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Abstract: The development of electric and connected vehicles as well as automated driving
technologies are key towards the smart city, providing convenient urban mobility and high
energy economy performance. However, the global rise in electricity price provokes renewed
interest on CAVs with hybrid electric powertrains rather than considering battery electric
powertrains. This paper proposes a decentralized coordination strategy for a group of connected
and autonomous vehicles (CAVs) with a series hybrid electric (sHEV) powertrain at urban
signal-free intersections. The problem is formulated as a convex form with suitable relaxation
and approximation of the powertrain model and solved by decentralized model predictive
control (DMPC), which enables rapid search and a unique solution in real-time. Numerical
examples validate the effectiveness of the proposed methods concerning physical and safety
constraints. By utilizing the petrol fuel and battery charging prices over the last year, the
performance of the proposed approach is evaluated against the optimal results produced by two
benchmark solutions, conventional vehicles (CVs) and battery electric vehicles (BEVs). The
comparison results demonstrate that the traveling cost of sHEVs approaches and, even under
some circumstances, reaches the same level as for BEVs, which indicates the importance of
hybridization, particularly under the current rising electricity price situation.

Keywords: Autonomous intersection management; Connected and automated vehicles; Series
hybrid electric vehicles; Decentralized model predictive control; Convex optimization.

1. INTRODUCTION

Rapid urbanization has resulted in an increasing number
of vehicles and intensifies traffic congestion, especially in
urban districts. This phenomenon can lead to many prob-
lems, such as potential safety hazards and increased energy
and time consumption, particularly in urban intersections,
where the merging happens between different traffic flows
that is extremely complex. Although some research focuses
on designing novel traffic light systems to alleviate these
problems (Yang et al., 2017; Xiang et al., 2018), the
efficiency of the traffic flow at an intersection and the
energy consumption is still not fully optimized (Namazi
et al., 2019). To maximize urban transportation efficiency,
a smoother and environmentally friendly scheme needs to
be proposed. Currently, the development of information
technology enables vehicle-to-everything (V2X) commu-
nication for connected and autonomous vehicles (CAVs)
to be deployed on real-world road networks (Zhao and
Malikopoulos, 2022). Therefore, it is an attainable goal
to realize a signal-free intersection control to optimally
coordinate a group of CAVs crossing the intersection for
safety, mobility, and energy efficiency objectives (Zhong
et al., 2021).

There have been numerous efforts of autonomous intersec-
tion control algorithms designed based on CAVs reported
in the literature, which can be divided into two categories,

centralized and decentralized, respectively (Čakija et al.,
2019; Gholamhosseinian and Seitz, 2022). The centralized
framework coordinates the vehicles’ movement using one
central intersection controller (IC) (Riegger et al., 2016;
Mihály et al., 2020; Liu et al., 2020), while the decen-
tralized framework relies on local controllers on each ve-
hicle (Chalaki and Malikopoulos, 2022b,a; Hadjigeorgiou
and Timotheou, 2023). Some existing literature focuses
on battery electrical vehicles (BEVs) as the target CAVs
for urban intersection crossing problems, instead of con-
ventional vehicles (CVs), as BEVs are the current trend
of vehicle development, offering the advantage of reduced
operating cost and waste gas emissions, despite their draw-
backs of low power and long charging time (Hult et al.,
2018; Pan et al., 2023a,b). In (Hult et al., 2018), the energy
consumption is modeled by electric motors efficiency maps
and optimized by an economic model predictive control
(MPC) method. Recent research efforts in (Pan et al.,
2023a,b) develop hierarchical and convex optimization ap-
proaches to find the optimal trade-offs of battery energy
consumption and travel time.

However, the global electricity price has increased sharply
recently. For instance, the UK electricity price has risen
by 64% from about 226.59 (GBP/MWh) to 372.27
(GBP/MWh), during the last 12 months, from October
2021 to October 2022, compared with the lower rate
increase of fuel price by 18% from 138.64 (pence/liter)
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Mihály et al., 2020; Liu et al., 2020), while the decen-
tralized framework relies on local controllers on each ve-
hicle (Chalaki and Malikopoulos, 2022b,a; Hadjigeorgiou
and Timotheou, 2023). Some existing literature focuses
on battery electrical vehicles (BEVs) as the target CAVs
for urban intersection crossing problems, instead of con-
ventional vehicles (CVs), as BEVs are the current trend
of vehicle development, offering the advantage of reduced
operating cost and waste gas emissions, despite their draw-
backs of low power and long charging time (Hult et al.,
2018; Pan et al., 2023a,b). In (Hult et al., 2018), the energy
consumption is modeled by electric motors efficiency maps
and optimized by an economic model predictive control
(MPC) method. Recent research efforts in (Pan et al.,
2023a,b) develop hierarchical and convex optimization ap-
proaches to find the optimal trade-offs of battery energy
consumption and travel time.

However, the global electricity price has increased sharply
recently. For instance, the UK electricity price has risen
by 64% from about 226.59 (GBP/MWh) to 372.27
(GBP/MWh), during the last 12 months, from October
2021 to October 2022, compared with the lower rate
increase of fuel price by 18% from 138.64 (pence/liter)

Economic Potential for Hybrid Electric
Vehicles in Urban Signal-free Intersections

with Decentralized MPC

Kai Tang ∗ Weijie Wang ∗∗ Xiao Pan ∗∗ Boli Chen ∗∗∗
Simos A. Evangelou ∗∗

∗ Department of Electrical and Electronic Engineering, The University
of Hong Kong, Hong Kong, (e-mail: tangkai@eee.hku.hk).

∗∗ Department of Electrical and Electronic Engineering, Imperial
College London, UK, (e-mail: weijie.wang20@imperial.ac.uk,
xiao.pan17@imperial.ac.uk, s.evangelou@imperial.ac.uk).

∗∗∗ Department of Electronic and Electrical, University College
London, UK, (e-mail: boli.chen@ucl.ac.uk)

Abstract: The development of electric and connected vehicles as well as automated driving
technologies are key towards the smart city, providing convenient urban mobility and high
energy economy performance. However, the global rise in electricity price provokes renewed
interest on CAVs with hybrid electric powertrains rather than considering battery electric
powertrains. This paper proposes a decentralized coordination strategy for a group of connected
and autonomous vehicles (CAVs) with a series hybrid electric (sHEV) powertrain at urban
signal-free intersections. The problem is formulated as a convex form with suitable relaxation
and approximation of the powertrain model and solved by decentralized model predictive
control (DMPC), which enables rapid search and a unique solution in real-time. Numerical
examples validate the effectiveness of the proposed methods concerning physical and safety
constraints. By utilizing the petrol fuel and battery charging prices over the last year, the
performance of the proposed approach is evaluated against the optimal results produced by two
benchmark solutions, conventional vehicles (CVs) and battery electric vehicles (BEVs). The
comparison results demonstrate that the traveling cost of sHEVs approaches and, even under
some circumstances, reaches the same level as for BEVs, which indicates the importance of
hybridization, particularly under the current rising electricity price situation.

Keywords: Autonomous intersection management; Connected and automated vehicles; Series
hybrid electric vehicles; Decentralized model predictive control; Convex optimization.

1. INTRODUCTION

Rapid urbanization has resulted in an increasing number
of vehicles and intensifies traffic congestion, especially in
urban districts. This phenomenon can lead to many prob-
lems, such as potential safety hazards and increased energy
and time consumption, particularly in urban intersections,
where the merging happens between different traffic flows
that is extremely complex. Although some research focuses
on designing novel traffic light systems to alleviate these
problems (Yang et al., 2017; Xiang et al., 2018), the
efficiency of the traffic flow at an intersection and the
energy consumption is still not fully optimized (Namazi
et al., 2019). To maximize urban transportation efficiency,
a smoother and environmentally friendly scheme needs to
be proposed. Currently, the development of information
technology enables vehicle-to-everything (V2X) commu-
nication for connected and autonomous vehicles (CAVs)
to be deployed on real-world road networks (Zhao and
Malikopoulos, 2022). Therefore, it is an attainable goal
to realize a signal-free intersection control to optimally
coordinate a group of CAVs crossing the intersection for
safety, mobility, and energy efficiency objectives (Zhong
et al., 2021).

There have been numerous efforts of autonomous intersec-
tion control algorithms designed based on CAVs reported
in the literature, which can be divided into two categories,

centralized and decentralized, respectively (Čakija et al.,
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Mihály et al., 2020; Liu et al., 2020), while the decen-
tralized framework relies on local controllers on each ve-
hicle (Chalaki and Malikopoulos, 2022b,a; Hadjigeorgiou
and Timotheou, 2023). Some existing literature focuses
on battery electrical vehicles (BEVs) as the target CAVs
for urban intersection crossing problems, instead of con-
ventional vehicles (CVs), as BEVs are the current trend
of vehicle development, offering the advantage of reduced
operating cost and waste gas emissions, despite their draw-
backs of low power and long charging time (Hult et al.,
2018; Pan et al., 2023a,b). In (Hult et al., 2018), the energy
consumption is modeled by electric motors efficiency maps
and optimized by an economic model predictive control
(MPC) method. Recent research efforts in (Pan et al.,
2023a,b) develop hierarchical and convex optimization ap-
proaches to find the optimal trade-offs of battery energy
consumption and travel time.

However, the global electricity price has increased sharply
recently. For instance, the UK electricity price has risen
by 64% from about 226.59 (GBP/MWh) to 372.27
(GBP/MWh), during the last 12 months, from October
2021 to October 2022, compared with the lower rate
increase of fuel price by 18% from 138.64 (pence/liter)

Economic Potential for Hybrid Electric
Vehicles in Urban Signal-free Intersections

with Decentralized MPC

Kai Tang ∗ Weijie Wang ∗∗ Xiao Pan ∗∗ Boli Chen ∗∗∗
Simos A. Evangelou ∗∗

∗ Department of Electrical and Electronic Engineering, The University
of Hong Kong, Hong Kong, (e-mail: tangkai@eee.hku.hk).

∗∗ Department of Electrical and Electronic Engineering, Imperial
College London, UK, (e-mail: weijie.wang20@imperial.ac.uk,
xiao.pan17@imperial.ac.uk, s.evangelou@imperial.ac.uk).

∗∗∗ Department of Electronic and Electrical, University College
London, UK, (e-mail: boli.chen@ucl.ac.uk)

Abstract: The development of electric and connected vehicles as well as automated driving
technologies are key towards the smart city, providing convenient urban mobility and high
energy economy performance. However, the global rise in electricity price provokes renewed
interest on CAVs with hybrid electric powertrains rather than considering battery electric
powertrains. This paper proposes a decentralized coordination strategy for a group of connected
and autonomous vehicles (CAVs) with a series hybrid electric (sHEV) powertrain at urban
signal-free intersections. The problem is formulated as a convex form with suitable relaxation
and approximation of the powertrain model and solved by decentralized model predictive
control (DMPC), which enables rapid search and a unique solution in real-time. Numerical
examples validate the effectiveness of the proposed methods concerning physical and safety
constraints. By utilizing the petrol fuel and battery charging prices over the last year, the
performance of the proposed approach is evaluated against the optimal results produced by two
benchmark solutions, conventional vehicles (CVs) and battery electric vehicles (BEVs). The
comparison results demonstrate that the traveling cost of sHEVs approaches and, even under
some circumstances, reaches the same level as for BEVs, which indicates the importance of
hybridization, particularly under the current rising electricity price situation.

Keywords: Autonomous intersection management; Connected and automated vehicles; Series
hybrid electric vehicles; Decentralized model predictive control; Convex optimization.

1. INTRODUCTION

Rapid urbanization has resulted in an increasing number
of vehicles and intensifies traffic congestion, especially in
urban districts. This phenomenon can lead to many prob-
lems, such as potential safety hazards and increased energy
and time consumption, particularly in urban intersections,
where the merging happens between different traffic flows
that is extremely complex. Although some research focuses
on designing novel traffic light systems to alleviate these
problems (Yang et al., 2017; Xiang et al., 2018), the
efficiency of the traffic flow at an intersection and the
energy consumption is still not fully optimized (Namazi
et al., 2019). To maximize urban transportation efficiency,
a smoother and environmentally friendly scheme needs to
be proposed. Currently, the development of information
technology enables vehicle-to-everything (V2X) commu-
nication for connected and autonomous vehicles (CAVs)
to be deployed on real-world road networks (Zhao and
Malikopoulos, 2022). Therefore, it is an attainable goal
to realize a signal-free intersection control to optimally
coordinate a group of CAVs crossing the intersection for
safety, mobility, and energy efficiency objectives (Zhong
et al., 2021).

There have been numerous efforts of autonomous intersec-
tion control algorithms designed based on CAVs reported
in the literature, which can be divided into two categories,

centralized and decentralized, respectively (Čakija et al.,
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to 163.62 (pence/liter) (TRADING ECONOMICS, 2022;
Department for Business, Energy & Industrial Strategy,
2022). This phenomenon significantly influences the op-
erational cost of the BEV, and it may promote hybrid
electric vehicles (HEVs), which are powered by hybrid
energy sources. This paper aims to investigate the energy-
saving potential of HEVs in comparison with BEVs in the
context of a road intersection, which is the main bottleneck
of urban traffic. The work focuses on the series HEV
(sHEV) architecture, which is a common arrangement for
modern HEVs and involves a number of products in the
market, such as the Nissan Note e-Power, and numerous
other extended-range electric vehicles Chen et al. (2019).
Some recent literature that considers sHEVs as a CAV
option for urban signalized intersection crossing problems
is presented in Tang et al. (2021); Jian et al. (2021). In
Tang et al. (2021), a multi-objective hierarchical optimal
strategy is proposed to optimize fuel consumption and
riding comfort in signalized intersections. A two-level co-
operative control method is designed in Jian et al. (2021)
to improve the travel time and energy consumption of
sHEV in a signalized intersection. However, to the best
knowledge of the authors, existing research lacks investi-
gating control policies designed for sHEVs regarding the
signal-free intersection crossing problem. This paper works
on bridging the gap by proposing a convex optimization
framework of sHEVs for the signal-free intersection cross-
ing problem. The resulting problem is then solved by a
decentralized model predictive control (DMPC) approach,
rather than centralized MPC, that strikes the trade-off
between optimality and computational complexity (Pan
et al., 2023a). The contributions of this paper are there-
fore: 1) development of a new convex modeling framework
for eco-driving control of an sHEV, 2) utilization of the
contributed convex modeling framework of a single sHEV
to develop a decentralized convex model predictive con-
trol for autonomous intersection coordination of a fleet of
CAVs, and 3) numerical investigation of the energy-saving
potential for sHEVs in urban signal-free intersections; in
the context of the UK’s electricity price, the running cost
of the sHEV in the urban intersection is compared with
the CV and BEV scenarios.

The rest of this paper is organized as follows: Section 2 pro-
vides the signal-free intersection crossing problem model
and sHEVs powertrain models along with the correspond-
ing suitable approximation and convexification. The de-
centralized model predictive control problem is formulated
in Section 3. Numerical results and analyses are provided
in Section 4. Finally, concluding remarks and future works
are given in Section 5.

2. PROBLEM STATEMENT

2.1 Convex Modeling of Intersection Crossing Problem

This work focuses on the decentralized intersection cross-
ing problem where a group of CAVs approaches a signal-
free intersection with two perpendicular roads, north-
south, and east-west, respectively, as shown in Fig. 1. Each
road has two lanes serving vehicles traveling in opposite
directions. For the purpose of this study, it is assumed
that the traffic in the intersection is exclusively composed
of autonomous road users and no other non-autonomous
entities (e.g., human-driven vehicles, cyclists, and pedes-
trians). As shown in Fig. 1, the squared area in the central
part is defined as Merging Zone (MZ) of length S, where
vehicles merge from four different directions, creating a
potential for lateral collisions. The circle area illustrated
by the blue dotted line outside the MZ is defined as Control

Fig. 1. The schematic of Autonomous intersection Crossing
Problem with Signal-Free Intersection, Decentralized
Controllers for Connected and Autonomous Vehicles
(CAVs) and a Coordinator.

Zone (CZ) with distance L between the entry of CZ and
the entry of MZ. Note that the physical length of the MZ
is much smaller than the sensing range of the wireless
communication devices, i.e., S � L. The communication
among CAVs is through an intersection coordinator, which
acts as a relay to streamline the communication network
without making any control decisions. The control actions
are individually determined by the local onboard controller
of each vehicle. For simplicity, it is assumed that the roads
are flat and all CAVs maintain their initial directions after
exiting the MZ.

Next, let us define N(t) ∈ N>0 as the whole number of
CAVs in the CZ at a given time t∈R>0. The crossing order
of CAVs is designated by a set N (t) = {1, 2, . . . , N(t)}.
Note that the crossing order sequence in this work is
considered to be predefined for a simplicity purpose of
illustration of the developed convex modeling framework,
and it can be formulated as an online optimization problem
to further optimize the traffic performance (Meng et al.,
2018; Hadjigeorgiou and Timotheou, 2023; Pan et al.,
2023b). The following definitions are presented for further
discussion of collision avoidance constraints. Given an
arbitrary ith CAV, i∈N , the CAVs entering the MZ before
the ith CAV can be divided into three categories: 1) Ci
includes the CAVs traveling towards the same direction as
the ith CAV; 2) Li includes the CAVs traveling towards
the perpendicular direction of the ith CAV; 3) Oi includes
the CAVs traveling towards the opposite direction of the
ith CAV.

This research focuses on developing a coordination scheme
in the space domain, which has been shown to have
advantages of (a) avoiding free end-time optimization
problems in the time domain, and (b) achieving convex
optimization problem formulation (Pan et al., 2023b). The
travel time of each CAV i in space domain, in which the
variable of traveled distance is s, can be easily formulated
as a state variable with a linear dynamics equation and a
convex path constraint:

d

ds
ti(s) = ζi(s), (1a)

ζi(s) ≥ 1√
2Ei(s)/mi

, (1b)

where Ei(s) =
1
2miv

2
i (s) is the kinetic energy, mi is the

vehicle mass, and ζi is an optimization auxiliary variable.
Note that the validity of the final solution relies on the
tightness of (1b), and an analogical proof of the tightness
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to 163.62 (pence/liter) (TRADING ECONOMICS, 2022;
Department for Business, Energy & Industrial Strategy,
2022). This phenomenon significantly influences the op-
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electric vehicles (HEVs), which are powered by hybrid
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signal-free intersection crossing problem. This paper works
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framework of sHEVs for the signal-free intersection cross-
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decentralized model predictive control (DMPC) approach,
rather than centralized MPC, that strikes the trade-off
between optimality and computational complexity (Pan
et al., 2023a). The contributions of this paper are there-
fore: 1) development of a new convex modeling framework
for eco-driving control of an sHEV, 2) utilization of the
contributed convex modeling framework of a single sHEV
to develop a decentralized convex model predictive con-
trol for autonomous intersection coordination of a fleet of
CAVs, and 3) numerical investigation of the energy-saving
potential for sHEVs in urban signal-free intersections; in
the context of the UK’s electricity price, the running cost
of the sHEV in the urban intersection is compared with
the CV and BEV scenarios.

The rest of this paper is organized as follows: Section 2 pro-
vides the signal-free intersection crossing problem model
and sHEVs powertrain models along with the correspond-
ing suitable approximation and convexification. The de-
centralized model predictive control problem is formulated
in Section 3. Numerical results and analyses are provided
in Section 4. Finally, concluding remarks and future works
are given in Section 5.

2. PROBLEM STATEMENT

2.1 Convex Modeling of Intersection Crossing Problem

This work focuses on the decentralized intersection cross-
ing problem where a group of CAVs approaches a signal-
free intersection with two perpendicular roads, north-
south, and east-west, respectively, as shown in Fig. 1. Each
road has two lanes serving vehicles traveling in opposite
directions. For the purpose of this study, it is assumed
that the traffic in the intersection is exclusively composed
of autonomous road users and no other non-autonomous
entities (e.g., human-driven vehicles, cyclists, and pedes-
trians). As shown in Fig. 1, the squared area in the central
part is defined as Merging Zone (MZ) of length S, where
vehicles merge from four different directions, creating a
potential for lateral collisions. The circle area illustrated
by the blue dotted line outside the MZ is defined as Control

Fig. 1. The schematic of Autonomous intersection Crossing
Problem with Signal-Free Intersection, Decentralized
Controllers for Connected and Autonomous Vehicles
(CAVs) and a Coordinator.

Zone (CZ) with distance L between the entry of CZ and
the entry of MZ. Note that the physical length of the MZ
is much smaller than the sensing range of the wireless
communication devices, i.e., S � L. The communication
among CAVs is through an intersection coordinator, which
acts as a relay to streamline the communication network
without making any control decisions. The control actions
are individually determined by the local onboard controller
of each vehicle. For simplicity, it is assumed that the roads
are flat and all CAVs maintain their initial directions after
exiting the MZ.

Next, let us define N(t) ∈ N>0 as the whole number of
CAVs in the CZ at a given time t∈R>0. The crossing order
of CAVs is designated by a set N (t) = {1, 2, . . . , N(t)}.
Note that the crossing order sequence in this work is
considered to be predefined for a simplicity purpose of
illustration of the developed convex modeling framework,
and it can be formulated as an online optimization problem
to further optimize the traffic performance (Meng et al.,
2018; Hadjigeorgiou and Timotheou, 2023; Pan et al.,
2023b). The following definitions are presented for further
discussion of collision avoidance constraints. Given an
arbitrary ith CAV, i∈N , the CAVs entering the MZ before
the ith CAV can be divided into three categories: 1) Ci
includes the CAVs traveling towards the same direction as
the ith CAV; 2) Li includes the CAVs traveling towards
the perpendicular direction of the ith CAV; 3) Oi includes
the CAVs traveling towards the opposite direction of the
ith CAV.

This research focuses on developing a coordination scheme
in the space domain, which has been shown to have
advantages of (a) avoiding free end-time optimization
problems in the time domain, and (b) achieving convex
optimization problem formulation (Pan et al., 2023b). The
travel time of each CAV i in space domain, in which the
variable of traveled distance is s, can be easily formulated
as a state variable with a linear dynamics equation and a
convex path constraint:

d

ds
ti(s) = ζi(s), (1a)

ζi(s) ≥ 1√
2Ei(s)/mi

, (1b)

where Ei(s) =
1
2miv

2
i (s) is the kinetic energy, mi is the

vehicle mass, and ζi is an optimization auxiliary variable.
Note that the validity of the final solution relies on the
tightness of (1b), and an analogical proof of the tightness

can be found in Pan et al. (2023a). As such, the required
travel time of each CAV i to cross the intersection is:

Jt,i = ti(L+ S)− ti(0), (2)

where ti(0) is the arrival time of CAV i at the CZ, and
L+S is the total traveled distance, which represents the
complete task of each vehicle crossing the intersection.
Herein, Ei(s) is introduced intentionally for modeling the
motion dynamics instead of vi(s) in order to cancel the
nonlinearity due to the air drag, as shown in the following
equation (3). Considering Ei(s), the longitudinal dynamics
of vehicle i can be described by:

d

ds
Ei(s) = Fw,i(s)− Fr,i − 2fd

mi
Ei(s), (3)

where Fr,i=frmig, with coefficient fr=0.01, is the rolling
resistance force and fd = 0.47 is the coefficient of air
drag resistance. Fw,i(s) = Ft,i(s) + Fb,i(s) is the total
force acting on the wheels, with Ft,i(s) the powertrain
driving force and Fb,i(s) the mechanical braking force,
respectively. Note that Fb,i(s) is constrained by:

miamin − Ft,imin
≤ Fb,i(s) ≤ 0, (4)

where amin = −6.5 m/s2 is the minimum allowed accel-
eration due to the tire friction limits, and Ft,imin

is the
minimum traction (maximum regenerative) force provided
by the powertrain electric sources.

To avoid vehicle collisions inside the CZ and to maintain a
smooth traffic flow, lateral and rear-end collision avoidance
constraints and speed limits are introduced as:

ti(s)−th(s) ≥ β(s), ∀h ∈ Ci, h < i, (5)

ti(L) ≥ tq(L+ S) , ∀q ∈ Li , q < i, (6)
1

2
miv

2
min ≤ Ei(s) ≤ 1

2
miv

2
max, (7)

where

β(s) = max

(√
2Ei(s)/mi−

√
2Eh(s)/mh

|amin| , tδ

)
, (8)

tδ is a short time constant to enforce a safety margin
invariably (Pan et al., 2023b), vmin=0.1m/s is set to a suf-
ficiently small positive constant to avoid singularity issues
that would appear in (1) when vi=0, and vmax=15m/s is
determined as the maximum velocity based on the infras-
tructure constraints and traffic regulations (Hadjigeorgiou
and Timotheou, 2023). The rear-end collision avoidance
constraint (5) enforces a minimum time gap between CAV
i and CAV h, the vehicle immediately ahead of CAV i, to
prevent rear-end collisions. Note that the convexification
of (5) is achieved by an approximation of the nonlinear

term
√

2Ei(s)/mi to f∗(Ei(s)) = a∗0,i+a∗1,iEi(s), where
a∗0,i and a∗1,i are obtained by a constrained least-squares
optimization to maximize the feasibility while preserving
the convexity (Pan et al., 2023b). Lateral collisions con-
straint (6) guarantees that CAV i enters the MZ only after
CAV q has left the MZ, with CAV q being the last vehicle
entering the MZ in set Li.

For any CAV p ∈ Oi, there is no interference between
CAVs p and i inside the CZ. Hence, for CAV p which is
the last CAV entering the MZ before CAV i in the opposite
direction, only the following constraint (9) is required to
fulfill the crossing order:

ti(L)>tp(L), ti(L+S)>tp(L+S), ∀p ∈ Oi, p < i. (9)

Finally, each CAVs is requested to leave the MZ at a
desired terminal speed v̄ ∈ [vmin, vmax],

Ei(L+ S) =
1

2
miv̄

2. (10)

Note the terminal speed v̄i can be chosen arbitrarily within
[vmin, vmax], which will be specified later in Section 4.

The following assumptions are also needed to fulfill the
modeling of the autonomous intersection crossing problem.
Assumption 1. The information of each CAV, such as
position and velocity, can be measured and transferred
between the coordinator without errors and delays.
Assumption 2. Each CAV enters the CZ at a different
time, i.e., ti(0) �= tz(0), i �=z, i, z ∈ {1, 2, · · · , N(t)}.
Assumption 3. For each CAV i, constraints (5), and (7)
are inactive at ti(0).

Assumption 1 may not be valid for practical situations.
In that case, it can be relaxed by using a worst-case
analysis as long as the uncertainties in measurement and
communication are bounded. Assumption 2-3 are intended
to ensure the feasibility of the initial states and the
constraints (5), (6), (9) with predefined given order N (t).

2.2 Convex Modeling of Series Hybrid Electric Vehicle

This section provides a convex dynamic model of an
sHEV whose powertrain and dynamics are conservatively
convexified, which is one of the main contributions of this
work. The main parameters of the sHEV are listed in
Table. 1 (Chen et al., 2019) emulating a non-plug-in sHEV.

Table 1. Main Parameters of Series Hybrid
Electric Vehicle (sHEV) Powertrain Model

symbol value description
mi 1200kg vehicle mass
mf0 0.061 g/s idling fuel consumption rate
αPS 0.059 scale factor
a∗SOC -1.944×10−7 SOC fitting parameter
a∗0,i -8.5034×10−5 velocity fitting parameter
a∗1,i 4.9 velocity fitting parameter
PPSmax

75kW maximum PS output power
PSSmax 30kW maximum SS output power
PSSmin

-15kW minimum SS output power

The powertrain model of the sHEV utilized in this work
is sketched in Fig. 2. As it can be seen, the power outputs
from the Primary Source (PS) and the Secondary Source
(SS) are jointly connected to the DC-link, which delivers
driving power at the wheels included in the Propulsion
Load (PL) branch. Mechanical brakes can be actuated to
decelerate the vehicle. Energy regeneration is also possible
during deceleration conveying braking power through the
transmission up to the battery. Moreover, the battery can
be recharged by using a fraction of the PS power.

IC Engine Electric
Generator

AC/DC
Rectier

Battery DC/DC
Converter

DC Link &
Inverter

yy Electric Motor
/ Generator

Primary Source Branch

Secondary Source Branch Propulsion Load Branch

B

Fig. 2. Powertrain configuration for sHEVs.

The PS branch comprises an internal combustion engine, a
permanent magnet synchronous generator, and an AC-DC
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rectifier connected in series. The mechanical separation
of the PS from the driving wheels allows the PS to
be operated along its optimal efficiency trajectory of
operating points. In this context, the fuel mass rate of the
PS can be approximated as a linear function of PS output
power, PPS (Chen et al., 2019). Thus, the dynamic of the
fuel mass consumption of an sHEV in the space domain is
given by:

d

ds
mf,i(s)=

mf0+αPSPPS,i(s)

vi(s)
=mf0ζi(s)+αPSFPS,i(s),

(11)
where mf0 is the idling fuel consumption rate, αPS is
the scale factor between the fuel consumption rate and
the PS output power, and FPS,i = PPS,i/vi, proposed as
a virtual force of PS, is constrained by the powertrain
physical capability, namely PPSmax

=75kW, such that:

0 ≤ FPS,i(s) ≤ PPSmaxζi(s). (12)

The SS branch consists of a battery and a DC/DC con-
verter. The battery is modeled as a series connection of
an ideal voltage source (of open-circuit voltage Voc) and
an ohmic resistance (internal resistance Rb) (Zhou et al.,
2016), in which the battery state-of-charge (SOC) repre-
sents the only state variable, governed by:

d

dt
SOCi(t) =

−Voc +
�

V 2
oc − 4PSS,i(t)Rb

2RbQmax
, (13)

where the operation of the battery SOC is constrained to
avoid deep charging/depleting:

SOCmin ≤ SOCi(t) ≤ SOCmax. (14)

The nonlinear terms existing in the right-hand side of (13)
can be approximated as a linear proportional function (see
in Fig. 3) for convex formulation. As such, this function
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Fig. 3. Linear regression function (15) of the derivative
of the battery SOC, d

dtSOCi, with respect to the SS
output power, PSS,i, with R-square of 99.89%.

should pass through the origin to preserve the property
of charging/depleting when PSS is negative/positive. The
proposed formulation is given by:

d

dt
SOCi(t) = a∗SOCPSS,i(t), (15)

where a∗SOC = −1.940× 10−7 is the fitting parameter
obtained by the constrained least-squares method subject
to the physical limits of the SS branch:

min
aSOC

�
aSOCPSS,i(t)− −Voc +

�
V 2
oc − 4PSS,i(t)Rb

2RbQmax

�2

s.t.: PSSmax ≤ PSS,i(t) ≤ PSSmin

Therefore, the dynamics of SOC (13) can be reformulated
as a linear function in the space domain:

d

ds
SOCi(s) = a∗SOC

PSS,i(s)

vi(s)
= a∗SOCFSS,i(s), (16)

where FSS,i =PSS,i/vi, proposed as a virtual force of the
SS branch, is constrained by the following equation:

PSSmin
ζi(s) ≤ FSS,i(s) ≤ PSSmax

ζi(s), (17)

where PSSmin and PSSmax are the maximum SS branch
power during depleting/charging.

In the sHEV model architecture, the total powertrain force
defined in the longitudinal dynamics (3) can be specified
as below:

Ft,i(s) = FPS,i(s) + FSS,i(s). (18)

Thus, by collecting (1a), (3), (11), and (16), the overall
dynamics of each sHEV ẋi=fi(xi, ui) in the autonomous
intersection problem can be rearranged as a state-space
form equation with states xi = [ti Ei SOCi mf,i]

� and
control inputs ui=[FPS,i FSS,i Fb,i ζi]

�:
d

ds
xi(s) = Aixi(s) +Biui(s) +Bc,i ,

Ai=

⎡
⎢⎢⎣
0 0 0 0
0 − 2fd

mi
0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, Bi=

⎡
⎢⎣

0 0 0 1
1 1 1 0
0 a∗SOC 0 0

αPS 0 0 mf0,i

⎤
⎥⎦,

Bc,i=
�
0 −Fr,i 0 0

��
.

(19)

3. DECENTRALIZED AUTONOMOUS
INTERSECTION CONTROL FRAMEWORK

This section provides an introduction to the autonomous
intersection crossing control approach via the decentral-
ized model predictive control (DMPC) technique with the
prediction horizon Np ∈ N>0. Hence, it is necessary to
formulate the intersection control problem in a discretized
form with a sampling distance interval Δs ∈R>0. Mean-
while, let us define that L+S = αΔs, L = α1Δs. The
discretized dynamics (19) of CAV i ∈ N in the space
domain is given by:

xi(k + 1) = Aixi(k) +Biui(k) +Bc,i, (20)

The decentralized system relies on the information ex-
change between the intersection coordinator and the
CAVs. For an arbitrary CAV i, a unique identity is as-
signed to record its crossing order and direction when
it enters the CZ. The identity is defined as (i, di, Ii(k)),
where i ∈ N is the crossing order of vehicle i to enter
the MZ, di is an index denoted as the traveling direction
(north, south, east and west), and Ii(k) is the information
set generated by the coordinator at step k by collecting
the past optimal state sequences of vehicle i:

Ii(k) = [xi(0),xi(1), · · · ,xi(k)] ∈ R(Np+1)×(4k), (21)

where xi(k)=[xi(k|k), xi(k+1|k), . . . , xi(k+Np|k)]� is the
optimal state sequence computed by the local MPC on
CAV i at step k within the prediction horizon Np.

Then, based on the identity of each CAV and the infor-
mation exchange rule shown below, these information sets
Ii(k) will be sent to specific CAVs which require them to
support their DMPC algorithm. Taking an arbitrary CAV
i as an example, the information exchange rule is shown
as follows:

(1) For Ci /∈ ∅, CAV i requires Ih(k) of CAV h∈Ci (h<i),
which is immediately ahead of CAV i in the same lane.

(2) For Li /∈∅, CAV i requires Iq(k) of CAV q∈Li (q<i),
which is the last element (CAV index) in set Li.

(3) For Oi /∈∅, CAV i requires Ip(k) of CAV p∈Oi (p<i),
which is the last element (CAV index) in set Oi.
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rectifier connected in series. The mechanical separation
of the PS from the driving wheels allows the PS to
be operated along its optimal efficiency trajectory of
operating points. In this context, the fuel mass rate of the
PS can be approximated as a linear function of PS output
power, PPS (Chen et al., 2019). Thus, the dynamic of the
fuel mass consumption of an sHEV in the space domain is
given by:

d

ds
mf,i(s)=

mf0+αPSPPS,i(s)

vi(s)
=mf0ζi(s)+αPSFPS,i(s),

(11)
where mf0 is the idling fuel consumption rate, αPS is
the scale factor between the fuel consumption rate and
the PS output power, and FPS,i = PPS,i/vi, proposed as
a virtual force of PS, is constrained by the powertrain
physical capability, namely PPSmax

=75kW, such that:

0 ≤ FPS,i(s) ≤ PPSmaxζi(s). (12)

The SS branch consists of a battery and a DC/DC con-
verter. The battery is modeled as a series connection of
an ideal voltage source (of open-circuit voltage Voc) and
an ohmic resistance (internal resistance Rb) (Zhou et al.,
2016), in which the battery state-of-charge (SOC) repre-
sents the only state variable, governed by:

d

dt
SOCi(t) =

−Voc +
�
V 2
oc − 4PSS,i(t)Rb

2RbQmax
, (13)

where the operation of the battery SOC is constrained to
avoid deep charging/depleting:

SOCmin ≤ SOCi(t) ≤ SOCmax. (14)

The nonlinear terms existing in the right-hand side of (13)
can be approximated as a linear proportional function (see
in Fig. 3) for convex formulation. As such, this function
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Fig. 3. Linear regression function (15) of the derivative
of the battery SOC, d

dtSOCi, with respect to the SS
output power, PSS,i, with R-square of 99.89%.

should pass through the origin to preserve the property
of charging/depleting when PSS is negative/positive. The
proposed formulation is given by:

d

dt
SOCi(t) = a∗SOCPSS,i(t), (15)

where a∗SOC = −1.940× 10−7 is the fitting parameter
obtained by the constrained least-squares method subject
to the physical limits of the SS branch:

min
aSOC

�
aSOCPSS,i(t)− −Voc +

�
V 2
oc − 4PSS,i(t)Rb

2RbQmax

�2

s.t.: PSSmax ≤ PSS,i(t) ≤ PSSmin

Therefore, the dynamics of SOC (13) can be reformulated
as a linear function in the space domain:

d

ds
SOCi(s) = a∗SOC

PSS,i(s)

vi(s)
= a∗SOCFSS,i(s), (16)

where FSS,i =PSS,i/vi, proposed as a virtual force of the
SS branch, is constrained by the following equation:

PSSmin
ζi(s) ≤ FSS,i(s) ≤ PSSmax

ζi(s), (17)

where PSSmin and PSSmax are the maximum SS branch
power during depleting/charging.

In the sHEV model architecture, the total powertrain force
defined in the longitudinal dynamics (3) can be specified
as below:

Ft,i(s) = FPS,i(s) + FSS,i(s). (18)

Thus, by collecting (1a), (3), (11), and (16), the overall
dynamics of each sHEV ẋi=fi(xi, ui) in the autonomous
intersection problem can be rearranged as a state-space
form equation with states xi = [ti Ei SOCi mf,i]

� and
control inputs ui=[FPS,i FSS,i Fb,i ζi]

�:
d

ds
xi(s) = Aixi(s) +Biui(s) +Bc,i ,

Ai=

⎡
⎢⎢⎣
0 0 0 0
0 − 2fd

mi
0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, Bi=

⎡
⎢⎣

0 0 0 1
1 1 1 0
0 a∗SOC 0 0

αPS 0 0 mf0,i

⎤
⎥⎦,

Bc,i=
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0 −Fr,i 0 0
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(19)

3. DECENTRALIZED AUTONOMOUS
INTERSECTION CONTROL FRAMEWORK

This section provides an introduction to the autonomous
intersection crossing control approach via the decentral-
ized model predictive control (DMPC) technique with the
prediction horizon Np ∈ N>0. Hence, it is necessary to
formulate the intersection control problem in a discretized
form with a sampling distance interval Δs ∈R>0. Mean-
while, let us define that L+S = αΔs, L = α1Δs. The
discretized dynamics (19) of CAV i ∈ N in the space
domain is given by:

xi(k + 1) = Aixi(k) +Biui(k) +Bc,i, (20)

The decentralized system relies on the information ex-
change between the intersection coordinator and the
CAVs. For an arbitrary CAV i, a unique identity is as-
signed to record its crossing order and direction when
it enters the CZ. The identity is defined as (i, di, Ii(k)),
where i ∈ N is the crossing order of vehicle i to enter
the MZ, di is an index denoted as the traveling direction
(north, south, east and west), and Ii(k) is the information
set generated by the coordinator at step k by collecting
the past optimal state sequences of vehicle i:

Ii(k) = [xi(0),xi(1), · · · ,xi(k)] ∈ R(Np+1)×(4k), (21)

where xi(k)=[xi(k|k), xi(k+1|k), . . . , xi(k+Np|k)]� is the
optimal state sequence computed by the local MPC on
CAV i at step k within the prediction horizon Np.

Then, based on the identity of each CAV and the infor-
mation exchange rule shown below, these information sets
Ii(k) will be sent to specific CAVs which require them to
support their DMPC algorithm. Taking an arbitrary CAV
i as an example, the information exchange rule is shown
as follows:

(1) For Ci /∈ ∅, CAV i requires Ih(k) of CAV h∈Ci (h<i),
which is immediately ahead of CAV i in the same lane.

(2) For Li /∈∅, CAV i requires Iq(k) of CAV q∈Li (q<i),
which is the last element (CAV index) in set Li.

(3) For Oi /∈∅, CAV i requires Ip(k) of CAV p∈Oi (p<i),
which is the last element (CAV index) in set Oi.

For the decentralized MPC framework, each CAV can
achieve the collision avoidance constraints (5), (6), (9)
based on the information set Ii(k) assigned from the
coordinator subject to the information exchange rule. To
achieve the rear-end collision avoidance constraints, an
arbitrary CAV i requires the information set of the CAV
h which is directly ahead of CAV i, such that h∈Ci. This
constraint is reformulated as follows:

ti(k + j + 1|k)− th(k + j + 1|k) ≥ β(k + j + 1|k), (22)

where j ∈ N[0,Np−1], and th(k + j + 1|k) is the past

information of CAV h saved in the information set Ih(k̄),
where k̄ > k is the corresponding distance step of CAV h
when the ith CAV is at step k, that is th(k̄Δs)= ti(kΔs).

The reformulation of the lateral collision avoidance con-
straint (6) between CAV i and CAV q ∈ Li in the decen-
tralized framework is given as below:

ti(k + j + 1|k) ≥ t̂Lq (L+ S), j ∈ N[0,Np−1] , (23)

where k + j + 1 = α1 with α1 ∈N[k, k+Np]. The exit time

of the qth CAV of MZ, t̂Lq (L+ S), is estimated by:

t̂Lq(L+S)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tq(k̄+l+1|k̄), if l<Np, k̄+l+1=α,

tq(k̄+Np|k̄)+ 2(L+S−(k̄+Np)Δs)

vq(k̄+Np|k̄)+v̄
,

if k̄+Np<α,

(24)

where l∈N[0,Np−1], v̄ is the desired terminal velocity and

k̄ has tq(k̄Δs) = ti(kΔs), which represents the associated
step of the qth CAV. For the first case in (24), since the
prediction horizon of the qth CAV has already covered the
terminal distance L+S, t̂Lq (L+S) can be directly obtained.
For the second case in (24), the ith CAV can not directly
derive the terminal time t̂Lq (L+S). Therefore, the exit time
of the qth CAV is approximated by the sum of the present
predictive time of the last predictive horizon step of CAV
q, tq(k̄+Np|k̄), and the time such that CAV q should spend
to finish the rest of the distance with an average speed of
its terminal speed of the present horizon and the desired
terminal velocity.

In terms of the no collision condition in the MZ between
CAV i and CAV p∈Oi, the constraint of (9) is rewritten
in a decentralized manner as below:

ti(k + j + 1|k) ≥ t̂Op (L), k + j + 1 = α1,

ti(k + l + 1|k) ≥ t̂Op (L+ S), k + l + 1= α,
(25)

where j, l ∈N[0,Np−1], while t̂Op (L) and t̂Op (L + S) can be
obtained by applying the same method shown in (24).

Therefore, the convex DMPC framework for a single
vehicle i∈N in space domain is presented as follows:

min
ui

Ji(xi(k),ui(k)) (26a)

s.t. : ( ∀ k ∈ [0, α], j ∈ N[0,Np−1])

xi(k|k) = xi(k), (26b)

xi(k+j+1|k)=Aixi(k+j|k)+Biui(k+j|k)+Bc,i, (26c)

xi(k+j|k)∈Xi, ui(k+j|k)∈Ui , (26d)�
xi(k+j|k), ui(k+j|k)�∈Xi × Ui ,

given. : xi(0) (26e)

where ui(k)=[ui(k|k), ui(k+1|k), · · · , ui(k+Np−1|k)]�,
xi(k) in (26b) is the actual state measured at step k,
the system dynamics (26c) collects (20), the convex set
Xi in (26d) collects (7), (10), (14), (22), (23), and (25),

the convex set Ui in (26d) collects (4), (12), (17), and
the convex set Xi × Ui in (26d) collects (1b). The initial
condition (26e) provides initial state (entry state at CZ)
of each CAV xi(0), which satisfies the Assumptions 2 and
3. The objective function (26a) is designed as a multi-
objective function, which is described below:

Ji =

Np−1�
j=0

�
W1ζi(k + j|k)−W2Fb,i(k + j|k)�Δs+

W3mf,i(k +Np|k)+W4(SOC(k +Np|k)−SOC(k|k))2,
(27)

where W1, W2, W3, W4 are the weighting factors. The first
three terms aim to minimize the traveling time, the usage
of mechanical braking, and the fuel consumption of (11),
respectively, and the last term is imposed to achieve the
battery charge sustaining (CS) condition over the entire
prediction horizon.

4. NUMERICAL RESULT

This section provides numerical examples to investigate
the performance of the proposed convex DMPC strategy
for a group of N(t)=20 CAVs at an autonomous intersec-
tion crossing. Two convex benchmark vehicle models (i.e.
CV (Han et al., 2019) and BEV (Pan et al., 2023b)) are
considered and formulated within the same DMPC frame-
work (26) for fair comparisons. The investigation contains
twofold, 1) the effectiveness and validity of the proposed
convex sHEVs model and the DMPC strategy, and 2) the
impact of the fuel and electricity energy economy between
sHEVs and the two other vehicle types (i.e., CVs and
BEVs) in the context of the electricity and petrol price
in the UK over the past 12 months.

The parameters of the intersection in this work are L =
150 m and S = 10 m with a sampling interval Δs= 2 m.
The prediction horizon length of the DMPC method is
defined as Np=30. The terminal velocity leaving the MZ
is set to be identical for all CAVs at v̄(L+S)=10 m/s for
fair and easy comparison in different simulation scenarios.
Without loss of generality and credibility of the simulation
results, this numerical analysis has applied 10 sets of
different initial conditions datasets with an arrival rate
of 700 veh/h per lane. Moreover, in each of the datasets,
the initial velocity vi(0) and entrance time ti(0) for all
CAVs are randomly initialized subject to the constraints
imposed in Assumptions 2 and 3. Note that the initial
speeds of all CAVs follow the uniform distribution within
[vmin, vmax] and the entrance times for all CAVs follow
Poisson distribution, respectively. Moreover, the direction
and type of each CAV are also randomly generated. For
simplicity and illustration purposes, the crossing sequence
N (t) in this work is predefined such that all CAVs obey
the first-in-first-out policy (i.e., all CAVs enter and leave
the MZ in the same order they arrive at the CZ). The
proposed convex DMPC strategy is solved by YALMIP
and MOSEK (Löfberg, 2004) in MATLAB 2021b on a
personal computer with an M1 chip and 8 GB of RAM.

In the first instance, the optimal traveled distance tra-
jectories of the 20 CAVs (i.e., 7 CVs, 6 sHEVs, and 7
BEVs) obtained by solving convex DMPC (26) at an
average traveled time of approximately 12s are presented
in Fig. 4. It can be observed that all vehicles follow the
cooperatively assigned crossing order, i.e., all vehicles leave
the CZ in the same order as they enter the CZ. In addition,
it is noteworthy that none of the trajectories depicted
with the same color intersect. For two consecutive vehicles
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Fig. 4. The optimal traveled distance trajectories of 20
CAVs obtained by solving the convex DMPC (26) at
an arrival rate of 700 veh/h per lane and an average
traveled time of approximately 12s.
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Fig. 5. The trade-offs between average price and average
travel time for optimization problems with three dif-
ferent vehicle types (i.e CVs, sHEVs, and BEVs) in
each case at an arrival rate of 700 veh/h per lane. The
average prices are calculated by the price datasets of
Oct. 2021 (top) and Oct. 2022 (bottom) (TRADING
ECONOMICS, 2022; Department for Business, En-
ergy & Industrial Strategy, 2022).

traveling in perpendicular directions, the latter one enters
the MZ only after the first one leaves the MZ. This result
shows that the rear-end and lateral collision avoidance are
satisfied for all CAVs, which verifies the effectiveness and
validity of the convex sHEVs model and DMPC strategy.

To compare the performance between sHEVs and the other
two benchmark vehicle models (i.e., CVs and BEVs) with
various electricity and petrol fuel prices, three autonomous
intersection problems with only one vehicle type in each
case are formulated under the same proposed DMPC
framework (26). Fig. 5 presents the trade-offs of the three
autonomous intersection optimization problems for a series
of combinations of weighting factors in (26a) between
the average energy price and traveled time of all 20
CAVs under ten simulation trials with randomly generated
initial conditions. Note that petrol fuel and electric energy
usages are converted to energy prices in this study based
on the datasets of Oct. 2021 and Oct. 2022 obtained
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Fig. 6. Top: the average price of fuel and electricity in
the UK from 2021 Q4, 2022 Q1, 2022 Q2, 2022 Q3,
and October 2022. Bottom: the average travel cost
paid for three vehicle types at an average time con-
sumption of approximately 12s. The average costs are
calculated based on the price datasets in TRADING
ECONOMICS (2022); Department for Business, En-
ergy & Industrial Strategy (2022).

from (TRADING ECONOMICS, 2022; Department for
Business, Energy & Industrial Strategy, 2022). As shown
in Fig. 5, the average price of CVs is always the highest
among the rest cases, which indicates the importance
of traffic electrification as it can significantly reduce the
average operating cost. In terms of sHEVs and BEVs, the
gap between each average cost is reduced as the average
travel time decreases. Taking the optimal results with the
average travel time at 11.5s as an example, the traveling
cost of sHEVs already reaches the same level as BEVs in
Oct. 2022, while a 53% average price gap can be found in
the results in Oct. 2021. These results show the advantage
of sHEVs as the electricity price increases, especially when
the optimization emphasizes more on the minimization of
the travel time to achieve efficient transportation.

To further investigate the findings in terms of the reduced
average cost between sHEVs and BEVs in Fig. 5, a bar
chart with detailed average cost from 2021 Q4 to Oct. 2022
at an average time cost of approximately 12 s is presented
in Fig. 6. The top figure in Fig. 6 shows the price of petrol
fuel increased by 14% while the electricity price witnessed
a sharp rise of 52% compared to the 2021 Q4 electricity
market prices. The corresponding consequences for the
vehicle traveling cost are shown at the bottom in Fig. 6,
where the gap of the average price between sHEVs and
BEVs on operation dropped from 83% to 30% from 2021
Q4 to Oct. 2022. Although both CVs and sHEVs consume
petrol fuel for operation primarily, the hybrid powertrain
can provide higher energy efficiency. Overall, these findings
indicate that the sharply increasing electricity price over
the last year is weakening the benefit of BEVs, meanwhile
highlighting the importance and benefits of sHEVs.

5. CONCLUSIONS

This paper addressed the signal-free intersection crossing
problem for connected and automated vehicles (CAVs)
with a series hybrid electric powertrain. The dynamic
model of series hybrid electric vehicle (sHEV) is convexi-
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traveling in perpendicular directions, the latter one enters
the MZ only after the first one leaves the MZ. This result
shows that the rear-end and lateral collision avoidance are
satisfied for all CAVs, which verifies the effectiveness and
validity of the convex sHEVs model and DMPC strategy.

To compare the performance between sHEVs and the other
two benchmark vehicle models (i.e., CVs and BEVs) with
various electricity and petrol fuel prices, three autonomous
intersection problems with only one vehicle type in each
case are formulated under the same proposed DMPC
framework (26). Fig. 5 presents the trade-offs of the three
autonomous intersection optimization problems for a series
of combinations of weighting factors in (26a) between
the average energy price and traveled time of all 20
CAVs under ten simulation trials with randomly generated
initial conditions. Note that petrol fuel and electric energy
usages are converted to energy prices in this study based
on the datasets of Oct. 2021 and Oct. 2022 obtained
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Fig. 6. Top: the average price of fuel and electricity in
the UK from 2021 Q4, 2022 Q1, 2022 Q2, 2022 Q3,
and October 2022. Bottom: the average travel cost
paid for three vehicle types at an average time con-
sumption of approximately 12s. The average costs are
calculated based on the price datasets in TRADING
ECONOMICS (2022); Department for Business, En-
ergy & Industrial Strategy (2022).

from (TRADING ECONOMICS, 2022; Department for
Business, Energy & Industrial Strategy, 2022). As shown
in Fig. 5, the average price of CVs is always the highest
among the rest cases, which indicates the importance
of traffic electrification as it can significantly reduce the
average operating cost. In terms of sHEVs and BEVs, the
gap between each average cost is reduced as the average
travel time decreases. Taking the optimal results with the
average travel time at 11.5s as an example, the traveling
cost of sHEVs already reaches the same level as BEVs in
Oct. 2022, while a 53% average price gap can be found in
the results in Oct. 2021. These results show the advantage
of sHEVs as the electricity price increases, especially when
the optimization emphasizes more on the minimization of
the travel time to achieve efficient transportation.

To further investigate the findings in terms of the reduced
average cost between sHEVs and BEVs in Fig. 5, a bar
chart with detailed average cost from 2021 Q4 to Oct. 2022
at an average time cost of approximately 12 s is presented
in Fig. 6. The top figure in Fig. 6 shows the price of petrol
fuel increased by 14% while the electricity price witnessed
a sharp rise of 52% compared to the 2021 Q4 electricity
market prices. The corresponding consequences for the
vehicle traveling cost are shown at the bottom in Fig. 6,
where the gap of the average price between sHEVs and
BEVs on operation dropped from 83% to 30% from 2021
Q4 to Oct. 2022. Although both CVs and sHEVs consume
petrol fuel for operation primarily, the hybrid powertrain
can provide higher energy efficiency. Overall, these findings
indicate that the sharply increasing electricity price over
the last year is weakening the benefit of BEVs, meanwhile
highlighting the importance and benefits of sHEVs.

5. CONCLUSIONS

This paper addressed the signal-free intersection crossing
problem for connected and automated vehicles (CAVs)
with a series hybrid electric powertrain. The dynamic
model of series hybrid electric vehicle (sHEV) is convexi-

fied in the space domain. The optimization problems are
formulated within a convex decentralized model predic-
tive control (DMPC) framework to ensure a rapid search
and unique optimal solution. Numerical examples first
validate the effectiveness of the proposed methods with
convex relaxation and approximation. The performance of
the proposed approach is evaluated against the optimal
results yielded by solving the same decentralized intersec-
tion problems but with two convex benchmark models of
conventional vehicles (CVs) and battery electric vehicles
(BEVs). By utilizing the petrol price and electricity charg-
ing prices from 2021 Q4 to Oct 2022, it can be found that
although the last year witnessed a sharply increasing elec-
tric price, CVs are still the most expensive to travel with.
Moreover, the average energy price to travel with sHEVs
approaches or even, in some cases, reaches the same level
as with BEVs, especially under an efficient transportation
strategy (less average traveling time consumption), which
highlights the cost-effective of sHEVs in the current UK
market of increasing electricity prices.

Future work will focus on a more comprehensive analysis of
the performance of various HEV types under the turbulent
electricity market, including the parallel HEVs, and plug-
in electric vehicles for autonomous intersection crossing
problems. Robust control strategies will be developed to
tackle the potential uncertainties in mathematics models,
communications, and measurements. The impact of elec-
tricity penetration rates on traffic performance will be in-
vestigated within the proposed DMPC framework instead
of assuming that all CAVs are of the same type or that
different types of CAVs are present in equal proportions.
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