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Abstract: This paper presents a novel strategy to control a multi-agent system along a given
reference path while ensuring compliance with a given time profile for the movements along the
route in question. The proposed protocol is based on a three-step methodology. In a first step,
each agent state is augmented with an artificial variable that defines the movement of the agents
along the given path. The extended agent state is then mapped into a virtual frame that takes
into account the displacement of its position with respect to the reference path and the control
over the additional artificial variable. Finally, in a third step, the control law designed in the
artificial frame is translated into an action in the real frame using the theory of diffeomorphisms.
The proposed control strategy ensures finite-time convergence of the entire multi-agent system
on the reference path, while achieving error bounding for each agent evolution with respect to a
given reference motion profile. Numerical simulations are performed to illustrate the described
results.
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1. INTRODUCTION

A multi-agent system consists of several interacting intel-
ligent agents that, by exploiting their communication, can
solve problems that would be difficult or even impossible
for a single, individual agent or a monolithic system to
solve (see Hu et al. (2021a,b)). A growing number of ap-
plications benefit from the coordination and cooperation of
multiple autonomous agents to achieve a group goal. The
main ideas behind agent flock studies were first proposed
by Reynolds (1987), where the flight behaviour of a flock
of birds was modelled as a group of agents, where each bird
follows a set of simple rules and interacts with others in its
neighborhood. Other examples of biological swarming can
be found in fish schools, insect swarms, bacterial swarms
and quadruped herds, as described in Warburton and
Lazarus (1991). The spontaneous emergence of collective
behaviours in animal groups and in biological and social
networks has inspired several engineering applications (see
Mwaffo et al. (2021)), in which groups of agents coordinate
themselves by exploiting local interactions between indi-
viduals to achieve multiple benefits for the whole team:
more efficient foraging or more effective defence against
predators (see Chipade and Panagou (2021); Gazi and
Passino (2011); Dunbabin and Marques (2012); Egerstedt
and Hu (2001)).

In the multitude of research topics of interest related to
swarms, the coordinated movement of multiple vehicles

has attracted the control community in recent decades due
to its wide range of applications (see Schranz et al. (2020)).
This type of synchronised movement in a multi-agent
system is usually referred to as formation control and its
solutions require an orderly arrangement of vehicles during
movement (Dong et al. (2016); Fedele and D’Alfonso
(2018)). A special case of formation control is the control
of vehicle platoons, where several interconnected vehicles
(agents) move in a string-like formation, maintaining a
close distance between vehicles to reduce fuel consumption
(Liang et al. (2015)). This type of formation control
problem has been approached in several ways: Consensus-
based control has been applied by Zheng et al. (2015),
D’Alfonso et al. (2018) uses a model predictive control
strategy, while Gao et al. (2018) and Li et al. (2017) use
sliding mode control and robust control, respectively.

Although the literature has dealt extensively with platoon
control, the proposed solutions are generally based on
control schemes in which the movement to be imposed
on the agents is considered as a reference time trajectory
to be followed (Xu et al. (2019)). In contrast, the idea in
the present work is to use a suitable parametrisation of
the path (i.e. road) on which the multi-agent system is to
travel, separating the problem of reaching such a path from
the problem of moving along it. In other words, an appro-
priate diffeomorphism is used to translate the movement
of each agent into a part related to reaching the desired
path and a part related to the desired movement profile
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Università della Calabria, Via Pietro Bucci, Cubo 42-C, Rende (CS),

87036, Italy (e-mail:
{antonio.bono,luigi.dalfonso,giuseppe.fedele}@unical.it).

∗∗ Dept. of Electronic and Electrical Engineering, University College
London, London WC1E 6BT, U.K. (e-mail:boli.chen@ucl.ac.uk).

Abstract: This paper presents a novel strategy to control a multi-agent system along a given
reference path while ensuring compliance with a given time profile for the movements along the
route in question. The proposed protocol is based on a three-step methodology. In a first step,
each agent state is augmented with an artificial variable that defines the movement of the agents
along the given path. The extended agent state is then mapped into a virtual frame that takes
into account the displacement of its position with respect to the reference path and the control
over the additional artificial variable. Finally, in a third step, the control law designed in the
artificial frame is translated into an action in the real frame using the theory of diffeomorphisms.
The proposed control strategy ensures finite-time convergence of the entire multi-agent system
on the reference path, while achieving error bounding for each agent evolution with respect to a
given reference motion profile. Numerical simulations are performed to illustrate the described
results.

Keywords: Multi-agent system, Finite-time control, Distributed path tracking, Swarm of
agents, Diffeomorphism-based control.

1. INTRODUCTION

A multi-agent system consists of several interacting intel-
ligent agents that, by exploiting their communication, can
solve problems that would be difficult or even impossible
for a single, individual agent or a monolithic system to
solve (see Hu et al. (2021a,b)). A growing number of ap-
plications benefit from the coordination and cooperation of
multiple autonomous agents to achieve a group goal. The
main ideas behind agent flock studies were first proposed
by Reynolds (1987), where the flight behaviour of a flock
of birds was modelled as a group of agents, where each bird
follows a set of simple rules and interacts with others in its
neighborhood. Other examples of biological swarming can
be found in fish schools, insect swarms, bacterial swarms
and quadruped herds, as described in Warburton and
Lazarus (1991). The spontaneous emergence of collective
behaviours in animal groups and in biological and social
networks has inspired several engineering applications (see
Mwaffo et al. (2021)), in which groups of agents coordinate
themselves by exploiting local interactions between indi-
viduals to achieve multiple benefits for the whole team:
more efficient foraging or more effective defence against
predators (see Chipade and Panagou (2021); Gazi and
Passino (2011); Dunbabin and Marques (2012); Egerstedt
and Hu (2001)).

In the multitude of research topics of interest related to
swarms, the coordinated movement of multiple vehicles

has attracted the control community in recent decades due
to its wide range of applications (see Schranz et al. (2020)).
This type of synchronised movement in a multi-agent
system is usually referred to as formation control and its
solutions require an orderly arrangement of vehicles during
movement (Dong et al. (2016); Fedele and D’Alfonso
(2018)). A special case of formation control is the control
of vehicle platoons, where several interconnected vehicles
(agents) move in a string-like formation, maintaining a
close distance between vehicles to reduce fuel consumption
(Liang et al. (2015)). This type of formation control
problem has been approached in several ways: Consensus-
based control has been applied by Zheng et al. (2015),
D’Alfonso et al. (2018) uses a model predictive control
strategy, while Gao et al. (2018) and Li et al. (2017) use
sliding mode control and robust control, respectively.

Although the literature has dealt extensively with platoon
control, the proposed solutions are generally based on
control schemes in which the movement to be imposed
on the agents is considered as a reference time trajectory
to be followed (Xu et al. (2019)). In contrast, the idea in
the present work is to use a suitable parametrisation of
the path (i.e. road) on which the multi-agent system is to
travel, separating the problem of reaching such a path from
the problem of moving along it. In other words, an appro-
priate diffeomorphism is used to translate the movement
of each agent into a part related to reaching the desired
path and a part related to the desired movement profile

Swarm Model for Path Tracking with
Reference Motion Profile: a

Diffeomorphism-based Approach

A. Bono ∗ B. Chen ∗∗ L. D’Alfonso ∗ G. Fedele ∗

∗ Dept. of Computer Engineering, Modeling, Electronics and Systems,
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1. INTRODUCTION

A multi-agent system consists of several interacting intel-
ligent agents that, by exploiting their communication, can
solve problems that would be difficult or even impossible
for a single, individual agent or a monolithic system to
solve (see Hu et al. (2021a,b)). A growing number of ap-
plications benefit from the coordination and cooperation of
multiple autonomous agents to achieve a group goal. The
main ideas behind agent flock studies were first proposed
by Reynolds (1987), where the flight behaviour of a flock
of birds was modelled as a group of agents, where each bird
follows a set of simple rules and interacts with others in its
neighborhood. Other examples of biological swarming can
be found in fish schools, insect swarms, bacterial swarms
and quadruped herds, as described in Warburton and
Lazarus (1991). The spontaneous emergence of collective
behaviours in animal groups and in biological and social
networks has inspired several engineering applications (see
Mwaffo et al. (2021)), in which groups of agents coordinate
themselves by exploiting local interactions between indi-
viduals to achieve multiple benefits for the whole team:
more efficient foraging or more effective defence against
predators (see Chipade and Panagou (2021); Gazi and
Passino (2011); Dunbabin and Marques (2012); Egerstedt
and Hu (2001)).

In the multitude of research topics of interest related to
swarms, the coordinated movement of multiple vehicles

has attracted the control community in recent decades due
to its wide range of applications (see Schranz et al. (2020)).
This type of synchronised movement in a multi-agent
system is usually referred to as formation control and its
solutions require an orderly arrangement of vehicles during
movement (Dong et al. (2016); Fedele and D’Alfonso
(2018)). A special case of formation control is the control
of vehicle platoons, where several interconnected vehicles
(agents) move in a string-like formation, maintaining a
close distance between vehicles to reduce fuel consumption
(Liang et al. (2015)). This type of formation control
problem has been approached in several ways: Consensus-
based control has been applied by Zheng et al. (2015),
D’Alfonso et al. (2018) uses a model predictive control
strategy, while Gao et al. (2018) and Li et al. (2017) use
sliding mode control and robust control, respectively.

Although the literature has dealt extensively with platoon
control, the proposed solutions are generally based on
control schemes in which the movement to be imposed
on the agents is considered as a reference time trajectory
to be followed (Xu et al. (2019)). In contrast, the idea in
the present work is to use a suitable parametrisation of
the path (i.e. road) on which the multi-agent system is to
travel, separating the problem of reaching such a path from
the problem of moving along it. In other words, an appro-
priate diffeomorphism is used to translate the movement
of each agent into a part related to reaching the desired
path and a part related to the desired movement profile
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on that path. In this way, imposing different movement
profiles on the same reference path becomes a very trivial
task.

The entire control protocol will conform to the map-
design-map back scheme. First, the multi-agent system will
be enriched with a set of artificial variables to augment
each agent dimension. This augmented swarm is then
mapped into a virtual reference frame, exploiting the
parameterisation of the road on which the agents must
be driven, which takes into account position errors with
respect to the reference path and movement errors with
respect to a given target movement profile. In this novel
reference frame, a virtual control law is designed, which
is then fed back to the real reference frame to control
the real multi-agent system. As mentioned before, the
proposed control strategy ensures finite-time convergence
of the swarm to the target path while achieving a bounded
motion error with respect to the desired movement profile
on the target path.

The paper is organized as follows. Section 2 describes
the problem to address. Section 3 defines the proposed
strategy to solve the problem in terms of the used reference
frames mapping. The multi-agent system model and its
main properties are described in Section 4. Section 5
provides numerical simulations to highlight the obtained
theoretical results. Last section is devoted to conclusions.

Notation

The following conventions and notations are used through-
out the paper:

• R≥0 (R>0) is the set of non-negative (positive) reals;
• N+ is the set of integer numbers greater than 0;
• 0k is the k ∈ N+ dimensional zero vector;
• Ik is the identity matrix of order k ∈ N+;
• given a vector v ∈ Rn, its cartesian coordinates are
denoted as v1, v2, . . . , vn;

• given x ∈ R, the signum function is defined as

sign(x) =
|x|
x

=

{−1, if x < 0,
0, if x = 0,
1, if x > 0;

• G = {V,E} is an undirected graph consisting of a
nonempty finite set of vertices V = {vi, i = 1, ..., n}
and of a set of unordered pairs of vertices E ⊆
{(vi, vj) : vi, vj ∈ V, vi ̸= vj} representing the edges
of the graph. When an edge exists between ver-
tices vi and vj , they are called adjacent. The set
of neighbours of node vi is denoted by Ni =
{vj ∈ V \{vi} : (vi, vj) ∈ E}.

2. PROBLEM STATEMENT

This section defines the problem of interest and the char-
acteristics that its solution must fulfil.

Consider a swarm of ν ∈ N+ agents modeled as kinematic
points moving in Rn, n ∈ N+:

żi(t) = ui(t), i = 1, . . . , ν (1)

and assume that the agents can interact with each other as
defined by the communication topology G. In particular,
the standard approach is to model the interaction between

agents by an undirected graph G consisting of agents as
nodes of the graph and interactions due to perception and
communication as edges of the graph.

Consider now a continuous and differentiable curve in Rn,
γ ∈ C1, with γ : R → Rn, representing a given path or a
shape defined in cartesian coordinates as

γ(ω) = [γ1(ω), . . . , γn(ω)]
T

(2)

and related to the variable ω ∈ R for its continuous
parametrization. For a path moving exactly on γ, a motion
profile can be chosen by describing the time evolution,
namely ω(t), and looking at the resulting value of the
curve, i.e. γ(ω(t)). The problem to be solved can now be
defined as follows.

Path tracking on a curve problem (PTCP)

Given the set of agents defined in (1), assume a coherent
communication topology and a curve γ(ω) as defined in
(2) with a target movement profile for the path on the
curve, i.e. ω̄(t), find a control protocol ui(t), i = 1, . . . , ν,
to ensure that:

C1 each agent reaches and remains on γ(ω) without ever
leaving its contour, i.e. there exists a time τ such that
the multi-agent system defined by zi(t), i = 1, . . . , ν
moves on γ(ω) for each t ≥ τ ;

C2 the movements of the agents on γ are asymptotically
related to the movement profile of the reference target
ω̄(t), so that
• a velocity consensus is achieved:

lim
t→∞

(
żi(t)−

∂γ(ω)

∂ω

∣∣∣∣
ω̄(t)

˙̄ω(t)

)
= 0n, ∀i; (3)

• the positions of the agents are in a bounded
region with respect to the reference positions
defined by ω̄(t):

∃∆z > 0 s.t. lim
t→∞

∥zi(t)−γ(ω̄(t))∥ ≤ ∆z, ∀i. (4)

In other words, a control law must be designed that steers
the agents on the curve γ(·) in such a way that they move
exactly on this curve, respecting a motion profile defined
by ω̄(t), with a bounded error with respect to the reference
trajectory γ(ω̄(t)).

3. REFERENCE FRAMES MAPPING

To solve the PTCP, the main idea is to use a mapping
between the reference frame in which the multi-agent
system is defined and a new frame in which the errors
between the agents’ states and the target curve are taken
into account together with a tracking error with respect
to the movement profile ω̄(t). Going deeper, it is assumed
that each agent state is artificially augmented by another
variable, ωi(t) ∈ R, representing its current state on the
curve γ, i.e. the following new set of agents is defined

ζi(t) =
[
zTi (t), ωi(t)

]T
, i = 1, . . . , ν

assuming that the initial conditions ωi(0) ̸= ωj(0) are
chosen for each pair (i, j) of agents, and with the corre-
sponding augmented model

ζ̇i(t) = Ui(t) =
[
uT
i (t), uω,i(t)

]T
, i = 1, . . . , ν (5)

Fig. 1. Example of mapping from zi to ei considering the
case of 2-dimensional agents with ωi =

π
2 and γ(ω) as

a circle centered in [3, 2.5]T with radius of 2 meters.

where the artificial control action uω,i(t) ∈ R was also used
to augment the control signal.

At this point by defining the error signal as

ei(t) ≜ zi(t)− γ(ωi(t)),

see Fig. 1, a diffeomorphism associated with a virtual
mapping from ζi(t) to a virtual agent

Ei =

ei(t)

T , ωi(t)
T

(6)

can be considered and used to translate the evolution of
the agents in the real reference frame into an evolution
where the discrepancies in terms of γ(·) are taken into
account together with the movement profile of each agent
on the curve. In particular, in the new frame where
agents move Ei, i = 1, . . . , ν, if the first n coordinates of
each agent go to zero and remain stable, and if the last
coordinate follows the reference ω̄(t) with bounded error
and a velocity consensus, i.e. |ωi(t)− ω̄(t)| is bounded and
ω̇i = ˙̄ω(t), then the PTCP would be solved in the real
reference frame.

For the sake of completeness, we recall below a useful
property of diffeomorphism that applies to the dynamic
evolution of a mathematical model.

Lemma 1. Consider a system ẋ(t) = f(x(t)) and the
diffeomorphism x = h(y). Then the system evolution in
the new variable results in

ẏ(t) = (J (y(t)))
−1

f(x(t))

where J (y(t)) ≜
∂

∂y
h


y(t)

is the jacobian of the diffeomor-

phism computed in y(t) (see Banyaga (2013)).

Therefore, Lemma 1 can be used to map the solution
obtained in the auxiliary reference frame to the real one.
The proposed overall solution is then composed of three
main steps:

(1) Convert ζi(t), i = 1, . . . , ν to related virtual agents
Ei(t) as defined by the diffeomorphism in (6).

(2) Assuming a model Ėi(t) = UE,i(t), design the control
law UE,i, i = 1, . . . , ν to solve the modified version
of the PTCP in the artificial reference frame as
described earlier.

(3) Convert the artificial control law back to the real one
using Lemma 1 as

Ui(t) = [J (t)]
−1 UE,i(t)

with the Jacobian of the diffeomorphism obtained as

J (t) =




In − ∂

∂ω
γ(ω)

0Tn 1





ζi(t)

.

4. MULTI-AGENT SYSTEM PROPERTIES

In this section, the defined problem is solved in the
auxiliary frame so that to obtain a control signal that is
converted into the real frame, as defined in the previous
section. In particular, the following artificial control law is
proposed

UE,i(t) =


ue,i(t)
uω,i(t)


=


−ei(t)− σi(t)
−(ωi(t)− ω̄(t)) + qi(t) + ˙̄ω(t)



(7)
where, given µ ∈ (0, 1), β ∈ R>0 and denoted as ei,k, k =
1, . . . , n the k-th coordinate of ei,

• ue,i ∈ Rn accounts for the evolution of ei(t) and

σi(t) = [σi,1(t), . . . , σi,n(t)]
T
with

σi,k(t) = sign(ei,k(t))|ei,k(t)|µ;
• the signal qi(t) ∈ R models the interaction between

the artificial signals ωi, i = 1, . . . , ν as

qi(t) = β

j∈Ni

g(|ωi(t)− ωj(t)|)(ωi(t)− ωj(t)).

The function g(·) : R≥0 → R≥0 represents the inter-
action force between two agents along the artificial
axis on which ωi, i = 1, . . . , ν evolves and is assumed
to satisfy the following properties

∃J(∥p∥) : R → R s.t.
d

dp
J(|p|) = −g(|p|)p (8)

∃δ ∈ R≥0 :


g(|p|)|p| ≤ δ
∨
g(|p|)|p| ≤ δ/|p|.

(9)

As for (9), it is fulfilled if g(·) is compliant with one of
the defined conditions, and depending on which one is
satisfied, the defined interaction function g(·) will provide
for bounded or unbounded repulsion effect between ωi

and ωj (see Fedele et al. (2022)). Both cases are analysed
below.

As a first result, the asymptotic behaviour of the artificial
signals ωi shall be investigated.

Theorem 2. The artificial signals ωi(t), i = 1, . . . , ν,
whose evolution is determined by (5) and (7), asymptot-
ically reach a configuration where their centroid goes to
the target motion profile ω̄, i.e.

lim
t→∞


1

ν

ν
i=1

ωi(t)− ω̄(t)


= 0.

Proof. Let V =
1

2


1

ν

ν
i=1

(ωi(t)− ω̄(t))

2

be a candidate

Lyapunov function. Its derivative results in
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Fig. 1. Example of mapping from zi to ei considering the
case of 2-dimensional agents with ωi =

π
2 and γ(ω) as

a circle centered in [3, 2.5]T with radius of 2 meters.

where the artificial control action uω,i(t) ∈ R was also used
to augment the control signal.

At this point by defining the error signal as

ei(t) ≜ zi(t)− γ(ωi(t)),

see Fig. 1, a diffeomorphism associated with a virtual
mapping from ζi(t) to a virtual agent

Ei =

ei(t)

T , ωi(t)
T

(6)

can be considered and used to translate the evolution of
the agents in the real reference frame into an evolution
where the discrepancies in terms of γ(·) are taken into
account together with the movement profile of each agent
on the curve. In particular, in the new frame where
agents move Ei, i = 1, . . . , ν, if the first n coordinates of
each agent go to zero and remain stable, and if the last
coordinate follows the reference ω̄(t) with bounded error
and a velocity consensus, i.e. |ωi(t)− ω̄(t)| is bounded and
ω̇i = ˙̄ω(t), then the PTCP would be solved in the real
reference frame.

For the sake of completeness, we recall below a useful
property of diffeomorphism that applies to the dynamic
evolution of a mathematical model.

Lemma 1. Consider a system ẋ(t) = f(x(t)) and the
diffeomorphism x = h(y). Then the system evolution in
the new variable results in

ẏ(t) = (J (y(t)))
−1

f(x(t))

where J (y(t)) ≜
∂

∂y
h


y(t)

is the jacobian of the diffeomor-

phism computed in y(t) (see Banyaga (2013)).

Therefore, Lemma 1 can be used to map the solution
obtained in the auxiliary reference frame to the real one.
The proposed overall solution is then composed of three
main steps:

(1) Convert ζi(t), i = 1, . . . , ν to related virtual agents
Ei(t) as defined by the diffeomorphism in (6).

(2) Assuming a model Ėi(t) = UE,i(t), design the control
law UE,i, i = 1, . . . , ν to solve the modified version
of the PTCP in the artificial reference frame as
described earlier.

(3) Convert the artificial control law back to the real one
using Lemma 1 as

Ui(t) = [J (t)]
−1 UE,i(t)

with the Jacobian of the diffeomorphism obtained as

J (t) =




In − ∂

∂ω
γ(ω)

0Tn 1





ζi(t)

.

4. MULTI-AGENT SYSTEM PROPERTIES

In this section, the defined problem is solved in the
auxiliary frame so that to obtain a control signal that is
converted into the real frame, as defined in the previous
section. In particular, the following artificial control law is
proposed

UE,i(t) =


ue,i(t)
uω,i(t)


=


−ei(t)− σi(t)
−(ωi(t)− ω̄(t)) + qi(t) + ˙̄ω(t)



(7)
where, given µ ∈ (0, 1), β ∈ R>0 and denoted as ei,k, k =
1, . . . , n the k-th coordinate of ei,

• ue,i ∈ Rn accounts for the evolution of ei(t) and

σi(t) = [σi,1(t), . . . , σi,n(t)]
T
with

σi,k(t) = sign(ei,k(t))|ei,k(t)|µ;
• the signal qi(t) ∈ R models the interaction between

the artificial signals ωi, i = 1, . . . , ν as

qi(t) = β

j∈Ni

g(|ωi(t)− ωj(t)|)(ωi(t)− ωj(t)).

The function g(·) : R≥0 → R≥0 represents the inter-
action force between two agents along the artificial
axis on which ωi, i = 1, . . . , ν evolves and is assumed
to satisfy the following properties

∃J(∥p∥) : R → R s.t.
d

dp
J(|p|) = −g(|p|)p (8)

∃δ ∈ R≥0 :


g(|p|)|p| ≤ δ
∨
g(|p|)|p| ≤ δ/|p|.

(9)

As for (9), it is fulfilled if g(·) is compliant with one of
the defined conditions, and depending on which one is
satisfied, the defined interaction function g(·) will provide
for bounded or unbounded repulsion effect between ωi

and ωj (see Fedele et al. (2022)). Both cases are analysed
below.

As a first result, the asymptotic behaviour of the artificial
signals ωi shall be investigated.

Theorem 2. The artificial signals ωi(t), i = 1, . . . , ν,
whose evolution is determined by (5) and (7), asymptot-
ically reach a configuration where their centroid goes to
the target motion profile ω̄, i.e.

lim
t→∞


1

ν

ν
i=1

ωi(t)− ω̄(t)


= 0.

Proof. Let V =
1

2


1

ν

ν
i=1

(ωi(t)− ω̄(t))

2

be a candidate

Lyapunov function. Its derivative results in
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V̇ =
1

ν2


ν

i=1

(ωi − ω̄)


ν

i=1

(ω̇i − ˙̄ω) = − 1

ν2


ν

i=1

(ωi − ω̄)

2

where the time dependency has been omitted for the sake
of clarity. �

Let us now analyse the evolution of the discrepancy
signals ei(t), i = 1, . . . , ν. In particular, it is shown that
these signals approach zero at steady-state and further
properties are given for the transient time until the steady-
state value is reached.

Theorem 3. The signals ei(t), i = 1, . . . ν, evolving accord-
ing to (5) and (7), reach 0n in finite time:

∃τ > 0 s.t. ei(t) = 0n, ∀t ≥ τ, ∀i.

Proof. The evolution of ei(t) can be viewed as a set of n
independent equations, one for each of its components. To
prove the convergence to zero of each component ei,k, k =
1, . . . , n, i = 1, . . . , ν, consider the candidate Lyapunov

function Vi,k(t) =
1

2
e2i,k, whose derivative is

V̇i,k = ei,kėi,k = ei,k (−ei,k − sign(ei,k)|ei,k|µ) =

= −e2i,k − |ei,k|µ+1 ≤ −|ei,k|µ+1 = −2
µ+1
2 |ei,k|µ+1

2
µ+1
2

=

= −2
µ+1
2


e2i,k
2

µ+1
2

= −2
µ+1
2 (Vi,k)

µ+1
2

that, as described by Fedele et al. (2018), ensures finite

time convergence to zero after τi = max
k=1,...,n

V 1−η
i,k (0)

2η(1− η)
with

η = µ+1
2 . Defining now τ = max

i=1,...,ν
τi the proof follows. �

The above result explains the compliance with condition
C1 of PTCP when the control law is mapped back to
the original reference frame, since the error between zi(t)
and the moving point γ(ωi(t)) reaches and remains zero.
The next results give information about the stationary
positions that the agents reach around γ(ω̄(t)).

Theorem 4. The signals ωi(t), i = 1, . . . , ν ruled by (7)
asymptotically reach a bounded region around ω̄(t), i.e.

∃∆ω ∈ R>0 s.t. lim
t→∞

|ωi(t)− ω̄(t)| ≤ ∆ω, i = 1, . . . , ν.

Proof. Let wi(t) ≜ ωi(t) − ω̄(t) define the error between
ωi and the reference, then the error evolution yields

ẇi = −wi + β

j∈Ni

g(|wi − wj |)(wi − wj). (10)

The proof now changes depending on which condition
in (9) is satisfied; in other words, depending on the
boundedness of g(·), a different value for ∆ω can be found.

Bounded interaction: g(|p|)|p| ≤ δ

Consider the candidate Lyapunov function V (t) =
1

2
w2

i (t)

with V̇ (t) = −w2
i (t) + β


j∈Ni

wigij(wi − wj) where the

notation gij = g(|wi(t) − wj(t)|) was used for clarity. It
follows that

V̇ (t) ≤ −w2
i (t) + β


j∈Ni

|wi(t)|gij |wi(t)− wj(t)| ≤

≤ −w2
i (t) + β|wi(t)|(ν − 1)δ

that is V̇ (t) ≤ 0 until |wi(t)| ≥ β(ν−1)δ which means that
|ωi(t)− ω̄(t)| takes a value bounded by ∆ω = β(ν − 1)δ.

Unbounded interaction: g(|p|)|p| ≤ δ/|p|

Let V (t) =
1

2

ν
i=1

w2
i (t) be a candidate Lyapunov function.

Considering the set E of all the edges in the topology graph
of the multi-agent system, the derivative of V (t) can be
written as follows:

V̇ =

ν
i=1

wiẇi =

ν
i=1

wi


−wi + β


j∈Ni

gij(wi − wj)


 =

= −
ν

i=1

w2
i + β


(i,j)∈E

gij(wi − wj)
2

where

ν
i=1


j∈Ni

gijwi(wi − wj) =


(i,j)∈E

gij(wi − wj)
2 has

been used (see Mesbahi and Egerstedt (2010)).

Now considering the property g(|p|)|p| ≤ δ/|p|, it follows

that V̇ (t) ≤ −
ν

i=1

w2
i (t)+β

ν(ν − 1)

2
δ is certainly less than

zero if at least one agent w2
i (t) ≥ β

ν(ν − 1)

2
δ. Therefore,

∆ω =


β
ν(ν − 1)

2
δ can be chosen. �

The result of the Theorem 4 ensures that the agents in
the real reference frame reach a bounded region around
the target γ(ω̄(t)), so that the second part of condition
C2 in the definition of PTCP is satisfied. In particular,
∆z = max

t
max

ω∈[ω̄(t)−∆ω,ω̄(t)+∆ω ]
∥γ(ω)− γ(ω̄(t))∥.

Theorem 5. The artificial signals ωi(t), i = 1, . . . , ν driven
by the control law in (7) asymptotically reach a velocity
consensus at ˙̄ω(t), i.e. lim

t→∞
(ω̇i(t)− ˙̄ω(t)) = 0, i = 1, . . . , ν.

Proof. Consider the model in (10) and the function

Ξ(t) =
ν

i=1

w2
i + β

ν
i=1


j∈Ni

J(|wi − wj |)

then

Ξ̇ =
ν

i=1

2wiẇi + β

ν
i=1


j∈Ni


∂J

∂wi
ẇi +

∂J

∂wj
ẇj


=

−2

ν
i=1

ẇ2
i + 2β

ν
i=1


j∈Ni

gij(wi − wj)ẇi+

+β

ν
i=1


j∈Ni


∂J

∂wi
ẇi +

∂J

∂wj
ẇj



where 2wi = 2


−ẇi + β


j∈Ni

gij(wi − wj)


 has been

used. By exploiting now (8), it follows that

Ξ̇ = −2

ν
i=1

ẇ2
i + 2β

ν
i=1


j∈Ni

gij(wi − wj)ẇi+

−β

ν
i=1


j∈Ni

gij(wi − wj)ẇi − β

ν
i=1


j∈Ni

gij(wi − wj)ẇj

where the sum of the last terms of the r.h.s. is zero due
to the reciprocity of the neighbourhood of each agent

and then Ξ̇ = −2

ν
i=1

ẇ2
i . Since the evolution of wi is

bounded according to the Theorems 3 and 4, LaSalle’s In-
variance Principle (Khalil (2002)) ensures that the agents
asymptotically converge to the largest invariant set in
{w ∈ R | Ξ̇ = 0}, i.e., all signals ωi converge to a fixed
configuration with respect to ω̄(t) and a velocity consensus
at ˙̄ω(t) is achieved. �

The last result, translated into the real frame of reference,
ensures the fulfilment of the first part of condition C2 in
the definition of PTCP. In summary, the model defined by
(5) using the diffeomorphism in (6) and the control law
proposed in (7) ensures that PTCP is solved.

5. NUMERICAL SIMULATIONS

In order to highlight the main features of the proposed
solution, two numerical simulations were carried out. In
both simulations, a set of ν = 5 agents was used, with
initial conditions randomly chosen in a square with a side
of 5 meters and centred at [−3,−3]T . As for the artificial
signals ωi, i = 1, . . . , ν, their initial values were chosen
randomly in a line of length 20 and centred at zero.

Example 1. In the first simulation, the five agents were
controlled to track the path

γ(ω(t)) =

ω(t), 10(1−Ae−ξψω(t) sin(2ψA−1ω(t) + ϕ))

T

with A = 1.005, ψ = 1.4706, ξ = 0.1 and a reference
motion profile ω̄(t) = t. The parameters µ = 0.5, β = 10
were fixed; the connectivity between agents was encoded
by the following Laplacian matrix

L =




1 0 0 0 −1

0 2 −1 −1 0

0 −1 3 −1 −1

0 −1 −1 3 −1

−1 0 −1 −1 3




and an unbounded interaction function g(|p|) = 1/p2,
related to J(p) = − log(|p|) and δ = 1, was used. The
overall results are shown in Figs. 2 and 3. The former
shows the evolution of the multi-agent system in some
time snapshots while the latter shows the finite time
convergence of ei(t), i = 1, . . . , ν and the boundedness
of |ωi(t)− ω̄(t)|, i = 1, . . . , ν.

Example 2. The five agents were driven on the circular

shape γ(ω(t)) = [3 cos(ω(t)), 3 sin(ω(t))]
T

with a refer-
ence motion profile ω̄(t) = 5 sin(0.5t). The parameters
µ = 0.5, β = 100 were set and full connectivity be-
tween the agents was assumed. The bounded interaction
function g(|p|) = (|p|2 + ε)−1 with ε = 0.01, related to

J(p) = −(1/2) log(p2 + ε) and δ = (1/2)ε−
1
2 (see Fedele

and D’Alfonso (2019)), was used. The results obtained are

Fig. 2. Example 1: Reference shape γ(ω), in black, and
three snapshots of agents’ configuration at t = 0s (red
circles), t = 8s (green circles) and t = 19s (magenta
circles). The agents have been labeled and the dashed
lines represent the connectivity as ruled by L.

Fig. 3. Example 1: Error signals evolution ei,1(t) (on the
left), ei,2(t) (on the center) and |wi(t)| (solid lines
on the right), i = 1, . . . , ν. The values of τ and ∆ω,
computed as defined in Theorems 3 and 4 respectively,
are shown (as black dashed lines) to highlight the
convergence and boundedness properties.

shown in Fig. 4 with 4 time snapshots highlighted. In par-
ticular, the first snapshot represents the initial conditions
of the agents, while the others highlight the evolution of
the multi-agent system and the direction of motion of each
agent on the reference curve. At t = 10s and t = 22s the
agents move counterclockwise while at t = 45s they move
clockwise, as prescribed by the chosen ω̄(t).

6. CONCLUSIONS

This paper is concerned with the design of a control
protocol for a multi-agent system that enables a platoon
formation along a desired path and with a given movement
profile. A three-step strategy based on the theory of
diffeomorphisms has been described. The main steps are
to augment each agent state with an artificial variable
that defines the movement of the agents on the prescribed
path; to map this novel state into a virtual framework that
accounts for the shift in the pose of the agents with respect
to the reference route and the control over the additional
artificial variable; to map the designed virtual control law
back to a real one. The proposed protocol ensures finite-
time convergence of the agent swarm on the reference path
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are shown (as black dashed lines) to highlight the
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shown in Fig. 4 with 4 time snapshots highlighted. In par-
ticular, the first snapshot represents the initial conditions
of the agents, while the others highlight the evolution of
the multi-agent system and the direction of motion of each
agent on the reference curve. At t = 10s and t = 22s the
agents move counterclockwise while at t = 45s they move
clockwise, as prescribed by the chosen ω̄(t).

6. CONCLUSIONS

This paper is concerned with the design of a control
protocol for a multi-agent system that enables a platoon
formation along a desired path and with a given movement
profile. A three-step strategy based on the theory of
diffeomorphisms has been described. The main steps are
to augment each agent state with an artificial variable
that defines the movement of the agents on the prescribed
path; to map this novel state into a virtual framework that
accounts for the shift in the pose of the agents with respect
to the reference route and the control over the additional
artificial variable; to map the designed virtual control law
back to a real one. The proposed protocol ensures finite-
time convergence of the agent swarm on the reference path
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Fig. 4. Example 2: Reference shape γ(ω), in black, and
four snapshots of agents’ configuration. At t =
10s, 22s, 45s the direction of motion of the agents
is represented by change of transparency (from more
transparent to less transparent over time).

while achieving bounded error for each agent evolution
with respect to a given reference movement profile.
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