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Abstract—This paper introduces an IMU based context 

machine learning algorithm for terrain topography classification. 

Four different terrains are considered: concrete, pebble, sand, and 

grass. The grass terrain is further split into two separate classes 

based off moisture content of the grass, wet and dry. Separate 

terrain topography datasets are created by walking on different 

terrains and logging the data. The subject has been equipped with 

an IMU attached on the surface of the shoe above the toes. Data is 

collected and stored via a Bluetooth smartphone controller over 

multiple recording sessions. Acceleration, angular rate, and 

magnetic field were recorded. The recorded data is extracted in 

two second sliding window intervals, whereupon the magnitude of 

the sensor outputs, in three dimensions, is calculated. A low-pass 

band filter is also applied to the magnitude for the acceleration, 

angular rate, and magnetic field data. The magnitude output is 

processed in the time domain to calculate variance, energy, 

kurtosis, range, skewness, and the zero-crossing rate. The 

magnitude data is converted into the frequency domain and the 

peak magnitude and its corresponding frequency in the sliding 

window are determined. A set of 44 features is extracted from each 

window and then tested and trained to classify terrain topography 

using five different machine learning methods: Artificial Neural 

Network, Decision Tree, k-Nearest Neighbor, Naïve-Bayes, and 

Support Vector Machine. The 44-feature set is optimized using a 

wrapper selection algorithm for the Decision Tree and k-Nearest 

Neighbor algorithms. The results show that by utilizing sensor 

data from an IMU in combination with machine learning methods 

a terrain topography classification algorithm can accurately 

predict various terrains over which the user traverses.  

Keywords—context detection, terrain topography, machine 

learning, feature optimization, terrain classification 

I. INTRODUCTION 

Context detection using microelectromechanical systems 
(MEMS) inertial measurement units (IMUs) can be used to 
determine whether a person is walking, standing, running, or in 
a vehicle [1]. Data collected from MEMS IMUs has also been 
used in the identification of daily activities, such as lying down, 
standing up [2], brushing teeth, vacuuming, and daily exercise 
routines [3]. Beyond identifying daily routines of individuals 
there are various uses in sports analytics to track player 
movement and health [4].  

The many uses of context detection across a variety of fields 
are well known, but reliable and accurate context detection is 
necessary for correct navigation and positioning algorithms. 
Context detection is a major component of Pedestrian Dead 

Reckoning (PDR) [5] and Zero Velocity Update (ZVU) 
algorithms [6]. PDR and ZVU rely on context detection to 
determine when a step is made, when the stance phase occurs, 
or the period where zero velocity is experienced. The research 
in this paper relies on context detection to classify differences in 
terrain topography.  

Terrain topography comes from the study of topography, 
which is the study of forms and features of land surfaces, 
including the analysis of all the features of the Earth’s surface, 
including human-made features [7]. This includes the analysis 
of the Earth’s surface as it refers to the differences in terrains 
experienced by individuals as they interact with natural and 
human-made features [8]. An investigation of the interaction 
between these features in terrain topography with context 
detection is presented as a method to detect changes in various 
classes of terrain. 

Terrain topography identification can improve ZVU and 
PDR algorithms by understanding how the pedestrian gait cycle 
varies on different terrains. As the gait varies on different 
terrains, the length of the stance phase varies and the detection 
of a step for a zero velocity interval is affected [9]. Context 
detection of terrain topography can also be used in map-
matching position techniques. With a known initial position and 
heading, a real time terrain classification algorithm could 
identify transitions in terrain and match them to known terrain 
changes from a terrain database to calibrate the position of the 
user. There are existing efforts to identify various terrain 
topography to improve navigation techniques relating to 
autonomous robots. Using force and torque sensors with visual 
imagery different terrains are classified then compared against a 
global map of terrain irregularities to determine position [10]. 
Identifying changes in terrain topography or different types of 
terrains with foot-mounted inertial sensors can improve 
navigation and positioning solutions by matching the terrain 
information to a topographic map of where current navigation 
solutions are unreliable due to degraded global navigation 
satellite system (GNSS) signal or improve PDR and ZVU 
algorithms using context detection to determine the influence of 
terrains on the algorithms.  

Current methods of terrain topography classification rely on 
visual and acoustic analysis. Aerial image data for terrain 
classification is a traditional camera-based visual approach. The 
aerial image is analyzed to distinguish different terrain types 
through methods such as automatic texture measure. Aerial 
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images are required because a large area was required to group 
areas into terrain types [11]. The aerial based approach presents 
restrictions because residential areas are simply classified as 
urban or suburban without any distinction of the actual terrain. 
Another method of terrain classification requires soil 
classification using geographic object-based image analysis 
(GEOBIA). GEOBIA partitions remote sensing imagery or 
digital elevation models into homogeneous image objects based 
on image segmentation [12]. This study was limited to soil types 
and not inclusive of various types of terrain topography with 
only 58% accuracy in correctly classifying the soil type. Another 
visual based classification method fused color information 
method from 3D LiDAR scans to scan the area in front of the 
robot at a high frame rate to extract features for terrain analysis 
[13]. Acoustical analysis for terrain classification is used by 
analyzing vibrations generated by autonomous ground vehicles 
[14]. Unmanned vehicles are modeled as a vibrating system [15] 
and using irregular surfaces of the terrain and time-varying 
vertical displacements of the chassis, a vibration of the 
frequency response for each terrain serves as a signature for 
classification.  

Many of these approaches are effective in terrain 
classification, but there are constraints when applying this to the 
navigation field. There are limitations in terms of accuracy, cost, 
and size of the systems. The visual based systems are affected 
by lighting of the terrain and oversimplification of terrain type 
while the acoustic analysis requires a vibration analysis from the 
chassis and frequency response. A shift to more cost-effective 
methods for terrain classification using the analysis of human 
gait as it changes from effects of the various terrains, has taken 
place over the last few years. Human gait analysis has relied on 
inertial data to improve context detection, but the field of terrain 
classification using inertial data is new. 

There are limited approaches in using inertial data to capture 
and classify terrain topography. In the study by Hashmi, Riaz, 
Hussain, and Shahzad they identified whether a subject was 
indoors or outdoors, and on a hard or soft surface [16]. The 
sensors used for the study were two six degree of freedom 
(DOF) IMUs. The IMUs were two Android smart phones with a 
triaxial accelerometer and triaxial gyroscope. One phone was 
attached to the chest and the other sensor was attached to the 
lower back. The placement of the sensors is a limitation because 
previous studies have shown more accurate results in IMU 
detection for gait analysis when the IMU is attached to the foot 
[17].  Another limitation of the study is the reliance on 194 
features in the Support Vector Machine (SVM) algorithm, the 
194 features lead to overfitting of the model. When classifying 
the terrain into two classes, the accuracy varied from 77.5 to 
97.5%, but when identifying more than two classes the results 
varied from 69.7 to 89.1% [16].  

Another study that used an IMU to classify terrain focused 
on the level of the ground surface, whether it was flat or uneven. 
When considering whether the surface was even or uneven the 
predictive algorithm was 95.1 and 97.6% correct, respectively 
[18]. The detection of the surface conditions was limited to 
laboratory conditions with a safety harness attached to the 
participant to eliminate any fall risk while walking on uneven 
surfaces. The 9 DOF IMU sensor was attached to the hip. 
Performing the experiments under laboratory conditions with 

safety harnesses and an IMU attached to the posterior surface of 
the torso impacts the natural gait of the participant.  

The ability to identify whether someone is indoors or 
outdoors, on a hard or soft surface, or on level ground is not 
limited to an IMU. Humans are aware of their surroundings 
while walking and performing daily tasks and can classify the 
terrain through reliance on sensory awareness and vibrotactile 
messaging [19]. This ability to use sensory awareness, to 
differentiate natural or human-made terrains is the basis of the 
assumption that with the benefit of data from an IMU an 
algorithm can be created using context detection in association 
with machine learning to discern terrain topographies. 

II. PROPOSED METHOD AND DATASET 

To utilize context detection for terrain topography 
classification, datasets for different terrain styles or classes of 
terrains need to be collected. Datasets of separate terrains were 
created by collecting data via a MEMs IMU attached to a 
pedestrian user. IMUs are used for context detection in a variety 
of uses, and due to their small size, they can be attached to a 
user’s foot to collect data across various terrains. For terrain 
topography classification the IMU is attached to the foot of the 
user. This is because the gait of a pedestrian changes as they 
transition to differing terrains [20] and attaching the IMU to the 
foot allows for greater sensitivity when recording the inertial 
data. To reduce impact on pedestrian natural gait an IMU was 
placed on top of the right shoe, as shown in Fig. 1.  Attaching 
the IMU to the surface of the shoe, above the toes, provides the 
most consistent step and zero-velocity interval detection [21] 
[22] when compared to placement on the ankle or heel. 
Attaching the IMU to the ankle requires a support structure that 
limits the motion of the foot and when the IMU is attached to 
the heel, the straps used to secure the IMU typically wrap under 
the arch of the foot and affect the natural gait. 

 
Fig. 1. IMU placement on right foot 

To collect the data for terrain profiles, a 9 DOF IMU from 
Inertial Elements is used [23]. The IMU is low-cost, compact 
and allows the user to collect data via Bluetooth to a mobile 
phone using the mobile app, OsmiumScope. To further reduce 
the impact of an IMU’s placement on the natural gait of the user, 
the IMU is attached using Velcro®. Fig. 2 is an image of the 
IMU attached above the toe of the shoe with Velcro®. By 
attaching the IMU with Velcro®, there are no straps under the 
arch of the foot to alter each footstep or any casing at the heel 
that changes the gait by strapping the IMU to the ankle. The 
Velcro® strips are adhesive and cover the entire base of the IMU 
housing, thus a larger contact area from the IMU reduces the 
likelihood of the IMU shifting during data collection and 



affecting the inertial measurements. The 9 DOF IMU includes a 
triaxial accelerometer, triaxial gyroscope, and triaxial 
magnetometer. The collected data on the mobile phone 
controller was exported to MS Excel and Matlab R2018b for 
analysis. 

 

 
Fig. 2. Inertial Elements IMU attached to the right foot with Velcro® 

Initial testing began with three terrains: concrete, sand, and 
pebble. These terrains were chosen due to ease of accessibility 
and variation of terrain style. Data was collected using the IMU 
attached to a NIKE® athletic trainer. A single user and pair of 
athletic trainers were used to collect data, thus eliminating 
variation in pedestrian gait and focusing on variations in terrain 
topography. Data was collected at the Royal Air Force 
Mildenhall (RAFM) base in England (Fig. 3) on a concrete 
running track (Fig. 4) to create the concrete profile. For the 
pebble terrain, the southern end of Chesil Beach in Portland, 
England, was used to create the pebble profile. And data for the 
sand terrain beach profile was collected at Weymouth Beach in 
Weymouth, England. Fig. 5 shows the location of the two 
beaches used for data collection of the pebble and sand terrains.  

 

 
Fig. 3. RAF Mildenhall location in Suffolk, England 

 

Fig. 4. Satellite imager of concrete test track at RAF Mildenhall 

 
Fig. 5. Locations of the pebble beach (Chesil Beach) and sandy beach 

(Weymouth Beach) within England 

The pebble and sand beaches are defined using the modified 
Wentworth Scale [24][25], based on the grain size of the two 
beaches. Chesil Beach is classified as a pebble beach according 
to the modified Wentworth Scale as the diameter of the 
aggregate ranges from 30 to 200 mm. Weymouth beach is 
classified as very fine to fine sand by the Wentworth Scale 
because the grain size varies from 0.0625 to 0.25 mm in 
diameter. Each beach and their respective grain sizes are shown 
in Fig. 6 and Fig. 7. Data was collected on each terrain in two 
sessions, one session for training and one session for testing. 

 

Fig. 6. (a) Chesil Beach (b) pebble grains at Chesil Beach 

 

Fig. 7. (a) Weymouth Beach (b) fine sand grains at Weymouth Beach 



III. RESULTS 

A. Feature Extraction 

Prior to feature extraction the raw sensor samples are divided 
into datasets with a predetermined length of time, or a window 
length, to generate features for analysis. The window length 
includes all the raw sensor data over a certain amount of time. A 
two second sliding window with 50% overlap is used for 
training and testing. An example of consecutive sliding windows 
over a 10 second period with the accelerometer output data in 
three dimensions is shown in Fig. 8. Using 50% overlap allows 
for each sample to be processed in two windows without 
imbalance, ensuring that the data is sampled twice with no 
missing data. 

 

 
Fig. 8. Example of sliding window overlap with a two second sliding widow, 

allowing for a 50% data overlap 

To reduce the effects of orientation changes in the model, the 
magnitude of each sensor type is calculated using the three 
dimensions of x, y, and z and performed in MS Excel and Matlab 
R2018b (1). Additionally, the mean of the magnitude is removed 
from each window to eliminate non-zero mean prior to 
converting the time domain to the frequency domain. A low-
pass band filter is applied to the magnitude of each of the three 
collection sensor types: accelerometers, gyroscopes, and 
magnetometers. The low-pass band filter (LPF) of the sensors’ 
magnitude data is an additional extracted feature for input to 
help identify patterns in the time domain by cutting off 
frequencies higher than the sampling rate of the IMU of 62.5 Hz. 

 

 
Where fx, fy, and fz are the sensor outputs. 

The features from each window are extracted for training and 
classification. Feature measurements provide descriptions of 
patterns from which differences between the terrains can be 
discerned. Features were extracted in both time and frequency 
domains. Features in the time domain are based off variations in 
motion during each two second sliding window, whereas 
features in the frequency domain are based off the periodic 
changes in motion during each sliding window.  

The time domain features used for training and classification 
are variance (2), energy (3), kurtosis (4), range (5), skewness (6), 
and the zero-crossing rate (ZCR) (7). Each of these equations is 
calculated for each two second overlapping sliding window 
using the signal inputs from the magnitude of each sensor type 
and its corresponding low-pass filter. This creates a set of six 
features for every equation to be extracted from each sliding 
window. However, the ZCR only uses the input signal from the 
accelerometer magnitude and LPF accelerometer, creating two 
additional features. These six features and the number of signal 
inputs were chosen for analysis in the time domain based off the 
effectiveness of behavior classification in previous studies 
[26][27][28].  

 

Where σ is the variance, N is the number of samples in the 
sliding window, µ is the mean, xn is the n-th epoch of data for 
the window, the indicator function II is 1 if the argument is true 
elsewise it is 0. 

The frequency domain features used for training and 
classification are the peak magnitude of the signal input (8) for 
each sensor in the sliding window and its corresponding 
frequency. A total of 12 features are extracted in the frequency 
domain from the three sensor magnitude inputs and their LPF 
inputs with six features being extracted from the peak magnitude 
and six features from the frequency for each sliding window. 
The frequency domain features are obtained by converting the 
time domain into the frequency domain using a Fast Fourier 
Transform (FFT) calculated with Matlab R2018b . The output 
of the FFT is a sequence of coefficients representing amplitudes 
of frequency components of the input signal and the distribution 
of the signal energy The frequency domain features were chosen 
based off the effectiveness of previous studies [5][29][30]. 

 

 

Where xn is the n-th epoch of data for the window. 

In total, 44 features are extracted for every sliding window 
using the magnitude of the three sensor types and the magnitude 



of the three sensor types after being post-processed through an 
LPF. Table 1 provides a description of each feature number, 
type, and in which domain the feature is found.  

TABLE I.  TERRAIN EXTRACTED FEATURE SET FOR A TWO SECOND 
SLIDING WINDOW 

Number Feature Domain 

F1 Variance – Accelerometer Time 

F2 Variance – LPF Accelerometer Time 

F3 Variance – Gyroscope Time 

F4 Variance – LPF Gyroscope Time 

F5 Variance – Magnetometer Time 

F6 Variance – LPF Magnetometer Time 

F7 Energy – Accelerometer Time 

F8 Energy – LPF Accelerometer Time 

F9 Energy – Gyroscope Time 

F10 Energy – LPF Gyroscope Time 

F11 Energy – Magnetometer Time 

F12 Energy – LPF Magnetometer Time 

F13 Kurtosis – Accelerometer Time 

F14 Kurtosis – LPF Accelerometer Time 

F15 Kurtosis – Gyroscope Time 

F16 Kurtosis – LPF Gyroscope Time 

F17 Kurtosis – Magnetometer Time 

F18 Kurtosis – LPF Magnetometer Time 

F19 Range - Accelerometer Time 

F20 Range – LPF Accelertometer Time 

F21 Range – Gyroscope Time 

F22 Range – LPF Gyroscope Time 

F23 Range – Magnetometer Time 

F24 Range – LPF Magnetometer Time 

F25 Skewness – Accelerometer Time 

F26 Skewness – LPF Accelerometer Time 

F27 Skewness – Gyroscope Time 

F28 Skewness – LPF Gyroscope Time 

F29 Skewness – Magnetometer Time 

F30 Skewness – LPF Magnetometer Time 

F31 ZCR – Accelerometer Time 

F32 ZCR – LPF Accelerometer Time 

F33 Peak Magnitude – Accelerometer Frequency 

F34 
Peak Magnitude – LPF 

Accelerometer 
Frequency 

F35 Peak Magnitude – Gyroscope Frequency 

F36 Peak Magnitude – LPF Gyroscope Frequency 

F37 Peak Magnitude – Magnetometer Frequency 

F38 
Peak Magnitude – LPF 

Magnetometer 
Frequency 

F39 Max Frequency – Accelerometer Frequency 

F40 
Max Frequency – LPF 

Accelerometer 
Frequency 

F41 Max Frequency – Gyroscope Frequency 

F42 Max Frequency – LPF Gyroscope Frequency 

F43 Max Frequency – Magnetometer Frequency 

F44 
Max Frequency – LPF 

Magnetometer 
Frequency 

 

An initial test of the training data was used to analyze if 
different machine learning algorithms could accurately detect 
changes in the terrain topography. Five algorithms: Artificial 
Neural Network (ANN); Decision Tree (DT); k-Nearest 
Neighbor (kNN); Naïve-Bayes (NB); and Support Vector 
Machine (SVM) were chosen to use the training data to create 
an initial classification model. These five machine learning 
algorithms were chosen because of their capability for  context 
and behavioral detection [30][31].  

ANN machine learning uses neurons, or simple processing 
elements, connected to form a network that mimics a biological 
neural network [32]. The ANN repeatedly applies the training 
data and automatically adjusts the neuron parameters. A single 
neuron is not sufficient to solve complex classification because 
it does not contain enough adaptive parameters for 
nonlinearities. To account for the nonlinearities, multiple layers 
are linked into a network. Training data forms the input layer, 
and the result is the output layer. Between the input and output 
layers is the hidden layer. The hidden layer identifies patterns 
and transforms the input from one or more input layers before 
assigning a weight to the inputs and processing an output. A two-
layer example of a neural network is shown in Fig. 9.  

 
Fig. 9. Example structure of a two-layer artificial neural network 

The DT machine learning method recursively partitions the 
input to reach a decision [33]. With the training data features as 
the input, it is then split into branch segments. The branches are 



split at nodes based off similarities in the data. The root is the 
starting point of the tree and nodes without any further 
descendants are terminals. The data is classified navigating from 
the root to the terminals. Along the path, the internal nodes split 
the data into two or more segments according to the decision 
criteria until all samples at a node belong to the same class. A 
simple decision tree with two features is shown in Fig. 10. 

 
Fig. 10. Example of a two feature decision tree where the results are classified 

into five classes ranging from C1 to C5 

The kNN classification method provides output as a class 
membership. Each object is classified by plurality based off its 
distance to the nearest set of neighbors [34]. The distance is 
approximated between the k-nearest neighbors to save on 
computational load until the final distance is calculated at the 
end with the objects on the edge of each classification group. 
kNN relies on a physical distance for classification from each 
object and the object is assigned to the class with the most 
common neighbors. If there is only one nearest neighbor, k=1, 
then the object is assigned to the class of its single nearest 
neighbor. Weights can be assigned to the nearest neighbor 
classes to contribute more to the average rather than relying on 
distant outliers [35]. A common method is giving each neighbor 
a weight of 1/d, where d is the distance to the neighbor. A visual 
example of kNN classification for two classes can be found in 
Fig. 11.  

 
Fig. 11. Example of kNN classification of a red triangle based off distance to 

the two seperate classes – square and circle. 

NB constructs classifiers by assigning class labels to 
problem instances. The problem instances are represented as 

vectors of feature values, where the class labels are drawn from 
finite data sets. The NB classifier assumes that any value of a 
particular feature is independent from any other feature when 
given the class variable. Parameter estimation for NB uses the 
method of maximum likelihood. NB methods require small 
amounts of training data to estimate the classification 
parameters [36]. The limitation of NB is that because it assumes 
the variables to be independent it does not match reality. Many 
variables are not independent of each other. NB also requires a 
large processing time because each attribute is given the same 
priority. 

The final classification method, SVM, does not depend on 
prior probabilities and can be trained with smaller sample sets. 
SVM is best suited for binary classification. SVM relies on 
statistical learning theory and kernel-based methods for 
classification [37]. The SVM learning classifier is constructed to 
find the optimum hyperplane in the feature space so the margin 
between the two classes is maximized and the error is minimized 
(Fig. 12). The training data with distinct labels are separated on 
either side of the hyperplane and the distances of the hyperplane 
to the nearest training point are maximized. This distance is the 
optimal margin and the samples on the margin are support 
vectors. As SVM is a primary binary classifier, increasing the 
number of classes decreases the accuracy of the algorithm. 

 
Fig. 12. SVM classifier example of two classes with optimal hyperplane 

Using the 44 features as input, each of the five machine 
learning methods was trained and tested using 10-fold cross 
validation to develop a model that can determine the accuracy in 
predicting the three terrain classes of concrete, pebble, and sand. 
10-fold cross validation divides the dataset randomly into 10 
equally sized data subsets or folds. During the machine learning 
process, 9 randomly selected folds are used as training sets and 
the final tenth fold is used as the test set. This procedure is 
repeated 10 times to guarantee that all samples are used equally 
in testing and testing to maintain independence of the training 
and testing data for model learning.  

After training and testing the model with the 44 extracted 
features, the model is analyzed statistically. The accuracy of the 
five models is compared by calculating the percentage of 
correctly identified instances divided by the total number of 
instances (9).  

 



Where A is the model performance accuracy, TC is the 
number of correctly identified instances, and TI is the total 
number of instances. 

The second evaluation metric of the five different machine 
learning methods is accomplished by calculating the F1 score. 
The F1 evaluation metric measures a model’s accuracy by 
combining the precision and recall scores of the model. The F1 
score computes how many times a model predicted the correct 
instance, across the entire dataset [38]. Precision, P, is the 
number of results correctly attributed to a class divided by the 
total number attributed to said class (10). Recall, R, is the 
number of results accurately attributed to the class divided by 
the number that truly belong in the class (11). The accuracy of 
the classification is calculated with the F1 score (12), which is 
the harmonic mean of P and R. 

 
Where Tp is the number of true positives, Fn is the number of 

false negatives, and Fp is the number of false positives. 

Comparing the initial results from the five machine learning 
methods indicate that using an ANN based classification 
algorithm yielded the most accurate prediction and highest F1 
score. Table 2 shows the model accuracy, precision, recall, and 
F1 scores for all five machine learning methods.  

TABLE II.  MACHINE LEARNING METHOD COMPARISONS OF MODEL 
ACCURACY FOR A THREE-TERRAIN TOPOGRAPHY CLASSIFICATION USING 44 

INPUT FEATURES 

Algorithm 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Artificial Neural 
Network (ANN) 

99.35 99.53 99.82 99.67 

Decision Tree 
(DT) 

99.31 99.66 99.66 99.66 

k-Nearest 
Neighbor (kNN) 

98.79 99.49 99.29 99.39 

Naïve-Bayes 
(NB) 

96.98 97.77 99.17 98.47 

Support Vector 
Machine (SVM) 

63.93 63.93 100 78.00 

 

B. Additional Terrain Classification 

A terrain topography classification tool was created for three 
terrain styles of concrete, pebble, and sand. The tool has a model 
accuracy with the top three performing methods varying from 
98.79 to 99.35% in distinguishing between the three terrain 
types. The terrain topography classification tool is only as 
powerful as the number of terrain classes that are identifiable 
using inertial data inputs and the classification algorithm. As the 
inertial data is collected via the IMU attached to the user’s foot, 

additional terrain styles need to be recorded and data profiles 
created. 

When considering additional terrain styles, pedestrian usage 
was considered. As urban centers are reclaiming green space 
around the world, many pedestrians walk on grass terrain daily. 
The city of London boasts 3,000 parks of varying sizes that are 
designated as public open spaces. These green spaces cover 
almost 18% of London, more than the area of the city covered 
by roads and railways combined [39].  A robust terrain 
topography classification algorithm needs to classify grassy 
terrains.  

Data for the grass terrain was collected in the same manner 
as the concrete, pebble, and sand terrains. The IMU was attached 
to the right foot of the user and controlled via Bluetooth. The 
recording session was conducted at RAFM on a grass field. Data 
was initially collected in two separate sessions, one for training 
data and the second session for testing data. 

After data collection, the sensor output was post-processed 
for feature extraction. The same 44 features, as previously 
mentioned in Table 1, were extracted for each two second 
sliding window. By using the same features, the initial 
classification algorithm is the foundation and can be added to. 
The extracted features from the four terrains were used as input 
to train and test the machine learning methods. The same five 
algorithms were used as the foundation and trained and tested 
using 10-fold cross validation. The comparative results of the 
four-terrain topography classification are shown in Table 3. 

TABLE III.  MACHINE LEARNING METHOD COMPARISONS OF MODEL 
ACCURACY FOR A FOUR-TERRAIN TOPOGRAPHY CLASSIFICATION USING 44 

INPUT FEATURES 

Algorithm 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Artificial Neural 
Network (ANN) 

99.40 99.83 99.63 99.73 

Decision Tree 
(DT) 

99.30 99.63 99.67 99.65 

k-Nearest 
Neighbor (kNN) 

98.65 99.54 99.09 99.32 

Naïve-Bayes 
(NB) 

97.57 98.55 98.99 98.77 

Support Vector 
Machine (SVM) 

43.14 63.93 57.02 60.28 

 
As before when classifying three terrains the ANN, DT, and 

kNN algorithms were the most accurate methods. Introducing a 
fourth terrain class reduced the accuracy in the SVM algorithm, 
but overall, there are no major differences in the model 
performance when adding a fourth class to the classifier.  

When classifying the fourth terrain of grass, a fifth terrain 
was considered by splitting the grass terrain into two, dependent 
on the moisture content of the grass. Previous studies and results 
have shown that the strength and stiffness of soils vary based on 
the water and moisture content in the soil [40][41]. This 
variation in soil strength is perceivable with sensory awareness 
and was considered during data collection.  Testing of this 
sensory awareness using the IMU was completed by completing 



two separate recording sessions on days with varying levels of 
moisture content on the grass field at RAFM. The first collection 
session was taken during the European drought of 2022, amid 
the driest summer on record in Suffolk [42], where RAF 
Mildenhall is located. The second collection session was taken 
a couple of months later after precipitation had returned to 
normal levels, and the session began immediately following a 
rainstorm. The dataset from the first session is labelled as dry 
grass and the dataset from the second session is labelled as wet 
grass. A visual comparison of the same field is shown on the two 
test dates in Fig. 13. The two labelled datasets split the grass 
terrain into two classes.  

 

 
Fig. 13. Test field at RAF Mildenhall with varying moisture content. (a) Dry 

grass (b) Wet grass  

Using the same feature extraction and testing and training 
methods for the three and four terrain classification a new 
algorithm is compared with the five machine learning methods. 
The comparison of model accuracy, precision, recall and F1 
scores is found in Table 4, found below. 

TABLE IV.  MACHINE LEARNING METHOD COMPARISONS OF MODEL 
ACCURACY FOR A FIVE-TERRAIN TOPOGRAPHY CLASSIFICATION USING 44 

INPUT FEATURES 

Algorithm 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Artificial Neural 
Network (ANN) 

91.30 95.36 95.42 95.45 

Decision Tree 
(DT) 

85.77 92.35 92.33 92.34 

k-Nearest 
Neighbor (kNN) 

83.52 90.06 93.18 91.59 

Naïve-Bayes 
(NB) 

76.89 84.60 89.41 86.94 

Support Vector 
Machine (SVM) 

43.29 64.16 57.09 60.42 

 
Further analysis is only performed on the ANN and DT 

algorithms, because the remaining three algorithms accuracy is 
less than 85% accurate. Although the ANN algorithm is 91.3% 
accurate with an F1 score of 95.5% and the DT is 85.8% accurate 
with and F1 of 92.3%, when analyzing the confusion matrix, the 
inaccuracies in the classification algorithm are attributed to 
misclassifications between the dry and wet grass. The confusion 
matrices for the ANN classification (Fig. 14) and the DT 

classification (Fig. 15) highlight how the separated dry and wet 
grass terrain is misidentified at a much higher percentage than 
the overall model accuracy. The model accuracy for the ANN 
algorithm for wet and dry grass terrains is 85.6%. The model 
accuracy for the DT algorithm for wet and dry grass is 79.2%.  
The decrease in model accuracy of the split grass terrain 
indicates that the algorithm cannot repeatedly distinguish the 
differences between wet and dry grass terrain. Whereas the rest 
of the terrains can be identified.  

 
Fig. 14. Confusion matrix of a five terrain classification problem using the 

ANN machine learning method 

 
Fig. 15. Confusion matrix of a five terrain classification problem using the DT 

machine learning method 

The results from the five-class terrain classification 
algorithm indicate that the classification algorithm is terrain 
dependent and not reliable for moisture content detection. Thus, 
adding the fourth and fifth moisture content classes of the grass 
terrain is not viable for classification. In future work of matching 
terrains to a map database, only the terrain class will matter 
because the wet or dry grass is still a type of grass. 

C. Feature Optimization 

In machine learning, relevant features can optimize the 
results and reduce computational load of the algorithm. The 
extracted features can be classified by their relevancy with three 
qualifiers: irrelevant, weakly relevant, and strongly relevant 
[43]. The initial results from the three and four terrain classifiers 
indicate that the three best performing algorithms are ANN, DT, 
and kNN. To find the features that are strongly relevant a feature 
selection algorithm is used to compare features and eliminate 
redundant or irrelevant data from the feature list.  

By utilizing a wrapper selection algorithm, the extracted 
features can be optimized to improve the model accuracy and 
reduce computation time [44]. The training for a wrapper 
selection algorithm requires significant computation time but is 
used to detect interactions between variables [45]. The wrapper 
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algorithm used for this research utilizes the best first attribute 
selection search function in a forward direction and terminates 
the search five attributes beyond the local maximum.  

The wrapper selection algorithm takes the set of 44 features 
and then wraps the selected machine learning method through 
feature subsets. The first feature is calculated by running a 
machine learning algorithm to determine the single feature with 
the highest correlation to the dependent terrain variable. The first 
feature is then placed into a feature subset. The second feature 
is then calculated by using the selected machine learning 
algorithm with the first selected feature to determine the next 
feature with the second highest correlation to the dependent 
terrain variable. The second feature is then placed into the 
feature subset and the process is repeated until the output 
performance no longer improves for five consecutive iterations 
beyond the local maximum. Including the termination criterion 
of five, forces the wrapper selection algorithm to select the best 
subset of features by checking algorithm performance beyond 
the local maximum. The optimized feature subset consists of all 
the features that improve the selected learning algorithm 
performance. Fig. 16 is a visual representation of the wrapper 
selection algorithm. 

 

Fig. 16. Wrapper method for feature selection. The algorithm performance 
either improves each iteration or if it decreases for five iterations then the 

wrapper generates a feature subset using only features that improve 
performance 

Due to the large computational time required by the wrapper 
method using an ANN algorithm wrapper selection and the 
small difference in model accuracy when compared to the DT 
algorithm, the wrapper selection algorithm was only applied to 
the DT and kNN algorithms. The wrapper selection method was 
applied to the three-terrain class problem as well as the four-
terrain class problem to optimize the input features from the 44 
extracted features for model performance and computation time. 

A comparison of the three-terrain optimized feature subset 
selection between the DT and kNN methods for the selected 
learning algorithm in the wrapper selection algorithm is 
presented in Table 5. 

TABLE V.  THREE-TERRAIN OPTIMIZED FEATURE SUBSET MODEL 
ACCURACY COMPARISON USING  WRAPPER SELECTION   

Algorithm 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision Tree 
(DT) 

99.31 99.67 99.64 99.66 

k-Nearest 
Neighbor (kNN) 

99.26 99.64 99.62 99.63 

 

When comparing the results from the subset feature 
optimization using a wrapper selection algorithm the DT model 
has a higher model accuracy and F1 score then the kNN model. 
Additionally, the DT model requires less computational time to 
build and run. The DT optimized feature subset includes five 
features, whereas the kNN feature subset includes nine features. 
A comprehensive list of the five features subset is found in Table 
6, and it’s corresponding confusion matrix is shown in Fig. 17. 
When identifying between the tree terrains of concrete, pebble, 
and sand a DT algorithm with an optimized feature subset of five 
features can accurately identify the terrain with a model 
performance accuracy of 99.34%. 

TABLE VI.  FIVE FEATURE OPTIMIZED SUPSET FOR THREE-TERRAIN 
CLASSIFICATION 

Feature Instrument 

F5 Variance – Magnetometer 

F23 Range – Magnetometer 

F25 Skewness – Accelerometer 

F30 Skewness – LPF Magnetometer 

F35 Peak Magnitude – Gyroscope 

 
 

 
Fig. 17. Confusion matrix of a three-terrain classification using the DT 

machine learning method with an optimized feature subset of five 

A second comparison of the same two machine learning 
methods for the four-terrain optimized feature subset selection 
is presented in Table 7. 

TABLE VII.  FOUR-TERRAIN OPTIMIZED FEATURE SUBSET MODEL 
ACCURACY COMPARISON USING WRAPPER SELECTION 

Algorithm 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision Tree 
(DT) 

99.34 99.73 99.61 99.67 

k-Nearest 
Neighbor (kNN) 

99.24 99.62 99.62 99.62 

 
The results from the subset feature optimization using a 

wrapper selection algorithm indicate that the DT model has a 
higher model accuracy and F1 score then the kNN model. One 
difference between the three and four-class terrain topography 
classification algorithm is the kNN optimized feature subset for 
the four-class algorithm consists of seven features wheras the 
DT optimized feature subset consits of 14 features. The kNN 
algorithm requires less computational time for four classes than 
the DT algorithm. The difference in model accuracy 
performance and F1 score do not constitute a necessity to use the 
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DT algorithm. The entire optimized feature subset for the kNN 
algorithm is presented below in Table 8, and it’s corresponding 
confusion matrix is shown in Fig. 18. The four-terrain 
topography algorithm can identify between the four terrains of 
concrete, grass, pebble and sand with a model performance 
accuracy of 99.24%. 

 

 

TABLE VIII.  SEVEN FEATURE OPTIMIZED SUBSET FOR FOUR-TERRAIN 
CLASSIFICATION 

Feature Instrument 

F7 Energy –Accelerometer 

F11 Energy – Magnetometer 

F16 Kurtosis – Gyroscope 

F23 Range – Magnetometer 

F30 Skewness – Magnetometer 

F41 Max Frequency – Gyroscope 

F43 Max Frequency – Magnetometer 

 
 

 
Fig. 18. Confusion matrix of a four-terrain classification using the knn 

machine learning method with an optimized feature subset of seven 

IV. CONCLUSIONS AND FUTURE WORK 

In this work, two terrain topography classification 
algorithms have been demonstrated. The terrain topography data 
was recorded in real world environments with an IMU attached 
to the foot above the toe to reduce the impact on the user’s 
natural gait. The terrain classification algorithm is not limited to 
binary classification. A comparison study of multiple machine 
learning algorithms was presented and feature optimization was 
performed with the assistance of a wrapper selection to limit 
overfitting of the algorithms. 

The DT machine learning method is the most effective 
manner to classify the initial three terrains of concrete, pebble, 
and sand. Using a wrapper selection algorithm, the 44 input 
features extracted from a two second sliding window were 
reduced to an optimized feature subset with five features. The 
DT classification algorithm was trained and tested with a model 
performance accuracy of 99.31% and an F1 score of 99.66% 

An additional grass terrain was added to the classification 
algorithm because grass terrain makes up roughly one-fifth of 
the walkable space in an urban environment, such as London 
[39]. Adding a fourth class of grass terrain increases the usability 
of the terrain topography classification algorithm. The fourth 

class was created by collecting data on a grass field and post-
processed and analyzed using the same method as the three-
terrain classification algorithm. Four of the five tested machine 
learning methods are more than 97.5% accurate in determining 
the correct class of terrain. The wrapper selection algorithm was 
performed on the DT and kNN learning methods for feature 
optimization. The DT optimized feature subset accurately 
identified and predicted the correct terrain topography with a 
model performance accuracy of 99.34% using 14 features and 
the kNN utilizes seven optimized features with a model accuracy 
of 99.24%.  

An investigation on splitting the class of grass terrain to 
account for variation in moisture content was performed. 
Splitting the grass terrain into wet and dry grass reduced the 
overall accuracy of the classification algorithms. When only 
considering wet and dry grass classes, they were misidentified 
as each other between 14.4 and 21.8%. The terrain topography 
algorithm is unable to accurately distinguish between wet and 
dry grass. 

A robust algorithm that can detect changes in terrain 
topography with more comprehensive terrain classifications 
may be used in comparison to a terrain and topography map or 
terrain database as an aid for position determination. With a 
given initial position and a classification algorithm of changes 
in terrain styles, the position can be compared to known changes 
from a terrain map or database to calibrate the present position. 
Additional investigation is needed to understand how walking 
on different terrains affect existing Zero-Velocity Update and 
Pedestrian Dead Reckoning navigation solutions, especially in 
the detection of the stance phase and zero velocity intervals 
during the gait cycle. Further investigation is also required into 
the sliding window length to determine how the model 
performance and accuracy are affected by altering the window 
length. If model performance is unaffected with a shorter 
window length, then terrain transitions may be easier to classify 
terrain topography classification in real time. 

In conclusion the terrain topography DT classification 
algorithm has a model accuracy of 99.31% for the three-terrain 
classification problem and the four-terrain classification 
problem uses the kNN method with a model accuracy of 
99.24%. The terrain topography classification algorithms are an 
example of how an IMU is used to detect terrains on which a 
pedestrian interacts in addition to detecting user behavior.  
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