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Neutron scattering sum rules, symmetric exchanges, and helicoidal magnetism in MnSb2O6
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MnSb2O6 is based on the noncentrosymmetric P321 space group with magnetic Mn2+ (S = 5/2, L ≈ 0) spins
ordering below TN = 12 K in a cycloidal structure. The spin rotation plane was found to be tilted away from the c
axis [Kinoshita et al., Phys. Rev. Lett. 117, 047201 (2016)] resulting as a helicoidal ground state, which we refer
as the tilted structure. In our previous diffraction study [Chan et al., Phys. Rev. B 106, 064403 (2022)] we found
no evidence that this tilted structure is favored over the pure cycloidal order (referred as the untilted structure).
The ground-state magnetic structure, expected to be built and originate from seven nearest-neighbor Heisenberg
exchange constants, has been shown to be coupled to the underlying crystallographic chirality with polar domain
switching being reported. We apply neutron spectroscopy to extract these symmetric exchange constants. Given
the high complexity of the magnetic exchange network, crystallographic structure and complications fitting
many parameter linear spin-wave models, we take advantage of multiplexed neutron instrumentation to use
the first moment sum rule of neutron scattering to estimate these symmetric exchange constants. The first
moment of neutron scattering provides a way of deriving the Heisenberg exchange constant between two
neighboring spins if the relative angle and distance of the two ordered spins is known. We show that the first
moment sum rule combined with the known magnetic ordering wavevector fixes six of the seven exchange
constants. The remaining exchange constant is not determined by this analysis because of the equal spatial bond
distances present for different chiral exchange interactions. However, we find this parameter is fixed by the
magnon dispersion near the magnetic zone boundary, which is not sensitive to the tilting of the global magnetic
structure. We then use these parameters to calculate the low-energy spin-waves in the Néel state to reproduce
the neutron response without strong antisymmetric coupling. Using Green’s response functions, the stability of
long-wavelength excitations in the context of our proposed untilted magnetic structures is then discussed. The
results show the presence of strong symmetric exchange constants for the chiral exchange pathways and illustrate
an underlying coupling between crystallographic and magnetic “chirality” through predominantly symmetric
exchange. We further argue that the excitations can be consistently modelled in terms of an untilted magnetic
structure in the presence of symmetric-only exchange constants.

DOI: 10.1103/PhysRevB.107.144420

I. INTRODUCTION

Magnetic materials that lack an inversion center potentially
host coupled magnetic and ferroelectric order parameters
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while also providing a framework for unusual magnetic
excitations like directionally anisotropic (or nonreciprocal)
spin-waves [1,2]. Such materials often consist of magnetic
ions in a low-symmetry environment with a complex set of
magnetic interactions causing the coupling between structural
(e.g., ferroelectricity) and magnetic orders [3–7]. Determining
these magnetic interactions that provide the basis for cou-
pled structural and magnetic properties is often complicated
and based on many parameter fits from complex magnetic
ground states [8,9]. In this paper we investigate the magnetic
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excitations in powder and in an array of single crystals of
the helicoidal magnet MnSb2O6 with the goal of extracting
the symmetric exchange constants. Given the complexity of
the excitation spectrum, the number of predicted exchange
constants, and ambiguities of the magnetic structure (tilted
versus untilted ground state), we apply a first moment sum
rule [10] analysis to extract the symmetric exchange constants
and compare the results to the excitation spectrum from mean
field linear spin-wave theory. This approach only depends on
the relative orientation of neighboring magnetic moments and
does not depend on whether the overall magnetic structure
is tilted or untilted as discussed below. We also demonstrate
a generalized methodology for obtaining symmetric Heisen-
berg exchange constants from multiplexed neutron scattering
where extensive regions of momentum and energy transfers
are sampled.

Iron-langasite (Ba3NbFe3Si2O14) [11–14] and MnSb2O6

[15–19] are two examples of magnetic compounds that are
based on the noncentrosymmetric P321 (#150) space group.
The magnetic order in these compounds is different with
iron-langasite being described by a simple helix that can be
quantified by a time-even pseudoscalar [16]. The magnetic
structure in MnSb2O6, in contrast was first found cycloidal
and quantified by a time-even polar vector [16,19]. Given the
fact that magnetic Mn2+ (S = 5/2, L ≈ 0) is not expected to
have an orbital degeneracy that would enhance any anisotropy
in the magnetic Hamiltonian [20], like antisymmetric terms, it
is expected that such terms are small compared to symmetric
exchange terms in the magnetic Hamiltonian. Furthermore,
diagonal symmetric exchange interactions are coupled to the
chirality of the underlying lattice.

The nuclear structure of MnSb2O6, based on interlaying
MnO6 and SbO6 octahedra is shown in Fig. 1(a). The only
magnetic ions Mn2+ arrange in a triangular motif. Magnetic
interactions occur in these isolated MnO6 octahedra through
super-super-exchange (SSE) pathways (Mn-O-O-Mn). In par-
ticular, chiral SSE pathways along the c axis, shown in
Figs. 1(b) and 1(c), define the structural chirality of the com-
pound.

Below TN ≈ 12 K, the magnetic ground state was found
to follow a cycloidal order with a propagation vector k =
(0, 0, 0.182) [16]. Within each triangle of Mn in the (ab)
plane, shown in dashed gray lines in Fig. 1(d), the moments
are dephased by 120◦. The sense of rotation of the spins
along the c axis and within a basal triangle can be described
by magnetic parameters ηC and ηT, often called magnetic
“chiralities”, which directly couple to the crystal chirality σ

through an energy invariant [19]. Later on, the cycloids were
reported to be tilted away from the c axis, with one of the
main axes of the spin envelop parallel to [11̄0], as shown in
Fig. 1(e). This ground state was presented to be necessary
to explain the electric polarization measured by pyroelectric
current in the (ab) plane in Ref. [17]. The magnetic structure
was further investigated by complementary neutron diffrac-
tion techniques in Ref. [19], showing no evidence of this tilted
magnetic ground state. Furthermore, a mechanism based on
the coupled structural and magnetic chiralities is proposed
for the ferroelectric switching, which does not require a tilted
cycloid ground state.

FIG. 1. (a) Nuclear structure of lattice-chiral MnSb2O6. The
structural chirality can be defined as the helical winding of the Mn-O-
O-Mn super-super-exchange pathway with respect to the c axis: it is
clockwise for left-handed structure (b), and anticlockwise for right-
handed structure (c). Figures made on VESTA [21]. (d) Cycloidal
magnetic structure with magnetic parameters ηc and ηT describing
sense of rotations of the spins. (e) Tilted magnetic structure where
the spin rotation plane is tilted from the c axis by an angle θ . Our
previous diffraction study found no evidence of this tilted magnetic
structure over the cycloidal one, we discuss this below in the context
of a model with symmetric-only exchange constants. Figures made
on MAG2POL [22].

The magnetic interactions are described by a dominant
Heisenberg Hamiltonian Ĥ = ∑

i j Ji j Ŝi · Ŝ j with the sym-
metric exchange constants corresponding to the seven SSE
pathways in MnSb2O6 [16]. The nearest-neighbor exchange
paths are shown in Fig. 2, where the oxygen atoms are omitted
for clarity. Each manganese and antimony atom is surrounded

144420-2



NEUTRON SCATTERING SUM RULES, SYMMETRIC … PHYSICAL REVIEW B 107, 144420 (2023)

FIG. 2. Drawing of the seven nearest-neighbors interactions in
MnSb2O6. (a) Intraplane interactions J1 connecting triangles of Mn
centered at the lattice origin, and J2 connecting between these tri-
angles. (b) Interplane interactions based on the J1 triangle, J4 is the
straight interplane interaction, while J3 and J5 are diagonal chiral
interactions. (c) Interplane interactions based on the J2 triangle, with
J6 and J7 as chiral exchange interactions. Oxygen atoms are omitted
here for clarity. Figure made on MAG2POL [22].

by six oxygen atoms forming edge-sharing octahedra. In
a minimalist model considering only interactions between
neighboring Mn2+ ions, there are therefore seven exchange
constants, which need to be considered. Intraplane interac-
tions are shown in Fig. 2(a) where J1 connects a triangle of
MnO6 octahedra through a SbO6 octahedra centered at the ori-
gin, and J2 connects MnO6 octahedra between these triangles,
through an interplane SbO6 octahedron shown in Fig. 2(c).
Interplane interactions within a Mn triangle connected by J1

are shown in Fig. 2(b), where J4 is the straight interplane
exchange interaction, and J3 and J5 are diagonal exchange
interactions. Similarly, Fig. 2(c) shows J6 and J7, the diag-
onal exchange interactions connecting a Mn triangle linked
by J2. Interestingly, J3 and J6 are related to the right-handed
helical winding of the Mn-O-O-Mn SSE pathways [shown in
Fig. 1(c) for J3], while J5 and J7 are related to left-handed
SSE pathways [shown in Fig. 1(b) for J5]. Thus, these chi-
ral exchange paths are interchanged by inversion symmetry
between structurally left- and right-handed crystals [16]. We
note that only the five first exchange constants were necessary
to describe the SSE interactions in iron-langasite, due to struc-
tural differences with MnSb2O6. Indeed, in Ba3NbFe3Si2O14,
the bond distance d2 = 5.652 Å associated with intertriangle

interaction J2 is significantly larger than the bond distance
d1 = 3.692 Å tied to intratriangle interaction J1 [14]. On the
contrary, in MnSb2O6, d2 = 4.845 Å is smaller than d1 =
5.596 Å, as a result the related interplane interactions J6 and
J7 are expected to be more significant as they link magnetic
Mn2+ ions through SSE pathways.

In this paper, we present our inelastic neutron scattering
data from both powder and single crystals of MnSb2O6. We
apply the first moment (Hohenberg-Brinkman) sum rule of
neutron scattering to extract the exchange constants from
the Heisenberg model, therefore characterizing the magnetic
Hamiltonian. Then, we apply Green’s functions on a rotating
frame to generate spin-wave spectra based on our derived ex-
change constants. Using the values of the symmetric exchange
constants from sum rules of neutron scattering, we refine the
parameters to obtain a good description of the neutron inelas-
tic spectra. Based on the Green’s functions neutron response,
the stability of spin-wave excitations is further tested for the
proposed magnetic structures.

II. EXPERIMENTAL DETAILS

A. Materials preparation

Materials preparation followed the procedure outlined in
Ref. [23]. Powders of MnSb2O6 were prepared by mixing
stoichiometric amounts of pure MnCO3 and Sb2O3. After
mixing through grinding, the powder was pressed into a pellet
and heated up to 1000 ◦C with the process repeated with
intermediate grinding. It was found that heating the pellet to
higher temperatures introduced the impurity Mn2Sb2O7. Sin-
gle crystals of MnSb2O6 were prepared using the flux method.
Starting ratios for single-crystal growth were (by weight) 73%
of flux V2O5, 20% of polycrystalline MnSb2O6 and 7% of
B2O3. The powder was ground and pressed into a pellet and
flame sealed in a quartz ampoule under vacuum (less than
1e−4 Torr). B2O3 was used to lower the melting temperature
of the V2O5 flux. Back filling the ampoules with ≈200 mTorr
of Argon gas was found to noticeably improve crystal sizes.
Quartz ampoules were then heated to 1000 ◦C at a rate of
60 ◦C/hour and soaked at this temperature for 24 hours. The
furnace was then cooled to 700 ◦C at a rate of 2 ◦C/hour and
held for 24 hours, before it was switched off and allowed to
cool to room temperature. Crystal sizes in the range from a
few millimeters to nearly a centimeter were obtained through
this procedure.

B. Neutron spectroscopy

To investigate the magnetic dynamics, neutron spec-
troscopy was performed on the MACS (NIST, Gaithersburg)
triple-axis spectrometer [24] on both single crystals and pow-
der samples. Single crystals of 1.3 g were aligned in the
(HHL) scattering plane on both sides of four aluminium
plates and coated with viscous hydrogen free Fomblin oil,
as shown in Fig. 3. A select fraction of the crystals were
aligned with Laue diffraction and the remainder were aligned
using polarized optical microscopy based on the crystal mor-
phology. These single crystals were synthesized the same
way as the samples measured in our previous studies in
Ref. [19], where we have performed Schwinger scattering and
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FIG. 3. Single crystals of 1.3 g of MnSb2O6 aligned on four Al
plates, and coated with Fomblin oil for inelastic neutron scattering.

transmission polarized optical microscopy and found only a
small imbalance of chiral structural domains in the single
crystals. This small imbalance distinguishes MnSb2O6 from
the enantiopure single crystals of iron based langasite previ-
ously studied [11,13,22]. During the coalignment of the single
crystals used here for spectroscopy, great care was taken to
align the relative a and b in-plane axes, the choice of what
constituted ±[001] was done at random. For the purposes
here we consider the average crystal structure to be an equal
mixture of the differing chiral domains. We will show in
Sec. III D that our analysis holds no matter the proportion of
chiral structural domains. To probe the dynamics in our array
of single crystals, the final energy was fixed to either Ef =
2.4 meV or 3.7 meV with BeO and Be filters, respectively,
being used on the scattered side to filter out higher-order
neutrons from the monochromator. For all results presented
here the pyrolytic graphite PG(002) monochromator was fo-
cused both horizontally and vertically. The lattice parameters
were measured to be a = b = 8.733 Å and c = 4.697 Å. For
powder measurements, a 16.3-g sample was used with Ef =
3.7 meV and a BeO filter on the scattered side.

III. RESULTS AND DISCUSSION

In this section, we will first present the neutron scattering
data for both powders and single crystals of MnSb2O6, before
detailing our absolute normalization process. Then, zeroth
and first moment sum rules are applied to our inelastic data
allowing the extraction of the symmetric exchange constants.
We will finally use Green’s functions on a rotating frame to
compare the resulting spin-wave spectra to the experimental
ones and to test the stability of proposed magnetic structures.

A. Excitation spectra

1. Total excitation spectra

The excitation spectra of both powders and single crystals
of MnSb2O6 at T = 1.4 K are shown in Fig. 4, with the Ef =
3.7 meV MACS setup. The powder data in Fig. 4(a) display
intense low-energy magnetic scattering extending from the
elastic line to ∼1 meV, and a weaker band of excitations at
approximately twice this value at ∼2 meV. The single crystal
data displayed in Figs. 4(b) and 4(c) illustrate two different
types of scattering: one with intense dispersive fluctuations
that are well defined both in momentum and energy at low
energies, and the other with a weaker momentum and energy
broadened continuum of scattering extending to larger energy

FIG. 4. (a) Powder averaged inelastic neutron scattering spec-
trum taken on MACS at T = 1.4 K. [(b),(c)] Single crystal inelastic
neutron scattering spectrum from the Ef = 3.7 meV dataset at T =
1.4 K. The logarithmic intensity scales are chosen to show the two
components to the scattering and in particular the higher energy weak
scattering displayed at ∼2 meV.

transfers. This continuum of scattering is most apparent at
the zone boundaries in the single crystal data. Given the
kinematics of these two types of scattering, we associate the
lower-energy dispersive fluctuations with one-magnon scat-
tering and the higher-energy continuum with two-magnon
scattering. While two-magnon scattering is expected to be
most prominent in S = 1/2 magnets [25–33], it is a direct
result of the uncertainty associated with noncommuting ob-
servables and has been studied extensively in other large-S
magnets [34–36]. We discuss this cross section later in the
paper in the context of the zeroth moment sum rule and show
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FIG. 5. Powder inelastic neutron scattering spectrum of the one-
magnon cross section at (a) T = 1.4 K (below TN) and (b) T = 25 K
(above TN).

indeed that these two components of scattering originate from
single and multimagnon processes.

2. Powder low-energy spectrum

Results of the low-energy powder inelastic neutron scatter-
ing experiment performed on MACS, with fixed final energy
Ef = 3.7 meV are shown in Fig. 5. The powder averaged
spin-wave dispersion at T = 1.4 K, below the Néel mag-
netic ordering transition, is presented in Fig. 5(a), showing
low-energy spin dynamics below E ≈ 1.4 meV. These dy-
namics are highly dispersive from the magnetic ordering
wavevector and are gapless within experimental resolution
(�E ≈ 0.15 meV). In contrast, above TN ≈ 12 K, the mag-
netic scattering is considerably broadened both in momentum
and energy indicative of spatially and temporally short-range
correlations. This paramagnetic scattering is very strong due
to high spin S = 5/2 of Mn2+ magnetic ions, as shown in
Fig. 5(b) with the spectrum measured at T = 25 K. Both
experimental datasets below and above the magnetic ordering
temperature also display a decay in intensity with increasing
momentum transfer, characteristic of magnetic scattering. The
powder averaged spectra establish the presence of dispersive
magnetic dynamics and the energy scale of the spin excita-
tions.

3. Single crystal low-energy spectrum

Results of single crystal inelastic neutron scattering per-
formed on MACS with a fixed final energy Ef = 2.4 meV are
displayed in Figs. 6 and 7 at T = 1.4 K below TN. The data

FIG. 6. MACS single crystal inelastic neutron scattering spec-
tra at T = 1.4 K. Constant energy slices for (a) E = 0.1 meV and
(b) E = 1.25 meV. The weak scattering in (a) at (H, H ) ∼ –0.5 and
displaced at (H, H ) ∼ –1.1 originate from some crystals misaligned
by ∼ 60◦ in the multicrystal mount.

are illustrative of dispersive dynamics originating from the
magnetic ordering wavevector. Constant energy slices at E =
0.1 meV and E = 1.25 meV are shown in Figs. 6(a) and 6(b).
Spin-wave dispersion along (−1,−1, L) and (H, H, 0) are
respectively shown in Figs. 7(a) and 7(b). Spin-wave branches
emerging from nuclear Bragg peak (–1,–1,0) and also its
magnetic satellites (–1,–1,0)±k are visible in Figs. 6(a) and
7(a). Within the instrumental resolution (�E ≈ 0.1 meV),
all modes seem gapless, which is consistent with the low
anisotropy measured from electron spin resonance [18], and
observed from the tunability of the magnetic structure by
small magnetic fields [17,19].

As already presented in Figs. 4(b) and 4(c), inelastic neu-
tron scattering data were also obtained on MACS with the
same array of single crystals, but with a fixed final energy
Ef = 3.7 meV. In the following, the dataset used for each
analysis will be mentioned.

B. Absolute normalization of magnetic cross section

In order to straightly compare the magnetic scattering in-
tensities from the different datasets, they have to be converted
into absolute units. This is particularly important given our
goal of applying sum rules of neutron scattering to obtain
the magnetic exchange constants in absolute units of energy.
Through this we will apply the zeroth moment sum rule
to demonstrate that all of the magnetic spectral weight is
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FIG. 7. MACS single crystal inelastic neutron scattering spec-
tra at T = 1.4 K: spin-wave dispersion along (a) (−1, −1, L) and
(b) (H, H, 0).

measured in the experiments discussed above. We then apply
the first moment sum rule to obtain the symmetric exchange
constants. In this section, we describe our normalization pro-
cess, adapted from Refs. [37,38] and introduce our definition
for the dynamical structure factor S(Q, E ).

The intensity measured during the experiment I (Q, E )
(in counts) is related to the differential cross section via
a convolution with an instrumental-dependent resolution
function R,

I (Q, E ) =
∫

dQ0dE0
d2σ

d� dEf
(Q0, E0)R(Q0, E0, Q, E ). (1)

By assuming a slow variation of this resolution function in
the region of study (over the narrow energy range probed in
this study), it can be approximated by a constant R0, which
allows us to decouple the intensity into

I (Q, E ) ≈ R0
d2σ

d� dEf
(Q0, E0). (2)

During the data reduction, the intensity is normalized to
the monitor counts based on a low-efficiency detector placed
in the incident beam after the monochromator and before the
sample. The efficiency of which is inversely dependent to the
speed of the incident neutrons, which is proportional to ki,
giving the normalized intensity (in counts/mon)

Ī (Q, E ) = kiI (Q, E ) = kiR0
d2σ

d� dEf
(Q, E ). (3)

Having related the measured scattering intensity to the
cross section, we now focus on the magnetic differential cross
section for unpolarized neutrons and identical magnetic ions.
Assuming isotropic spin excitations, we can define the dy-
namic structure factor S(Q, E ) = Sxx = Syy = Szz, where Sαβ

is the dynamic spin correlation function related to the Fourier
transform of the spin-spin correlation function. Neglecting the
Debye-Waller factor gives the following double differential
cross section:

d2σ

d� dEf
(Q, E ) = N

kf

ki

(γ r0

2

)2
(g| f (Q)|)22S(Q, E ) (4)

where N is the number of unit cells, γ r0/2≈0.2695 ×
10−12 cm is the typical magnetic scattering length, g is the
Landé factor and f (Q) the magnetic form factor. Combining
Eqs. (3) and (4) we get the dynamical structure factor (in
meV−1) from the measured intensity by

S(Q, E ) = Ī (Q, E )

|gf (Q)|2( γ r0

2

)2
2Nkf R0

(5)

we can write directly the numerical values of the magnetic
cross section (γ r0/2)2 into the equation

S(Q, E ) = 13.8( b−1)Ī (Q, E )

|gf (Q)|22Nkf R0
. (6)

The key for normalizing the magnetic intensity is thus to
evaluate this instrumental-dependent factor Nkf R0 expressed
in (meV)(counts/mon)(b−1).

There are several ways reported in the literature for ob-
taining this instrument calibration factor. One possibility is
to evaluate the incoherent scattering from the elastic line
of a known standard compound (for example, as done in
Ref. [39]). By energy integrating the measured intensity close
to elastic energy transfer, far from any magnetic or nuclear
Bragg peak, we obtain, as ki = kf for elastic scattering,

∫ +ε

−ε

dEĪ (Q, E ) = Nkf R0

∑
i

(
binc

i

)2
, (7)

where binc
i is the incoherent scattering length of atom i, and the

sum is over the unit cell. Vanadium having a large incoherent
scattering cross section compared to its coherent one, it is
usually used as a standard sample to normalize inelastic neu-
tron scattering data. We have measured the vanadium sample
in the same geometry and instrumental configuration as our
MnSb2O6 powder sample. With NV the number of Vanadium
atoms and its incoherent scattering length binc

V = 6.35 fm [40],
we can write

NVkf R0 =
∫ +ε

−ε
dEĪV(Q, E )(

binc
V

)2 . (8)

By writing NV = mV/(Ar (V )mu) with mV the mass of the
vanadium sample, Ar (V ) the relative atomic mass of Vana-
dium, and mu the atomic mass constant, we can write the ratio
N/Nv = m/Ar (MnSb2O6 )cell

mV/Ar (V ) with m the mass of the MnSb2O6 sam-
ple, and Ar (MnSb2O6)cell the relative mass of a unit cell (three
formula units of MnSb2O6 per unit cell), the normalization
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factor becomes

Nkf R0 = m/Ar (MnSb2O6)cell

mV/Ar (V )

∫ +ε

−ε
dEĪV(Q, E )

0.403 b
. (9)

This equation allows us to obtain the instrumental cali-
bration factor from the incoherent cross section centered at
the elastic (E = 0) position. We note that an alternate way
to obtain this calibration constant is to measure the elastic
incoherent cross section from the sample given manganese
has a comparatively large incoherent cross section. We did not
take this approach in this experiment as we found the elastic
line where incoherent scattering is present in our single crystal
geometry was contaminated by scattering from hydrogen free
(yet fluorine based) Fomblin oil. Fomblin, while having a
comparatively small incoherent cross section in comparison
to hydrogen, has a non-negligible coherent liquid-like cross
section. This cross section is difficult to disentangle from the
purely Mn2+ incoherent cross section and therefore we relied
on a separate vanadium standard of known mass.

C. Total moment sum rule

Having established the procedure for calibration of the in-
strument, we now discuss the sum rules of neutron scattering.
Magnetic neutron scattering is governed by sum rules, which
are satisfied by integrating the dynamical spin correlation
function Sαβ (Q, E ) over energy and momentum transfer [10].
In particular, the energy moments

∫ +∞
−∞ EnSαβ (Q, E )dE are

given theoretically [10,41,42], with n = 0, 1 the zeroth and
first moment.

The zeroth moment sum rule is often referred to as the total
moment sum rule and corresponds to the integral of all the
magnetic spectral weights [37,43–45],

3
∫

d3Q
∫

dES(Q, E )∫
d3Q

= NmS(S + 1) (10)

where Nm = 3 is the number of magnetic ions per unit cell.
This quantity can be considered as a conservation rule and al-
lows us to confirm whether we have experimentally measured
all of the spectral weight. This rule has become particularly
important in itinerant compounds near potential critical points
[46]. We will apply this zeroth moment sum rule to our pow-
der data, which was normalized using a vanadium standard
sample, following the process described above. In this case,
the total moment can be written as

I =
∫

dQQ2
∫

dES(Q, E )∫
dQQ2

= S(S + 1) (11)

with Q = |Q|. In order to estimate the spectral contributions
from one-magnon and two-magnon scattering, we can intro-
duce the momentum integrated intensity,

Ĩ (E ) = 3
∫

dQQ2S(Q, E )∫
dQQ2

, (12)

which measures the magnetic density of states [44,45]. Then
the integral

∫ Emax

Emin
dEĨ (E ) gives the spectral weight for the

energy interval [Emin, Emax]. Figure 8 shows the momentum
integrated intensities as a function of the energy. As discussed
above, the magnetic intensity consists of two components

FIG. 8. Momentum integrated intensities as a function of the
energy, for (a) E ∈ [0, 1.9] meV, and (b) E ∈ [1.3, 4] meV. The in-
tensities are integrated between the dashed blue (0.4 meV) and red
(1.6 meV) lines to get the one-magnon spectral weight I1, and above
the red lines to 4 meV to get the two-magnon spectral weight I2.

with a low-energy component, which consists of harmonic
excitations well defined in momentum and energy and a sec-
ond considerably weaker component, which is broadened in
momentum and energy transfer. These correspond to single
[Fig. 8(a)] and two-magnon [Fig. 8(b)] dynamics and are sep-
arated in the powder averaged data. We can see that the one-
and two-magnon contributions crossover around 1.6 meV (red
dashed line), but since the intensities are quite low at this
energy we consider 1.6 meV as the upper bound of the one-
magnon scattering, and 0.3 meV as its lower bound (blue
dashed line).

To extract numerical values for the integrated zeroth
moments from our powder data we average the data in mo-
mentum. Accounting from the momentum powder average,
the Q dependence of the integrated intensity is given by
[43,47]

L(Qmax) =
∫ Qmax

0 dQQ2
∫

dES(Q, E )∫ Qmax

0 dQQ2
(13)

and is shown in Fig. 9 for both (a) one-magnon and (b)
two-magnon contributions discussed above. The momentum
average in this plot allows us to account for limited kinematic
coverage of the detectors at low momentum transfers (see low
momentum transfers in Fig. 5). From Fig. 9, we can see that
L(Qmax) approximately fully saturates close to 2 Å−1 thereby
illustrating that approximately all of the spectral weight has
been sampled.

Based on this momentum average of the powder data,
the spectral weight I1 = 2.7(2) for one-magnon scattering is
then calculated by integrating the intensity between 0.3 meV
[dashed blue line in Fig. 8(a)], and 1.6 meV (dashed red line
in Fig. 8). The two-magnon spectral weight is obtained by
integrating between 1.6 and 4 meV, leading to I2 = 0.17(1).

The elastic (static) scattering contribution to the total mo-
ment is 〈Sz〉2 where z indicates the direction of the Mn2+

spin in the rotated local frame. From our neutron powder
diffraction (previously outlined in Ref. [19]) the ordered
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FIG. 9. Integrated intensities as a function of Qmax the momen-
tum integration upper bound, for (a) one-magnon and (b) two-
magnon scattering. The dashed lines indicate the final values for
Qmax = 2.05 Å.

moment is g〈Sz〉 = 4.6 μB at 2.6 K leading to 〈Sz〉2 = 5.3, and
a spin reduction from the expected full saturated moment cor-
responding to S = 5/2 of �S = S − 〈Sz〉 = 0.2. This missing
component from the experimental 〈Sz〉 by conservation of
spectral weight is expected to reside in the multimagnon com-
ponent of the neutron dynamics corresponding to longitudinal
fluctuations.

Based on this elastic spectral weight, the theoretical total,
one-magnon, and two-magnon contributions can be computed
[35,48]. They are compared with those obtained experimen-
tally in Table I. The experimental total moment is 8.2(2),
which is to be compared to the expected value of 8.75 for
S = 5/2. The discrepancies can be due to the relatively small-
Q range measured during this experiment and experimental
systematic issues such as the use of an external vanadium
standard or small variations in the resolution function over
the energy range probed here. Given the small energy and
momentum ranges, and that we have integrated the intensity
over all momentum and energy, we do not expect that changes
in the resolution to be important. However, the results are in
good agreement illustrating the relative weights of one- and

TABLE I. Contributions of the different components of the scat-
tering for S = 5/2 and �S = 0.2 deduced from neutron powder
diffraction.

Theory Experiment

Total S(S + 1) = 8.75 8.2(2)
Elastic 〈Sz〉2 = 5.3
One-magnon (S − �S)(1 + 2�S) = 3.2 2.7(2)
Two-magnon �S(�S + 1) = 0.2 0.17(1)

two-magnon cross sections and the energy range over which
the magnetic dynamics are present in MnSb2O6. This also
confirms our assignment of the higher-energy component to
longitudinal two-magnon scattering and also illustrates all of
the spectral weight is sampled in the dynamic range of our
experiments.

D. First moment sum rule

The previous discussion of the zeroth moment sum rule
has established several points relevant for the rest of the pa-
per. First, we established the energy range of the magnetic
dynamics in MnSb2O6. Second, we have established the rel-
ative spectral weights of the single and two-magnon cross
sections and found these to be in good agreement with missing
spectral weight observed in diffraction experiments. Third, we
have established and verified a calibration procedure for the
powder data.

1. Theory

In this section, we discuss the first moment sum rule and
how it can be applied to extract symmetric exchange con-
stants. The first moment is defined for general dynamic spin
correlation function Sαβ (Q, E ) as

〈E〉(Q) ≡
∫ ∞

−∞
dEE Sαβ (Q, E )

=
∫ ∞

−∞
dE〈[Ŝα (Q, E ), Ĥ]Ŝβ (−Q, 0)〉

= 〈[Ŝα (Q), Ĥ]Ŝβ (−Q)〉. (14)

For nuclear scattering from a monotonic system, this re-
duces to h̄2Q2

2M , where M is the mass of the scattering nucleus
[49,50]. For magnetic systems and in the case for symmetric-
only exchange where the Hamiltonian has the form Ĥ =∑

i, j Ji j Ŝi · Ŝ j , the Hohenberg-Brinkman first moment sum
rule is given by [10,37,43–45]

〈E〉(Q) =
∫

dEE S(Q, E )

= −2

3

∑
i, j

ni jJi j〈Ŝi · Ŝ j〉[1 − cos(Q · d i j )] (15)

where 〈Ŝi · Ŝ j〉 is the ground-state equal-time correlation func-
tion of spins Ŝi and Ŝ j at sites i and j, ni j is the multiplicity
of Ji j , the exchange constant associated to the bond vector
d i j . This equation assumes symmetric-only exchange as we
anticipate is dominant for 3d magnetic transition metal ions
in the absence of spin-orbit coupling. Anisotropic terms in the
magnetic Hamiltonian appear as constants to this equation for
the first moment; however, given the lack of an orbital degree
of freedom in Mn2+ in an octahedra, we expect such terms to
be small in comparison to the symmetric Heisenberg exchange
and therefore neglect them here.

Knowing the nuclear and magnetic structure of a com-
pound gives the bond vectors d i j and the correlators 〈Ŝi · Ŝ j〉.
Then, measuring the first moment for different Q values al-
lows to fit the exchange constants, which correspond to the
amplitudes of the sinusoidal oscillations. We note that Eq. (15)
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TABLE II. Summary of the exchange interactions Ji, with their
multiplicity in the unit cell ni, the related bond distance di, the spin
angle difference �θi j and the associated ground-state correlation
functions ci j . Subindices i and e refer to the diagonal bond dis-
tances internal and external to the triangle of Mn interconnected by
J1. Subindices L and R refer to left- and right-handed correlation
functions.

Ji ni di (Å) �θi j ci j = 〈Ŝi · Ŝ j〉 = cos �θi j

J1 3 d1 = 5.5961
2π/3 c1 = −0.5

J2 6 d2 = 4.8445
J3 3 di = 7.3235 2π (k + εT/3) cR = −0.995
J4 3 d4 = 4.7241 2πk c4 = 0.414
J5 3 di = 7.3235 2π (k − εT/3) cL = 0.58
J6 6 2π (k + εT/3) cR = −0.995

de = 6.7666
J7 6 2π (k − εT/3) cL = 0.58

only depends on the relative orientation of neighboring spins,
which has been modelled previously using neutron diffraction.
For the following, in terms of notation, the spin component
S(S + 1) will be included in the exchange constants instead
of the correlators and the exchange constants are in units of
meV.

In MnSb2O6, seven nearest-neighbors exchange interac-
tions are considered and expected to be relevant, as shown in
Fig. 2, related to a total of 30 Mn-Mn bonds per unit cell. The
first thing to evaluate is the ground-state correlation functions
〈Ŝi · Ŝ j〉 for each of the bonds. The magnetic ground state
of MnSb2O6 is unclear, rather reported as a pure cycloid in
Ref. [16] or tilted from the c axis in Ref. [17]. But in both
cases, the spin structure is helicoidal with the spins corotating
in the same plane [19]. Thus, the scalar product can be simply
evaluated by cos �θi j , with �θi j , the angle difference between
the spins in the same rotation plane. The exchange interactions
are listed in Table II with their associated multiplicities, bond
distances, and ground-state correlators, with k = 0.182 the
propagation vector component along the c axis. We empha-
size that this method only depends on relative orientation of
neighboring spins and not on details for the tilted and non
tilted helicoidal structures. Indeed, the 〈Ŝi · Ŝ j〉 correlators are
the same in both models. Therefore, this method allows us
an independent means of measuring the exchange constants
without details of the long-range magnetic structure that is
relevant for spin-wave calculations. We discuss this point later
in the context of stability of the long-wavelength excitations
once we have obtained the exchange constants from the first
moment analysis.

Furthermore, we note that the correlators for diagonal paths
actually depend on the sense of rotations of the spins, and thus
on the magnetic parameters ηC and ηT. From the energy in-
variant, these magnetic parameters are related to the structural
chirality by σ = ηCηT [19]. Thus the correlators for the diago-
nal exchange paths are cos(2π (ηCk ± ηT/3)) = cos (2π (k ±
σ/3)) for left- J5, J7 (+) and right-handed J3, J6 (−) ex-
change interactions. The diagonal exchange interactions are
interchanged by inversion symmetry, which corresponds to
an inversion of σ . Thus, ground-state correlators are in-
variant for a given exchange constant. Thus the analysis
holds independently of the structural and magnetic domains

FIG. 10. MACS single crystal inelastic neutron scattering spec-
trum: spin-wave dispersion along (0.2, 0.2, L). The red dashed lines
indicate constant-Q scans shown in Figs. 11(a)–11(c).

populations. This is convenient as a mixture of structural and
magnetic domains was previously measured in a single crystal
of MnSb2O6 [19].

For a fixed scattering vector Q, the cosine frequency will
only depend on the bond distances. We can therefore define
the parameters γ associated to each of the five distinct bond
lengths, which are functions of the exchange constants and
ground-state correlation functions,

γ1 = J1c1 (16a)

γ2 = J2c1 (16b)

γ4 = J4c4 (16c)

γi = J3cR + J5cL (16d)

γe = J6cR + J7cL (16e)

where the ci are calculated from the co-rotating helicoidal
magnetic structure [19] and displayed in Table II.

2. Single-crystal data

Having discussed the equations and theory for the first
moment sum rule applied to MnSb2O6, we now apply this
to our single crystal sample aligned in the (HHL) scattering
plane. We can simplify the calculation of the first moment
by fixing H = H0 and varying L (L scan), or fixing L =
L0 and varying H (H scan). This leads to two different
analyses. The L-scan analysis will be detailed in the fol-
lowing section, while the H-scan analysis is presented in
Appendix 2.

The data is extracted along an L scan, considering Q =
(H0, H0, L) with L varying and a given H0. In the following
we will consider the Ef = 2.4 meV dataset, as an example, we
take H0 = 0.2. The spin-wave dispersion along (0.2, 0.2, L)
is shown in Fig. 10. For each interaction indexed by spins i
and j, the corresponding term in the first moment cosine from
Eq. (15) can be written as

Q · d i j = 2πH0(di j,x + di j,y ) + 2πLdi j,z (17)

where the distances di j are expressed in lattice units, and the
scattering vector in reciprocal lattice units. Using trigonomet-
ric identities to expand the cosine term, and summing Eq. (15)
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FIG. 11. [(a)–(c)] Constant-Q scans for different Q = (0.2, 0.2, L), indicated with dashed red lines in Fig. 10. A fit to a double Gaussian is
shown in red, and the first moment is calculated from trapezoidal integration where the background is removed from the Gaussian fit. (d) First
moment as a function of L for H0 = 0.2, fitted to its theoretical expression (red curve). The red data points corresponds to the first moments
calculated in the cuts plotted in (a)–(c). [(e), (f)] First moment as a function of L for (e) H0 = −0.4 and (f) H0 = −0.8, fitted to theoretical
expression in red.

over the 30 bonds in the unit cell, a general formula for the first
moment is derived, for a fixed H0,

〈E〉(H0, L) = A(H0) cos(2πL) + C(H0) (18)

where A and C are two H0-dependent functions of the γ

parameters, given by

A(H0) = 2
3 [(1 + 2c(H0))γi + 3γ4 + 2�c(H0)γe] (19)

C(H0) = − 2
3 [2(1 − c(H0))γ1 + · · ·

2(3 − �c(H0))γ2 + 3γi + 3γ4 + 6γe] (20)

where

c(H0) = cos(2πH0δ1)

�c(H0) = cos(2πH0δ2) + . . . cos(2πH0δ3) + cos(2πH0δ4)

are H0-dependent harmonic oscillations, and
δ1 = 3(1 − rx ),

δ2 = 1,

δ3 = 2 − 3rx,

δ4 = 3rx − 1,

are Mn-Mn interatomic distances (in r.l.u.) projected in the
(ab)-plane. rx = 0.6329 is the a axis coordinate of the Mn
atom at Wyckoff site 3e, taken from the single crystal neutron
diffraction refinement at T = 2 K in Ref. [19].

From Eq. (18), for a specific H0, we can compute the first
moment as a function of L, and fit the coefficients A(H0) and
C(H0) for a scan along (H0, H0, L). The next step is to repeat
the same process for several H0, and fit the γ parameters in
coefficients A and C with Eqs. (19) and (20).

Examples of calculations of the first moment for different
L, for Q = (0.2, 0.2, L) are shown in Figs. 11(a)–11(c). These
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FIG. 12. (a) Measured first moments vs fitted first moments for L-scan analysis, for the Ef = 2.4 meV dataset. A total of 969 〈E〉(Q) were
taken into account. [(b),(c)] Fitting of coefficients (b) A and (c) C giving the γ parameters. The red data points show the values calculated in
Figs. 11(d)–11(f).

constant-Q scans are indicated in red dashed lines in Fig. 10.
Most of the S(Q, E ) are well fitted by two Gaussians, shown
in red in the figures, but to take into account any deviation
from a two-mode spectrum, the numerical integration of the
first moment from Eq. (15) was performed using a trapezoidal
integration, with the background removed from these two-
Gaussian fits. The calculation is performed above 0.2 meV
to get rid of any contribution from elastic scattering, and
below 1.6 meV to only capture contribution from one-magnon
scattering. This criterion is arbitrary, and low-energy scatter-
ing can be miscalculated. Actually, due to Eq. (15), lowest
energy points contribute less to the first moment (given a
low-magnetic intensity at low energy), so the differences are
not significant within uncertainties. More information con-
cerning the numerical integration and the differences between
the methods of integration are given in Appendix 1.

These first moments are calculated for a range of L,
as shown in Fig. 11(d) where first moments computed in
Figs. 11(a)–11(c) are highlighted in red. For this specific
H0 = 0.2, the A and C parameters are obtained from the fit
(red curve) to Eq. (15). The H0 dependence of A and C is
then obtained by repeating the same procedure for different
H0, as illustrated in Figs. 11(e) and 11(f) for H0 = −0.4 and
H0 = −0.8.

Finally, a total of 969 first moments 〈E〉(Q) were calcu-
lated from the MACS Ef = 2.4 meV dataset for this analysis
and are shown as a function of the fitted first moment in
Fig. 12(a). Finally the γ parameters are obtained by fitting
A and C to Eqs. (19) and (20) as shown in Figs. 12(b) and
12(c), where the red data points are the coefficients calcu-
lated in Figs. 11(d)–11(f). We note from Eq. (18) that some
remaining background can be included in the computation of
C, as well as small contributions from anisotropic terms in the
magnetic Hamiltonian, as discussed above. For this reason,
the H0-independent part of Eq. (20) is not fitted to get the
parameters γ4, γi, and γe, which are rather fitted with Eq. (19),

where A represents the amplitude of the first moment cosine
variation.

A similar analysis can be performed by considering a fixed
L0 and varying along H and is detailed in Appendix 2, giving
another set of fitted γ parameters. Then, these two analyses
were performed again with the second single crystal dataset,
with Ef = 3.7 meV, giving two other sets of γ parameters.
This is detailed in Appendix 3. These fitted γ parameters are
shown in Fig. 13, where they have been normalized to γe

obtained from the L-scan analysis for each dataset, in order
to get rid of any scale issue coming from the absolute normal-
ization process and to directly compare the fitted parameters.
We discuss below how we obtain the overall scaling factor to
obtain units of meV.

FIG. 13. Fitted parameters for the different analysis and dataset,
normalized to γe obtained in the L-scan analysis from the Ef =
2.4 meV dataset. Mean values (green bars) are calculated averaging
over the four analysis.
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3. Powder data

As described in Sec. III A 2, powder inelastic neutron scat-
tering was also performed on MACS and first moment sum
rule can also be applied to these data.

For polycrystalline samples, the intensity measured is re-
lated to the powder averaged S(|Q|, E ) = ∫

d�QS(Q, E )/4π

of the dynamic structure factor. This gives the powder aver-
aged first moment sum rule [43,45]

〈E〉(|Q|) =
∫

dEES(|Q|, E )

= −2

3

∑
i, j

ni jJi j〈Ŝi · Ŝ j〉
{

1 − sin(|Q||d i j |)
|Q||d i j |

}
. (21)

As for the single crystal analysis, for a fixed Q = |Q|, the
sine frequency only depends on the bond lengths, which are
the same for diagonal exchange paths as listed in Table II,
resulting in five distinct bond distances. We can further sim-
plify the first moment by summing over these distinct bond
distances,

〈E〉(Q) = −2

3

∑
i

niγi

{
1 − sin(Q|d i|)

Q|d i|
}

(22)

where i ∈ [1, 5] is related to the ith bond length and the γi

are defined in Eq. (16). Due to the very close bond distances
(especially d2 = 4.8445 Å and d4 = 4.7241 Å), and the rela-
tively small Q range probed in the experiment (from 0.3 to
2.05 Å−1), we were not able to conveniently fit the γ pa-
rameters, because of high correlations in the fitting process.
However, we can compare the first moment extracted from the
powder inelastic neutron scattering with the theoretical one
calculated using the γ parameters obtained from the single
crystal analysis described above.

The first step for extracting the first moment from the
experimental data is to define the region of integration for the
energy. For the powder, the first moment was integrated for
E ∈ [0.3, 1.6] meV to get rid of the elastic and two-magnon
scattering. This is justified by the spectral weight calculated
in the total moment sum rule analysis described in Sec. III C.
Due to gapless modes in the one-magnon spectrum, around
0.8 Å−1 and 1.4 Å−1, as shown in Fig. 5(a), the contribution
from elastic scattering and one-magnon can be mixed. How-
ever, this mixture happens at low energies and low intensities,
so that deviations from the actual first moment are small.
As for the single crystal analysis, the data were integrated
numerically using a trapezoid integration, and the background
was removed by fitting with two Gaussians. The theoretical
γ parameters calculated from the single crystal first moment
sum rule analysis were rescaled to match the scale of the first
moment observed in the powder experiment, as we know the
powder data have been fairly normalized as it captures all
the magnetic spectral weight as detailed in Sec. III C. The
magnetic form factor is also taken into account during this
rescaling process.

The theoretical first moment calculated from the γ param-
eters obtained from the single crystal sum rules analysis is
shown in red in Fig. 14, and matches well the first moment
computed from the powder experiment. The contribution from
each exchange constant associated to their bond distance is

FIG. 14. (Data points) First moment computed from the powder
data, as a function of the scattering vector amplitude. (Red thick
curve) First moment calculated from the γ parameters fitted in the
single crystal first moment sum rule analysis. (Thin curves) Con-
tributions to the first moment from the different exchange paths,
normalized to the powder computed first moment.

shown in thin lines (normalized to the powder computed first
moment). From this, we can see how the contributions from
J2 and J4 to the first moment are close, which makes the fit
difficult within this small wavevector range probed during this
experiment.

E. Determination of exchange constants

In the first moment sum rules analysis, we have used the
five γ parameters, which are related to the seven exchange
constants. γ1, γ2, and γ4 are uniquely related to J1, J2, and
J4, and can be deduced from Eqs. 16(a)–16(c), leaving J3, J5,
J6, and J7. γi and γe are related in Eqs. (16d) and (16e) to
these four chiral exchange constants. Considering the energy
minimization using the experimental propagation vector from
diffraction [19], these four unknown exchange constants can
be written into three linearly independent equations,

tan 2πk =
√

3
J3 − J5 + 2(J6 − J7)

J3 + J5 + 2(J6 + J7 − J4)
(23a)

γi = J3cR + J5cL (23b)

γe = J6cR + J7cL. (23c)

This analysis presents an ambiguity given the presence of
three equations and four unknown exchange constants. This
ambiguity is intrinsic originating from many of the exchange
parameters corresponding to the same bond distances, which
is the the basis of the first moment sum rule analysis discussed
above. In particular, the exchange constants J3 (J6) and J5 (J7)
correspond to the same bond distance and only differ by the
SSE pathway defined by the crystal chirality. We therefore
need further information to close this set of equations and seek
this through a comparison between calculated and measured
single crystal excitation spectra, focusing on the overall band-
width and excitations near the zone boundary.

By calculating the excitation spectra using linear spin-wave
theory software SPINW [51] with an simulated instrumental
resolution �E ≈ 0.1 meV, we can see that the upper magnon
branch along (H, H, 0) is largely affected by a change of the
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FIG. 15. Spin-wave dispersion along (H, H, 0) for (a) MACS single crystal inelastic neutron scattering spectrum. [(b)–(d)] Inelastic neutron
scattering spectrum calculated from linear spin-wave theory by fixing different J3 values. The other parameters for these calculations are listed
in Table V.

J3 exchange parameter. We note that the calculation was done
assuming an untilted structure [cycloidal ground state shown
in Fig. 1(d)]; however, the scattering near the top of the single
magnon branch was found not to be sensitive to the tilting of
the magnetic moments. Analyzing the scattering near the top
of the single magnon branch near the magnetic zone boundary
therefore provides an independent means of fixing J3. The
experimental spectrum from MACS Ef = 2.4 meV dataset is
shown in Fig. 15(a), and compared to calculated spectra for
different values of J3 in Figs. 15(b)–15(d), where we can
observe a significant change of the position and structure of
the upper mode. In particular, tuning J3 affects the maximum
energy of the one-magnon band and also the splitting of
multiple bands at the maximum energy of the single magnon
bands as observed in the H scans. Given our experimental data
[Fig. 15(a)] and to close off the set of Eqs. (23), we assume no
observable splitting of bands in the H scans and a maximum
single-magnon energy excitation given by experiment. These
two observations fix both the absolute value of J3 and also an
overall scaling factor taking the data to absolute units of meV.
For these calculations, J5, J6, and J7 are obtained by fixing
J3 in Eq. (23) resulting in a system of three equations and
three unknowns with γi and γe the mean values obtained in
the single crystal sum rules analysis shown in Fig. 13. We
have chosen to fix J3 as it has the lesser influence on the
ordering wavevector, which is seen by partially differentiat-
ing Eq. (23a). Finally, the exchange constants obtained by
fixing J3 with the best agreement are listed in Table III. The
uncertainty associated to J3 is an estimation based on the in-
strumental resolution of how far from J3 = 0.25 meV we can
observe the band splitting. From this estimated error, and the
least-square refinement of γi and γe, we subsequently compute
the uncertainties associated to J5,6,7. The obtained exchange
constants are compared with the values calculated from DFT
from Ref. [16]. First we can see that the interactions are over-

all lower in energy than expected from the DFT calculations.
Then, the left-handed interactions J3 and J6 are dominant in
comparison to right-handed J5 and J7, as expected to impose
the structural chirality of MnSb2O6.

From mean field theory, the Curie-Weiss temperature can
be estimated by summing the exchange constants over the
nearest neighbors of a Mn2+ ion [52]

�CW = −S(S + 1)

3kB
[2(J1 + J3 + J4 + J5)

+ 4(J2 + J6 + J7)]. (24)

We note that this equation is not linearly independent
from the system in Eq. (23), and thus cannot be used to
uniquely determine the four chiral exchange constants J3,
J5, J6, and J7. Furthermore, the Curie-Weiss temperature ob-
tained from magnetic susceptibility on MnSb2O6 powder,
�CW = −19.6 K in Ref. [16] and �CW = −23 K in Ref. [18]
have a difference �T = 3.4 K corresponding to an energy
difference of �E ≈ 0.3 meV, which is significant given the
low-energy scale of the exchange constants in MnSb2O6 (see
Table II). This variation in experimentally reported results

TABLE III. Symmetric J exchange constants obtained by DFT
calculations [16] and the mean values from the four single crystal
sum rules analyses [normalized to γe and then rescaled to experimen-
tal data, in meV, note that all values of J in the table are multiplied
by S(S + 1) with S = 5/2]. The refined parameters using Green’s
function approach are highlighted in bold.

J1 J2 J3 J4 J5 J6 J7

DFT [16] 0.77 1.47 2.2 1.16 0.4 1.94 0.4
Sum rules 0.10(4) 0.29(2) 0.25(2) 0.35(5) 0.07(8) 0.97(3) 0.03(5)
Refined 0.10 0.29 0.25 0.25 0.07 0.97 –0.023
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FIG. 16. The theoretical dispersive neutron scattering results based on our theoretical calculations using Green’s functions taking an
untilted magnetic ground state [see Fig. 1(d)]. [(a),(b)] Display calculations with the exchange parameters fixed from those derived using
the first-moment sum rule described in the main text. [(c),(d)] Show calculations but refining J4 to give agreement with experiment at the zone
boundary and J7 refined to keep the ordering wavevector consistent with experiment.

is justifiable given the choice of the linear regime when
fitting mean-field Curie-Weiss law and reflects the experi-
mental uncertainty. For these reasons, we have not used the
experimental Curie-Weiss temperatures as a hard constraint
for the exchange constants. On the contrary, we can compute
afterwards �CW = −26(1) K, which reasonably agrees with
the measured ones, given the experimental variations.

F. Comparison to spin-wave theory

In the previous sections we have applied the first moment
sum rule to extract the complex series of Heisenberg exchange
constants in MnSb2O6. In this section we compare these
results to a mean-field linear spin-wave theory to compare
results and also to test for stability of the ground-state mag-
netic structure. We use the Green’s function formalism for
this. While this technique for calculating magnetic excitations
is more versatile in cases where the low-energy response is
determined by a series of single-ion states (such as the case
in rare earths or in the presence of spin-orbit coupling like in,
for example, Co2+ [53] or V3+ [54] based compounds), it is
also useful to test for stability of harmonic long-wavelength
magnetic excitations with changes in the local magnetic envi-
ronment. In this section we first briefly outline the use of the
Green’s function technique and then we apply it to calculate
the spin excitation spectrum, comparing sum rule results pre-
sented above to experiment, then refining results. We then test
stability of the proposed magnetic structure and interactions

based on the series of exchange constants extracted with the
first moment sum rule and refined values. In particular, we
discuss the stability of long-wavelength magnetic fluctuations
for tilted helicoidal structures.

1. Green’s functions on a rotating frame

The basic technique for applying the Green’s function ap-
proach has been outlined in several previous papers by us.
The application of the technique to collinear systems CoO
[53], in the presence of spin-orbit coupling with Co2+ (S =
3
2 , leff = 1) ions, and CaFe2O4 [55], based on a spin-only
ground state of Fe3+ (S = 5

2 ) ions. We then recently extended
this methodology to the noncollinear magnetic structure of
RbFe2+Fe3+F6, which involved coupled spin-only Fe3+ (S =
5
2 ) and orbitally degenerate Fe2+ (S = 2, leff = 1) ions. In
terms of MnSb2O6 where only a spin-degree of freedom exists
(Mn2+ with S = 5

2 ), we quote only the key results here and re-
fer the reader to Ref. [56] for further details. The methodology
here is to use the Green’s functions results from the collinear
cases and transform to a local rotating frame of reference for
use in incommensurate magnets like MnSb2O6.

The neutron scattering cross section is proportional to
the dynamical structure factor S(Q, ω), which is related to
the Green’s response function, G(Q, ω) via the fluctuation-
dissipation theorem,

S(Q, ω) = − 1

π
[n(ω) + 1] Im G(Q, ω) (25)
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FIG. 17. Calculations investigating the stability of
long-wavelength spin-waves as a function of tilting the spin
rotation plane away from the c axis. Calculations of the neutron
response for tilts of θ = 15◦ (a), 10◦ (b), and 0◦ (c) are displayed
with low-energy, long-wavelength excitations only stable for tilts of
θ ∼ 0◦. This is further illustrated in panels (d), (e) that display the
response at low energies as a function of tilt-angle of the spin rotation
plane away from the c axis. We emphasize that these calculations
are done for a magnetic Hamiltonian with symmetric-only exchange
constants. No anisotropic terms are included in the magnetic
Hamiltonian as discussed in the main text.

where n(ω) is the Bose factor. The Green’s function, in the
laboratory frame, is defined here as

Gαβ

γ̃ γ̃ ′ (i′ j′, t ) = −i�(t )
〈[

Ŝα
i′γ̃ (t ), Ŝβ

j′γ̃ ′ (0)
]〉
.

The three sets of indices in this definition of the Green’s
function and used throughout the remaining discussion in this
paper are summarized in Table IV.

Following previous methods applying the RPA (random
phase approximation) [57,58], we take an interaction Hamil-
tonian between Mn2+ (S = 5

2 ) ions of the form Hint =
1
2

∑γ γ ′
i j J γ γ ′

i j Siγ · S jγ ′ , where J γ γ ′
i j is a symmetric Heisenberg

exchange parameter. Note that we have changed notation here
from Eq. (15) and written the symmetric exchange J1→7, dis-
cussed above in the context of the first moment sum rule, as

TABLE IV. Summary of labeling convention for indices.

Index Description

γ , γ ′ sites within unit cell
i, j unit cell
α, β, μ, ν Cartesian coordinates

a diagonal matrix J γ γ ′
i j , which we use below when moving

to a rotating frame as required for incommensurate magnets.
Note also that the factor of 1

2 in Hint originates from the
application of mean field theory as discussed previously in
Refs. [53,55–57,59]. As shown in Ref. [56], applying mean
field decoupling and converting to a local rotating frame,
where we define rotation matrices,

Siγ = Riγ S̃iγ ,

with S̃iγ being the spin operators in the rotating frame. As
discussed in Ref. [56] the Green’s function equation of motion
becomes after transforming to Q and ω space

G̃αβ

γ̃ γ̃ ′ (Q, ω) = gαβ

γ̃ γ̃ ′ (ω)δγ̃ γ̃ ′ +
μν∑
γ ′

gαμ
γ̃ γ̃ (ω)J̃ μν

γ̃ γ ′ (Q)G̃νβ

γ ′γ̃ ′ (Q, ω)

where the Fourier transform of the exchange interaction in the
rotating frame is

J̃ (Q) = X ′[J (Q + q̃)T3N

+J (Q − q̃)T ∗
3N + J (Q)(I3 ⊗ nnT )]X,

(26a)

[J (Q)]γ γ ′ =
∑

i j

J γ γ ′

i j
e−iQ·(ri−r j ), (26b)

X = diag(R1, R2, ..., RN ), (26c)

X ′ = diag
(
RT

1 , RT
2 , ..., RT

N

)
, (26d)

with q̃ the ordering wavevector, n is the normal to the spin
rotation plane and T3N = I3 ⊗ 1

2 (1 − nnT − i[n]×). We note
the use of the notation [[n]×]i

j = εi
jknk where we have made

use of the Levi-Civita symbol for the antisymmetric tensor.
The matrices R rotate each of the N spins in the unit cell onto
a common axis. The single-ion Green’s function is given by

gαβ

γ̃ γ̃ ′ (ω) =
∑
qp

Sγ̃
αqpSγ̃ ′

βpqφqp

ω − (ωp − ωq)
, (27)

which has poles corresponding to the transitions between the
eigenvalues of the single-ion Hamiltonian ωp. We will sum
over transitions to and from the ground state, as appropriate
for magnon excitations at zero temperature. The rotation back
to the laboratory frame can be achieved by

G(Q, ω) = DQ(I3 ⊗ nnT )XG̃(Q, ω)X ′(I3 ⊗ nnT )D−Q

+ DQT ∗
3N XG̃(Q + q̃, ω)X ′T ′

3N D−Q

+ DQT3N XG̃(Q − q̃, ω)X ′T ∗′
3N D−Q

where the matrix DQ = δγ γ ′eiQ·δγ ⊗ I3 accounts for the inter-
ference between ions in the unit cell.

Finally the neutron scattering cross section is

S(Q, ω) = g2
L f 2(Q)

∑
αβ

(δαβ − q̂α q̂β )Sαβ (Q, ω),

where the partial dynamical structure factor Sαβ (Q, ω) is
proportional to the imaginary part of the Green’s function
[Eq. (25)], gL is the Landé g factor, f (Q) is the Mn2+
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magnetic form factor and the polarization factor selects the
component perpendicular to the momentum transfer.

We now apply this theory to MnSb2O6, which comprises a
triangular motif of coupled Mn2+ (3d5) ions. In an intermedi-
ate octahedral field, the single-ion ground state of Mn2+ is 6S
(S = 5/2, L ≈ 0) and the orbital moment is quenched. As a
result, the effect of spin-orbit coupling and crystallographic
distortions are small and may be neglected. The single-ion
Hamiltonian is thus remarkably simple and consists solely of
the molecular mean field created by the magnetic coupling
to neighboring ions, which breaks time reversal symmetry,
HSI = hMFŜz. This “Zeeman-like” term acts to split the six-
fold degenerate |S = 5/2, m〉 states. At low temperatures (as
illustrated in Fig. 7 of Ref. [55]) when only the ground state is
populated, only one transition is allowed under the constraints
of dipole selection rules of neutron scattering. We note that
this approach is equivalent to semiclassical linear spin-wave
theory.

2. Comparison to Experiment

Inputting the symmetric exchange constants derived from
the first moment sum rule into the Green’s function cal-
culation with an untilted magnetic structure, we derive the
predicted neutron scattering excitation spectrum in Figs. 16(a)
and 16(b). This calculation is done with no anisotropic terms.
Symmetric exchange is expected to be dominant here owing to
the lack of an orbital degree of freedom for Mn2+. The general
results are in good qualitative agreement with experiment;
however, the calculated zone-boundary excitations are clearly
in disagreement with experiment with the calculation predict-
ing lower -energy excitations than observed in experiment at
the zone boundary.

To address this, there are two noteworthy points of our first
moment sum rule analysis. First, on inspection of Fig. 13, the
values of γ4, which fixes J4 maybe dominated by the H-scan
experiment performed with Ef = 3.7 meV. In comparison to
iron based langasite, this value for J4 is also considerably
larger in MnSb2O6 [14]. We therefore consider a case when
this value is lowered in Figs. 16(c) and 16(d). To ensure the
same ordering wavevector we correspondingly tune J7 given
the relatively large error bar in our analysis and also the
large sensitivity of the magnetic ordering wavevector to this
exchange constant [Eq. (23a)]. After refining J4,7 (to within
one-two sigma of the calculated error bar from the first mo-
ment sum rule analysis) we obtain a good description of the
data (both along the L and H directions) with sum rule and
refined exchange parameters illustrated in Table III (refined
values from this step highlighted in bold).

3. Stability analysis

Having derived a set of symmetric exchange constants
from the first moment sum rule and written down a response
function theory for the spin waves in terms of Green’s func-
tions, we discuss stability of the ground state fixed by the
magnetic structure. There have been two magnetic structures
proposed in the literature involving a tilting of the plane of
the helicoid at an angle away from the c axis [Ref. [17] and
Fig. 1(e)] and one without tilting [Ref. [16] and Fig. 1(d)].
While initially it was proposed that the observed polar domain

switching in MnSb2O6 requires a tilted structure, other work
based on neutron diffraction has suggested that it is not a
requirement. While in a previous paper we have argued for
the existence of an untilted structure, the goodness of fit to
the diffraction data was not markedly worse for the tilted case
making the results arguably ambiguous [19]. Here we evaluate
the stability of the long-wavelength magnetic excitations as a
function of tilting the vertical axis of the spin rotation plane
given our exchange constants derived from the first moment
rule. We emphasize that the exchange constants derived above
from the first moment sum rule depend only on the relative
orientation of neighboring spins and is independent of the
static magnetic structure being tilted or not. Given the good
description of the data to a symmetric-only exchange model,
we test here how stable these excitations are when the static
magnetic structure is gradually tilted.

The Green’s function calculation predicts the energy and
momentum values of stable harmonic excitations through the
imaginary part of the response, given a magnetic ground state
and a set of symmetric exchange constants. In the first moment
analysis presented above, the exchange constants are derived
based on relative orientation of the magnetic moments, and
does not depend on global details like tilting of the overall
magnetic structure. Our Green’s function analysis, however,
does require this tilting as the magnetic ground state deter-
mines the local molecular field on each site.

Given that the Green’s function approach predicts stable
harmonic excitations as a function of momentum and energy,
in this section we search for stable long-wavelength excita-
tions as a function of tilting of the spin rotation plane given
our derived exchange parameters based on the first moment
rule. We focus on L scans as calculations of the excitation
spectrum along H were found to not noticeably change with
tilting the spin rotation plane away from the c axis over the
range of 0–15◦. We note that such H scans were used above to
fix one of the exchange parameters and the overall calibration
constant to take the data to absolute units of meV. The two
assumptions behind that step, namely the energy value of the
top of the single-magnon band and the splitting, are not found
to observably change with tilting in our calculations.

In Fig. 17, we search for long-wavelength excitations given
our sum rule exchange constants as a function of tilting of the
vertical main axis of the spin rotation plane away from the c
axis at an angle θ . The long-wavelength excitations (q → 0)
are calculated for several tilt angles and shown in Figs. 17(a)–
17(c), based on the set of parameters derived from the sum
rule analysis. Given that the sum rules and the fixing of the
value of J3 described above is independent of the tilting of
the static magnetic moments, in our stability calculations de-
scribed here we fix the exchange constants to these determined
values and vary the long-range static magnetic structure. On
increased tilting, the exchange parameters derived from sum
rules show no stable long-wavelength excitations, indicative
that the derived exchange parameters combined with a tilted
helicoid is unstable. This is further displayed in Figs. 17(d)
and 17(e), which plot calculated constant energy cuts (in-
tegrating calculated data below 0.02 meV) as a function of
tilting of the cycloid away from the c axis for both the cases
of exchange constants derived from sum rules, and refined
values discussed above. In both cases, increased tilting of
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the helicoid results in unstable long-wavelength excitations.
Based on this analysis, we suggest that the derived exchange
constants are consistent with an untilted (θ = 0) magnetic
structure. However, we emphasize that this analysis is based
only a Hamiltonian with symmetric-only exchange constants
as expected based on the high-spin value of Mn2+. We cannot
rule out the possibility of small anisotropic or more complex
magnetic exchange terms that may arise from the distorted
framework surrounding the magnetic ions. In Ref. [19] we
have shown with diffraction under magnetic field the possi-
bility to manipulate the spin structure in MnSb2O6 and that
the appearance of electric polarization does not require a
tilted structure as raised in Ref. [17]. Therefore, the stabil-
ity analysis above is consistent with our neutron diffraction
analysis. The elastic scattering outlined in our previous paper
and the spin excitations can be modeled and understood in
terms of a symmetric-only exchange model on an untilted
structure.

IV. CONCLUSIONS

In this paper, we have studied structurally chiral polar
magnet MnSb2O6, with magnetic interactions being described
by seven symmetric Heisenberg exchanges in the magnetic
Hamiltonian. We have presented a method using the first mo-
ment sum rule, and have applied this to extract the exchange
constants from multiplexed neutron data. This method only
depends on the correlators (angles) between neighboring spins
and not the tilting of the overall spin rotation plane. Using
Green’s functions on a rotating frame, we have reproduced
the spin-wave spectra, which are in good agreement with
the measured ones and discussed refined values. Finally, we
investigated the stability of the magnetic structure in terms
of long-wavelength magnetic excitations present at low ener-
gies and suggest that the pure cycloid is favored in terms of
stability given the derived exchange constants from the first
moment sum rule.
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APPENDIX: SINGLE-CRYSTAL SUM RULES ANALYSIS

1. Integration methods for first moment

As the first moments are computed by a numerical in-
tegration, it is important to make sure that the integration
methods do not have a significant impact on the results of the
analysis. This section outlines five integration methods, and

FIG. 18. Fitted parameters for different integrations methods to
compute the first moments, from the Ef = 2.4 meV dataset.

the resulting γ parameters are compared in Fig. 18, following
a L-scan analysis on the Ef = 2.4 meV dataset.

In Sec. III D 2, the constant-Q scans are fitted to two Gaus-
sians as shown in Fig. 11, and then the first moments were
calculated by numerically integrating with a trapezoidal rule
with the background removed from the fit to a two-Gaussian
model. The results are shown with bars (C). Of course, the
first moments can also be computed without removing the
background, resulting with bars (B). Then, they can be com-
puted analytically using the fit parameters of the two-Gaussian
model, shown with the bars (A) in Fig. 18. In order to avoid the
mixture of elastic scattering and one-magnon scattering, the
elastic line can be fitted to a third Gaussian, while the actual
data above E = 0.2 meV are fitted to two Gaussians. Then,
the first moments can be again calculated analytically with the
fitted parameters of these two Gaussians in the good energy
range. This is shown in bars (D). Finally, the trapezoidal
integration can be performed, removing the background from
this three-Gaussian model, as shown in bars (E). Finally, it can
be seen that all the fitted parameters agree within uncertain-
ties. We have rather chosen to adopt trapezoidal integration,
removing the background from the two-Gaussian fit, to deal
with any deviation from a two-mode spin-wave spectrum.

2. H scan

In Sec. III D 2, we have described the first moment sum
rule analysis of the single crystal data, by fixing some H0

and calculating the first moment as a function of L. We can
perform the same analysis considering Q = (H, H, L0) with
H varying for a chosen L0 (H scan). For each interaction
indexed by spins i and j, the corresponding term in the cosine
in Eq. (15) can be written now,

Q · d i j = 2πH (di j,x + di j,y ) + 2πL0di j,z (A1)

where the distances are expressed in lattice units, and the
scattering vector in reciprocal lattice units. Similarly as in
Eq. (18), a general formula for the first moment can be derived
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FIG. 19. [(a)–(c)] Constant-Q scans for different Q = (H, H, L0 = 0.4). A fit to a double Gaussian is shown in red, and the first moment
is calculated from trapezoidal integration where the background is removed from the Gaussian fit. (d) First moment as a function of H for
L0 = 0.4, fitted to its theoretical expression (red curve). The red data points correspond to the first moments calculated in the cuts plotted in
(a)–(c). [(e),(f)] First moment as a function of H for (e) L0 = 0 and (f) L0 = −1, fit to theoretical expression in red.

FIG. 20. (a) Measured first moments vs fitted first moments for H -scan analysis, for the Ef = 2.4 meV dataset. A total of 999 〈E〉(Q) were
taken into account. [(b)–(d)] Fitting of coefficients (b) Ai, (c) Ae, and (d) C giving the γ parameters. The red data points show the values
calculated in Figs. 19(d)–19(f).
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FIG. 21. (a) Measured first moments vs fitted first moments for L-scan analysis, for the Ef = 3.7 meV dataset. A total of 469 〈E〉(Q) were
taken into account. [(b),(c)] Fitting of coefficients (b) A and (c) C giving the γ parameters.

for a fixed L0, using trigonometric identities,

〈E〉(H, L0) = Ai(L0) cos(2πδ1H ) + · · · Ae(L0)[cos(2πδ2H )

+ · · · cos(2πδ3H ) + cos(2πδ4H )] + C(L0)
(A2)

where we have now three functions Ai, Ae, and C, which are
L0 dependent, expressed by

Ai(L0) = 4
3 [γ1 + γi cos(2πL0)], (A3)

Ae(L0) = 4
3 [γ2 + γe cos(2πL0)], (A4)

C(L0) = − 2
3 [2γ1 + 6γ2 + 3γi + 3γ4 + 6γe]

+ · · · 2
3 cos(2πL0)(γi + 3γ4). (A5)

Figures 19(a)–19(c) shows some constant-Q cuts for
(H, H, L0 = 0.4) and their fit to two Gaussians. The first
moments are again calculated numerically using trapezoidal
integration and the background is removed from the two-
Gaussian fit. These computed first moments are the red data
points in Fig. 19(d), along with the H dependence of the
computed first moment, and the fit to Eq. (A2), to extract Ai,
Ae, and C. This operation is repeated for several L0, as shown
in Figs. 19(e) and 19(f).

Finally, a total of 999 first moments 〈E〉(Q) are computed
for this analysis on this Ef = 2.4 meV dataset, and plotted
against the fitted first moments in Fig. 20(a). The γ parameters
are then obtained by fitting the measured Ai, Ae, and C to their
theoretical values, as shown in Figs. 20(b)–20(d), where the
red data points are the coefficients calculated in Figs. 19(d)

FIG. 22. (a) Measured first moments versus fitted first moments for H -scan analysis, for the Ef = 3.7 meV dataset. A total of 487 〈E〉(Q)
were taken into account. [(b)–(d)] Fitting of coefficients (b) Ai, (c) Ae, and (d) C giving the γ parameters.
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and 19(f). As for the L-scan analysis, some remaining back-
ground can be included in the computation of C. For this
reason, the L0-independent part of Eq. (A5), which corre-
sponds to an overall constant to the first moment sum rule,
is not used to get the γ parameters and hence the exchange
constants Ji.

3. Second dataset results

The single crystal first moment sum rule analysis was
repeated on the second dataset measured on MACS with
Ef = 3.7 meV. The results of the L-scan (469 computed first
moments) and H-scan (487 computed first moments) analyses
are respectively shown in Figs. 21 and 22.

4. Parameters for Figure 14

The sum rule analysis had an ambiguity in the set of equa-
tions resulting from the fact that several exchange constants

TABLE V. The parameters for the calculations performed in
SPINW displayed in Figs. 15(b)–15(d). Parameters varied for the
three calculations are highlighted in bold.

J1 J2 J3 J4 J5 J6 J7

Fig. 14(b) 0.0988 0.2859 0.1500 0.3491 −0.1011 1.0222 0.1161
Fig. 14(c) 0.0988 0.2859 0.2000 0.3491 −0.0155 0.9972 0.0732
Fig. 14(d) 0.0988 0.2859 0.2500 0.3491 0.0702 0.9722 0.0304

corresponded to the same bond distance. We therefore needed
to fix one exchange constant through a comparison to the
single crystal dispersion as discussed in the main text. This
qualitative analysis is described in Fig. 15. The parameters
for the calculations are listed in Table V.
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