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ABSTRACT
School infrastructure affects the quality of education and the performance of children and youth.
Natural hazards such as earthquakes, hurricanes, floods, and landslides, threaten critical infrastructure
such as school facilities. Additionally, problems related to the functionality of these facilities are com-
mon in the region, such as an inadequate number of classrooms, poor lighting, and insufficient venti-
lation, among others. At a national level, the decision-making process to prioritize schools’
interventions becomes even more challenging due to limited resources and lack of information.
Furthermore, there is a lack of a systematic approach to address the need of improving existing infra-
structure taking into consideration limited resources. Considering this, a novel decision-making frame-
work is proposed that prioritizes school infrastructure investment with limited budgets, using
clustering procedures, a multi-criteria utility function, and an optimization component. This framework
allows better public policy decisions and benefits students in terms of buildings quality with a multi-
criteria perspective, improving both safety and functional conditions. The framework is illustrated with
a case study applied to the public-school infrastructure in the Dominican Republic.
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1. Introduction

Quality education is a necessary condition to close inequality
gaps, as it is stated in the Universal Declaration of Human
Rights by The United Nations (1948). Quality education is
also a priority of the Sustainable Development Goals (SDG),
as the fourth goal states: Ensure inclusive and equitable quality
education and promote lifelong learning opportunities for all
(The United Nations, 2020). Additionally, education contrib-
utes to many SDGs by reducing poverty, driving economic
growth, and preventing inequality and injustice, among others
(UNICEF, 2019). Although there are national and inter-
national efforts to improve education in low- and middle-
income countries (L&MICs), more cooperative, structured,
systematic, and coordinated efforts are required from govern-
ments and multilateral agencies to enhance quality education
and reduce inequality gaps.

The United Nations showed that in L&MICs: 57 million
primary-aged children remain out of school; one out of four
girls do not have access to school; 50 percent of out-of-school
children live in conflict-affected areas; 103 million adolescents
(from which at least 60 percent are women) lack of necessary
literacy skills; and six out of ten children and adolescents are
not achieving a minimum level of proficiency in reading and

math (The United Nations, 2015). In addition, the education
level and quality among countries have large differences, for
example L&MICs have lower completion rates in all levels
compared to high-income countries (UNESCO, 2020).

Several factors affect the quality of education and account
for the existing gap between L&MICs and High-Income
Countries (HICs). In particular, the Non-Governmental
Organization (NGO) Educate a Child establishes the following
list of barriers to better quality education: poverty; challenging
geographies; conflict, insecurity, and instability; refugees; gen-
der; infrastructure; human, material, and financial resources;
teachers, contents, and academic procedures quality; and cli-
mate change (Educate a Child, 2020). Likewise, the World
Bank argues that quality education should be achieved
through five pillars: learners, teachers, learning resources,
schools (infrastructure), and systems management (human
resources and internal procedures) (The World Bank, 2020).
Both sources acknowledge the critical role that infrastructure
plays in the quality of education; the role has become evident
with the COVID-19 crisis (The World Bank, 2020). Also, this
situation differs considerably between Low-Income Countries
(LICs) and Middle-Income Countries (MICs), since the latter
usually have more technical and financial capacity than the
former (Huss & Keudel, 2020). In MICs, in contrast to LICs,
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institutions are strong enough to address this problem at the
country level. Therefore, improving school infrastructure in
MICs could have an impact on the education quality in these
countries, which account for 71% of the world’s population.

In essence, school infrastructure in MICs is in general
insufficient and the demand/capacity ratio to serve students
is unevenly distributed; both socio-economically and geo-
graphically (The World Bank, 2020). In addition, this infra-
structure usually presents significant functional and safety
limitations. Buildings typically do not meet minimum func-
tional learning conditions (e.g. students’ density, bathroom
facilities quality, and ventilation, among others), construc-
tion quality, and safety standards. It is also common that
government educational agencies require technical orienta-
tion to support strategic decisions on how to invest the lim-
ited resources available to improve and maintain the
institutional capacity and education quality. However, these
efforts usually lack of a systematic approach to address the
need of improving existing infrastructure considering lim-
ited resources. This has been demonstrated for the Latin
America and the Caribbean context by Mu~noz et al. (2020)
and in Lebanon by Naja and Baytiyeh (2014). For these rea-
sons, this gap is addressed by proposing a decision-making
framework to prioritize school infrastructure interventions
to develop large-scale improvement programs.

The rest of the paper is organized as follows: Section 2
presents the literature review. Section 3 outlines the decision-
making framework. Section 4 illustrates the framework in a
case study in the Dominican Republic. Finally, Section 5
presents some concluding remarks.

2. Literature review

Before defining the methodological approach, it is important
to understand how this problem has been approached in the
existing literature. This section presents the relevant studies
and initiatives that have been conducted to address each
step needed to improve school infrastructure. First, the role
that multilateral agencies, development banks, and national
governments have in the process of improving infrastructure
in developing countries is discussed. Then, how school
infrastructure can be measured, classified, and organized to
understand the impacts of the previously mentioned efforts
in infrastructure improvement programs is presented. This
will give a better understanding of the current efforts and
how they can be considered and improved.

In the first place, multilateral agencies promote infrastructure
development programs for the educational sector. UNICEF, the
United Nations International Children’s Emergency Fund,
works to guarantee access, improve learning skills, and help
emergencies in 190 countries through the UNICEF education
strategy 2015–2030 (UNICEF, 2019). UNESCO (the United
Nations Educational, Scientific, and Cultural Organization),
focuses on the school sector through the World Education
Agenda 2030 and the Global Education Monitoring Report
(GEM) (UNESCO, 2020). UNESCO has also emphasized infra-
structure safety by developing different tools such as VISUS
(UNESCO, 2019), a methodology for assessing safety attributes

in school facilities in El Salvador, Laos, Indonesia, and Peru.
Related to safety in school facilities, the UNDRR (the United
Nations Office for Disaster Risk Reduction), in collaboration
with the Global Alliance for Disaster Risk Reduction &
Resilience in Education Sector (GADRRRES), has developed ini-
tiatives such as the Comprehensive School Safety program and
the Worldwide Initiative for Safe Schools (UNDRR &
GADRRRES, 2017). These two initiatives provide a global
framework to support activities related to safe learning facilities,
school disaster risk management, and risk reduction and resili-
ence education. In addition, several NGOs have worked together
with these institutions to improve education quality in MICs
such as Educate a Child and Save the Children.

Development banks have also played a vital role in tech-
nical support, training, capacity building, and loans. In the
Latin American and the Caribbean (LAC) region, the Inter-
American Development Bank (IADB) conducted a project
named Learning in twenty-first-century schools (IADB., 2014)
in which they established the architectural and functional
characteristics to ensure a quality learning environment for
public schools in LAC countries. They produced 11 docu-
ments addressing different quality considerations such as
environmental impact, comfort, normative and costs, main-
tenance, disaster risk management, and their applications to
the region. In 2014, the World Bank launched the Global
Program for Safer Schools to invest in and improve school
infrastructure around the world. The program’s purpose is to
boost large-scale investments to enhance the safety and resili-
ence of school infrastructure at risk from natural hazards and
to improve the quality of learning environments for children
(The World Bank, 2020).

Regardless of the international efforts to improve infrastruc-
ture at the country level, most of these initiatives depend on
the short-term policies of the current government, as identified
by Huss and Keudel (2020). In MICs, school infrastructure
management lacks a well-structured long-term strategy, usually
due to the frequent changes in government policies. In terms
of budget allocation, the education ministry at the national
level often works with a tight annual budget that shall be split
on the maintenance of existing infrastructure and the develop-
ment of new facilities (Huss & Keudel, 2020). The allocated
budget is often not enough to maintain the current infrastruc-
ture under the right conditions, yet it is even harder to find
resources to develop new infrastructure or improve the existing
one. This situation is even more critical considering that the
school facilities portfolio is usually composed of different con-
struction typologies, financed and built through disparate
national programs, and executed by local governments, gener-
ally lacking reasonable quality control and standards enforce-
ment. These contextual factors contribute to inefficient school
infrastructure investment strategies in developing countries, as
seen in the LAC context (IADB., 2014). In other L&MICs
countries, such as Nigeria, there is no consistent and coordi-
nated political effort related to maintenance, improvement, and
development of the school infrastructure while simultaneously
considering social, economic, and political aspects (Osaro &
Wokekoro, 2018).

2 R. FERNÁNDEZ ET AL.



However, before implementing any school infrastructure
intervention, it is important to understand what constitutes
good quality infrastructure and how this can be measured.
This question has been addressed by Barrett, Treves, Shmis,
Ambasz, and Ustinova (2019), who highlight that quality
school infrastructure should be characterized by being access-
ible, providing a safe and healthy environment, and offering
optimal space for learning. These characteristics can be
grouped into two main categories: functionality and safety.
While functionality focuses on an optimal learning environ-
ment and health conditions; safety focuses on the structural
stability of buildings in the case of natural hazards.

The functionality of school buildings relates to multiple
aspects, from water and sanitation hygiene (e.g. bathroom
facilities quality and occurrence), students’ density, access to
the sewer system, security fences, ventilation, lighting, and
CO2 levels, among others. In HICs, one of the most recog-
nized and accepted standards is the Building Handbook
developed by the Department of Education of the United
Kingdom (UK Department of Education, 2011), which sev-
eral countries follow. In MICs, although there are national
guides with varying standards, as is the case for Colombia
(Icontec; Ministerio de Educaci�on Nacional, 2017) and
Dominican Republic (SEOPC, 2006) according to UNESCO
these can vary as much as tenfold among them (Beynon,
1997). For example, student density is addressed in the UK,
Colombia, and the Dominican Republic, varying its require-
ment from 2.0, 1.8, and 1.4 square meters built per student,
respectively. Concerning the bathroom facilities density, the
maximum number of students per toilet, urinals, and sinks,
ranges from 15, 25, to 30 students per element, respectively.
These differences show how students’ conditions vary from
HICs to MICs, and among countries.

Aside from being functional, the infrastructure must also be
safe for students and the school community. Natural hazards
such as earthquakes, cyclones, floods, wildfires, and landslides
can affect to various degrees the stability and integrity of school
infrastructure, as documented in D’Ayala et al. D’Ayala et al.,
(2020). Indeed, the Earthquake Engineering Research Institute
(EERI) identified collapses and extensive damages to school
infrastructure in India, Indonesia, Peru, Turkey, the United
States, and Haiti, among other countries (EERI., 2019). The
Geotechnical Extreme Events Reconnaissance (GEER) reported
collapses due to the Muisne earthquake in Manta, Pedernales,
and Portoviejo regions in Ecuador in 2016 (GEER, 2016); and
reported more than 280 damaged school facilities and around
30 students fatalities due to the Puebla earthquake in Mexico in
2017 (GEER, 2017).

Disaster risk mitigation has been a difficult task due to the
large number of buildings, their vulnerability, and the uncer-
tainty related to the natural hazards (Yamin, Ghesquiere,
Cardona, & Ordaz, 2013). To assess the problem of large
portfolios of buildings, several authors had proposed cluster-
ing techniques. Clustering is a technique to find groups of
similar elements in a dataset, for example, infrastructure.
Indeed, Aleskerov, Say, Toker, Akin, and Altay (2005) devel-
oped a decision support system for disaster management cen-
tered on clusters of buildings based on their characteristics,

to predict damages and losses in seismic scenarios, in Turkey.
Likewise, Prasad, Singh, Kaynia, and Lindholm (2009) identi-
fied residential building clusters based on the socioeconomic
level of the occupants in the city of Dehradun in India to
develop a risk assessment, in which they conclude that poorer
people are subject to higher seismic risk. A more global
approach was developed by Gunasekera et al. (2015) in which
they developed a global exposure model based on clustering
of satellite images using 1 km2 resolution to support the gen-
eration of country disaster risk profiles.

Several algorithms implement different clustering proce-
dures, like the most common K-means, and its variation for
categorical data, K-modes. In these two algorithms, the clus-
ters are identified by an iterative process based on a central
statistical measure (mean and mode respectively). There are
other algorithms considering a different type of data distri-
bution such as the Mixture Models, or different approaches
in the iterative process such as Hierarchical clustering that
can consider different types of distance metrics between ele-
ments (Casella, Fienberg, & Olkin, 2013). Each of these
algorithms has its advantages and limitations. The clustering
analysis output should be interpreted through the expert’s
lens to develop sound intervention strategies.

Apart from the classification and clustering of school build-
ings, it is important to measure the current condition to develop
common strategies for improvement. It is important to consider
a multi-criteria approach to holistically assess the current condi-
tion and the impact on the quality that intervention strategies
can have. This approach allows for the inclusion of characteris-
tics such as functionality and safety of buildings, as well as for
several sub-criteria. Some of the methodologies that allow to
express criteria on different scales and conveniently transform
them into a single-utility scale are the Multi-Attribute Utility
Theory (MAUT) (Joint Research Centre - European Comission,
2008), the Analytic Hierarchy Process (AHP) (Castillo, 2011;
Saaty, 1990), and the Optimal Scoring Method (OSM) (Castro-
Lacouture, Medaglia, & Skibniewski, 2007; Sefair, Castro-
Lacouture, & Medaglia, 2009) among others.

In particular, the OSM is a methodology based on opti-
mization, that includes constraints to indicate the preferences
among criteria for a particular decision maker (Sefair et al.,
2009). In this method, the user does not need to explicitly
indicate the level of importance of one criterion related to
another, avoiding the need to implement pairwise compari-
sons as in AHP. OSM is linked to the principles behind data
envelopment analysis (Castro-Lacouture et al., 2007), a meth-
odology that ranks decision-making elements, like persons or
institutions, with multiple inputs and outputs (i.e. multiple
criteria) based on a single efficiency score.

After having assessed the quality of the infrastructure
accounting for multiple criteria, it is necessary to define the
best intervention programs to optimize the resource invest-
ment. The latter has been applied extensively in residential
buildings and bridge infrastructure management using multi-
criteria decision-making (MCDM) (Kabir, Sadiq, &
Tesfamariam, 2014; National Academies of Sciences,
Engineerinng and Medicine, 2007; Salem, Miller, Deshpande,
& Arurkar, 2013). Asadi, Salman, and Li (2019) presented a
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methodological approach for decision making of seismic resili-
ence in diagrid buildings, which includes a multi-attribute util-
ity valuation based on an AHP analysis and TOPSIS.
Specifically, for school facilities, Anelli, Santa-Cruz, Vona,
Tarque, and Laterza (2019) developed a framework for priori-
tizing seismic retrofitting interventions and tested it in the pub-
lic-school buildings infrastructure of Lima (Peru). The authors
proposed the framework considering engineering, organiza-
tional, socio-economic, and political criteria to retrofit build-
ings, but did not consider broader functional aspects such as
ventilation, lighting, bathrooms conditions and quality, or stu-
dents’ density among others.

To the best of the authors’ knowledge, there is not a uni-
fied, comprehensive, and systematic methodology in the lit-
erature that specifically integrates school infrastructure
assessment with multiple functional and safety criteria, a clus-
tering procedure that identifies groups of buildings to apply
common interventions, and an optimization strategy that pri-
oritizes interventions for school infrastructure improvement
programs. The purpose of this paper is to fill this gap.

3. Proposed methodology

To prioritize school infrastructure investment and mainten-
ance the following methodological framework is proposed,
comprising the following modules: 0) Data preparation; 1)
quality assessment through the Building Quality Index (BQI);
2) buildings’ and schools’ cluster formation; 3) interventions
design; and 4) optimal allocation of resources. As data needs
to be prepared and pre-processed, the first module is referred
to as module zero. Figure 1 summarizes the proposed meth-
odology and shows the relation of its modules.

For the portfolio characterization (module 0), a compre-
hensive set of taxonomies identifies each building’s character-
istics (Adhikari, D’Ayala, Ferreira, & Ramirez, 2018; D’Ayala
et al., 2020; The World Bank, 2019). The taxonomies include
the essential information related to the functional characteris-
tics (such as bathroom quality, bathroom density, and stu-
dents’ density) of each school facility and the structural
vulnerability due to natural hazards (such as earthquakes and
hurricanes). Also, in this module, general characteristics of
the infrastructure are gathered to assign a quantitative valu-
ation to the buildings in their functional and safety criteria.
Once the portfolio database is fully characterized, (in module
1) a quality measurement is calculated, namely, the Building
Quality Index (BQI). This assessment includes two of the
most important school building quality conditions: function-
ality and safety. Each one of these criteria includes all rele-
vant sub-criteria. In parallel, in module 2, for the same set of
buildings and the set of school facilities, a clustering algo-
rithm identifies the buildings’ main typologies.

These typologies denote a specific combination of attrib-
utes representing a group of building assets (The World
Bank, 2020). Construction experts identify the most critical
conditions for each typology and propose potential improve-
ments by identifying structural, non-structural, and func-
tional interventions (like structural retrofitting, replacement,
or refurbishment) at the building or school level. The costs

and the benefit of each intervention are estimated based on
the unitary costs and their impact on the BQI (module 3).
Finally, in module 4, an optimization component evaluates
an action plan of intervention strategies. It is important to
highlight the fact that the application of this method relies
on experts’ judgment in each step to ensure the quality of
the results and to make them truly applicable. The following
sections present the technical details of each module.

3.1. Module 0: Data preparation

The first step in this module is to characterize the school build-
ing’s portfolio. Information needs to be gathered so the quality
of each building can be measured. This information should be
gathered to characterize quantitatively the conditions of the
school infrastructure. For instance, to characterize the function-
ality it is necessary to obtain geometric information on the
openings, conditions of the lighting systems, and the student’s
density, among others. Similarly, for the safety characterization,
it is relevant to obtain information related to the risk level of
each building in terms, for example, of the average annual losses
obtained from a probabilistic risk assessment. This information
is used in module 1 to characterize the Building Quality
Index (BQI).

In addition, a characterization should be done through a tax-
onomy system common to all school buildings considered, and
encompassing relevant attributes related to safety and functional-
ity. For example, if the methodology is to be applied in the
Caribbean, it would be necessary to characterize the buildings in
terms of their structural response related to seismic and to hur-
ricane-wind actions. Therefore, as the vulnerability to the two
hazards is related to different structural components and their
behavior, two taxonomies will be needed to analyze the build-
ings’ safety. In case additional natural hazards are relevant, each
one of these hazards should have its proper taxonomy. In rela-
tion to seismic vulnerability, the seismic taxonomy developed in
the Global Library for School Infrastructure (GLOSI) could be
included in this framework (Adhikari et al., 2018; D’Ayala et al.,
2020; The World Bank, 2019, Adhikari et al., 2023). In addition
to safety, functional taxonomies shall be developed considering
the building and school-complex levels, separately. The result of
this step will be the characterization of each building of the
portfolio according to the taxonomies.

Table 1 presents four indicative general taxonomies that
could be considered in this step of the module. The seismic
taxonomy was developed in the context of GLOSI and the
hurricane taxonomy was developed in a previous project
funded by the World Bank (2020). The functional taxono-
mies were proposed herein by the authors based on expert
criteria. Other taxonomies might also be included depending
on each case study. The taxonomies might need to be tail-
ored to the geographic context and its attributes depend on
data availability. Each taxonomic parameter has several
attributes. For instance, the main structural system in the
seismic taxonomy can be classified as reinforced concrete
frames, masonry load-bearing walls, steel frames, or other
additional subclassification. This fact generates many pos-
sible combinations of taxonomic attributes in a portfolio.
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Hence, there is a need to create clusters so that one can
develop generic interventions to all members of a given
clustered group (see module 2).

There are several methods to gather this information,
such as field surveys or reports of existing building pro-
grams. However, as important as these procedures are, they
are beyond the scope of this paper and will not be discussed
in detail henceforth.

3.2. Module 1: Building quality index

The main objective of this module is to define a holistic
Building Quality Index (BQI) to assess and understand the

quality aspects of the educational infrastructure for each
building in its current condition. This index considers
functionality and safety criteria. Figure 2 presents the hier-
archical representation of the possible criteria (and sub-cri-
teria). For example, functionality can include quantitative
sub-criteria such as the bathroom facilities density, the
level of natural lighting (ratio between built area and win-
dows area), or the student’s density. Conversely, for safety
sub-criteria, such as the earthquakes or hurricanes safety
level, the average annual losses can be considered from a
probabilistic risk assessment. All these scores should be
normalized between 0 and 1, where 1 is the best condition
and 0 is the worst. For this task, a direct rating technique
is proposed as follows:

Figure 1. Proposed decision-making framework for prioritizing school infrastructure investment.

Table 1. Taxonomy systems for seismic, hurricane-wind, functional at the building level, and functional at the school level.

Taxonomy

Seismic (GLOSI) Hurricane Functional– building level Functional– school level

Parameters Main structural system Main structural system Main structural system Functionality design level
Height range Height range Height range Student density

Seismic design level Hurricane wind design level Functionality design level Bathroom density
Diaphragm type Roof shape Ventilation Bathroom quality

Structural irregularity Roof structure type Illumination Accessibility provisions
Span length/Wall panel length Roof to wall/frame connection IT provisions Water supply system

Pier type/Wall openings Roof covering type Energy efficiency (HVAC) Sewerage system
Foundation type Roof covering to roof structure Building Age Enclosure and access control points

Seismic pounding risk Roof health condition
Effective seismic retrofitting Roof projection length
Structural health condition Presence of bracing in roof structure
Non-structural components Wall typology

Wall openings
Typical opening size

Opening’s type
Shutter provision

Structural health condition
Specific wind vulnerable elements
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sb, c ¼ ŝb, c � ŝworstc

ŝbestc � ŝworstc

(1)

where sb, c is the normalized score of a particular building b
in the criterion c; ŝb, c is the score of a particular building b
in the criterion c; ŝworstc is the worst value in criterion c; and
ŝbestc is the best value in the criterion c: These criterion and
sub-criterion ratings, combined with selected specific
weights, give a combined measure that allows the compari-
son of different school buildings and facilities.

The BQI, also referred hereafter as q, is used to measure
the impact on the quality of each possible intervention (e.g.
retrofitting, functional intervention, or maintenance) for each
building. Therefore, the impact or change on BQI due to an
intervention will be referred as to Dq: The Dq for each inter-
vention in each building, will create the basis for a compre-
hensive decision framework that looks for optimal decisions
concerning future investment in maintenance and develop-
ment of the infrastructure, as will be presented in module 3.

The BQI ranges from 0 to 1, where 0 and 1 denotes the
worst and best quality in a school building, respectively. The
BQI of a building b (qb) is defined as a weighted sum of the
normalized score in each criterion, as follows:

qb ¼
X

c2C
sb, c � wc (2)

where C is the set of criteria; sb, c is the normalized score of
a particular building b in the criterion c; and wc is the
weight associated with the criterion c: This weight accounts
for the decision-maker profile and the sum of all weights
should add up to one (i.e.

P
c2Cwc ¼ 1). To determine the

weights, the decision theory literature provides several meth-
ods (Bradley, 2018; Hansson, 1990, 2005; Joint Research
Centre - European Comission, 2008), such as the Analytic
Hierarchy Process (AHP) (Saaty, 1990) or the Optimal
Scoring Method (OSM) (Sefair et al., 2009), among others.

Any of these methods could be used to obtain the weights
and the selection should be based on the available informa-
tion and possible interactions with the stakeholders.

3.3. Module 2: Clustering

After coding each building according to the parameters of
each taxonomy (data obtained from field visits, virtual sur-
veys, and geo-databases, among others) and calculating the
BQI for all buildings, the next step of the module uses an
algorithm to find buildings that show sufficient similarity so
that they can be clustered in groups. This clustering compo-
nent has been designed to scale up interventions in school
risk-reduction programs (Fern�andez, Correal, D’Ayala, &
Medaglia, 2023). This clustering is done using the taxonomy
as descriptor (i.e. categorical variables) and converting the
strings into binary vectors using one-hot encoding (Zheng &
Casari, 2018). As most of the variables are categorical, data
compression (e.g. using categories instead of the exact num-
ber of stories), allowed us to encode the data easily to be used
in the clustering method. Note that buildings with the same
taxonomy string are not necessarily identical buildings, since
intrinsic characteristics are expected to be different, such as
the exact number of stories or total built area. Also, buildings
with different taxonomy strings may result in the same clus-
ter, since the clustering algorithm may consider them to be
close enough to be grouped together.

Due to the taxonomic encoding (categorical variables), and
after trying multiple clustering algorithms, the Expectation-
Maximization clustering algorithm using a Bernoulli Mixture
Model was selected as a good choice for this application. This
selection is mainly because of its stability and reliability dealing
with categorical data, as it has been reported in the literature
(Govaert & Nadif, 2008; Saeed, Javed, & Atique Babri, 2013).
After applying the clustering algorithm, each building is

Figure 2. Attributes hierarchic representation.
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classified into a single cluster for every taxonomy. The cluster-
ing assignment depends on the attributes of each building.
Buildings that are similar from a taxonomical point of view,
will be included within the same cluster; yet buildings far away
from a taxonomical point of view will be in separate clusters.

The final output of this module is the ensemble of the
building clusters for each taxonomy. In summary, for each
cluster obtained in each taxonomy, the following should be
identified: the representative combination of attributes; repre-
sentative building type; cluster name (based on the character-
istics of each cluster); structural or functional deficiencies.
The analysis and validation of the clustering output requires
expert knowledge and human intervention to find the correct
number of clusters for each taxonomy; it is by no means,
automatic.

3.4. Module 3: Interventions

This module is divided into two steps: the first one, is the
development of generic interventions by cluster (group of
schools or buildings); and the second one, is the implemen-
tation of the generic intervention in each specific element
(particular school or building). As presented in Figure 3, in
the Step A (generic intervention design) one interprets and
identifies the common characteristics of each cluster, to pro-
pose interventions that could be applied to all elements
belonging to the cluster. These interventions should be iden-
tified together with technical experts in each field (i.e. struc-
tural, architectural, functional) with deep understanding of
the construction characteristics. For each intervention, it is
important to define the objective, the strategy to achieve the
objective, and the unitary cost of the intervention. This can
be done by designing a particular intervention for a repre-
sentative building or school for the cluster and then specify-
ing the general characteristics of the intervention and the
normalizing cost.

Step B (specific intervention implementation) calculates
the cost and the quality improvement by implementing the
generic cluster intervention in each specific building or
school. This is needed since elements with the same

taxonomic string may have different intrinsic characteristics,
for example the built area. This intervention considers the
unitary cost obtained from the previous step and the increase
in quality generated by the intervention. With this informa-
tion, it is possible to calculate the Dq for the interventions in
each building in the portfolio. When the intervention is at the
school level, the Dq assigned to the intervention will be the
sum over all buildings in the facility. Therefore, the final out-
put of this module is a database of interventions by each tax-
onomy implemented in each building and each school.
Considering this, the maximum number of interventions
should be the number of school building taxonomies times
the number of buildings, plus the number of school facilities
taxonomies times the number of schools. Each one of the
interventions shall be characterized by its total cost and its
corresponding Dq: This database will be the input for the
optimization component presented in the next module.

3.5. Module 4: Optimization component

This module uses the database of interventions generated in
the previous module and additional decision inputs and rules,
such as the budget limit and minimum level of quality, to
maximize the increase of quality using an optimization
model. In this model, the following sets are defined. Let B be
the set of buildings in the portfolio; S, the set of school facili-
ties; Bs, the set of buildings in school s 2 S; I, the set of all
interventions; Ib, the set of possible interventions to building
b 2 B: Is, the set of possible interventions to school s 2 S:
Let s(b) be a function that returns the school s 2 S of build-
ing b 2 B: Figure 4 shows a schematic representation of the
schools, buildings, and intervention sets and their relations.

The parameters of the optimization model are the follow-
ing: ci, b, the cost of intervention i 2 Ib in building b 2 B;
ci, s, the cost of intervention i 2 Is in school s 2 S; Dqi, b,
the BQI improvement in building b 2 B due to interven-
tion i 2 Ib; Dq̂i, s, the BQI improvement in school s 2 S
due to intervention i 2 Is accounted as the sum of the BQI
improvement of all the buildings in the school
ðDq̂i, s≝

P
b2Bs

Dqi, bÞ; qb, the current BQI of building b 2 B;

Figure 3. Steps to identify specific interventions at the school and building levels.
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qb, the minimum BQI required for building b 2 B; and
M, the budget limit for the investment plan.

The decision variables considered in the formulation are:
xi, b, a binary variable that takes the value of 1 if building b 2
B is subject to intervention i 2 Ib, and it takes the value of 0,
otherwise; yi, s, a binary variable that takes the value of 1 if
school s 2 S is subject to intervention i 2 Is, and it takes the
value of 0, otherwise; and db, deviation variable that guarantees
that every building b 2 B meets the quality threshold qb: The
School Infrastructure Investment Optimization (SIIO) problem
follows:

max
X

b2B

X

i2Ib
Dqi, b � xi, b þ

X

s2S

X

i2Is
Dq̂i, s � yi, s �

X

b2B
db (3)

subject to:
X

b2B

X

i2Ib
ci, b � xi, b þ

X

s2S

X

i2Is
ci, s � yi, s � M (4)

qb þ
X

i2Ib
Dqi, b � xi, b þ

X
i2IsðbÞ

Dq̂i, sðbÞ
BsðbÞ
�� �� yi, sðbÞ þ db � q

�
b,

8 b 2 B,

(5)
xi, b 2 0, 1f g, 8 b 2 B, 8 i 2 Ib (6)

yi, s 2 0, 1f g, 8 s 2 S, 8 i 2 Is (7)

db � 0, 8 b 2 B (8)

The objective function (3) maximizes the total BQI
improvement due to the implementation of the selected inter-
ventions at the building (first term) and school (second term)
levels over the whole portfolio. The third term, as it is com-
monly used in goal programming (Rardin, 1998), minimizes
the sum of deviations against the quality targets set for the
buildings included in the soft constraint (5). Constraint (4)
assures that the total cost of the interventions does not exceed
the available budget. The set of constraints in (5) aims that
every building achieves a minimum BQI improvement defined
by the decision maker. These constraints can also be seen as
soft constraints or as minimum quality goals; if the quality tar-
gets cannot be met, the deviation variables d activate to satisfy

the corresponding constraints. The last constraints in (6) to (8)
define the nature of the decision variables.

The result of module 4, and therefore, of the proposed
methodology, is the set of optimal interventions to be imple-
mented in the school buildings portfolio. These interventions
account for a total cost, which satisfies the budget limit, and
a total (per building) quality improvement. The proposed
method provides a novel decision-making framework for
school infrastructure improvement, that provides a technical
orientation to support strategic decisions on how to invest
the limited resources to improve education quality. This
method is intended to maximize the quality of the school
infrastructure by allocating a budget wisely. However, it is
important to state that this is not a purely data-driven pro-
cess. The method aids the decision-making process but
requires valuable input from experts and decision-makers. It
relies on experts’ judgment to ensure the quality of the results
and to make them truly applicable.

4. Case study

The proposed methodology is applied to the public-school
building portfolio for the Dominican Republic. The follow-
ing sections present the details of the implementation of
each module.

4.1. Database

The portfolio is comprised of 6,087 schools that serve
approximately 1.5 million students (data gathered in 2020).
These school facilities comprise 18,280 buildings, for an
average of three school buildings per facility. The total built
area covers 4.3 million square meters, rendering a density of
2.86 square meters per student. The exposure model was
developed using basic information of all the schools pro-
vided by the Ministry of Education, high resolution satellite
images of 300 schools located in Santo Domingo, informa-
tion from field visits of around 950 schools’ facilities distrib-
uted across the country, and virtual surveys to school

Figure 4. Illustrative sets considered in the optimization model formulation.
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directors of approximately 2,800 schools. For the schools
without information, a proxy model using the geographic
and demographic characteristics to assign the missing data
was developed. Figure 5 depicts the geographic distribution
of the school facilities in the country.

In this case study, four taxonomies to characterize all
buildings in the portfolio were used. These taxonomies
include the seismic taxonomy (GLOSI seismic taxonomy
(The World Bank, 2019)); a hurricane-wind taxonomy (The
World Bank, 2020); and two functional taxonomies, one at
the building level and the other at the school level. The lat-
ter functional taxonomies were developed for this case
study, based on information gathered in the field and by
online surveys filled by school principals in 2020 (The
World Bank, 2020). Table 2 summarizes the four taxono-
mies with their parameters and attributes (for more infor-
mation see Appendix A).

Figure 6 presents the 17 combinations of attributes that
describe the Dominican Republic school building portfolio for
the seismic taxonomy; Figure 7 presents the nine combinations
for the hurricane taxonomy; Figure 8 presents the 14 combina-
tions for the functional taxonomy at the building level, and
Figure 9 shows the 15 combinations for the functional tax-
onomy at the school level. To understand the taxonomy string
shown in Figures 6–9 the reader is referred to Appendix A.

The information gathered from the virtual surveys to
school directors (number of bathrooms, fraction of bath-
rooms in good quality, year of construction) and structural
and architectural drawings provided by the Ministry of
Education (for example, to obtain the ratio between built to
openings area) was used to define the quantitative scores for
the functional criteria.

For the safety criterion, the results were obtained from
the probabilistic risk assessments of CAPRA-GIS. The prob-
abilistic model includes three main modules: the exposure,
hazard, and vulnerability modules. The exposure model

contains all the school buildings and its replacement value
is approximately US$2,300 million. The hazard model
included 8,710 earthquakes scenarios (ground acceleration)

Figure 5. Distribution of school facilities in the Dominican Republic.

Table 2. Taxonomies considered in the Dominican Republic case study.

Taxonomy No. Parameter

Seismic taxonomy 1 Main structural system
2 Height range
3 Seismic design level
4 Diaphragm type
5 Structural irregularity
6 Span length/Wall panel length
7 Pier type/Wall openings
8 Foundation type
9 Seismic pounding risk
10 Effective seismic retrofitting
11 Structural health condition
12 Non-structural components

Hurricane taxonomy 1 Main structural system
2 Height range
3 Hurricane wind design level
4 Roof shape
5 Roof structure type
6 Roof to wall/frame connection
7 Roof covering type
8 Roof covering to roof structure
9 Roof health condition
10 Roof projection length
11 Presence of bracing in roof structure
12 Wall typology
13 Wall openings
14 Typical opening size
15 Opening’s type
16 Shutter provision
17 Structural health condition
18 Specific wind vulnerable elements

Functional taxonomy – building level 1 Main structural system
2 Height range
3 Functionality design level
4 Ventilation
5 Illumination

Functional taxonomy – school level 1 Functionality design level
2 Student density
3 Bathroom density
4 Bathroom quality
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and 11,200 hurricanes (wind velocity), each characterized
with its frequency and magnitude. The vulnerability models
are based on the structural characteristics of the buildings
and their behavior in terms of ground acceleration and
wind pressure. One of the main results of this analysis is
the average annual losses (AAL) per building. The sum of
the seismic AAL is estimated in US$13.6 million while the
sum of AAL for hurricane hazard is US$3.6 million for the
current condition (The World Bank, 2020). For this imple-
mentation, the safety score was calculated with the relative
average annual losses by building using an inverse direct
rating technique, so the worst value is 0 and the best is 1,
being consistent with the scores of the other criteria. To
avoid the effect of extreme values (around 1%) in the process
of normalization, we propose a maximum value of AAL of
15&, which is usually consider as a high risk. Table 3 sum-
marizes the source of the scores and the normalization
method used at the building level.

Figure 10 presents the current valuation for the normal-
ized criteria graphically. Each criterion has its specific distri-
bution since they are measured independently from each
other. This information is calculated at the building level
and shows the current condition of the buildings and the
improvement opportunities for each rating. As the mean

values of lighting, ventilation, student density, building age,
and hurricane safety level are close to 1.0, it shows that the
current conditions of these criteria are better than those of
the bathroom’s density, bathroom quality, and earthquake
safety level, which are not as high. Also, it is possible to see
that the best condition in terms of the mean is related to
the student’s density, while the worst is the bathroom facili-
ties density. This low density shows the importance of con-
sidering the Water and Sanitation Hygiene (WASH) aspects
in the decision-making framework. Finally, in the case of
student’s density, the values are concentrated near the mean
possibly because in developing countries usually the demand
exceeds the supply. Therefore, existing schools are com-
monly used at its full capacity. These scores are the input
for the BQI calculation described in the following section.

4.2. Building quality Index

With the database in place, the next step is to calculate the
4.2 Building Quality Index, BQI (q), for the entire portfolio
as presented in Section 3.2. Figure 11 shows the attributes
hierarchy for the BQI calculation in this case study.

To obtain the BQI in the current conditions, the first step
is to determine the relative importance of each criterion, and

Figure 6. Seismic taxonomy attributes combination frequencies. Each bar contains to the right its frequency (number of buildings) and relative frequency (in
parentheses).

Figure 7. Hurricane taxonomy attributes combination frequencies. Each bar contains to the right its frequency (number of buildings) and relative frequency (in
parentheses).
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therefore their corresponding weighting. For this case study,
the Optimal Scoring Method (OSM) was used to find the
weights that maximize the total sum of BQI for the school
buildings portfolio. This method was selected for simplicity,
since other methods, such as the Analytic Hierarchy Process
(AHP), require interviewing the decision makers to capture

their preferences. The technical details of the OSM model can
be found in detail in the literature (Sefair et al., 2009). For the
OSM model, let C be the set of criteria; sb, c the normalized
score valuation for building b 2 B in criterion c 2 C; and wc

the weight for criterion c 2 C: Specifically, for the case study,
the weights wc are obtained such that they comply with the

Figure 8. Functional building-level taxonomy attributes combination frequencies. Each bar contains to the right its frequency (number of buildings) and relative
frequency (in parentheses).

Figure 9. Functional school-level taxonomy attributes combination frequencies. Each bar contains to the right its frequency (number of buildings) and relative fre-
quency (in parentheses).

Table 3. Score assignment method per school building.

Criterion Sub-criterion Source Normalization method [0-1]

Functionality Bathroom density Number of bathrooms reported by
school principals and number of

students by school facility

Direct rating technique

Bathroom quality Quality level defined by school
principals on a numerical scale

Direct rating technique

Lighting (natural) Open windows area relation to
building area

Direct rating technique

Ventilation (natural) Open windows area relation to
building area

Direct rating technique

Student density Number of students by school facility
and total built area

Direct rating technique

Building age Year of construction Direct rating technique
Safety Earthquakes safety level Relative average annual losses (AAL)

from seismic risk assessment
Inverse direct rating technique. If AAL is

greater than 15&, a value of 0 is assigned
in the normalization (worst value)

Hurricane wind safety level Relative average annual losses (AAL)
from hurricane-wind risk assessment

Inverse direct rating technique. If AAL is
greater than 15&, a value of 0 is assigned

in the normalization (worst value)
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following OSM model:

max
X

b2B

X

c2C
sb, c � wc (7)

subject to:
X

c2C
wc ¼ 1 (8)

0:10 � wc � 1:0 8 c 2 C (9)

wEarthquakes � wHurricane wind (10)

wHurricane wind � wStudent density (11)

wc � 0 8 c 2 C (12)

The objective function (7) maximizes the total BQI sum
over the entire portfolio by calibrating the weights. This
maximization means that more importance is given to the
criteria that are in better condition. The rationale behind
this logic is that the effort needed to improve these criteria
is not as demanding, so they become more relevant in the
implementation. Certainly, this can be modified to a mini-
mization model to obtain the opposite result (as will be dis-
cussed in Section 4.6). Constraint (8) assures that the sum
of weights is equal to one. The set of constraints in (9)
guarantees that every weight will have at least 0.1 as the
lower bound and the full value of 1.0 as the upper bound.
The constraint (10) indicates that the weight associated with
the earthquake’s safety level criterion should be greater than

or equal to the hurricane weight (considering hurricanes
can be anticipated while earthquakes do not). Constraint
(11) enforces that the weight associated with the hurricane
criterion should be greater than or equal to the student den-
sity’s weight (to give more importance to safety in general
than students density). It is important to note that con-
straints (10) and (11) are subjective rules and should convey
a global consensus of the decision makers’ preferences, yet
not at the granularity of giving a priori weights to each cri-
terion, which is cumbersome in most situations. As part of
a sensitivity analysis, other weight combinations are
explored in Section 4.6. Finally, constraints (12) assure that
all weights are non-negative (which in this case is redundant
with (9) but is added for consistency with the original for-
mulation of the model).

The result of the OSM model yields the optimal weights
for the preferences expressed in the formulation (as raw
rules). In this case, a weight of 10% is assigned to the bath-
room’s density, the bathroom quality, the illumination, the
ventilation, and building age criteria; and a weight of 16.7%
to earthquake safety, hurricane wind safety, and student’s
density. With these weights, it is possible to calculate the
BQI for each school building in the current state, as it is
summarized in Table 4. From these results, it is possible to
conclude that no building is in its best or worst condition,
therefore there is room for improvement.

Figure 10. Summary of the current normalized criteria valuation.

Figure 11. Attributes hierarchy for the case study.
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4.3. Clustering

The clustering algorithm described in Section 3.3 is applied
to each one of the taxonomies in the Dominican Republic
public-school portfolio. The different number of clusters
(henceforth referred as to parameter K) was fine-tuned and
analyzed from an expert perspective to find the best distri-
bution of clusters. For each cluster, the combination of the
attributes that characterize a representative building (or
index building) was identified to analyze and establish an
intervention alternative.

Table 5 presents the seismic clusters. For this taxonomy,
buildings were grouped into seven clusters, based on their
seismic vulnerability. Through clustering it is possible to
arrange the 17 combinations (from Figure 6) into only seven
groups of buildings. In particular, note that the reinforced
masonry buildings with flexible roof (PRM/LR/LD) are
included in cluster 1; the reinforced masonry buildings with
rigid roof (JRM/LR/LD) are part of cluster 2; the reinforced
concrete short-column one-story buildings (RC3/LR/LD) are
located in cluster 3; high-design reinforced concrete build-
ings are part of cluster 4; the non-engineered oldest build-
ings are part of cluster 5; a group of buildings with variable
characteristics forms cluster 6; and the reinforced concrete
short-column two-story buildings, RC3/MR/LD, are part of
cluster 7. This distribution of buildings is logical from an
engineering point of view. The interventions for these clus-
ters could include replacements of buildings; extensive,
moderate, and minor retrofitting; or doing nothing, as is the
case for low vulnerability buildings and for high variability
buildings where no large-scale intervention can be planned.

Table 6 illustrates the five hurricane wind taxonomy clus-
ters (in contrast to the nine possible attribute combinations of
Figure 7). Cluster 1 contains the timber buildings. These
buildings are the most vulnerable in the portfolio and there-
fore a replacement should be considered. All the reinforced
buildings have similar wind vulnerability and are part of clus-
ter 2. For this type of building, no intervention is required.
Reinforced masonry (RM) buildings are divided into two clus-
ters since the oldest ones have a higher vulnerability (cluster
3) than the newer ones (cluster 4). Finally, cluster 5 includes
buildings with high variability of characteristics and therefore
no large-scale intervention can be planned.

Similarly, Table 7 presents the building level functional
taxonomy clustering results. The clustering algorithm is able
to classify all 14 attribute combinations in two main groups.
The first cluster includes almost all the masonry buildings,
which are the oldest and hence have poor internal condi-
tions. The second cluster includes almost all the reinforced
concrete buildings, which were built recently and their
internal conditions are better. Functional deficiencies

concerning ventilation and illumination were identified in
cluster 1, while cluster 2 does not present these problems.
Consequently, the intervention for cluster 1 is the installa-
tion of a new ventilation and illumination system.

Finally, Table 8 summarizes the four clusters that group
the 15 attribute combinations in the school-level functional
taxonomy. The first cluster includes school facilities with
the poorest building conditions; therefore, the proposed
intervention is the construction of new buildings. The
second cluster includes the school facilities where bathroom
facilities are insufficient and low quality, so the intervention
is targeted to build new bathrooms and to maintain the
existing ones. The third cluster includes schools with good
quality bathrooms, but insufficient in number. In this clus-
ter, the intervention is designed to build new bathroom bat-
teries. Lastly, the fourth cluster includes school facilities
with good conditions in relation to density and bathrooms.
It is important to note that in these clusters, the interven-
tions are targeted to improve the school facility and the
improvement will affect all school buildings at the facility.

4.4. Interventions

Once the deficiencies are identified in the previous step, it is
possible to design the intervention strategies and quantify
the corresponding BQI improvement and unitary cost in a
given building. Table 9 presents the summary of generic
interventions, unitary cost (as of 2021), and quality
improvement for each cluster (step A). To calculate the total
cost of the intervention in a building, the unitary cost and
the building’s area is used. The BQI improvement (DqÞ is
also building dependent, as it depends on its location and
base risk metric. Note that the same seismic intervention of
two buildings in the same cluster may end up having differ-
ent costs and BQI improvements.

As the goal is to illustrate the decision-making method-
ology with a holistic perspective, the technical details of
each intervention are out of the scope of this paper and
therefore are not presented. The different interventions in
this case study might not be generally applicable to other
countries or case studies. Each intervention should be
assessed and devised by experts in each one of the domains
(i.e. structural or functional experts) in the application set-
ting. Also, the unitary costs are representative rather than
real costs and they just provide a relative scale for the illus-
trative application of the methodology.

Table 10 presents a sample of a database produced by
applying the interventions of Table 9 to every specific build-
ing (step B). One intervention per cluster was selected, thus
the database includes four interventions for each building
(as every building belongs to one cluster per taxonomy).
This database is the output of module 3, and input for the
optimization model of module 4.

4.5. Optimization component

The database of interventions (see Table 10) feeds the optimiza-
tion component. Assuming a limitless budget, the cost of

Table 4. Current BQI statistics in the Dominican Republic Portfolio.

Statistic BQI current condition

Mean 0.570
Median 0.583
Maximum 0.790
Minimum 0.197
Standard deviation 0.091
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implementing all the interventions identified in module 4 for all
the schools in the database adds up to US$1,023,489,100 (an
average spending by school building of around US$56,000). The
maximum improvement of BQI, Dq ¼ 4,121 points. These ref-
erence values allow the comparison of different scenarios.

As a first illustrative scenario, a budget limit of
US$100,000,000, value of M in the budget constraint, is defined
(an average spending of US$5,500 per school building). The cri-
teria weights according to the output of the OSM model in
Section 4.2 are fixed and a minimum qb ¼ 0:5 is defined for all
buildings. The optimization model reaches a solution with a
total spending of $99,999,970 with a Dq of 1,334 points. The
optimization component carefully chooses the right interven-
tions and obtains 32.4% of the total quality improvement by
just investing 9.8% of the cost of the limitless budget scenario.
In other words, the optimization model finds the best quality
improvement with a given budget.

Following the same logic, a parametric analysis was con-
ducted to understand how the BQI improvement varies at
different budget levels. Figure 12 shows the optimized inter-
ventions frontier, resulting from varying the budget limit M
from 0% to 100% of the cost of all interventions. The ideal
point is the one with 0% budget and 100%

Dq, which is clearly utopian, but acts as a magnet for
unveiling a frontier of optimal interventions in the build-
ings’ portfolio. Note that the first scenario, with an approxi-
mate 10% budget constraint and 32.4% of the maximum
Dq, lies on this frontier. This is just one of many scenarios
with varying budget levels.

This result is also helpful to compare the Dq improve-
ment by implementing targeted programs, such as imple-
menting at the same time all the interventions belonging to
only one category (seismic, hurricane, functional at the
building level, and functional at school-level interventions),

Table 5. Seismic clusters description.

ID Taxonomy attributes combination Cluster name
Percentage of
buildings Structural deficiencies

1 RM/LR(1)/LD/FD/NI/SP/LO/RF/NP/OS/PC/VN Reinforced masonry with flexible roof 21% Lack of rigid diaphragm
Low shear capacity
Weak connections
Out-of-plane failure
Low material quality

2 RM/LR(1)/LD/RD/NI/SP/LO/RF/NP/OS/PC/NN Reinforced masonry with rigid roof 6% Low shear capacity
Weak connections
Out-of-plane failure
Low material quality

3 C3/LR(1)/LD/RD/NI/SS/SW/RF/NP/OS/PC/VN Reinforced concrete short-column one story 26% Short column
Weak story

4 RC1/MR/HD/RD/NI/SS/RO/RF/NP/OS/GC/VN High design 17% No structural deficiencies
5 RM/LR(1)/LD/PD/NI/SP/LO/RF/NP/OS/PC/VN Non-engineered 5% High seismic vulnerability
6 Other Other �0% No Information.
7 RC3/MR/LD/RD/NI/SS/SW/RF/NP/OS/GC/VN Reinforced concrete short-column one story 26% Short column

Low stiffness
Weak story

Strong beam weak column

Table 6. Hurricane-wind clusters description.

ID Taxonomy attributes combination Cluster name
Percentage of
buildings Structural deficiencies

1 TF/LR/HPD/HRS/TRT/PRC/LCV/PCC/PRH/SPO/NBP/RWT/SWO/SOS/BOP/YSP/PSC/YWN Timber 2% High hurricane wind vulnerability
2 FRS/RRT/GRC/HCV/GCC/GRH/SPO/NBP/RWT/LWO/LOS/BOP/YSP/GSC/YWN RC 43% No deficiencies
3 RM/LR/HLD/ GRS/SRT/PRC/LCV/PCC/PRH/SPO/NBP/RWT/LWO/LOS/BOP/YSP/PSC/YWN RM Low 21% Roof coverings
4 RM/LR/HPD/ GRS/TRT/PRC/LCV/PCC/PRH/SPO/NBP/RWT/LWO/LOS/BOP/YSP/PSC/YWN RM Poor 1% Roof coverings

Roof structure
5 – Other 34% No Information

Table 7. Functional building-level clusters description.

ID Taxonomy attributes combination Cluster name Percentage of buildings Deficiencies

1 RM/MR/PD/PD/PV/PI Poor classroom conditions 32% No natural ventilation
No natural illumination

2 RC/MR/GD/GD/GV/GI Good classroom conditions 68% No deficiencies

Table 8. Functional school-level clusters description.

ID Taxonomy attributes combination Cluster name Percentage of buildings Deficiencies

1 PSD/PBD/PBQ Poor condition 18% Poor student density
Poor bathroom density
Poor bathroom quality

2 GSD/PBD/PBQ Poor bathroom condition 70% Poor bathroom density
Poor bathroom quality

3 GSD/PBD/GBQ Poor bathroom density 7% Poor bathroom density
4 Other Good condition 5% No information
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instead of implementing a mix of different types. These
interventions are represented in Table 11 and in Figure 12
as one point, relating the total cost of implementing the set
of interventions and the sum of the benefits. The results
presented in Figure 12, show that for the same budget (ver-
tical projection to the optimized frontier), the optimization
component will lead to up to a 3.54-fold Dq increment com-
pared to the targeted programs. Similarly, for the same Dq
improvement (horizontal projection to the optimized fron-
tier), with the implementation of the optimization model,
the investment could be reduced from 39% up to 65%.

These results show how relevant is to apply a consistent
and technically robust methodology in the decision-making
process for the prioritization and implementation of

interventions in the existing infrastructure. On the contrary,
not doing so could lead to the loss of economic resources
or the loss of quality, which as shown before, have a direct
impact on infrastructure’s long-term resilience and hence
education quality.

4.6. Sensitivity analysis with different decision profiles

In the budget parametric analysis presented above, the crite-
ria weights were fixed according to the optimal scoring
model presented in Section 4.2. However, if the optimiza-
tion in the OSM changes to minimization instead of maxi-
mization, it will prioritize bathrooms density, above all
other criteria. Furthermore, a different decision maker could

Table 9. Unitary cost and BQI improvement by cluster intervention.

Taxonomy ID Cluster name Generic intervention Unitary cost (2021) BQI improvement ðDqÞ
Seismic 1 Reinforced masonry

with flexible roof
Concrete confinement

elements
Ring beam

180 US$/m2 Reduction in the
average annual losses
(AAL) due to the

implementation of the
retrofitting

2 Reinforced masonry
with rigid roof

Concrete confinement
elements

Foundation’s retrofitting

80 US$/m2

3 Reinforced concrete
short-column one story

Masonry walls isolation
Lateral stiffness

elements

25 US$/m2

4 High design No intervention 0
5 Non-engineered Replacement 535 US$/m2

6 Other No Intervention 0 –
7 Reinforced concrete

short-column one story
Masonry walls isolation
Steel diagonals in both

stories

140 US$/m2 Reduction in the
average annual losses
(AAL) due to the

implementation of the
retrofitting

Hurricane 1 Timber Replacement of the
building

535 US$/m2 Reduction in the
average annual losses
(AAL) due to the

implementation of the
retrofitting

2 RC No intervention 0 –
3 RM Low Change of covering and

retrofitting of
connections

75 US$/m2 Reduction in the
average annual losses
(AAL) due to the
implementation of the
retrofitting

4 RM Poor Replacement of roof
structure

Change of covering and
retrofitting of
connections

110 US$/m2

5 Other No intervention 0 –
Functional at building
level

1 Poor classroom
conditions

Installation of a new
artificial ventilation

system
Installation of a new
artificial illumination

system

65 US$/m2 Maximum value (1.0)
minus current rating in

Illumination and
Ventilation score

2 Good classroom
conditions

No intervention 0 0

Functional at school
level

1 Poor condition Construction of new
buildings including new

bathrooms

535 US$/m2 Maximum value (1.0)
minus current rating in
Bathroom’s density and
quality and in Student

score
2 Poor bathrooms

condition
Construction of new

bathrooms
Maintenance of existing

bathrooms

1200 US$/New Unit
320 US$/ Existing Unit

Maximum value (1.0)
minus current rating in
Bathroom’s density and

quality score
3 Poor bathrooms density Construction of new

bathrooms
1200 US$/New Unit Maximum value (1.0)

minus current rating in
Bathroom’s quality score

4 Good condition No intervention 0 –
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have different preferences and specify other types of restric-
tions in the model. Therefore, one may ask: if the decision
profile changes (i.e. criteria weights), how much impact will
it have on the optimization investments frontier? To address
this question, a thorough sensitivity analysis is conducted,
including the results presented for the OSM with maximiza-
tion, the OSM with minimization, and five parametric deci-
sion profiles. In these parametric profiles, different weights
were given to the first level of the hierarchy, namely, the
functionality and safety criteria. For the second level of the
hierarchy, the weights were evenly distributed across all
sub-criteria. The first two parametric profiles are biased
toward the functionality criterion (100% and 75%); a bal-
anced profile (same weight for functionality and safety); and
two decision profiles with a bias toward the safety criterion
(75% and 100%). Table 12 shows the final weights included
in the seven decision-maker profiles.

Since each profile represents a different measure of qual-
ity, the direct results are not comparable to each other since
they measure quality with a different index (different
weights). Therefore, the results should be analyzed and pre-
sented in terms of the balanced profile DqProfile 3�Balanced:
That is, resulting interventions are obtained with the Dq
obtained for each profile, but the resulting Dq improve-
ment was converted with the weights of the balanced profile
(Profile 3) to make the curves comparable. Also, note that
cost is the same in each profile since it is not dependent on
the weights assigned in each decision profile. Therefore,
Figure 13 displays the optimal investment frontiers for each
decision profile in terms of the DqProfile 3�Balanced:

Considering the weights presented above, it is worth not-
ing that OSM-min is farther away from the balanced fron-
tier, which can be expected considering the strong bias
given to the functionality in this profile (i.e. functionality
accounts for 80% of the total weight). In relation to the five
parametric profiles, the less biased profiles (2 and 4) are the
ones nearest to the balanced results, while the more biased
ones (1 and 5) are the farthest. Results for Profiles 2 and 4
are near to the ones of Profile 3 but are not equal since
they were designed to fulfill other objectives by selectingTa
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Figure 12. Optimal investments frontier with the optimal-scoring decision profile.
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different weights. Furthermore, in the 100% biased profiles
(1 and 5), the BQI improvement reaches barely 40% of the
total benefits and not 100% as the others. The flattened part
of the curves occurs since in these two profiles a weight of
0% is selected for either the functional or safety criteria,
therefore, the optimization model does not select any inter-
ventions that are targeted to improve these criteria. These
results show that, in terms of the balanced profile, it is not
recommended to bias any criterion by assigning 100% of
the weight. The biased profiles neglect the possible benefits
obtained in a subset of interventions that are logical from a
holistic perspective. Finally, the methodology presented in
this paper can be adapted to different decision-maker pro-
files, making it robust to implement in contexts with mul-
tiple stakeholders with different interests.

4.7. Comparison with single-policy programs

The question of how the optimized intervention program
compares to simplified programs remains. For example,

government officials might want to assign resources –and
therefore conduct interventions– prioritizing the number of
students, the cost, or the level of quality, until the whole
budget is allocated. These rule-of-thumb programs can be
much simpler to design than optimize the whole set of
interventions. To see how these simplified programs com-
pare to the proposed optimized interventions, six single-pol-
icy programs were designed based on the sum of the
intervention’s costs and the sum of the BQI improvement
(over the buildings). These programs are based on sorting
the building’s interventions based on three criteria: number
of students, intervention costs, and BQI improvement. Each
of these criteria was sorted in descending and ascending
order, leading to six intervention programs, as presented in
Figure 14.

Figure 15 depicts the optimized program in comparison
to the single-policy programs (using the weights identified
with the OSM-max presented in Section 4.2 in all cases).
The first conclusion that can be drawn from this compari-
son is that the optimization results obtained from the imple-
mentation of the proposed methods are efficient in terms of
the unveiled frontier (i.e. best quality, for a given budget).
In that sense, all simplified programs are less efficient in
terms of prioritizing interventions that improve the overall
quality of the infrastructure system.

To quantify the differences between the programs, the
relative efficiency of the program compares the area under
the curve for each program with respect to the area under
the curve of the optimized program (efficient frontier). This
is generalized in multi-objective optimization for more
dimensions as the hypervolume metric (Guerreiro, Fonseca,
& Paquete, 2020; Zitzler, Thiele, Laumanns, Fonseca, & Da
Fonseca, 2003). Table 13 shows that the cost program
(ascending order) has a relative efficiency of 91%, whereas
the cost program (descending order) has a relative efficiency
of just 50.7%. With scarce information, other simplified pro-
grams can be designed and evaluated in terms of their
efficiency.

Table 11. Targeted programs characteristics.

Interventions set Total cost (US$ million [%])
Total BQI improvement

(Dq [%])

Optimized program
BQI-improvement for the
same budget (n-fold)

Optimized program cost
reduction for the same BQI

improvement

All seismic $ 500 [49%] 1,322 [32%] 2.60 65%
All hurricane $ 57 [6%] 247 [6%] 3.54 75%
All functional at building level $ 70 [7%] 648 [16%] 1.54 39%
All functional at school level $ 397 [39%] 1,904 [46%] 1.65 62%

Table 12. Criteria weights for the decision-maker profiles.

Hierarchy Criterion weight OSM Max OSM Min Profile 1 Profile 2 Profile 3 Profile 4 Profile 5

First level Functionality 67% 80% 100% 75% 50% 25% 0%
Safety 33% 20% 0% 25% 50% 75% 100%

Second level Bathrooms density 10.0% 30.0% 16.7% 12.5% 8.3% 4.2% 0.0%
Bathrooms quality 10.0% 10.0% 16.7% 12.5% 8.3% 4.2% 0.0%

Lighting 10.0% 10.0% 16.7% 12.5% 8.3% 4.2% 0.0%
Ventilation 10.0% 10.0% 16.7% 12.5% 8.3% 4.2% 0.0%

Student’s Density 16.7% 10.0% 16.7% 12.5% 8.3% 4.2% 0.0%
Building Age 10.0% 10.0% 16.7% 12.5% 8.3% 4.2% 0.0%

Earthquakes safety level 16.7% 10.0% 0.0% 12.5% 25.0% 37.5% 50.0%
Hurricane wind safety level 16.7% 10.0% 0.0% 12.5% 25.0% 37.5% 50.0%

Figure 13. Optimal frontiers for different decision profiles.
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5. Conclusions

The main contribution of this paper is the decision-making
framework for the holistic improvement of school infra-
structure in terms of functionality and safety. The objective
of the proposed framework is to maximize the quality of the
school infrastructure by allocating a budget wisely. The
method consists of four modules: data collection, building
quality index, clustering, intervention definition, and the
optimization component. The application of the method-
ology leads to the selection of an optimal set of interven-
tions to implement for a school building’s portfolio. Even
though the framework is supported by quantitative data and
analytics models in several modules, it is important to note
that it is not a purely data-driven process. The application

of this method relies on experts’ judgment to ensure the
quality of the results and to make them truly applicable.
The method aids the decision-making process but requires
valuable input from experts and decision makers.

A case study of the school buildings portfolio of the
Dominican Republic was implemented to illustrate the deci-
sion-making framework. This implementation showed that
the methodology leads to a quality improvement up to 3.54
times that of targeted programs with a given budget and
can potentially save up to 65% of the budget with a given
quality improvement threshold. The method also excels in
terms of relative efficiency in comparison to single-policy
allocation programs, showing inefficiencies ranging from 9%
to 50% in the implementation of the simplified programs.
The flexibility of the method and how it can adapt to mul-
tiple decision-maker profiles was illustrated by conducting a
sensitivity analysis, showing the effect of emphasizing cer-
tain criteria on the final results.

The proposed methodology can be applied in any context
where school infrastructure needs to be improved holistic-
ally. Even though the method has significant value in mid-
dle-income countries where the school systems are usually
in bad condition, it can also be adapted to high-income
countries where information may be better and other crite-
ria become available. Indeed, characteristics such as the
quality of the leisure spaces and accessibility can be included
in the decision-making process to target other types of
interventions. At the other end of the spectrum, the method
could also be adapted to low-income countries, where infor-
mation is scarce and other proxy socio-economic and geo-
graphical variables may be derived. The implementation of
the methodology in low-income countries could help to
answer questions such as if safety might be prioritized given
the quality of construction and hazard exposure, or if it is
better to invest in functionality to retain students in school
and therefore improve the country’s education and build
capacity for economic development. Aside from school
infrastructure, a similar decision-making framework could
be designed to prioritize other types of infrastructure invest-
ment such as in bridges or hospitals, among others.

Figure 14. Single-policy interventions programs.

Figure 15. Comparison of optimal investment with simplified programs.

Table 13. Optimized program efficiency related to simplified programs.

Program Relative efficiency

Optimized program 100.0%
Students program ascending 79.2%
Students program descending 61.1%
Cost program ascending 91.0%
Cost program descending 50.7%
BQI program ascending 70.0%
BQI program descending 71.7%
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However, despite the strengths of the method, there is
still room for improvement. Research currently underway
involves considering other non-additive utility functions in
the decision-making framework. For example, the user may
want to consider criteria that may not be added linearly
since there could be some complementarity or correlations
among them. This can be required in other types of contexts
such as bridges, where the infrastructure is interconnected.
Furthermore, additional taxonomies with other types of var-
iables can also be considered in the clustering procedure.
Another area of improvement is to add the time dimension
to the prioritization process (Medaglia, Hueth, Mendieta, &
Sefair, 2008). As it stands right now, the decision-making
framework is static in the sense that it decides the invest-
ments at a given moment in time. An extension of the opti-
mization model could consider time to schedule the
interventions over time.
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