

acreg: Arbitrary Correlation Regression

Fabrizio Colella
HEC Lausanne
Lausanne, CH
fabrizio.colella@unil.ch

Rafael Lalive
HEC Lausanne
Lausanne, CH
rafael.lalive@unil.ch

Seyhun Orcan Sakalli
King’s College London
London, UK
seyhun.sakalli@kcl.ac.uk

Mathias Thoenig
HEC Lausanne
Lausanne, CH
mathias.thoenig@unil.ch

Abstract. We present acreg, a new Stata command that implements the arbitrary clustering correction of standard errors proposed in Colella et al. (2019). Arbitrary here refers to the way observational units are correlated with each other: we impose no restrictions so that our approach can be used with a wide range of data. The command accommodates both cross-sectional and panel databases and allows the estimation of OLS and 2SLS coefficients, correcting standard errors in three environments: in a spatial setting using units’ coordinates or distance between units; in a network setting starting from the adjacency matrix; and in a multi-way clustering framework taking multiple clustering variables as input. Distance and time cutoffs can be specified by the user and linear decay in time and space are also optional.

Keywords: acreg, inference, arbitrary correlation, geospatial data, network data

1 Introduction

Thanks to increasing computational power, databases have become more and more complex in the past decades. They nowadays embed convoluted correlation structures between observational units that were not common before. For example, fueled by the growing availability of geocoded data and the integration of geographic information systems (GIS) in the toolkit of economists, empirical works using spatial data are proliferating in fields like development economics, urban economics, and economic history. Other examples of new correlation structures pertain to network data: individuals are linked, and these links are now measurable through social networks, mobile data, co-working relations or co-authorships.

Statistical inference in these environments is challenging because the underlying data generating process is often unknown and researchers need to make assumptions on the relationship between observations. Available methods to address correlation between objects build on the sandwich-type variance covariance estimator proposed by White (1980). The most common approach is standard clustering (Cameron and Miller 2015).

1. Our statistical package (acreg) can be downloaded at the following address https://acregstata.weebly.com.
that defines clusters as groups of linked observations that share a common characteristic. With spatial data, a frequently used approach has been developed by Conley (1999) who considers a circle around each unit within which the strength of the dependence between the unit and the surrounding ones is specified. In the case of network data, the practice is less developed; many studies simply do not correct for the potential correlation of unobserved shocks across linked observations.

In our companion paper Colella et al. (2019), we explore pitfalls and provide guidelines of conducting inference in complex settings, allowing for any type of topological and temporal dependence between observational units in large samples. Our arbitrary clustering approach builds on the seminal insight by White (1980), using estimated regression errors and knowledge on the clustering structure to re-construct estimates of the unknown elements of the sandwich formula. We perform extensive Monte Carlo simulations for both spatial and network data structures, e.g. U.S. counties and co-authorship in economics. Our simulation results show that arbitrary clustering inference dominates inference based on conventional estimators.

In this current article, we present our new user-written command `acreg` that implements the arbitrary clustering correction of standard errors proposed in Colella et al. (2019). We also provide several examples on how to use it. Our command accommodates OLS and 2SLS estimations and is designed to deal with network clustering and several clustered covariance matrix estimators (Bester et al. 2011), including multi-way clustering (Cameron et al. 2011), spatial clustering (Conley 1999) and HAC (Newey and West 1987).

In network settings, we are not aware of any existing Stata routine designed to correct standard errors starting from the knowledge of the binary links between observations. In spatial settings, there are three user-written Stata commands available (Conley 1999; Hsiang 2010 and Fetzer 2015): however, they suit only OLS estimation. In addition, they all have pre-set options that are not desirable in all settings. In particular the commands by Conley 1999 and Fetzer 2015 impose a linear decay in the correlation structure between units (Bartlett), while Hsiang 2010 and Fetzer 2015 set a time decay (HAC) as default. In comparison with those commands, `acreg` is more flexible as it enables the users to freely set the type of correlation structure and decay across observations and time. Moreover, in presence of multiple cross-sectional observational units sharing the same geo-location, our command provides consistent standard errors, replicating the heteroskedasticity-robust standard errors from `ivreg2` when the distance correction is set to 0, while the programs by Conley 1999; Hsiang 2010 and Fetzer 2015 do not. Stata 15 introduced a series of commands, named `sp`, to model spatial relations between objects using spatial autoregressive models (SAR). These models allow for spatial lags of the dependent variable, which modifies point estimates, or for spatial autocorrelation in the errors. The command closest to ours, `spregress`, allows only for heteroskedasticity-robust and asymptotic maximum-likelihood theory driven standard errors. Conversely, `acreg` does not modify the point estimates, but improve inference by computing standard errors corrected for spatial correlation.

2. Conley 1999 allows to correct for only cross-sectional dependence and not time dependence.
The rest of this article is organized as follows. In section 2, we review the arbitrary clustering method developed in Colella et al. (2019). In section 3, we provide a detailed description of the syntax of acreg. In section 4, we offer an illustration of our command with several examples in the spatial and the network settings: we show how options of our command can be used to suit many models of correlation structure. Finally, in section 5, we conclude.

2 Estimator for the Variance-Covariance Matrix

Here we present the estimator of the variance-covariance (VCV) proposed in Colella et al. (2019). The proposed estimator builds on the seminal insight from White (1980) and can be seen as an extension of the one-way or multi-way clustering (Cameron et al. 2011) that includes also spatial clustering (Conley 1999).^3

In our setting each observation can be correlated to any another and the strength of their correlation is a function of both time and distance. We define a matrix S containing information on cross-observation correlations in errors. With spatial data, S is built from information on the geographic distance between spatial units, e.g., regions, cities, and countries; while in a network context, it reflects the direct links between observations at different degrees. acreg computes the matrix S starting from the position of objects in space, using their coordinates, or from the link structure in a network; it also allows the user to define the matrix S to accommodate more complex correlation structures. Entries of the S matrix range from 0 to 1: this measure represents the strength of the correlation between two units and is inversely proportional to their distance. The diagonal of S is a vector of ones, reflecting the self-links.

Consider n observations at each t instant of time T from the following linear model:

$$y = X\beta + \epsilon$$

where we observe each unit i several times in different periods t. y is a dependent variable, and X is a matrix of k linearly independent components. Note that X could include a long list of dummies for each unit, in case we are interested in the within estimates in a Panel dataset. The OLS estimator can be written as follow:

$$b_{OLS} = (X'X)^{-1}X'y$$

and the theoretical VCV of the b_{OLS} is:

$$VCV(b_{OLS}) = (X'X)^{-1}X'\Omega X(X'X)^{-1}$$

3. We do not provide any theoretical or empirical validation of our approach here. In Colella et al. (2019) we show results of extensive Monte Carlo simulations based on real life data on U.S. metropolitan areas, or on co-authors in Economics. We show that our arbitrary clustering estimator of the VCV yields inference at the correct significance level in moderately sized samples, and it always dominates other commonly used approaches to inference. We provide guidance to the applied practitioners on how to cluster and to make reasonable assumptions on the error distribution in absence of prior knowledge about the data generating process.
arbitrary correlation regression

where $\Omega \equiv E(\epsilon\epsilon'|X)$ is the unknown VCV of ϵ.

The VCV is estimated by the following sandwich estimator (White 1980):

$$
\hat{VCV}(b_{OLS}) = (X'X)^{-1}X'(S \times (ee'))X(X'X)^{-1}
$$

where $e \equiv y - Xb_{OLS}$ represent the vector of residuals and where S is the pattern matrix, and \times is element-by-element matrix multiplication. The key element of this estimator is the middle part $X'(S \times (ee'))X$.

$$
X'(S \times (ee'))X = \sum_{i=1}^{n} \sum_{t=1}^{T} \sum_{j=1}^{n} \sum_{s=1}^{T} x_{it}e_{it}e_{js}s_{itjs}
$$

where x_{it} is the (column) vector of regressors, and x'_{it} is the row it in matrix X.

This framework can also be used in situations with endogeneity. We refer the reader to our paper (Colella et al. 2019) for an illustration of the 2SLS version of the estimator.

3 The acreg command

acreg requires the installation of the latest versions of ranktest, ivreg2 (Baum et al. 2003), and hdfe (Correia 2016). To check whether the most up-to-date versions of these packages are installed (and to install them if they are not), please type acregpackcheck after having installed acreg.

3.1 Syntax

```
acreg depvar [varlist1] [varlist2 = varlist_iv] [if] [in] [fweight pweight]
[, id(idvar) time(timevar) spatial network latitude(latitudevar) longitude(longitudevar)
links_mat(varlist_links) dist_mat(varlist_distances) dist(#) lag(#) weights(varlist_weights)
cluster(varlist_cluster) hac bartlett nbclust(#) pfe1(fe1var) pfe2(fe2var) correctr2
dropsingletons storeweights storedistances]
```

- `depvar` is the dependent variable.
- `varlist1` is the list of exogenous variables.
- `varlist2` is the list of endogenous variables.
- `varlist_iv` is the list of exogenous variables used with varlist1 as instruments for varlist2.
3.2 Options

Panel

- id_{var} is the cross-sectional unit identifier; required in panel setting.
- $time_{var}$ is the time unit variable; required in panel setting.

If id_{var} and $time_{var}$ are not specified, the model is assumed to be cross sectional.

Spatial Environment

- $spatial$ specifies that the environment is a spatial one; not required if arbitrary cluster correction is not performed or in the case it is if varlist_weights, varlist_cluster, or network option is specified.
- $latitude_{var}$ is the variable containing the latitude of each observation in decimal degrees: range [-180.0, 180.0].
- $longitude_{var}$ is the variable containing the longitude of each observation in decimal degrees: range [-180.0, 180.0].
- $varlist_{distances}$ is the list of N variables containing bilateral distances between observations. In the spatial environment, bilateral distance is the spatial distance between observations, e.g., physical or travel distance between two locations. (In the network environment, it is the network distance between observations, i.e., the number of links along the shortest path between two nodes.)
- $dist(#)$ specifies the distance cutoff beyond which the correlation between error term of two observations is assumed to be zero; required if latitude and longitude are specified or if dist_mat is specified. The distance cutoff is in kilometers if latitude and longitude are specified. It can be in any other meaningful metric if bilateral distances are specified.
- $lag(#)$ specifies the time lag cutoff for observations with the same id_{var}; not required in cross-sectional environment; default is 0 in panel environment, i.e., when id and time options are specified. In panel environment when time cutoff is 0 or not specified, standard errors are clustered at $id \times time$ level.

Network Environment

- $network$ specifies that the environment is a network one; not required if arbitrary cluster correction is not performed and in the case it is if varlist_weights, varlist_cluster, or spatial option is specified.
- $varlist_{links}$ is the list of N dummy variables specifying the links between observations, i.e., the adjacency matrix. The links between two units can change over time. However, if $dist_{cutoff}$ is set to be greater than one: only the first observation in time of each individual will be used as input to compute the bilateral distance between two nodes.
- $varlist_{distances}$ is the list of N variables containing bilateral distances between observations. In the network environment, bilateral distance is the network
arbitrary correlation regression

distance between observations, i.e., the number of links along the shortest path between two nodes. (In the spatial environment, it is the spatial distance between observations, i.e., distance between two locations.)

- **dist(#)** specifies the distance cutoff (geodesic paths) beyond which the correlation between error term of two observations is assumed to be zero; required if dist_mat is specified; optional if links_mat is specified; default is 1 in the network environment. When links_mat is specified and distcutoff is greater than 1, acreg computes automatically the bilateral distance between two nodes.

- **lag(#)** specifies the time lag cutoff for observations with the same idvar; not required in cross-sectional environment, default in panel environment is 0, i.e., when id and time options are specified. In panel environment when timecutoff is 0 or not specified, standard errors are clustered at id × time level.

Multiway Clustering Environment

- **varlist_cluster** is the list of variables to use for multiway clustered standard errors; not required if arbitrary cluster correction is not performed and in the case it is if spatial option, network option, or varlist_weights is specified.

Arbitrary Clustering Environment

- **varlist_weights** is the list of N × T variables containing the weights that will be used for error correction; not required if if spatial option, network option, or varlist_cluster is specified. The N × T variables need to follow the same order of the observations.

Correlation Structure

- **hac** reports Heteroskedasticity and Autocorrelation Corrected (HAC) standard errors; lagcutoff will be the temporal decay; requires id, time, and lagcutoff.

- **bartlett** imposes a distance linear decay between observations within the cutoff in the correlation structure.

- **nbclust(#)** is the number of clusters used to compute the Kleibergen-Paap statistic in case of arbitrary cluster correction; default is 100.

High-Dimensional Fixed Effects

- **fe1var** identifies the first high-dimensional fixed effects variable to be partialled out.

- **fe2var** identifies the second high-dimensional fixed effects variable to be partialled out.

- **correctr2** when pfe1 or pfe2 are specified the r-squared is computed on the “partialled out sample”. This option reports the correct r-squared, i.e. the pre-partialling out r-squared. Not allowed with fweights.

- **dropsingletons** drops singleton groups when pfe1 (and pfe2) is (are) specified.
Storing

- **storeweights** stores the computed weights used to correct the VCV for arbitrary cluster correlation as a matrix under the name weightsmat, which may be used as input for the option varlist.weights; optional only if spatial option, network option, or varlist_cluster is specified.

- **storedistances** stores the computed distances used to correct the VCV for arbitrary cluster correlation as a matrix under the name distancesmat, which may be used as input for the option varlist_distances; optional only if spatial option or network is specified and varlist_distances is not specified.

3.3 Stored results

acreg stores the following in e():

Scalars

- \(e(N) \) number of observations
- \(e(mss) \) model sum of squares (centered)
- \(e(mssu) \) model sum of squares (uncentered)
- \(e(rss) \) residual sum of squares
- \(e(tss) \) total sum of squares (centered)
- \(e(tssu) \) total sum of squares (uncentered)
- \(e(r2) \) centered R2 (1-rss/tss)
- \(e(r2u) \) uncentered R2
- \(e(widstat) \) Kleibergen-Paap Wald rk F statistic

Matrices

- \(e(b) \) coefficient vector
- \(e(V) \) corrected variance-covariance matrix of the estimators

Functions

- \(e(sample) \) marks estimation sample

4 Examples

We illustrate the use of our command in four environments: spatial and network settings, both in cross-sectional and panel contexts. In every environment, we estimate the same equation imposing different assumptions on the error correlation structure: iid, standard clustering, and arbitrary clustering.
arbitrary correlation regression

4.1 Spatial Environment, Cross-Sectional Setting

For this example we use the data on the homicides in southern states of the U.S. homicide_1960_1990.dta available at the STATA website. Data contain, among others, the county-level homicide rate per year per 100,000 persons (hrate), the population in logs (ln_population), the logarithm of the average income (ln_income), the unemployment rate (unemployment), and the average age (age). This dataset is an extract of the data originally used by Messner et al. (1999) and concerns 4 different periods (1960, 1970, 1980, 1990). We consider only the cross-sectional database for 1990 and we estimate the effect of income on homicide rate, controlling for population, and age. For the sake of illustration, we claim that income is endogenous and we assume that unemployment is a valid instrument for it. Figure 1 shows the spatial dependency of the outcome variable, the endogenous regressor, and the instrument.

We first estimate the model assuming that observations’ errors are uncorrelated.4

\[
\text{acregr hrate ln_population age (ln_income=unemployment)}
\]

<table>
<thead>
<tr>
<th>HETEROSKEDASTICITY ROBUST STANDARD ERRORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No HAC Correction</td>
<td></td>
</tr>
<tr>
<td>No Absorbed FEs</td>
<td></td>
</tr>
<tr>
<td>Included instruments: ln_population age</td>
<td></td>
</tr>
<tr>
<td>Instrumented: ln_income</td>
<td></td>
</tr>
<tr>
<td>Excluded instruments: unemployment</td>
<td></td>
</tr>
<tr>
<td>Kleibergen-Paap rk Wald F statistic: 990.487</td>
<td></td>
</tr>
</tbody>
</table>

| | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|-------------------------|-------------|-----------|------|------|---------------------|
| hrate | | | | | |
| ln_income | -8.822082 | 1.35491 | -6.51| 0.000| -11.47766 -6.166507 |
| ln_population | 1.404433 | .2769494 | 5.07 | 0.000| .861622 1.947244 |
| age | -.281615 | .050726 | -5.55| 0.000| -.381036 -.1821939 |
| _cons | 94.4605 | 12.42859 | 7.60 | 0.000| 70.10091 118.8201 |

We now estimate the model above clustering standard errors by state.5

\[
\text{acregr hrate ln_population age (ln_income=unemployment), cluster(sfips)}
\]

MULTIWAY CLUSTERING CORRECTION	

Cluster variable(s): sfips	
No HAC Correction	
No Absorbed FEs	
Included instruments: ln_population age	
Instrumented: ln_income	
Excluded instruments: unemployment	
Kleibergen-Paap rk Wald F statistic: 143.959	

4. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate ln_population age (ln_income=unemployment), robust
5. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 hrate ln_population age (ln_income=unemployment), cluster(sfips). We are aware that the number of states (clusters) is small and inference would suffer from it, but this is irrelevant for the scope of this exercise.
Figure 1: Homicide rate, log income, and unemployment in 1990 for southern U.S. counties

(a) Homicide rate

(b) Income

(c) Unemployment
We now estimate the model above using a spatial correction following Conley (1999), with a threshold of 100 kilometers. This means that the error of each county is assumed to be correlated with the counties that are located within a radius of 100 kilometers from it.

```
.acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(100)
```

SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 0
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 112.917

Number of obs = 1412
Total (centered) SS = 69908.59003 Centered R2 = 0.1079
Total (uncentered) SS = 198667.4579 Uncentered R2 = 0.6861
Residual SS = 62363.84851

| hrate | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|---------|-------------|-----------|------|-----|---------------------|
| ln_income | -8.822082 | 1.801762 | -4.90| 0.000 | -12.35347 -5.290693 |
| ln_population | 1.404433 | .3090553 | 4.54 | 0.000 | .7986955 2.01017 |
| age | -2.281615 | .1303804 | -2.16| 0.031 | -.5371558 -.260741 |
| _cons | 94.4605 | 17.89048 | 5.28 | 0.000 | 59.3958 129.5252 |

Additional options

Thresholds. If we want to account for correlation between counties at a greater distance, we can increase the distance cutoff using the `dist()` option. In the following example we allow for a radius of 200 kilometers.

```
.acreg hrate ln_population age (ln_income=unemployment), ///
> spatial latitude(_CX) longitude(_CY) dist(200)
```

```
. estimates store sp1
```

Bartlett. In previous examples the matrix used for the computation of the variance covariance matrix is binary: for each county pair, it contains 1 if they are located within
the distance threshold from each other and 0 otherwise. acreg allows for weights in the matrix to linearly decrease as the distance between units increases. To do that we only need to add the option bartlett to the syntax.

```
. acreg hrate ln_population age (ln_income=unemployment), ///
  > spatial latitude(_CX) longitude(_CY) dist(200) bartlett
. estimates store sp2
```

Partial out high dimensional fixed effects. acreg allows for adding high dimensional fixed effects and partial them out, using the hdfe command by Correia (2016). Up to two fixed effects variables can be specified through the options pfe1() and pfe2(). In the example below we estimate the previous model adding state fixed effects.

```
. acreg hrate ln_population age (ln_income=unemployment), ///
  > spatial latitude(_CX) longitude(_CY) dist(100) pfe1(sfips)
. estimates store sp3
```

The following code reports the result of the three estimations in this subsection:

```
. esttab sp1 sp2 sp3, cells(b se) keep(ln_income ln_population age) mtitles(spatial bartlett FE)
```

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>spatial</td>
<td>bartlett</td>
<td>FE</td>
</tr>
<tr>
<td>ln_income</td>
<td>-8.822082</td>
<td>-8.822082</td>
<td>-13.88229</td>
</tr>
<tr>
<td></td>
<td>2.733507</td>
<td>2.313018</td>
<td>1.835268</td>
</tr>
<tr>
<td>ln_population</td>
<td>1.404433</td>
<td>1.404433</td>
<td>1.649735</td>
</tr>
<tr>
<td></td>
<td>.4834539</td>
<td>.4388646</td>
<td>.4000578</td>
</tr>
<tr>
<td>age</td>
<td>-.281615</td>
<td>-.281615</td>
<td>-.178832</td>
</tr>
<tr>
<td></td>
<td>.1223503</td>
<td>.1015135</td>
<td>.0960779</td>
</tr>
<tr>
<td>N</td>
<td>1412</td>
<td>1412</td>
<td>1412</td>
</tr>
</tbody>
</table>

4.2 Spatial Environment, Panel Setting

For this example we use the same database we used in the previous section: `homicide_1960_1990.dta`. We estimate again the effect of income on homicide rate, controlling for population and age and we assume that unemployment is a valid instrument for it. Compared to the previous section, we now use all four waves of the dataset.

Pooled model

We first consider a pooled model in which we do not include any Random or Fixed Effects. We first estimate the model assuming that observations’ errors are uncorrelated.\(^6\)

\(^6\) This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: `ivreg2 hrate ln_population age (ln_income=unemployment), robust`
We now estimate the same model, but we use the panel feature of `acreg` to account for autocorrelation between observations from the same county over time. We assume no correlation across counties. We specify the option `id()` with the county id, the option `time()` with the year variable and the option `lag()` with a number greater or equal than the maximum lag between observations, which in this case is 30.

```
    . acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30)
    TEMPORAL CORRECTION
    No HAC Correction
    No Absorbed FEs
    Included instruments: ln_population age
    Instrumented: ln_income
    Excluded instruments: unemployment
    Kleibergen-Paap rk Wald F statistic: 210.438
    Number of obs = 5648
    Total (centered) SS = 286387.1082 Centered R2 = -0.0447
    Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
    Residual SS = 299188.6495

     hrate  Coefficient  Std. err.     z   P>|z|      [95% conf. interval]
    -------------  -------------  -------------  -------  --------  --------------------------
    ln_income           3.83872   .7815313  4.910   0.000     2.306947     5.370494
    ln_population        -.4411802  .1968992  -2.242   0.025     -.8270955    -.0552654
    age                  -.4626917  .0637006  -7.260   0.000     -.5875425    -.3378408
    _cons               -7.265041  4.1260290  -1.759   0.078    -15.35191   .8218268
```

We now extend the model above, which takes into account autocorrelation over time, by adding the spatial correction proposed by Conley (1999), with a threshold of 100 kilometers. This means that the error term of each county at a given year is assumed

```
    . acreg hrate ln_population age (ln_income=unemployment), cluster(_ID)
    TEMPORAL CORRECTION
    No HAC Correction
    No Absorbed FEs
    Included instruments: ln_population age
    Instrumented: ln_income
    Excluded instruments: unemployment
    Kleibergen-Paap rk Wald F statistic: 289.132
    Number of obs = 5648
    Total (centered) SS = 286387.1082 Centered R2 = -0.0447
    Total (uncentered) SS = 781008.6785 Uncentered R2 = 0.6169
    Residual SS = 299188.6495

     hrate  Coefficient  Std. err.     z   P>|z|      [95% conf. interval]
    -------------  -------------  -------------  -------  --------  --------------------------
    ln_income           3.83872   .7815313  4.910   0.000     2.306947     5.370494
    ln_population        -.4411802  .1968992  -2.242   0.025     -.8270955    -.0552654
    age                  -.4626917  .0637006  -7.260   0.000     -.5875425    -.3378408
    _cons               -7.265041  4.1260290  -1.759   0.078    -15.35191   .8218268
```

7. Note that the estimation of the betas does not change with respect to the previous model, `acreg` is only used for the computation of the standard errors.
8. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: `ivreg2 hrate ln_population age (ln_income=unemployment), cluster(_ID)` Alternatively, using acreg and the following syntax: `acreg hrate ln_population age (ln_income=unemployment), cluster(_ID)`
to be correlated with those of all the counties that are located within a radius of 100 kilometers from it observed at the same year while simultaneously correcting for autocorrelation over time for each county. Note that correlation between near counties but observed at different point in time is assumed to be zero.

```
. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
    > spatial latitude(_CX) longitude(_CY) dist(100)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic:  24.838
Number of obs = 5648
Total (centered) SS = 286387.1082  Centered R2 = -0.0447
Total (uncentered) SS = 781008.6785  Uncentered R2 = 0.6169
Residual SS = 299188.6495
```

| | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|----------|-------------|-----------|-----|------|----------------------|
| hrate | | | | | |
| ln_income| 3.83872 | 1.810937 | 2.12| 0.034| 0.2893488 7.388092 |
| ln_population| -0.4411802 | 0.3871668 | -1.14| 0.254| -1.200013 0.3176528 |
| age | -0.4626917 | 0.1425257 | -3.25| 0.001| -0.742037 -0.1833464 |
| _cons | -7.265041 | 9.81498 | -0.74| 0.459| -26.50301 11.97023 |

FE model

In the following example we replicate the previous model, accounting for both spatial and temporal correlation, but we add to the specification the county fixed effects using the option `pfe1`.

```
. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
    > spatial latitude(_CX) longitude(_CY) dist(100) pfe1(_ID)
SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
Absorbed FE: _ID
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic:  49.605
Number of obs = 5648
Total (centered) SS = 144755.2058  Centered R2 = 0.0175
Total (uncentered) SS = 144755.2058  Uncentered R2 = 0.0175
Residual SS = 142223.0274
```

| | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|----------|-------------|-----------|-----|------|----------------------|
| hrate | | | | | |
| ln_income| .2588154 | 1.149746 | 0.23| 0.822| -1.994645 2.512276 |
| ln_population| -1.630949 | 1.740873 | -0.94| 0.349| -5.042997 1.781099 |
| age | .1466193 | .2006033 | 0.73| 0.465| -0.2465559 0.5397944 |
We now add to the previous model also time fixed effects using the option `pfe2`.

```
.acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100) pfe1(_ID) pfe2(year)
```

SPATIAL CORRECTION
DistCutoff: 100
LagCutoff: 30
No HAC Correction
Absorbed FE: _ID and year
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 3.895
Number of obs = 5648
Total (centered) SS = 136166.339 Centered R2 = -0.0793
Total (uncentered) SS = 136166.339 Uncentered R2 = -0.0793
Residual SS = 146961.8234

| hrate | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|-------|-------------|-----------|-------|------|---------------------|
| ln_income | -13.30126 | 17.5969 | -0.76 | 0.450 | -47.79055 to 21.18803 |
| ln_population | -1.602695 | 2.253785 | -0.71 | 0.477 | -6.020033 to 2.814642 |
| age | .0038921 | .0937463 | 0.04 | 0.967 | -.1798472 to .1876314 |
| _cons | -1.11e-15 | .128699 | -0.00 | 1.000 | -.2522454 to .2522454 |

To get the corrected ones use the option `correctr2`

Additional Options

Thresholds. Now we account for spatial correlation between observations of the same year without accounting for any temporal correlation. We do this by setting the lagcutoff at 0.

```
.acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(0) ///
> spatial latitude(_CX) longitude(_CY) dist(100)
```

Now we account for spatial correlation between observations of the same year, and also for temporal correlation between observations from the same county, but only between neighbor decades, i.e. two observations from the same county are assumed to be correlated only if they are observed with less than 10-year difference. We do that by setting the `lagcutoff` equal to 10.

9. Note that the result will be different than the one obtained in the cross sectional environment (`acreg hrate ln_population age (ln_income=unemployment), spatial latitude(_CX) longitude(_CY) dist(100)`) because the spatial correlation is assumed to be present only between observations from the same year.

10. Note that this would allow an observation’s error term to be correlated with all other observations within 10-year lag and 10-year lead from the same county.
. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(10) ///
> spatial latitude(_CX) longitude(_CY) dist(100)
. estimates store spp2

HAC. In the previous examples the matrix used for the computation of the variance covariance matrix is binary. We can use the option *hac* to have a linear decay in time and compute Heteroscedasticity-Autocorrelation-Consistent standard errors, following Newey and West (1987).

. acreg hrate ln_population age (ln_income=unemployment), id(_ID) time(year) lagcut(30) ///
> spatial latitude(_CX) longitude(_CY) dist(100) hac
. estimates store spp3

The following code reports the result of the three estimations in this subsection.

. esttab spp1 spp2 spp3, cells(b se) keep(ln_income ln_population age) mtitles(lag0 lag10 hac)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lag0</td>
<td>lag10</td>
<td>hac</td>
</tr>
<tr>
<td>b/se</td>
<td>b/se</td>
<td>b/se</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ln_income</th>
<th>3.83872</th>
<th>3.83872</th>
<th>3.83872</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.743993</td>
<td>1.801373</td>
<td>1.785354</td>
</tr>
<tr>
<td>ln_population</td>
<td>-.4411802</td>
<td>-.4411802</td>
<td>-.4411802</td>
</tr>
<tr>
<td></td>
<td>.3542752</td>
<td>.377059</td>
<td>.3727145</td>
</tr>
<tr>
<td>age</td>
<td>-.4626917</td>
<td>-.4626917</td>
<td>-.4626917</td>
</tr>
<tr>
<td></td>
<td>.1347804</td>
<td>.1403627</td>
<td>.139132</td>
</tr>
<tr>
<td>N</td>
<td>5648</td>
<td>5648</td>
<td>5648</td>
</tr>
</tbody>
</table>

4.3 Network Environment, Cross-sectional Setting

For this example we use a dataset of co-offending in a London-based youth gang. Data were collected by James Densley and Thomas Grund. The data have been used in Grund and Densley (2012) and Grund and Densley (2015). Information on 54 individuals are reported, two individuals are recorded to be linked if they committed at least a crime together. Data contains, among others, the age (*Age*), the birthplace (*Birthplace*), the number of arrests (*Arrests*), the number of convictions (*Convictions*), and the position in the gang’s internal hierarchy (*Ranking*). The symmetric binary links constituting the co-offending network are stored in 54 variables (*net2_1-net2_54*). Figure 2 presents the distribution of the variables *Arrest* and *Ranking* within the network. In this example we want to estimate the effect of *ranking* on *arrests*, controlling for *age*, *residence*, and *birthplace* FEs.

The code below is necessary to load the dataset (*webnwuse gang*), load the network (*nwload gang*) and replace the diagonal of the adjacency matrix with ones (*the loop*). This is needed because the original database does not contains self-links.

. webnwuse gang
arbitrary correlation regression

Figure 2: Gang Network

(a) Arrest (b) Ranking

Notes: In panel (a), blue dots represent arrested people. In panel (b), darker red dots identify a greater position in the ranking.

Loading successful

(2 networks)

gang_valued
gang
 nwload gang
 forvalues j = 1(1)54 {
 2. qui replace _net2_`j´ = 1 in `j´
 3. }

We first estimate the model assuming that observations’ errors are uncorrelated.11

 . acreg Arrest Ranking Age Residence i.Birthplace
 HETEROSKEDASTICITY ROBUST STANDARD ERRORS
 No HAC Correction
 No Absorbed FEs
 Number of obs = 54
 Total (centered) SS = 2196.537037 Centered R2 = 0.2442
 Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
 Residual SS = 1660.198039

| Arrests | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|---------|-------------|-----------|-----|-----|----------------------|
| Ranking | -2.168476 | .8207074 | -2.64 | 0.008 | -3.777033 -1.5599192 |
| Age | .7665194 | .3094139 | 2.48 | 0.013 | .1600793 1.372959 |
| Residence| -1.534665 | 1.551649 | -0.98 | 0.326 | -4.59544 1.526111 |
| Birthplace | 0 (empty) | 0.930 | -5.87643 5.371822 |

11. This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: ivreg2 Arrest
 Ranking Age Residence i.Birthplace, robust
We now estimate the same model using the standard-error correction proposed in our paper (Colella et al. 2019). We assume that the error term of each observation is correlated with that of another if they are linked in the network. To implement this in `acreg`, we provide the variables containing the adjacency matrix as input in the `links_mat` option and set `distcutoff` equal to 1.

```
.acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(1)
```

NETWORK CORRECTION

DistCutoff: 1
LagCutoff: 0
No HAC Correction
No Absorbed FEs

Number of obs = 54
Total (centered) SS = 2196.537037 Centered R2 = 0.2442
Total (uncentered) SS = 7497 Uncentered R2 = 0.7786
Residual SS = 1660.198039

| Arrests | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|---------|-------------|-----------|---|-----|------------------|
| Ranking | -2.168476 | .7132431 | -3.04 | 0.002 | -3.566407 - .770545 |
| Age | .7665194 | .3730319 | 2.05 | 0.040 | .0353904 1.497648 |
| Residence | -1.534665 | 1.618858 | -0.95 | 0.343 | -4.707568 1.638239 |
| Birthplace Caribbean | 0 (empty) |
| East Africa | -0.352385 | .2538789 | .11 | .911 | -4.679449 4.174842 |
| UK | .7012659 | 2.984775 | 0.23 | 0.814 | -5.148785 6.551317 |
| West Africa | .8171717 | 2.260143 | 0.36 | 0.718 | -3.612627 5.24697 |
| _cons | 2.317286 | 7.825902 | 0.30 | 0.767 | -13.0212 17.65577 |

Additional Options

Accounting for degree grater than one. Each node of a network has a certain number of links that connects it to other nodes. This number is called the degree k of a node. `acreg` allows the user to account for correlation between two observations that are not necessarily directly linked but are linked through other observations. Starting from the same 0-1 adjacency matrix used in the previous example, we now want to allow for correlation also between individuals that are linked through another individual (degree 2). To do that we will use the same syntax but we change the `distcutoff` to 2.

```
.acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(2)
.estimates store ne1
```

Bartlett. In previous examples the matrix used for the computation of the variance
arbitrary correlation regression

covariance matrix is binary: it contains values 1 for each pair of individuals that are first or second degree linked, and zeros otherwise. acreg allows for weights in the matrix to linearly decrease as the as the network distance increases.\footnote{To do that in our sample, i.e., having ones for first degree linked observations and 0.5 for second degree ones we will use the option bartlett.}

\begin{verbatim}
. acreg Arrest Ranking Age Residence i.Birthplace, network links_mat(_net2_*) dist(2) ///
> bartlett
. estimates store ne2
\end{verbatim}

Partial out high dimensional fixed effects. acreg allows for adding high dimensional fixed effects and partial them out, using the \texttt{hdfe} command by \textcite{Correia(2016)}: up to two fixed effects variables can be specified through the options \texttt{pfe1()} and \texttt{pfe2()}. In the example below we estimate the previous model partialing out birthplace FEs instead of adding them as dummies in the main regression.

\begin{verbatim}
. acreg Arrest Ranking Age Residence, network links_mat(_net2_*) dist(1) pfe1(Birthplace)
. estimates store ne3
\end{verbatim}

The following code reports the result of the three estimations in this subsection.

\begin{verbatim}
. esttab ne1 ne2 ne3, cells(b se) keep(Ranking Age Residence) ///
> mtitles(degree2 bartlett FE)
\end{verbatim}

\begin{center}
\begin{tabular}{lccc}
 & (1) & (2) & (3) \\
\hline
\multicolumn{4}{c}{degree2 bartlett FE} \\
\hline
b/se & b/se & b/se \\
\hline
Ranking & -2.168476 & -2.168476 & -2.168476 \\
& .4801238 & .7688551 & .7132431 \\
Age & .7665194 & .7665194 & .7665194 \\
& .4001636 & .3427023 & .3730319 \\
Residence & -1.534665 & -1.534665 & -1.534665 \\
& 2.138931 & 1.590511 & 1.618858 \\
\hline
N & 54 & 54 & 54 \\
\hline
\end{tabular}
\end{center}

4.4 Network Environment, Panel Setting

For this section we use an ad-hoc database that can be downloaded from our command’s website. It is a balanced panel dataset of 1000 observations (NT) referring to 100 (N) individuals at 10 (T) points in time. Individuals are identified through the variable \texttt{id}, while time is identified through the variable \texttt{time}. Database also contains, among others, the following variables \texttt{Y_it}, \texttt{X1_it}, \texttt{End_it}, and \texttt{IV_it}. The symmetric binary links constituting the network are stored in 100 (N) variables (\texttt{clus.1-clus.100}). In this example we want to estimate the effect of \texttt{End_it} on \texttt{Y_it}, controlling for \texttt{X_it}. We

\footnote{With distance here we refer to the strength of the link: first degree is distance 1, second degree is distance 2, etc...}
claim that End\(_{it}\) is endogenous and we assume that IV\(_{it}\) is a valid instrument for it.

Pooled model

We first consider a pooled model in which we do not include any Random or Fixed Effects. We first estimate the model assuming that observations’ errors are uncorrelated.\(^{13}\)

```
. use https://acregstata.weebly.com/uploads/2/9/1/6/29167217/acregfakedata.dta, clear
. acreg Y_{it} X1_{it} (Z_{it}=IV_{it})
```

HETEROSKEDASTICITY ROBUST STANDARD ERRORS
No HAC Correction
No Absorbed FEs
Included instruments: X1_{it}
Instrumented: Z_{it}
Excluded instruments: IV_{it}
Kleibergen-Paap rk Wald F statistic: 37.874

<table>
<thead>
<tr>
<th>Number of obs = 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (centered) SS = 2834382.139 Centered R2 = 0.4913</td>
</tr>
<tr>
<td>Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563</td>
</tr>
<tr>
<td>Residual SS = 1441795.144</td>
</tr>
</tbody>
</table>

| Y_{it} | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|--------|-------------|-----------|----|------|----------------------|
| Z_{it} | 1.02863 | .2409828 | 4.27| 0.000| .5563128 1.500948 |
| X1_{it} | 1.228864 | .3320382 | 3.70| 0.000| .5780809 1.879647 |
| _cons | 11.61852 | 3.013075 | 3.86| 0.000| 5.713007 17.52404 |

We now estimate the same model accounting for correlation between errors from observations of the same individual (id). We still assume that there is no correlation between individuals and do not consider the network structure yet. To do this, we use the panel features (options `id()` and `time`) and we set the `lag()` option to be greater than or equal to the maximum distance in time between observations, which in this case is 10.\(^{14}\)

```
. acreg Y_{it} X1_{it} (Z_{it}=IV_{it}), id(id) time(time) lag(10)
```

TEMPORAL CORRECTION
No HAC Correction
No Absorbed FEs
Included instruments: X1_{it}
Instrumented: Z_{it}
Excluded instruments: IV_{it}
Kleibergen-Paap rk Wald F statistic: 30.295

<table>
<thead>
<tr>
<th>Number of obs = 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (centered) SS = 2834382.139 Centered R2 = 0.4913</td>
</tr>
<tr>
<td>Total (uncentered) SS = 4195421.4 Uncentered R2 = 0.6563</td>
</tr>
<tr>
<td>Residual SS = 1441795.144</td>
</tr>
</tbody>
</table>

| Y_{it} | Coefficient | Std. err. | z | P>|z| | [95% conf. interval] |
|--------|-------------|-----------|----|------|----------------------|

\(^{13}\) This is equivalent to using ivreg2 (Baum et al. 2003) and the following syntax: `ivreg2 Y_{it} X1_{it} (End_{it}=IV_{it}), robust`

\(^{14}\) This is equivalent to clustering by individuals using ivreg2 (Baum et al. 2003) and the following syntax: `ivreg2 Y_{it} X1_{it} (End_{it}=IV_{it}), cluster(id)` or `acreg Y_{it} X1_{it} (End_{it}=IV_{it}), cluster(id)`
We now estimate the model above adding to the temporal correlation the correction for network links as proposed in our paper (Colella et al. 2019). We assume that the error term of each individual is correlated with that of another individual observed in the same year if they are linked in the network while accounting for correlation between errors from observations of the same individual. To implement this in `acreg`, we provide the variables containing the adjacency matrix as input in the `links_mat` option and set `distcutoff` equal to 1.¹⁵ Note that correlation between linked individuals but observed at different point in time is still assumed to be null.

15. Note that the total number of observations in the database is \(NT \) (1000), but the total number of individuals is \(N \) (100). Since we are using the panel feature, `acreg` will require a link matrix formed by \(N \) variables, not \(NT \).
Absorbed FE: id
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 38.899

Number of obs = 1000
Total (centered) SS = 2331112.842 Centered R2 = 0.4938
Total (uncentered) SS = 2331112.842 Uncentered R2 = 0.4938
Residual SS = 1180104.818

| Y_it | Coefficient Std. err. | z | P>|z| | [95% conf. interval] |
|-------|------------------------|-----|------|---------------------|
| Z_it | 1.368636 .346849 | 3.95| 0.000| 0.6888244 2.048448 |
| X1_it | .7942328 .3663375 | 2.17| 0.030| 0.0762245 1.512241 |
| _cons | 9.58e-17 1.266864 | 0.00| 1.000| -2.483007 2.483007 |

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

We now add to the previous model also time fixed effects using the option pfe2.

```
. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(10) ///
    > network links_mat(clus*) dist(1) pfe1(id) pfe2(time)
```

NETWORK CORRECTION
DistCutoff: 1
LagCutoff: 10
No HAC Correction
Absorbed FE: id and time
Included instruments: X1_it
Instrumented: Z_it
Excluded instruments: IV_it
Kleibergen-Paap rk Wald F statistic: 39.988

Number of obs = 1000
Total (centered) SS = 2226516.365 Centered R2 = 0.4935
Total (uncentered) SS = 2226516.365 Uncentered R2 = 0.4935
Residual SS = 1127664.807

| Y_it | Coefficient Std. err. | z | P>|z| | [95% conf. interval] |
|-------|------------------------|-----|------|---------------------|
| Z_it | 1.327506 .3119844 | 4.26| 0.000| 0.7160278 1.938984 |
| X1_it | .8232877 .3574087 | 2.30| 0.021| .1227796 1.523796 |
| _cons | -7.70e-17 1.9797572 | -0.00| 1.000| -1.920289 1.920289 |

nb: total SS, model and R2s are after partialling out.
To get the corrected ones use the option correctr2

Additional Options

Thresholds. Now we still account for network correlation between observations of the same year, but we do not account for any kind of temporal correlation. We do that by setting the lagcutoff at 0.

```
. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(0) ///
    > network links_mat(clus*) dist(1)
```

. estimates store nep1
Now we account for network correlation between observations of the same year, and also for temporal correlation between observations from the same individual, but only if they were observed with a lag lower than 3 years. We do that by setting the `lagcutoff` equal to 3.

```
. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(3) ///
>   network links_mat(clus*) dist(1)
. estimates store nep2
```

HAC. In the previous examples the matrix used for the computation of the variance covariance matrix is binary. We can use the option `hac` to have a linear decay in time and compute Heteroscedasticity-Autocorrelation-Consistent standard errors, following Newey and West (1987).

```
. acreg Y_it X1_it (Z_it=IV_it), id(id) time(time) lag(3) ///
>   network links_mat(clus*) dist(1) hac
. estimates store nep3
```

The following code reports the result of the three estimations in this subsection.

```
. esttab nep1 nep2 nep3, cells(b se) keep(X1_it Z_it) mtitles(lag0 lag10 hac)
```

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lag0</td>
<td>lag10</td>
<td>hac</td>
</tr>
<tr>
<td>Z_it</td>
<td>1.02863</td>
<td>1.02863</td>
<td>1.02863</td>
</tr>
<tr>
<td></td>
<td>.3629168</td>
<td>.3783906</td>
<td>.3756538</td>
</tr>
<tr>
<td>X1_it</td>
<td>1.228864</td>
<td>1.228864</td>
<td>1.228864</td>
</tr>
<tr>
<td></td>
<td>.4116362</td>
<td>.4578899</td>
<td>.4442984</td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

4.5 Multiway clustering

For this example we use again the data on the homicides in southern states of the U.S. `homicide_1960_1990.dta` available at the STATA website. As in section 4.1 we consider only the cross-sectional database for 1990 and we estimate the effect of income on homicide rate, controlling for population, and age. For the sake of illustration, we claim that income is endogenous and we assume that unemployment is a valid instrument for it.

In this section we illustrate the multiway clustering environment. We cluster standard errors following two dimensions: state and age.

```
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. acreg hrate ln_population age (ln_income=unemployment), cluster(sfips age)
MULTIWAY CLUSTERING CORRECTION
```
Cluster variable(s): sfips age
No HAC Correction
No Absorbed FEs
Included instruments: ln_population age
Instrumented: ln_income
Excluded instruments: unemployment
Kleibergen-Paap rk Wald F statistic: 141.918

Number of obs = 1412
Centered R2 = 0.1079
Uncentered R2 = 0.6861

| Variable | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|---------|------------|-------|------|-----------------------|
| ln_income | -8.822082 | 1.818954 | -4.85 | 0.000 | -12.38717 -5.256998 |
| ln_population| 1.404433 | .2960066 | 4.74 | 0.000 | .8242705 1.984595 |
| age | -0.281615 | .1315389 | -2.14 | 0.032 | -.5394265 -.0238035 |
| _cons | 94.4605 | 17.95901 | 5.26 | 0.000 | 59.26148 129.6595 |

5 Conclusion

In this article we presented the `acreg` Stata command: a new user-written routine that allows for standard error correction in OLS and 2SLS estimation of models with complex correlation structure. `acreg` can accommodate in a flexible way dependence of the errors between units in space or in a network and across time. This command includes most of the standard options present in previous commands to estimate regression coefficients. The correlation structure can be inputed by the user in a matrix form or built from information on the geographic distance between spatial units or from the links between observations. We also provide a broad collection of examples with both cross-section and panel data.

6 References

Correia, S. 2016. A feasible estimator for linear models with multi-way fixed effects.

About the authors

Fabrizio Colella is a PhD Candidate at the Faculty of Business and Economics of University of Lausanne.

Rafael Lalive is a Professor of Economics at the Faculty of Business and Economics of University of Lausanne.

Seyhun Orcan Sakalli is an Assistant Professor in Economics at the King’s Business School of the King’s College London.

Mathias Thoenig is a Professor of Economics at the Faculty of Business and Economics of University of Lausanne.