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Abstract
The broader financial system plays a key role in channeling capitals towards energy
efficiency technologies to meet the climate goals. In this study, we analyse the market for
energy efficiency finance as a complex system, where interactions of heterogeneous investors
give rise to large scale investment trends. By analysing the investment system as an evolving
network of inter-linked investors, this study identifies the key actors that have directed
investment flows in energy efficiency technologies, patterns of investors’ interactions in
terms of co-investments and the evolution of the investment landscape. These elements are
critical to deploy instruments of public finance and policy effectively to accelerate the energy
efficiency technologies deployment.
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Introduction
The landmark Paris Agreement calls for vast and rapid investment into low-carbon and
energy efficient technologies (WEI 2020, UNFCCC 2015). Investments in energy efficiency
(EE) are particularly crucial to reduce the energy demand for a growing world economy and
are listed as core measures for sustainable recovery plans (IEA 2020); EE is indeed the most
cost effective way to reduce emissions, while improving energy security and competitiveness
(IEA 2019). Estimates from IEA suggest that unlocking the full potential of efficiency, would
imply global investments to double by 2025, and double again between 2025 and 2040 (IEA
2018, 2019). However, EE investment levels have remained largely unchanged since 2014
and are insufficient to meet the climate goals (WEI 2020).

A number of well-known and recognised market barriers led to under investment in these
technologies. Financing constraints linked to the high-upfront cost of such interventions
(Ameli and Brandt 2015a,b, Schleich and Gruber 2008), along with information asymmetry
concerning different aspects of energy products (Myers 2020, Carroll, Aravena and Denny
2016, Howarth and Sanstad 1995), are major barriers to investing in energy efficiency. For
instance, consumers with financing constraints and with poor access to capital are less likely
to take up EE improvements (Schleich et al. 2019); and very few consumers actually know
the costs and benefits of different energy solutions, how much energy they use/consume or
what rates of return to expect from energy efficiency measures (Davis and Metcalf 2016,
Allcott 2013). Another explanation for underinvestment in EE is linked to heuristic
decision-making where consumers often use ‘rules-of-thumb’ or tend to simplify complex
assessments by using ‘heuristic’ estimates (Kahneman and Tversky, 1979; Shogren and
Taylor 2008; Tietenberg 2009). Such behavioural aspects in addition with different consumer
profiles can have strong influence on the uptake of EE investment (Blasch et al. 2017, Trotta
2018, Pelenur and Cruickshank 2012, Gillingham et al. 2009).

More recently, a few studies have started to investigate low-carbon investment patterns from
a financial perspective. Some scholars have explored how financing conditions and their
dynamics affect the competitiveness of low-carbon assets (Steffen 2020, Egli et al. 2018,
Krupa and Harvey 2017, Angelopoulos et al. 2016). While others have focused on the
characteristics of financial actors involved in the related investments highlighting the
importance of different types of investors in shaping the low-carbon transition (Mazzucato
and Semieniuk 2018, Hall et al. 2016, Bergek et al 2013). This nascent research stream has so
far, however, overlooked the role of the financial system to foster EE technology deployment
as well as the structures that drive it.

The broader financial system, meaning the set of actors comprising it, plays a key role in
channeling capital towards EE technologies. Indeed, the interactions and dynamics of its
heterogeneous actors, who have diverse investment preferences and operate in different
markets, collectively shape the development of individual EE technologies and the actual
investment flows towards them. However, such investors’ interconnections remain
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unexplored in climate policy analyses, which usually take the existing structure of financial
systems as given.

This study aims to fill this gap by analysing the evolution of energy efficiency (EE) finance
market - referring to capital flows directed towards energy efficiency interventions with
direct greenhouse gas mitigation benefits (Buchner et al. 2019) - from a network perspective
(Schweitzer et al. 2009, May et al. 2008). We study the EE finance market as a complex
system, where the financial actors and the set of connections between them comprise the
network, to capture investors’ systemic importance and their dynamics when investing in a
portfolio of EE technologies. The network evolves as result of the dynamic behaviour of
these heterogeneous financial actors, which leads to the emergence of specific
outcomes/trends (Hall et al. 2017, Arthur 2015, Mitchell 2009, Lo 2005).

Many examples of real networks show the significance of network evolution and dynamics to
understand the development of a given system as a whole to tailor specific solutions to
manage it (Strogatz 2001, Hopcroft et al. 2004, Kossinets and Watts 2006, Boccaletti et al.
2006, Gross and Sayama 2009). Indeed, there are important system attributes which cannot
be fully accounted for without considering the interplay between structural and dynamical
characteristics of the system. For instance, regime shifts in financial markets like recession
and expansion phases depend both on structure (e.g. connectivity) and dynamics (e.g.
volatility, correlation patterns and processes of self-organisation) of the system. By
understanding these evolutionary processes, the changes of behavior and dynamics taking
place, it would thus be possible to affect the future development of the system (Farmer et al.
2012, Farmer et al. 2019). Key features of this analysis are thus to determine the key actors
leading investment flows towards EE technologies, patterns of investors’ interactions in terms
of co-investments and the evolution of the investment landscape.

This analysis advances the nascent literature exploring the role of the financial sector in the
global transition to a low-carbon economy. To the best of our knowledge, it is the first
attempt to account for complexity thinking and systemic perspective to study the market for
energy efficiency finance. Moreover, this study looks at a portfolio of EE technologies rather
than a single one as the diversity of such technologies is a further element of complexity to
the understanding of EE adoption. Finally, our analysis provides new empirical evidence on
energy efficiency investment by exploiting a novel dataset, namely the Bloomberg New
Energy Finance (BNEF), which reports detailed financial data at project level across several
EE technologies.

The remainder of this paper is organized as follows. Section 2 presents the network approach
employed in this analysis. Section 3 describes the data and the global landscape of energy
efficiency investment. Section 4 shows the evolution and growth of the energy efficiency
network over time, while section 5 elaborates some policy implications and concludes.
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Methodology
The complex system of energy efficiency investments is analysed by exploring the
interconnections between investors and projects. These interconnections are defined at
multiple levels of aggregation to understand the unique structure and dynamics of the system
such as by aggregating projects by the technology employed, homogeneous investors into
investor categories, and investors and projects on the basis of their country of origin. We
represent investors and projects as two different sets of nodes in a ‘bipartite network’, namely
a network where nodes belong to two mutually exclusive sets and only connections between
two nodes in different sets are allowed (Holme et al 2003). Bipartite networks are usually
compressed by one-mode projection into one set category (actors or projects) and related
projected networks show connections to common nodes in the bipartite network. We focus on
the projected network of investors, where investors supporting energy efficiency projects are
visualised as nodes and their dependencies due to co-investments in the same projects are
represented as links (supplementary materials).

We then employ the General Temporal (GT) model to analyse the network dynamics and
growth over time (Pham et al. 2016). This model incorporates the preferential attachment
(PA) and fitness mechanisms to study the growth of the network. With PA, wherein nodes
acquire new links based on the strength of their existing connections, we account for the
tendency of a particular technology to attract further investment as a result of existing
investments (‘rich get richer’) (Barabási and Albert 1999, Krapivsky et al., 2000). While with
the fitness model, wherein nodes acquire new links based on their intrinsic qualities, we
capture the inherent attractiveness of a technology to investors (‘fit get richer’) (Caldarelli et
al. 2002). The objective is to estimate the strength of these two processes in driving
networks’ evolution (Ke et al. 2015; Wang et al. 2013).

In the GT model the probability of a node to acquire a link at a particular time is proportional
to the attachment function of its degree at the time and to its time-invariant intrinsic fitness.
Formally, the probability that a node ni with degree ki(t) = k at time t acquires new links at
time-step t is proportional to Ak × fi as formalised in the following equation:

Ak × fiπ (𝑡) ∝

where, Ak is the generic attachment function and fi is the node fitness.

To empirically estimate the PA function and node fitnesses from observed network data, the
model does not impose constraints on the functional form of the PA function, nor does it
assume a specific fitness distribution (Pham et al., 2015). Joint estimation of the PA function
and node fitness allows us to better estimate the influence of each mechanism since it takes
into account the impact of the other and can indicate the relative strength of each. It also
provides a better understanding of the evolutionary mechanisms behind network growth, than
those obtained from models estimating Ak and fi in isolation. The method adopts a Bayesian
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approach and formulates the estimation problem as the maximization of the log-likelihood
function of the GT model. The method optimises the objective function using a
Minorize-Maximization algorithm to obtain the estimates for Ak and fi.

The Energy Efficiency Landscape
Our analysis covers worldwide energy efficiency investments from 2000 to 2017 in six broad
EE technology families detailed in 17 sub-technologies using project-level investment data
from BNEF (Tab 1 and supplementary materials Fig M.1 and M.2). Energy efficiency
investors have been categorised into 14 groups based on the nature of their business to
understand their common patterns of investment (supplementary materials). The
investor-project investment network comprises I = 802 unique investors, P = 1103 projects

and = 1238 investments.∑ 𝐴
𝑖𝑝

Figure 2 shows the out-degree distribution for the investors (number of different projects an
investor has funded) and the in-degree distribution for projects (number of investors a project
has received funding from). Both sides of the network are characterized by a prevalence of
specialized nodes, indeed 77% of investors financed only one project, and, symmetrically,
92% of projects have received funding from one investor only, while a small minority of
projects / investors are involved in more than one financial transaction.

Fig 2: Degree Distribution Showing Out-degree Distribution For Investors And The In-degree
Distribution For Projects

The leading investors in the system are the utility companies (both state and investor-owned
ones) which are involved in almost 60% of the projects, followed by original equipment
manufacturers (OEM)/services companies and the public sector (i.e. government). Digital
energy interventions have received most investments comprising around 65% of the total
transactions, with leading technologies, smart metering and smart grids, accounting for
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roughly 45% of the total; energy storage projects (grid-scale and distributed storage) reached
19% of total investments, while fuel cells accounted for 10%. Other technologies attracted on
average less than 2% of total investment.

Table 1: Investor Type Investing In Energy Efficiency Technologies (2000-2017)

Investor type Digital
Energy

Efficiency: Built
Environment

Efficiency:
Industry

Efficiency:
Supply Side

Energy
Storage

Fuel
Cells

Total Total
(%)

State-Owned
Utility

294 6 1 9 46 12 368 29.40

Investor-Owned
Utility

271 1 6 63 26 367 29.40

OEM/Services
Company

48 2 2 2 68 25 147 11.80

Government 75 23 2 15 15 130 10.40

Energy
Cooperative

67 6 73 5.80

Research
Organisation/
University

31 2 1 19 8 61 4.90

Institutional
Investors

15 3 3 2 5 6 34 2.70

Construction/
Real Estate

5 6 4 15 1.20

Diversified* 18 7 6 24 55 4.40

Total 824 36 14 22 234 120 1,250

Total (%) 65.90 2.90 1.10 1.80 18.70 9.60

Source: Authors’ calculations based on Bloomberg New Energy Finance (BNEF) dataset.
*Diversified includes chemicals, steel, food, retail, eCommerce, defence and aerospace and other sectors.

Looking at the geographical distribution, top countries in terms of active projects are the
United States, Canada, Australia and some European countries, like France, Germany, Italy
and the United Kingdom (Fig 3a). We observe that most projects are financed by investors
based in the same country (roughly 93%); this applies to all major countries, e.g. the US, UK,
China, Canada, Japan, whose investors are all financing projects in their respective countries.
This trend seems to suggest that investors’ home bias applies to energy efficiency investment.
Previous research has explained investors’ preference for domestic assets as result of their
better access to information (Coval and Moskowitz 1999, 2001), familiarity with the local
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policy settings and regulatory context, as well as with associated home-risks (Baltzer et al.
2015, Bailey et al. 2008). Only 7% of total transactions relate to energy efficiency cross
border flows reflecting investment opportunities in specific markets and geographical
proximity (Fig 3b). The US and the UK have been the biggest recipients of cross-border
energy efficiency investments whereas Germany, the US and Canada have been the biggest
originators of cross-border investment. The most significant financial flows originate from
Canada and Germany targeting investments in the UK and the US, and Austria and the US
respectively.

Figure 3a: Energy Efficiency Investments Worldwide (transactions 2000-2017)
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Figure 3b: Cross Border Flows Of Energy Efficiency Investments

Note: Each country is assigned a unique colour. The colour of each chord indicates the country of origin of the
investment flows while the thickness indicates the size. The scale in the diagram indicates the number of
investment transactions reported by BNEF and it might not be an exhaustive depticion of current EE
investments.

Having looked at the broader energy efficiency investment landscape, we investigate whether
certain countries have a well-defined investment profile and different investors have marked
investment preferences. In both cases, the related networks reveal the emergence of a nested
structure suggesting the presence of few generalists and specialists (Fig 4 and supplementary
materials). At the country level, few countries invest across a wide portfolio of technologies,
such as the US, UK, and China, and, symmetrically, several technologies, such as smart
metering and smart grid, receive investments from a multitude of countries. This is
accompanied by the presence of specialist countries, which invested in only one or two
technologies, and of specific technologies which have received funding only from a few
countries, like Japan for grid-scale storage and South Korea for stationary fuel cell
technologies. Such relationships suggest most countries are specialising in different
technologies as a result of their strategic investment choice on key technology for their
country (noting that 93% investments are domestic). Similarly, on the investor side, few
investor categories, such as governments and utilities, invested across a spectrum of
technologies (i.e. smart grid, smart metering, smart T&D), while some preferred a few key
technologies, like OEM/services companies that invested mainly in storage-related projects.
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Figure 4: Nested structure of the Country-Technology and Investor-Technology Networks

Nested structure of the country-technology network Nested structure of the investor-technology network

The colours in the maps do not account for link weights, and only show whether a link is present (yellow) or
absent (green) between two nodes. Both adjacency matrices show the presence of a few “generalist”
countries/investors with investments in most technologies, and a few “specialist” ones investing in very few
technologies. These are arranged in a nested structure, e.g. specialists typically invest in technology subsets in
which more generalist nodes invest as well.

Regarding the structure of the system, it is a relatively sparse network, where some investor
and project nodes form pairs or small groups of connected nodes otherwise disconnected with
the rest of the network (Fig 5a). They indicate that individual investors are not active enough
in terms of co-investing, refinancing or acquisition of projects in the secondary market to
form a highly interconnected and active financial system. The analysis of existing links
connecting different investors to common project nodes provides an indication of common
investment patterns (Fig 5b). In particular, utilities and governments have been the most
prolific in investing in common projects. The public sector has played a key role in providing
capital for projects by supporting investments from other investors, as it was involved in 73%
of all co-investments, and thus stimulating a crowding-in investment processes. The finding
confirms investment trends also observed in renewable technologies, where the involvement
of public investors triggered more private capitals (Deleidi et al 2020, Owen et al 2018,
Mazzucato and Semieniuk 2018).
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Figure 5a: Aggregated Network Of Financial Actors (2000-2017)

Figure 5b: Co-Investment Patterns (2000-2017)
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Evolution, dynamics and growth of the energy efficiency network
The network evolution over almost the last 20 years is analysed by looking at snapshots of
bipartite networks over time (Fig 6). The aim is to discern what types of actors and
relationships have been most critical in shaping the evolution of investment patterns at
particular points in time. The first phase (2000-2004) indicates a period of early growth with
low investment levels and limited connectivity. Utilities are the key investors along with the
public sector (government, state-owned utilities and research organisations). The second
phase (2005-2008) sees a higher investment level and improved connectivity in the network.
Utilities continue to dominate the investment landscape by being involved in 68% of total
investment transactions, but they are also supported by OEM/services companies,
government and energy cooperatives (25% combined share). The increased investments in
this phase indicates a growing confidence in energy efficiency technologies (especially digital
energy) and financial collaborations amongst investors. The third phase (2009-2012)
represents the highest growth phase with high levels of investment and greater connectivity.
Utilities continue to be the major investor participating in 58% of transactions, but also robust
support is being offered by OEM/services companies and government, which see their
involvement grow to 12% and 11% of investment transactions respectively. This high growth
phase is indicative of maturing technologies with all investors looking to substantially boost
their deployment and displaying high levels of connectivity through co-investments,
refinancing and acquisition transactions. In particular, digital energy projects are the most
attractive technology for investors, together with energy storage which experienced over six
times jump in the number of investment transactions. The fourth phase (2013-2017) is
characterized by a slow-down in the growth of the sector. The share of utilities in the overall
investment transactions reduces to 48% as well as governments and OEM/Service companies,
comprising 25% of the transactions. The connectivity of the network however grows to its
highest level. The increased connectivity in the network is mainly led by a mature phase of
key digital energy technologies with increased confidence among investors. However,
efficiency investment growth has weakened in this last phase as policy support showed signs
of slowing down (WEI 2018).
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Figure 6: Aggregated Network Of Investors And Its Evolution Over Time (2000-2017)

2000-2004 2000-2008

2000-2012 2000-2017
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We then analyse the growth of the energy efficiency investment network to identify processes
driving the formation of new links in the system and leading to the actual investment
landscape. Following Pham et al. (2016)’s approach, we measure the respective influences of
the preferential attachment and the fitness models. The estimated attachment function in case
of joint estimation with fitness and the PA-only case is shown in Fig 7.

Figure 7: PA Function in isolation (Right), PA Function with fitness (Left)

(𝛼 = 0.035, when fitted to Ak = kα) (𝛼 = 0.798, when fitted to Ak = kα)

Figure 8: Distribution of nodes’ fitness

The increasing function of the estimated Ak suggests the existence of the ‘rich get richer’
effect (corresponding to an increasing Ak on average), however when the fitness influence is
considered, the PA mechanism results appear over-estimated. The joint estimation of PA and
technology fitness indicates an increasing attachment function initially, highlighting that
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technologies with existing investments tend to attract further investment, but only up to a
point (Fig 7). As the links of the technologies grow, the attachment function levels out, and
technologies’ fitness explain the further investments received by each technology. This
suggests that the ‘rich get richer’ mechanism becomes weaker when the ‘fit get richer’ effect
is considered, showing that to some extent technology’s ability to attract new investment is
explained by its fitness.

There are few technologies with very high fitness (significantly greater than 1) that
correspond to higher levels of investment (Figures 8 and 9, supplementary materials Table
M.4). Overall higher node fitness is characterised by greater link accumulation resulting in
higher investments. Smart metering, smart grid and grid-scale storage have the highest fitness
values, which explain the significant investments made in these technologies. Despite having
just two investments before 2008 (first in 2003), the high fitness value of smart grid
technologies has seen it acquire significant investments since that time. In contrast, despite
having investments since 2000, grid-scale storage has attracted less investments due to its
lower fitness compared to smart grid. Software and home energy management have attracted
some investments even though being later technologies (first investments in 2009) due to
their moderate fitness values. Transmission efficiency has experienced low investments since
its emergence in 2004, which correlates with a low fitness value. The case of waste heat
recovery is similar.

Figure 9: Digital Energy And Storage Technologies’ Fitness Evolution Overtime

These investment patterns reflect mainly public spending and regulations support (i.e. energy
standard and mandates) in specific EE technologies, which led to economies of scale and
technological improvements increasing investors’ confidence in such sectors (BNEF 2017
and 2018a). For instance, modernization of the grid with spending on digital technologies,
supported by regulatory frameworks in countries such as China and the United States, has
been a key driver for investment in electrical network’s replacement and upgrades (BNEF
2017 and 2018b, WEI 2018). In particular, China is leading the deployment of smart grids
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thanks to its unique market structure characterised by state ownership of the transmission and
distribution sector, and the central role played by the government in policy setting.
Investment patterns also reflect technologies’ fitness evolution over time. All technologies
under digital energy (e.g. smart metering, smart grid, smart T&D) together with storage
interventions (i.e. grid-scale storage and distributed storage) showed the highest fitness
values and became increasingly attractive to investors over time, having initial fitness values
around 1 in 2002 and reaching fitness values of 10 in 2014 (Fig 9).

Conclusions and Policy Implications
Analysing the market for energy efficiency finance as a complex evolving system of
inter-linked investors, highlights the key actors who have directed the investment flows,
patterns of interactions in terms of co-investment and their dynamics over time. Overall, we
can observe that the EE markets are relatively nascent for many technologies compared to
their potential for further development, likely due to the lack of clear business models for
investment or instruments to monetise the efficiency gains. As a result the number of investor
interactions have been relatively limited as shown by the sparse nature of the investor
networks, although they have improved in recent years with maturing technologies and
increased deployment.

This study suggests that utility companies, both state and investor-owned, are the most active
and influential actors in the system. They have displayed a strong preference for digital
energy and energy storage projects thereby playing a key role in the development of these
markets. Indeed, for utilities, operational savings, efficiency and maintenance expenditure
such as reduced meter reading, outage management, and customer service, are the most
immediate value drivers for investing, and have potentially driven their behaviour in the
system (BNEF 2018b). Given utilities’ critical role in the system, policies and regulations
should boost their engagement in the energy efficiency market. For instance, regulations
surrounding the use-of-system tariffs along with efficiency mandates, and simplified market
structures, can establish a long-term return proposition for investing in EE. As an example, in
the US, regulation is supporting utilities’ business models to evolve towards greater exposure
to network investments based on regulated and contracted pricing (WEI 2018).

Government investment through state institutions has also played a key role in the
deployment of EE technologies. While their involvement has been across the broad spectrum
of EE technologies, their contribution is most notable for technologies centred on efficiencies
in the built environment. Lacking a clear business model to spur external investment as
compared to digital energy or storage technologies, public finance has been key to their
adoption. However, to rapidly increase the deployment of these technologies, both regulation,
such as stronger green building mandates, and market creation is necessary to attract
investments from private actors.
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Analysis of existing co-investment patterns amongst different actors, shows that utilities have
been the biggest attractors of investments while Governments, OEM/Services companies and
Research Organisations have been key providers of co-investments. This trend underlines the
importance of the public sector as a hub in the investment chain, especially compared to the
limited role played by other private financial institutions including banks. It is also indicative
of the nascent state of the EE markets with technology-centric investment patterns. In this
case, policies favoring co-relationships between different investors can help to stimulate
crowding-in investment processes and further the deployment of EE technologies. In a recent
study, Geddes et al (2018) showed that state investment banks are crucial to catalyse private
investment, as they enable the financial sector to create trust and track record for low-carbon
assets.

Finally, our analysis shows how the energy efficiency investment system grew over time
suggesting that technologies’ existing investments and their inherent attractiveness to
investors determine the investment in the sector. The case of digital energy technologies,
particularly smart grids, smart metering and smart transmission & distribution, demonstrates
how the combination of public spending, regulations support and technology improvement
led to an increasing market confidence in this technology - especially in countries like the US
and China, making it the most attractive one to investors. The same is true for storage
technologies where the growth of renewables, technology improvement and strong policy
support have provided a robust business model to accelerate their deployment.
Some EE technologies, such as waste heat recovery and transmission efficiency, have
experienced low investments since their emergence and are not currently attracting investors’
choices due to technical developments still required for improving their performance. Other
key energy efficiency technologies, like demand response and lighting, despite their potential
and relative technology maturity, have not attracted much investment over time. In these
cases, development of new business models and policy support could target critical
technologies that are currently displaying low fitness values to improve their attractiveness to
investors.

Broadly speaking, an improvement in the economics of EE technologies through
technological change, regulatory mandates, market demand or policy incentives, can improve
their inherent fitness and potential role in the evolving EE landscape. Policy design to
promote upcoming innovative energy efficiency technologies can also target specific
investors based on the role played in promoting similar technologies and increasing their
adoption in the system. Such policies may then target utilities, OEM/services companies and
research organisations/universities for energy storage technologies or utilities and energy
cooperatives for digital energy or chemical/steel companies for industrial energy efficiency.
Governments may also consider direct investments in promising technologies where
historically their investments have induced co-investments, such as technologies for built
environment efficiency, fuel cells and digital energy.
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Understanding the evolutionary processes in the energy efficiency sector is thus needed to
inform policy-makers and to boost the future development of such markets. Using the case of
energy efficiency investments and methods of network science, this study shows the merit of
analysing the complex interplay of heterogeneous investors in different technologies over
time, to mobilise EE finance. Influencing key actors, leveraging existing interconnections
between them, deploying instruments of public finance and policy to accelerate the growth of
energy efficiency investment, can lead to nonlinear deployment of key technologies and
guide the evolution of the low-carbon system to achieve climate objectives.
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Supplementary materials

Data Description
The analysis is based on Bloomberg New Energy Finance (BNEF) dataset, which tracks data
on low-carbon investments worldwide since 2000. In particular, the data used for the analysis
consists of three BNEF datasets:

1. the Projects dataset containing details of energy efficiency projects. It provides key project
information such as project value, commissioning and completion date, financing date,
current owner, project developer and location. The energy efficiency technologies analysed
are summarised below in Table M.1a,b:

Table M.1a: Energy Efficiency technologies

Category Description

Digital energy It covers applications of information and communication technology to improving
efficiency and intelligence of the transportation and usage of energy. Smart
metering, smart grid, demand response, self-healing grids, virtual power plants and
home building automation are some examples.

Efficiency: built
environment

It covers technologies reducing the use of energy in homes, retail and commercial
buildings. Such technologies include advanced insulation, building components,
HVAC (heating, ventilation, and air conditioning), lighting and intelligent systems
for managing power consumption, as well as the tools and services that allow
companies to design and implement energy-smart buildings.

Efficiency industry It includes technologies used to streamline and save resources in industrial
processes. Examples are process control and monitoring, sensors and software, and
waste-heat recovery.

Efficiency: supply side It covers technologies resulting in a step-change improvement in the efficiency of
generation and transmission systems. Examples include: motor or generator design,
technologies improving transmission efficiency in high-voltage-direct-current
(HVDC), high-voltage-alternating-current (HVAC) and
high-temperature-superconductors (HTS), as well as software, sensor and control
technologies.

Energy storage It covers technologies such as batteries, flywheels and ultracapacitors, which can
store and release energy in the form of electricity.

Fuel cell It covers fuel cells and their various applications. Fuel cells are electrochemical
cells that convert chemical energy from fuel such as hydrogen into electricity. They
can be used in consumer, transportation or stationary applications.
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Table M.1b: Breakdown of energy efficiency technologies in sub-technologies

Technology Sub-Technology

Digital Energy Demand Response

Digital Energy Home Energy Management

Digital Energy Microgrid

Digital Energy Smart Grid

Digital Energy Smart Metering

Digital Energy Smart Transmission & Distribution (T&D)

Digital Energy Software

Efficiency: Built Environment BMS & EE Electronics

Efficiency: Built Environment Building Services

Efficiency: Built Environment Lighting

Efficiency: Built Environment Materials

Efficiency: Industry Waste Heat Recovery

Efficiency: Supply Side Transmission Efficiency

Energy Storage Distributed Storage

Energy Storage Energy Storage for Transportation

Energy Storage Grid-scale Storage

Fuel Cells Stationary Fuel Cell

2. the Organisations dataset containing details of companies and organisations involved in
developing and financing energy efficiency projects, and it provides information such as the
business description and country;

3. the Transactions dataset containing details of project finance transactions such as the
transaction date, transaction type, financing type, equity providers and debt providers.

The final data used to build the networks and perform the related analyses is constructed by
merging the transactions, organisations and projects datasets pertaining to the energy
efficiency technologies for the period 2001-2017. A thorough validation exercise was
conducted on the extracted datasets to ensure consistency among them and where necessary
the data was augmented with information contained in textual description fields for projects,
organisations and transactions. Public information such as organisation websites, public
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announcements and news reports were used to improve consistency of data where possible.
Based on these validation and augmentation processes, a consistent Projects, Transactions,
Organisations mapping was obtained.

To generate insights about financial actors, the investor organisations were classified into
actor categories to best represent the actors investing in energy efficiency projects. Each
organisation was assigned a category based on its stated business description available from
BNEF and based on information from the public domain through corporate websites and
government registries. This process resulted in 14 actor categories as reported in table M.2.

Table M.2: Investor category

Category Description

State-owned Utility Utility company engaged in the production, transmission or distribution of energy
in which the majority stake (greater than 50%) is held by the Government either
directly or through one of its institutions

Investor-owned Utility Utility company engaged in the production, transmission or distribution of energy
in which the majority stake (greater than 50%) is held by private individuals or
corporations

OEM/Services
Company

Manufacturers of equipment used in the energy sector and companies providing
technical/non-technical services to energy companies

Government Federal/State/City governments and their institutions

Energy Cooperative Utility company established as a cooperative association and whose primary goal is
to provide services to its members

Research Organisation/
University

Organisations whose primary purpose is conduct fundamental research, innovate
and develop technologies, and disseminate knowledge

Institutional Investors Companies whose primary business is to collect money from its investors and
acquire assets seeking monetary return

Construction/ Real
Estate

Companies involved in constructing buildings and infrastructure, and developing
real estate projects

Chemicals/ Steel Companies that produce industrial chemicals and steel-based products

Food Companies involved in producing, processing, warehousing and distributing food
products

Retail/ e-Commerce Companies involved in supplying consumer goods and services through physical
and internet-based presence

Defence/ Aerospace Companies involved in producing and selling military technology/ weapons/
civilian and military aircrafts

Diversified Companies operating in multiple and possibly unrelated businesses across regions

Others/ Unknown Organisations that can not be classified in the above categories or whose nature of
business could not be determined on the basis of the information in the public
domain
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Methodology

The energy efficiency network
In an investor network perspective, we represent both investors and projects as nodes in an I

P bipartite network - a network where nodes belong to two mutually exclusive sets with×
no connections between nodes of the same set (Fig M.1 and M.2). This network is described
by an adjacency matrix A such that Aip = 1 if investor i has contributed to financing project p,
and Aip = 0 otherwise. The out-degree distribution for the investors (i.e., number of different

projects an investor has funded) is calculated as , and the in-degree distribution𝑘
𝑖
𝑜𝑢𝑡 =

𝑝=1

𝑃

∑ 𝐴
𝑖𝑝

for projects (i.e., number of investors a project has received funding from) is calculated as

.𝑘
𝑝
𝑖𝑛 =

𝑖=1

𝐼

∑ 𝐴
𝑖𝑝

The weight of the connections in the resulting bipartite networks of aggregate nodes represent
the sum of out-degree/in-degree of constituent investor/project nodes.

The statistical significance of repeated interactions between nodes is assessed by using the
approach suggested by Tumminello et al. (2011). For the sake of clarity, we use the
country-technology network as an example. Let W be the weighted adjacency matrix𝐶 × 𝑇
of such network, where the entry represents the number of times country c has funded𝑊

𝑐𝑡

projects in technology t. Let us also define the out-strength , which representsσ
𝑐

𝑜𝑢𝑡 =
𝑡=1

𝑇

∑ 𝑊
𝑐𝑡 

the total number of investments made by country c, whereas the in-strength σ
𝑡
𝑖𝑛 =

𝑐=1

𝐶

∑ 𝑊
𝑐𝑡 

represents the total number of investments received by technology t. We assume that we are
interested in assessing the statistical significance of a specific entry against a null𝑊

𝑐𝑡

hypothesis of random interaction, i.e. a scenario in which each country distributes its σ
𝑐

𝑜𝑢𝑡

investments at random across the available T projects. Under this null hypothesis, we can
associate a p-value to entry by computing𝑊

𝑐𝑡

, where N is the total weight in matrix W, and𝑝(𝑊
𝑐𝑡

) =
𝑥=𝑊

𝑐𝑡

𝑚𝑖𝑛[σ
𝑐

𝑜𝑢𝑡 ,σ
𝑡
𝑖𝑛 ] 

∑ 𝐻(𝑥 | 𝑁,  σ
𝑐

𝑜𝑢𝑡 ,  σ
𝑡
𝑖𝑛 )
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computes the probability of random interactions generating a link of weight x between two
nodes with the out-strength and in-strength , respectively. Statistically validatedσ

𝑐
𝑜𝑢𝑡 σ

𝑡
𝑖𝑛

relationships correspond to links that are significant at a certain univariate significance level
(1% in our case) corrected with the False Discovery Rate criterion for multiple hypothesis
testing.

This methodology can also be straightforwardly generalized to test the statistical significance
of co-occurrences, namely, situations where pairs of nodes in one of the two layers of a
bipartite network share large numbers of neighbors. Let us suppose we are interested in

testing the co-occurrence of two nodes and with out-degrees𝑛
𝑐𝑑

=
𝑡=1

𝑇

∑ Θ(𝑊
𝑐𝑡

) Θ(𝑊
𝑑𝑡

) 𝑐 𝑑

and , respectively, where denotes the indicator𝑘
𝑐

𝑜𝑢𝑡 =
𝑡=1

𝑇

∑ Θ(𝑊
𝑐𝑡 

) 𝑘
𝑑

𝑜𝑢𝑡 =
𝑡=1

𝑇

∑ Θ(𝑊
𝑑𝑡 

) Θ

function such that when and otherwise. Then, a p-value associated toΘ(𝑦) = 1 𝑦 ≥ 0 Θ(𝑦) = 0
the probability of observing a co-occurrence equal to or higher than under random𝑛

𝑐𝑑

interactions can be computed as . When𝑝(𝑛
𝑐𝑑

) =
𝑥=𝑛

𝑐𝑑

𝑚𝑖𝑛[𝑘
𝑐

𝑜𝑢𝑡 , 𝑘
𝑑

𝑜𝑢𝑡] 

∑ 𝐻(𝑥 | 𝑇,  𝑘
𝑐

𝑜𝑢𝑡,  𝑘
𝑑

𝑜𝑢𝑡)

assessing the statistical significance of co-occurrences on the other layer of a bipartite
network, this formula straightforwardly generalizes to 𝑝(𝑛

𝑡𝑧
) =

.
𝑥=𝑛

𝑡𝑧

𝑚𝑖𝑛[𝑘
𝑡
𝑖𝑛 , 𝑘

𝑧
𝑖𝑛] 

∑ 𝐻(𝑥 | 𝐶,  𝑘
𝑡

𝑖𝑛,  𝑘
𝑧

𝑖𝑛)

When applying this procedure repeatedly in the same network to test all interactions or all
co-occurrences, a multiple hypothesis testing correction must be applied in order to avoid
false positives. Following Tumminello et al. (2011), we adopted the very conservative
Bonferroni correction.

Figure M.1: Weighted Country-Technology Network Of Investments
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Figure M.2: Weighted Investor-Technology Network Of Investments
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Investors’ preferences and countries’ specialisation
We investigate countries’ specialisation and investors’ preferences by applying the link
validation method Tumminello et al. (2011) to assess whether some countries and investor
categories have marked preferences for investment in a certain technology. We detected 11
statistically significant relationships in the country-technology network and 13 validated
relationships in the investor-technology network (Tab M.3).

Table M.3: Statistically validated relationships

Countries Technologies

China Smart Transmission & Distribution

South Korea Stationary Fuel Cell

China Distributed Storage

Finland Smart Metering

Netherlands Microgrid

Lithuania Materials

France Home Energy Management

United States Demand Response

India Lighting

Canada Smart Metering

Canada Software

Investors Technologies

State-Owned
Utility

Smart
Transmission & Distribution

OEM/Services
Company

Distributed
Storage

Government Lighting

Energy
Cooperative

Smart
Metering

Chemicals
/ Steel

Waste
Heat Recovery

Retail
/ eCommerce

Stationary
Fuel Cell

OEM/Services
Company

Grid-scale
Storage

Investor-Owned
Utility

Smart
Grid

Institutional
Investors

Materials

Research
Organisation /
University

Microgrid

Government Microgrid

State-Owned
Utility

Smart
Metering

Food Stationary
Fuel Cell
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Such relationships complement the picture presented in the main text, as it can be seen, most
of the generalist countries (i.e. US, China, Canada) invest preferentially in one, or at most
two, specific technologies whilst maintaining a broader technology portfolio. Furthermore,
most countries are specialising in different technologies as a result of their strategic
investment choice on key technology for their country (noting that 93% investments are
domestic). For instance, China is specialised in smart T&D and distributed storage, and no
other country has a distinguished preference for investments in these technologies. In the
investor-technology network, different categories of investors tend to preferentially finance
projects in one (or at most two) technology with little overlap. In particular, utilities have a
marked preference for digital energy technologies, with state-owned ones preferentially
financing smart T&D and smart metering projects, and privately-owned ones preferentially
financing smart grid projects. Also, OEM and services companies have a marked preference
for storage-related projects. This technology selection may reflect the nature of investors’
business.

Finally, we applied a variant of the above procedure to test the co-occurrence of investments,
meaning whether pairs of countries/investors co-invest in large numbers of technologies or
whether pairs of technologies receive large numbers of investments from the same
country/investor. This analysis detected four statistically significant pairs of technologies,
which are: distributed storage and grid-scale storage, distributed storage and home energy
management, grid-scale storage and stationary fuel cell, home energy management and
stationary fuel cells. These technology pairs received investments from exceedingly similar
groups of investors. For instance, grid-scale storage and stationary fuel cells, which is the
most significant pair, have received investments from 24 and 16 countries respectively, with
14 countries investing in both.
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Table M.4: Technologies’ Fitness And Its Evolution Overtime

Sub
technologies

Number of
Connections

Overall
Fitness*

Fitness evolution

2002-2006 2004-2008 2006-2010 2008-2012 2010-2014

Smart Metering 352 17.35 3.42 2.56 3.36 28.56 10.71

Smart Grid 206 7.36 - 0.90 2.37 9.05 21.06

Grid-scale
Storage

159 4.57 1.19 0.87 1.30 5.59 6.65

Smart T&D 120 3.94 0.55 0.45 1.10 4.81 11.66

Stationary Fuel
Cell

120 3.75 0.95 1.27 1.15 3.72 7.70

Distributed
Storage

72 2.62 - - 0.85 2.65 8.14

Microgrid 68 2.47 0.71 0.69 0.57 2.10 4.04

Home Energy
Management

26 1.46 - - 0.79 0.91 1.38

Software 15 1.45 - - - 0.29 3.91

Demand
Response

37 1.32 - 0.73 0.84 1.13 2.25

Lighting 29 1.10 - 0.63 0.62 0.79 1.53

Transmission
Efficiency

22 0.83 0.86 1.07 0.26 0.33 0.73

Waste Heat
Recovery

14 0.56 - - 0.68 0.36 0.00

Materials 5 -

Energy Storage
Transportation

3 -

BMS & EE
Electronics

1 -

Building
Services

1 -

* The fitness estimation utilises data from 2000-2014. The period of 2015-2017 is left out due to sparse data.

32

Electronic copy available at: https://ssrn.com/abstract=3913781



Data availability
The data supporting the findings of this study are available from Bloomberg terminals
(Bloomberg New Energy Finance database and Bloomberg data), but restrictions apply to the
availability of these data, which were used under licence for the current study, and are not
publicly available.

Computer code
The written source code is available on GitHub
https://github.com/nadiaameli/ee-investment-network
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