.0) 0.00 (0.0) 0.50 (0.0) 0.49 (0.1) 1.00 (0.5) 0.58 (0.3) <0.001

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; CU, cognitively unimpaired; CDR, Clinical Dementia Rating; MCI, mild

cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron emission tomography; ROI, region of interest; SD, standard deviation; SUVR,

standardized uptake value ratio.

temporal VBMcorrelationswere similar, whereas tauPETR2 improved

compared to the whole sample (R = 0.64, P-value < 0.001; Figure S3A

in supporting information).

CSF NTA-tau measures (n = 141) showed similar results to those

of plasma, correlating with Aβ PET SUVR (R = 0.46, P-value < 0.001),

tau PET SUVR (R = 0.53, P-value < 0.001), and temporal VBM (R = –

0.28, P-value = 0.006; Figure 2B). Among the regression models with

CSF NTA-tau as outcome, the model combining Aβ and tau (A+T) had

the highest R2 (R2 = 0.481), followed by tau only (T: R2 = 0.480) and

Aβ, tau, and neurodegeneration (A+T+N: R2 = 0.477). The smallest

AIC was for the tau-only model (T: AIC = 1271.5), but this did not dif-

fer (i.e., ∆AIC > 2) from than that of A+T (ΔAIC = 0.91; Figure 2B).

LR tests revealed that there was no significant difference between T

only and A+T models (P-value = 0.253). Conducting the linear models

separating groups based on diagnosis, we observed that the strongest

associations were depicted by MCI Aβ+ and AD Aβ+ groups, espe-

cially with [18F]MK6240 temporal meta-ROI SUVR (Figure S2B). In Aβ
PET–positive individuals (n= 70), CSF NTA-tau concentrations did not

correlate with Aβ PET SUVR (R = 0.17, P-value = 0.15). On the other

hand, the correlation of CSF NTA-tau with tau PET SUVR (R = 0.57, P-

value<0.001) and temporalVBM(R=–0.32,P-value=0.0079) slightly

improved (Figure S3B).

Finally, we assessed plasma and CSF NTA-tau levels based on Braak

staging.Weobserved that individuals classifiedBraak stages 0 to II had

significantly different plasma NTA-tau levels than Braak IV and above.

We further detected significant differences between Braak stages 0

to IV with Braak stages V and VI. Regarding CSF NTA-tau, individ-

uals classified as Braak stage 0 had significantly lower levels than

Braak stages I, IV, V, and VI. An increase in levels was then significant

among individuals at Braak stage I and II with IV and above (Figure 2C).

In Aβ PET–positive individuals, plasma and CSF NTA-tau behaved

similarly. The only difference observed is that there was no signifi-

cant difference in CSF NTA-tau levels between Braak stage 0 and I

(Figure S3C).

3.4 Voxel-wise association between NTA-tau
concentrations with neuroimaging markers of A/T/(N)

Wethenconductedvoxel-wise analysesbetweenplasmaandCSFNTA-

tau concentrations and Aβ PET, tau PET, and VBM, correcting for age,

sex, and diagnosis. Plasma NTA-tau was more strongly associated with

tau PET signal in the precuneus, temporal, and medial frontal lobes,

while no results survived RFT correction for Aβ PET. A small but signif-

icant association was observed with VBM in the entorhinal and lateral

superior temporal cortex (Figure 3A). CSF NTA-tau concentrations

associatedwithAβPET signal in themedial frontal and hippocampus. It

strongly associated with tau PET signal throughout the medial cortex,

and temporal lobes. Associations with VBM were not significant after

RFT correction (Figure 3B).

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13119 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [07/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 LANTERO-RODRIGUEZ ET AL.

F IGURE 1 Plasma (A) and CSF (B) NTA-tau concentrations stratified by diagnosis and amyloid-β (Aβ) positivity. Aβ, amyloid beta; AD,
Alzheimer’s disease; CSF, cerebrospinal fluid; CU, cognitively unimpaired;MCI, mild cognitive impairment.

In Aβ+ individuals (Figure S4 in supporting information) signif-

icant associations with tau PET were observed for both plasma

and CSF NTA-tau in similar regions. No results survived RFT cor-

rection for Aβ PET. NTA-tau concentrations were also negatively

associated with VBM, in the superior temporal and occipital lobe

for plasma NTA-tau, and in the inferior temporal lobe for CSF

NTA-tau.

3.5 Plasma NTA-tau compared to plasma p-tau
measures

We further conducted exploratory analyses in a subsample of 129

individuals that in addition to plasma NTA-tau had plasma p-tau181,

p-tau217, and p-tau231 measures (N[CU Aβ–] = 56, N[CU Aβ+] = 24,

N[MCI Aβ+] = 23, N[AD Aβ+] = 26]. Plasma NTA-tau correlated with

p-tau181 (R = 0.50, P < 0.0001), p-tau217 (R = 0.61, P < 0.0001) and

p-tau231 (R = 0.41, P < 0.0001; Figure S5 in supporting information).

ROI-based analyses revealed that all plasma markers were correlated

with global Aβ PET, temporal meta-ROI tau PET, and neurodegenera-

tion assessed by VBM (Figure S6 in supporting information). However,

plasmaNTA-tauwas the only biomarkermore strongly associatedwith

tau PET (R = 0.58, P < 0.0001) than Aβ PET (R = 0.44, P < 0.0001).

Plasma p-tau181 was similarly associated with Aβ PET (R = 0.56, P <

0.0001) and tau PET (R = 0.57, P < 0.0001), whereas plasma p-tau217

and p-tau231 showed stronger associations with Aβ PET (p-tau217:

R = 0.79, P < 0.0001; p-tau231: R = 0.56, P < 0.0001) than tau PET

(p-tau217: R = 0.71, P < 0.0001; p-tau231: R = 0.49, P < 0.0001).

Plasma NTA-tau significantly correlated with temporal neurodegen-

eration (R = –0.34, P < 0.0001). The strength of this association was

similar to plasma p-tau181 (R = –0.31, P < 0.001) and p-tau231 (R =

–0.32, P< 0.001), but weaker than that of plasma p-tau217 (R= –0.42,

P< 0.0001).

3.6 Longitudinal changes in plasma NTA-tau
concentrations

We observed a longitudinal increase in plasma NTA-tau concentra-

tions in participants classified as AD Aβ+, and MCI Aβ+ at baseline

(P-value < 0.001 and P-value < 0.01, respectively) compared to CU

Aβ–, whereas no changes were seen in the other groups (CU Aβ+
[P-value = 0.211], MCI Aβ– [P-value = 0.393], and non-AD [P-value

= 0.251]; Figure 4A). Voxel-wise linear mixed models assessed the

association between longitudinal changes in plasma NTA-tau and each

imaging modality. We observed no association with Aβ PET; however,
we found a significant positive association with tau PET, especially in

the medial frontal, precuneus, and temporal lobes. Changes in plasma

NTA-tau concentrations were also associated with decrease in VBM in

themedial temporal lobe (Figure 4B).
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LANTERO-RODRIGUEZ ET AL. 7

F IGURE 2 Associations of NTA-tau concentration with AD hallmarks. Correlation of plasma (A) and CSF (B) NTA-tau concentration with Aβ
PET, tau PET, and neurodegeneration estimated by VBM. Corresponding AIC and R2 AIC and R2 values for each predictor were obtained from
linear regressionmodels correcting for age, sex, and diagnosis. C, Boxplots assessing plasma and CSFNTA-tau levels based on Braak stages
assessed via [18F]MK6240. Aβ, amyloid beta; AD, Alzheimer’s disease; AIC, Akaike information criterion; CSF, cerebrospinal fluid; CU, cognitively
unimpaired;MCI, mild cognitive impairment; ROI, region of interest; SUVR, standardized uptake value ratio; VBM, voxel-basedmorphometry.

4 DISCUSSION

Here, we report the first comprehensive characterization of the novel

NTA immunoassay in plasma and CSF, using a cohort comprised of

individuals across the AD continuum as well as non-AD cases, char-

acterized through imaging biomarkers. Our results support that (1)

NTA-tau is increased in symptomatic AD cases, (2) NTA-tau concen-

tration is more closely associated with tau PET than with Aβ PET or

neurodegeneration (indexed by VBM), and (3) plasma NTA-tau is asso-

ciated with longitudinal tau PET accumulation throughout the cortex,

as well as neurodegeneration inmedial temporal areas.

In recent years, there has been a successful development of vari-

ous immunoassays measuring brain-derived biomarkers in blood and

CSF.5,7,8 Among them, p-tau181, p-tau217, and p-tau231, have proven

especially promising.5,8,28 Among dementia disorders, p-tau species

are the most specific for AD pathology and start to increase early
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8 LANTERO-RODRIGUEZ ET AL.

F IGURE 3 Voxel-wise associations between plasma (A) and CSF (B) NTA-tau concentrations and Aβ PET, tau PET and neurodegeneration
assessed by voxel-basedmorphometry (VBM). Aβ, amyloid beta; CSF, cerebrospinal fluid; PET, positron emission tomography; VBM, voxel-based
morphometry.

during preclinical stages, when only subtle changes in CSF Aβ are

detectable and prior to tau NFT pathology being severe enough

to be visualized on tau PET.7 Contrarily, quantification of tau frag-

ments in blood irrespective of isoform and phosphorylation state,

traditionally referred to as total tau (t-tau), has rendered mixed

results. For example, blood t-tau assays have proven meaningful in

acute neurological conditions, such as traumatic brain injury, and in

chronic neurological diseases characterized by intense neurodegener-

ation such as Creutzfeldt–Jakob disease.29,30 However, in AD, t-tau

assays show large overlaps between diagnostic groups, raising uncer-

tainty around their potential clinical utility,31,32 possibly due to the

presence of peripherally produced “t-tau” species. Recently, a t-tau

assay referred to as NT1 and targeting tau species ranging from N-

terminal to mid-region, showed promising results in blood.33–35 This

assay was shown to be AD specific and predicted cognitive decline

and neurodegeneration.33,35 Given the success of several N-terminal

directed p-tau immunoassays in identifying early AD pathophysiolog-

ical changes, the same N-terminal targeted strategy was used when

developing NTA.13 In a previous study, CSF NTA-tau was increased in

MCI Aβ+ and AD Aβ+ compared to AD biomarker-negative neuro-

logical controls, MCI Aβ–, and non-AD Aβ– individuals,13 and similar

findingswere alsoobservedhere. Interestingly, our results suggest that

plasma and CSF NTA show different emergences along the AD contin-

uum: CSFNTA-tau concentrations increase during preclinical AD,while

plasma NTA-tau is increased in AD Aβ+ cases. It is therefore likely

that this affected the correlation between the two measurements.

However, it should be noted that in a subset of 129 participants with

available plasma p-tau181, p-tau217, and p-tau231 measurements,

plasmaNTA-tau strongly correlatedwith theseplasmabiomarkers. The

different emergence of NTA-tau in CSF and plasma may be explained

by the fact that NTA-tau concentrations are approximately 100-fold

lower in plasma than in CSF,13 and tau biomarkers generally perform

better and showhigher fold changeswhenmeasured in CSF,36 because

tau protein in plasma is more exposed to degradation by proteases,

kidney clearance, and liver metabolism. Altogether, this might pre-

vent theNTA assay from successfully detecting subtle early alterations

in plasma levels of N-terminal tau fragments, which are, however,

detectable in CSF.

Despite p-tau being currently categorized as a tangle marker in

the A/T/(N) framework, accumulating evidence suggests p-tau con-

centrations in CSF and blood rise in response to Aβ pathology.37,38

Various studies support the idea that increased tau phosphorylation

is an early event in the Aβ cascade.28,39–41 A recent study showed

that p-tau abnormality is one of the first events related to AD patho-

genesis, and is more closely associated with Aβ pathology, rather than
NFT accumulation.10 Altogether, these studies bring to light that p-

tau measures in CSF and plasma need to be used cautiously in the

A/T/(N) system, as they might not exclusively reflect “T,” and that

fluid biomarkers reflecting tangle pathology are still needed. NTA-tau,

however, seems to be more closely associated with tau accumulation

compared to other AD pathophysiological processes. Both plasma and

CSFNTA-tau concentrations correlatedwithAβPET accumulation and
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LANTERO-RODRIGUEZ ET AL. 9

F IGURE 4 Longitudinal changes in plasmaNTA-tau concentrations. A, Longitudinal changes in plasmaNTA levels based on diagnosis. B, Linear
mixedmodels presenting the association between longitudinal changes in plasmaNTA-tau concentrations and in Aβ PET, tau PET, and
neurodegeneration assessed by VBM, in individuals along the aging and AD spectrum. Aβ, amyloid beta; AD, Alzheimer’s disease; CU, cognitively
unimpaired;MCI, mild cognitive impairment; PET, positron emission tomography; VBM, voxel-basedmorphometry.

temporal neurodegeneration, but only at global, not voxel-level, anal-

ysis. NTA-tau levels on the other hand were associated with tau PET

in both voxel-wise and ROI-based analyses. Our comparison of nested

regression models showed that temporal meta-ROI measures of tau

PET better explained plasma and CSF NTA-tau concentrations, with

the tau-only model often presenting as the most parsimonious one.

Importantly, NTA-tau changes followed the hierarchical Braak staging

system.1 CSF NTA-tau increases after tau PET positivity is detected in

Braak stage I (transentorhinal), while plasma NTA-tau concentrations

increase at a later stage, starting at Braak III (amygdala, parahippocam-

pal gyrus, fusiform gyrus, and lingual gyrus). Moreover, the availability

of plasma p-tau181, p-tau217, and p-tau231 measurements in a sub-

set of 129 participants, allowed an exploratory assessment on how

different plasma tau biomarkers associate with the AD pathological

hallmarks. Plasma p-tau181 was similarly associated with tau PET and

Aβ PET, whereas plasma p-tau217 and p-tau231 showed stronger cor-

relations with Aβ PET than tau PET. These results aligned well with

previous studies reporting a strong association between blood p-tau

biomarkers and Aβ pathology.6,10,28,42 Contrarily, plasma NTA-tau dis-

played a stronger association with tau PET, further highlighting the

tight link between plasma NTA-tau levels and tau deposition in the

brain. Finally, while the correlation of plasma NTA-tau with neurode-

generation was similar to that of plasma p–tau181 and p-tau231, this

was weaker than that of plasma p-tau217. Altogether, these findings

further corroborate the idea that CSF and plasma NTA-tau indicate

different stages of NFT progression, with CSFNTA-tau increasing first.

The same analyses were repeated in Aβ-positive individuals, and

comparison of goodness-of-fit metrics enforced the idea that NTA-tau

concentrations are more strongly associated with tau PET rather than

other AD hallmarks. However, in this subgroup, cross-sectional ROI-

based and voxel-wise analyses revealed also an association between

NTA-tau concentrations and neurodegeneration. As individuals pre-

senting Aβ positivity are more advanced in disease progression, they

are expected to displaymore neurodegeneration.

Additionally, a subset of individuals had follow-up measures of

plasma NTA-tau, tau PET, Aβ PET, and MRI. First, we observed that

only cognitively impairedAβ+ individuals showeda significant increase

in plasma NTA-tau concentrations over time. This suggests a potential

novel ability for plasma NTA-tau to track late disease progression, as

commonly studied AD plasma biomarkers such as p-tau usually start

to increase at preclinical AD, but reach a plateau at advanced AD

stages.43 Notably, plasma NTA-tau predicted tau PET accumulation

in middle to late Braak regions.1 Comparatively, plasma p-tau mark-

ers have been related to longitudinal accumulation of Aβ, NFT, and
neurodegeneration in broader brain regions.6,44,45 This finding corrob-

orates the idea that plasmaNTA-tau is a predictor of mid- to late-stage
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10 LANTERO-RODRIGUEZ ET AL.

tau accumulation. Plasma NTA-tau also predicted neurodegeneration

in the medial temporal lobe, related to memory problems observed

in AD dementia.46 Among key AD pathophysiological changes, neu-

rodegeneration has been observed at the latest stages.47 Following

the progression of AD pathophysiological changes, we would expect

plasma NTA-tau concentrations to rise before neurodegeneration,

whenNFT accumulation is high enough to induce neuronal damage.

Because AD is characterized by the accumulation of Aβ and tau

pathologies, and current fluid p-taumarkers seemmore closely related

to Aβ, there is an urgent need for fluid biomarkers that can specifi-

cally track tau pathology. Because of their close association with Aβ
and tau pathologies, it is difficult to determine to which extent NFT

deposition ultimately contributes to soluble p-tau signal, and their

strong association with Aβ is also supported by the reduction of p-

tau afterAβ removal.48 Thus,NTA-taumeasurements could potentially

be useful in clinical settings, providing a cost-effective tool capable

of tracking tau pathology in vivo, and in clinical trials, as an inclu-

sion/exclusion criterion,49 or to potentially monitor the downstream

effects of anti-Aβ drugs. This is especially important as N-terminal

tau is thought to be closely linked with presynaptic toxicity, which

is currently exploited therapeutically.50,51 Moreover, plasma NTA-tau

could be an easily implementable tool to detect individuals at mid-

dle to late stages of AD, as well as individuals at risk of accumulating

further tau. Our results suggest NTA-tau would be a suitable fluid

marker for the “T” category of the A/T/(N) system.3,52 However, stud-

ies in different cohorts in combination with other AD markers are still

required.

A strengthof this study is theTRIADcohort, comprising participants

across the aging and AD continuum and with other neurodegenera-

tive diseases, extensively characterized using multiple state-of-the-art

biomarkers. Moreover, this cohort includes follow-up blood and imag-

ing collection, allowing for longitudinal analysis. Additionally, matching

plasma and CSF samples were available. Altogether, this enabled a

detailed characterization of the novel NTA assay, shedding light on

the underlying pathophysiological mechanisms that induce abnormal

increase of NTA-tau in biofluids. Limitations include that CSF was not

available for all subjects, limiting our ability to conduct certain analy-

ses, for example, longitudinal analysis using CSF NTA. Second, despite

the consistency of our findings in plasma and CSF, a replication cohort

would have further strengthened our results. Additionally, it would

have been interesting to investigate the concordance between fluid

NTA measurements with post mortem Braak staging. Finally, TRIAD is

composed of individuals willing to participate in research focused on

dementia, thus creating sampling and self-selection biases.

5 CONCLUSIONS

To conclude, our study provides evidence that NTA-tau differentiates

individuals in distinct diagnostic groups across aging and theAD contin-

uum and is a biomarkermore closely associatedwithNFTaccumulation

in AD, rather than Aβ and neurodegeneration. Moreover, plasma

NTA-tau is a predictor of tau PET progression in middle to late Braak

stage regions.
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