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Abstract 
We propose a kernel-based nonparametric test of relative goodness of fit, where the goal is to compare two 
models, both of which may have unobserved latent variables, such that the marginal distribution of the 
observed variables is intractable. The proposed test generalizes the recently proposed kernel Stein 
discrepancy (KSD) tests (Liu et al., Proceedings of the 33rd international conference on machine learning 
(pp. 276–284); Chwialkowski et al., (2016), In Proceedings of the 33rd international conference on machine 
learning (pp. 2606–2615); Yang et al., (2018), In Proceedings of the 35th international conference on 
machine learning (pp. 5561–5570)) to the case of latent variable models, a much more general class than 
the fully observed models treated previously. The new test, with a properly calibrated threshold, has a well- 
controlled type-I error. In the case of certain models with low-dimensional latent structures and high- 
dimensional observations, our test significantly outperforms the relative maximum mean discrepancy test, 
which is based on samples from the models and does not exploit the latent structure. 
Keywords: hypothesis testing, kernel methods, mixture models, model selection, Stein’s method 

1 Introduction 
A major approach to statistical modeling is the use of variables representing quantities that are 
unobserved but thought to underlie the observed data: well-known instances include probabilistic 
PCA (Roweis, 1997; Tipping & Bishop, 1999), factor analysis (see, e.g., Basilevsky, 1994), mix-
ture models (see, e.g., Gilks et al., 1995), topic models for text (Blei et al., 2003), and hidden 
Markov models (HMMs) (Rabiner, 1989). The hidden structure in these generative models serves 
multiple purposes: it allows interpretability and understanding of model features [e.g., the topic 
proportions in a latent Dirichlet allocation (LDA) model of text], and it facilitates modeling by le-
veraging simple low-dimensional dynamics of phenomena observed in high dimensions (e.g., 
HMMs with a low-dimensional hidden state). Statistical modelers ultimately use such models 
to reason about the data; thus, in order to guarantee the validity of the inference, tools for com-
paring models and evaluating model fit are required. 

This article addresses the problem of evaluating and comparing generative probabilistic models, 
in cases where the models have a latent variable structure, and the marginals over the observed 
data are intractable. In this scenario, one strategy for evaluating a generative model is to draw sam-
ples from it and to compare these samples to the modeled data using a two-sample test: for 
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instance, Lloyd and Ghahramani (2015) use a test based on the maximum mean discrepancy 
(MMD) (Gretton et al., 2012). This approach has two disadvantages, however: it is not compu-
tationally efficient due to the sampling step, and it does not take advantage of the information 
that the model supplies, for instance, the dependence relations among the variables. 

Recently, an alternative model evaluation strategy based on Stein’s method (Barbour, 1988;  
L. H. Y. Chen, 1975; Götze, 1991; Stein, 1972, 1986) has been proposed, which directly employs 
a closed-form expression for the unnormalized model. Stein’s method is a technique from prob-
ability theory developed to prove central limit theorems with explicit rates of convergence (see, 
e.g., Ross, 2011). The core of Stein’s method is that it characterizes a distribution with a Stein op-
erator, which, when applied to a function, causes the expectation of the function to be zero under 
the distribution. For our purposes, we will use the result that a model-specific Stein operator may 
be defined, to construct a measure of the model’s discrepancy. Notably, Stein operators may be 
obtained without computing the normalizing constant. 

Stein operators have been used to design integral probability metrics (IPMs) (Müller, 1997) to 
test the goodness of fit of models. IPMs specify a witness function which has a large difference in 
expectation under the sample and model, thereby revealing the difference between the two. When 
a Stein operator is applied to the IPM function class, the expectation under the model is zero, leav-
ing only the expectation under the sample. A Stein-modified W2,∞ Sobolev ball was used as the 
witness function class in Gorham and Mackey (2015) and Gorham et al. (2019). Subsequent 
work in Chwialkowski et al. (2016), Liu et al. (2016), and Gorham and Mackey (2017) used as 
the witness function class a Stein-transformed reproducing kernel Hilbert ball, as introduced by  
Oates et al. (2017): the resulting goodness-of-fit statistic is known as the kernel Stein discrepancy 
(KSD). Conditions for using the KSD in convergence detection were obtained by Gorham and 
Mackey (2017). While the foregoing work applies in continuous domains, the approach may 
also be used for models on a finite domain, where Stein operators (Bresler & Nagaraj, 2019;  
Hodgkinson et al., 2020; Ranganath et al., 2016; Reinert & Ross, 2019; Shi et al., 2022; Yang 
et al., 2018) and associated goodness-of-fit tests (Yang et al., 2018) have been established. Note 
that it is also possible to use Stein operators to construct feature dictionaries for comparing 
models, rather than using an IPM: examples include a test based on Stein features constructed 
in the sample space so as to maximize test power (Jitkrittum et al., 2018, 2017) and a test based 
on Stein-transformed random features (Huggins & Mackey, 2018). While the aforementioned 
tests address simple hypotheses, composite tests that use Stein characterizations have been 
proposed for specific parametric families including gamma (Betsch & Ebner, 2019b; Henze 
et al., 2012) and normal distributions (Betsch & Ebner, 2019c; Henze & Visagie, 2019), 
and general univariate parametric families (Betsch & Ebner, 2019a) (note that these tests 
are not based on IPMs). 

While testing goodness of fit alone may be desirable for models of simple phenomena, it will 
often be the case that in complex domains, no model will fit the data perfectly. In this setting, it 
is more constructive to ask which model fits better, either within a class of models or in comparing 
different model classes. A likelihood-ratio test would be an ideal choice for this task, since it is uni-
formly most powerful (Lehmann & Romano, 2005). If the models contain latent variables, how-
ever, a likelihood-ratio test requires evaluating marginal densities of the models, which are 
typically intractable. A number of Monte Carlo techniques have been developed to estimate mar-
ginal densities or log-density ratios (see, e.g., Friel & Wyse, 2012, for a review). Constructing a test 
with such techniques is challenging, however; e.g., estimating each marginal density induces a bias 
in the likelihood ratio, which is difficult to characterize when designing a calibrated threshold (see 
Section 3.5 for a detailed discussion). Addressing the intractability of the likelihood, Bounliphone 
et al. (2016) proposed a purely sample-based relative goodness-of-fit test, which compares max-
imum mean discrepancies between the samples from two rival models with a reference real-world 
sample. A second relative test was proposed by Jitkrittum et al. (2018), generalizing (Jitkrittum 
et al., 2017) and learning the Stein features for which each model outperforms the other; this 
test requires marginal densities up to normalizing constants and does not apply to latent variable 
models. 

In the present work, we introduce a novel relative goodness-of-fit test for latent variable models 
(LVMs), which compares models by computing approximate kernel Stein discrepancies. Our con-
tribution is to provide a frequentist test of relative goodness of fit, with an approximate U-statistic  
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of the kernel Stein discrepancy difference as our test statistic. The statistic is expressed by a pos-
terior expectation of the latent given an observation and is amenable to standard Markov 
Chain Monte Carlo techniques: in particular, it does not suffer from the challenges in character-
izing bias observed in likelihood-ratio estimates for LVMs. Note that our approach differs from 
Bayesian model selection (Jeffreys, 1961; Kass & Raftery, 1995; Schwarz, 1978; Watanabe, 
2013), which reports posterior odds (or Bayes factors) and does not concern controlling frequent-
ist risks such as type-I error rates. To the best of our knowledge, our test represents the first 
general-purpose, frequentist, relative test for LVMs. 

We recall the Stein operator and kernel Stein discrepancy in Section 2, and the notion of relative 
tests in Section 3. Our main theoretical contributions, also in Section 3, are twofold: first, we 
derive an appropriate test threshold to account for the randomness in the test statistic caused 
by sampling the latent variables. Second, we provide guarantees that the resulting test has the 
correct type-I level (i.e., that the rate of false positives is properly controlled) and that the test is 
consistent under the alternative: the number of false negatives drops to zero as we observe 
more data. Finally, in Section 4, we demonstrate our relative test of goodness of fit on a variety 
of LVMs. Our main point of comparison is the relative MMD test (Bounliphone et al., 2016), 
where we sample from each model. We demonstrate that the relative Stein test outperforms the 
relative MMD test in the particular case where the low-dimensional structure of the latent varia-
bles can be exploited. 

2 The kernel Stein discrepancy and LVMs 
In this section, we recall the definition of the Stein operator as used in goodness-of-fit testing, as 
well as the kernel Stein discrepancy, a measure of goodness of fit based on this operator. We 
will then introduce LVMs, which will bring us to the setting of relative goodness of fit with com-
peting models in Section 3. 

Before proceeding, we call attention to our setting: in this article, we treat both continuous- and 
discrete-valued observations, as formally defined at the outset of Section 2.1. It is our intention to 
study these two data modalities as they admit the same treatment. The subsequent definitions and 
analysis of our test are independent of whether a continuous or discrete Stein operator is used, 
apart from experiments concerning discrete-valued observations. Thus, the detail about discrete 
models in Section 2.1 may be initially skipped if desired. 

2.1 Stein operators and kernel Stein discrepancies 
Let X be the space in which the data take values; for D ≥ 1, the space X is either the Euclidean 
space RD or a finite lattice {0, . . . , L − 1}D for some L > 1. Depending on X , we shall assume 
that the densities below are all defined with respect to the Lebesgue measure or the counting meas-
ure; i.e., the term density includes probability mass functions (pmfs).  

Continuous-valued observations. Suppose that we are given data {xi}
n
i=1 ∼i.i.d.R from an unknown 

distribution R, and we wish to test the goodness of fit of a model P. We first consider the case where 
the probability distributions P, R are defined on RD and have respective probability densities 
p, r, where all density functions considered in this paper are assumed strictly positive and con-
tinuously differentiable. We treat the case of densities defined on bounded domains in the Online 
Supplementary Material, Section B.1. For differentiable density functions, we define the score 
function, 

sp(x) ∈ RD :=
∇p(x)
p(x)

= ∇ log p(x), 

where the gradient operator is ∇ : = [ ∂
∂x1 , . . . , ∂

∂xD ]⊤. The score is independent of the normalizing 
constant for p, making it computable even when p is known only up to normalization. Using this 
score, we define the Langevin Stein operator on a space F of differentiable functions from RD to 
RD (Gorham & Mackey, 2015; Oates et al., 2017), 

APf
 

(x) = 〈s p(x), f (x)〉 + 〈∇, f (x)〉, f ∈ F .
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A kernel discrepancy may be defined based on the Stein operator (Chwialkowski et al., 2016;  
Gorham & Mackey, 2017; Liu et al., 2016), which allows us to measure the departure of a dis-
tribution R from a model P. We define F to be a space comprised of D-dimensional vectors of 
functions f = (f1, . . . fD) where the dth function fd is in a reproducing kernel Hilbert space 
(RKHS) (Aronszajn, 1950; Steinwart & Christmann, 2008, Definition 4.18) with a positive def-
inite kernel k( · , · ) :X × X → R (we use the same kernel for each dimension). The inner product 
on F is 〈f , g〉F : =

D
d=1 〈fd, gd〉Fk

, and Fk denotes an RKHS of real-valued functions with kernel k. 
The (Langevin) kernel Stein discrepancy (KSD) between P and R is defined as 

KSD P ‖R( ) = sup
f‖ ‖F≤1

|Ex∼RAPf (x) − Ey∼PAPf (y)|. (1) 

Under appropriate conditions on the kernel and measure P, the expectation Ey∼PAPf (y) = 0 for any 
f ∈ F . To ensure this property, we will require that k ∈ C(1,1), the set of continuous functions on 
X × X with continuous first derivatives and that Ey∼P[‖sp(y)‖2] < ∞ with ‖ · ‖2 the Euclidean 
norm. We further assume that the following tail condition holds outside a bounded set: 
p(x)

��������
k(x, x)


≤ C‖x‖δ

2 for some constants C > 0 and δ > D − 1 (see the clarification by South 
et al., 2021, p. 12, on the tail condition for the Stein’s identity). With the vanishing expectation 
Ey∼PAPf (y) = 0, the KSD reduces to KSD P ‖R( ) = sup‖f‖F≤1 |Ex∼RAPf (x)| . The use of an RKHS 
as the function class yields a closed-form expression of the discrepancy by the kernel trick 
(Chwialkowski et al., 2016; Gorham & Mackey, 2017, Proposition 2), 

KSD2 P‖R( ) = Ex,x′∼R⊗R[hp(x, x′)], 

if Ex∼R[hp(x, x)1/2] < ∞.Here, the symbol R ⊗ R denotes the product measure of two copies of R 
(so x and x′ are independent random variables identically distributed with the law R). The function 
h p (called a Stein kernel) is expressed in terms of the RKHS kernel k and the score function s p, 

hp(x, x′) = sp(x)⊤sp(x′)k(x, x′) + s p(x)⊤k1(x′, x) + sp(x′)⊤k1(x, x′) + k12(x, x′), 

where we have defined 

k1(a, b) := ∇xk(x, x′)|x=a,x′=b,

k12(a, b) := ∇⊤
x∇x′k(x, x′)|x=a,x′=b.

For a given i.i.d. sample {xi}
n
i=1 ∼ R, the discrepancy has a simple closed-form finite sample estimate, 

KSD2 P‖R( ) ≈
1

n(n − 1)



i≠j

h p(xi, xj), (2) 

which is a U-statistic (Hoeffding, 1948). When the kernel is integrally strictly positive definite (ISPD) 
(Sriperumbudur et al., 2011, Section 2), and R admits a density r that satisfies 
Ex∼R‖∇ log (p(x)/r(x))‖2 < ∞, we have that KSD P ‖R( ) = 0 iff P = R (Barp et al., 2019, 
Proposition 1). The earlier results of Chwialkowski et al. (2016) and Liu et al. (2016) require more 
stringent integrability conditions. Gorham and Mackey (2017, Theorem 7) showed that KSD can dis-
tinguish any Borel measure R from P by assuming conditions such as distant dissipativity (satisfied by 
finite Gaussian mixtures) (Gorham et al., 2019, Section 3). However, such conditions may be difficult 
to validate for LVMs. Thus, hereafter, we assume the former condition on the data distribution R.

Discrete-valued observations. We next recall the kernel Stein discrepancy in the discrete setting 
where distributions are defined on X = {0, . . . , L − 1}D with L > 1, as introduced by Yang et al. 
(2018). In place of derivatives, we specify Δk as the cyclic forward difference w.r.t. kth coordinate: 

Δkf (x) = f (x1, . . . , x̃k, . . . , xD) − f (x1, . . . , xk, . . . , xD) where x̃k = xk + 1 mod L, with the  
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corresponding vector-valued operator Δ = (Δ1, . . . , ΔD). The inverse operator Δ−1
k is given 

by the backward difference Δ−1
k f (x) = f (x1, . . . , xk, . . . , xD) − f (x1, . . . , x̅k, . . . , xD), where 

x̅k = xk − 1 mod L, and Δ−1 = (Δ−1
1 , . . . , Δ−1

D ). The score is then sp(x) := p(x)−1Δp(x), where it 
is assumed that the pmf is strictly positive (i.e., it is never zero). The difference Stein operator is 
then defined as APf (x) = tr[f (x)s p(x)⊤ + Δ−1f (x)], where it can be shown that Ex∼P[APf (x)] = 0 
(Yang et al., 2018, Theorem 2) (note that we include a trace for consistency with the continuous 
case—this does not affect the test statistic (Yang et al., 2018, Equation 10). We have defined the 
Stein operator and the score function slightly differently from Yang et al. (2018); the change is only 
in their signs, but this results in the same discrepancy. The difference Stein operator is not the only 
allowable Stein operator on discrete spaces: other alternatives are given by Yang et al. (2018, 
Theorem 3), Hodgkinson et al. (2020), and Shi et al. (2022). Although we focus on the Stein op-
erator above, in practice, one might want to consider different Stein operators depending on the 
application. For instance, the score function s p can be numerically unstable, as it contains the re-
ciprocal 1/p(x); this can occur when the support of the model is severely mismatched to that of the 
data. In this particular case, one might choose the Barker–Stein operator proposed by Shi et al. 
(2022), an instance of the Zanella–Stein operator of Hodgkinson et al. (2020, Example 2). See  
Online Supplementary Material, Appendix B.2 for details. We compare this operator to the differ-
ence operator in an experiment where this mismatch occurs (Section 4.3.3). 

As in the continuous case, the KSD can be defined as an IPM, given a suitable choice of repro-
ducing kernel Hilbert space for the discrete domain. An example of kernel is the exponentiated 
Hamming kernel, k(x, x′) = exp ( − dH(x, x′)), where dH(x, x′) = D−1D

d=1 I(xd ≠ x′d). The popu-
lation KSD is again given by the expectation of the Stein kernel, KSD2 P‖R( ) = E(x,x′)∼R⊗R[h p(x, x′)], 
where hp is defined as 

hp(x, x′) = s p(x)⊤sp(x′)k(x, x′) + sp(x)⊤k1(x′, x) + sp(x′)⊤k1(x, x′) + k12(x, x′), 

and the kernel gradient is replaced by the inverse difference operator, e.g., k1(x, x′) = Δ−1
x k(x, x′), 

where Δ−1
x indicates that the operator Δ−1 is applied with respect to the argument x. From Yang 

et al. (2018, Lemma 8), we have that KSD P ‖R( ) = 0 iff P = R, under the conditions that the prob-
ability mass functions for P and R are positive and that the Gram matrix defined over all the con-
figurations in X is strictly positive definite (i.e., the kernel is integrally strictly positive definite). 
One can define a kernel satisfying the required condition, for example, by embedding X into 
RL×D with one-hot encoding and using a Taylor-type kernel such as the exponentiated quadratic 
kernel (Christmann & Steinwart, 2010, Theorem 2.2). 

2.2 Kernel Stein discrepancies of LVMs 
Our objective is to use the KSD to evaluate LVMs, and here we formally specify our target model 
class. Let LX |Z = {p( · | z) : z ∈ Z} be a family of probability density functions on X (we call these 
likelihood functions), which are indexed by elements of a set Z. A LVM P is specified by such a 
family LX |Z and a (prior) probability measure PZ over Z. The combination of these defines the 
marginal density function p(x) =


p(x | z) dPZ(z) and the posterior distribution 

PZ(dz |x) = {p(x | z)/p(x)}PZ(dz). The distribution P induced by the former acts as a model of 
the distribution R underlying the observation, and the latter enables us to draw an inference 
over the unobserved variable. 

Remark In our notation, the variable z can represent multiple latent variables. The like-
lihood p(x | z) often contains parameters, but the dependency on these is sup-
pressed here. If a prior is defined on a parameter, we may treat it as a latent 
variable; this consideration is relevant to predictive distributions. The likelihood 
and the prior in a model may be conditioned on some fixed data (e.g., they can be 
posterior predictive distributions), which we require to be independent of the 
data used for testing—in such a case, we omit the dependency on the held-out 
data. For examples, we refer the reader to Section 4.  
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The definition of the KSD remains the same for LVMs, but an additional difficulty arises in its 
estimation. Unfortunately, the U-statistic estimator given in (2) requires the score function of the 
marginal p, which is challenging to obtain due to the intractability of marginalizing out the latent 
variable. We will address this challenge by rewriting the score function in terms of the posterior 
distribution of the latent. In the following, we focus on continuous variable models, but the 
same conclusion holds for discrete counterparts by replacing gradient operation with cyclic 
differences. 

Under a regularity condition, the score function can be expressed as 

s p(x) = Ez |x[s p(x | z)], (3) 

where sp(x | z) is the score function of the conditional p(x | z); i.e., sp(x | z) = p(x | z)−1∇xp(x | z) for 
continuous-valued x. The reasoning is as follows: 

∇xp(x)
p(x)

=
1

p(x)

�

∇xp(x | z) dPZ(z)

=
�
∇xp(x | z)

p(x | z)
·

p(x | z) dPZ(z)
p(x)

= Ez |x[s p(x | z)], 

where we have assumed the exchangeability of differentiation and integration: 
∇xp(x) =


∇xp(x | z) dPZ(z). The identity (3) is an analogue of Fisher’s identity (Dempster et al., 

1977; Fisher, 1925), which pertinently formed the basis for Stein control variate methodology 
in Friel et al. (2016), parameter inference for doubly intractable models via score matching 
(Vértes & Sahani, 2016), and Bayesian model selection with a Hyvärinen score (Dawid & 
Musio, 2015; Shao et al., 2019). Note that the conditional score sp(x | z) is typically possible to 
evaluate. For example, consider the following simple form of an exponential family density 
p(x | z) ∝ exp (T(x)η(z)) defined on RD with T(x) : RD → R and η :Z → R; for this density, 
s p(x | z) = η(z)∇xT(x). As can be seen in this example, the formula (3) does not require the likeli-
hood p(x | z) to be normalized. This feature eliminates the need for estimating the normalizing con-
stant of p(x | z) for each z, which is required to compute goodness-of-fit measures based on the 
marginal density p(x) (Friel & Wyse, 2012); Online Supplementary Material, Section C.2 in the 
supplementary presents a use case with a truncated model. 

With this identity, the KSD is rewritten as follows. 

Lemma 1 Let 

Hp[(x, z), (x′, z′)] = sp(x | z)⊤sp(x′ | z′)k(x, x′) + s p(x | z)⊤k1(x′, x)

+ k1(x, x′)⊤s p(x′ | z′) + k12(x, x′).
(4) 

Assume E(x,z),(x′,z′)∼R̃⊗R̃|Hp[(x, z), (x′, z′)]| < ∞ with the joint distribution 

R̃(d(x, z)) = PZ(dz | x)R(dx). If the formula (3) holds, then, 

KSD2 P‖R( ) = E(x,z),(x′,z′)∼R̃⊗R̃Hp[(x, z), (x′, z′)].

Proof. Substituting the formula (3) in the definition of KSD gives the required equation by 
the Tonelli–Fubini theorem.                                                                                                 □ 

Remark The integrability assumption holds trivially if the input space X is finite, while 
care needs to be taken otherwise. The condition can be checked by examining 
the absolute integrability of each term in (4). The integrability assumption on 
the fourth term is mild and is satisfied by common kernels, e.g., the exponenti-
ated quadratic or the inverse multi-quadratic kernels. The condition on the other  
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terms needs to be checked on a model-by-model basis. It can be shown that the 
example models in Section 4 satisfy the assumption (please see Online 
Supplementary Material, Section B.3 in the supplementary material for details). 

The new KSD expression is an expectation of a computable symmetric kernel, and constructing 
an unbiased estimate is straightforward once we obtain a sample. In practice, when the model is 
complex, sampling from the posterior distribution generally requires simulation, as the posterior is 
not available in a closed form. Therefore, we propose to approximate the expectation by Markov 
Chain Monte Carlo (MCMC) methods and construct an approximate U-statistic estimator as fol-
lows. Let z(t)

i = (z(t)
i,1, . . . , z(t)

i,m) ∈ Zm be a latent sample of size m drawn by an MCMC method hav-
ing PZ( · |xi) as its invariant measure after t burn-in iterations. Let ̅sp(xi | z

(t)
i ) = 1

m

m
j=1 sp(xi | z

(t)
i,j ). 

Given a joint sample {(xi, z(t)
i )}n

i=1, we estimate the KSD by 

U(t)
n (P) :=

1
n(n − 1)



i≠j

H̅ p[(xi, z(t)
i ), (x j, z(t)

j )], (5) 

where 

H̅ p[(xi, z(t)
i ), (x j, z(t)

j )] = s̅p(xi | z
(t)
i )⊤s̅p(x j | z

(t)
j )k(xi, x j) + s̅p(xi | z

(t)
i )⊤k1(x j, xi)

+ k1(xi, x j)
⊤s̅p(x j | z

(t)
j ) + k12(xi, x j), 

and the sum is taken over all distinct sample pairs. If P(t)
Z (dz |x) denotes the distribution of an 

MCMC sample z(t) = (z(t)
1 , . . . , z(t)

m ), then this estimator is indeed a U-statistic, but its expectation 

is that of kernel H̅ p with respect to P(t)
Z (dz |x)R(dx) instead of PZ(dz |x)R(dx). Thus, the estimator 

is biased against the target estimand, the model’s KSD, for a finite burn-in period t, and can there-
fore be seen an approximation to the true U-statistic U(∞)

n . Designing a statistical test requires 
understanding the behavior of the statistic (5), and we will provide its analysis in the next section. 
Although we focus on MCMC for its approximate unbiasedness in our proposed test, different 
posterior approximations may be considered in other applications; for example, with a more com-
putationally efficient approach (e.g., variational approximation), the new KSD expression in 
Lemma 1 might allow us to consider parameter estimation for unnormalized statistical models 
with latent variables (Barp et al., 2019). 

3 A relative goodness-of-fit test 
We now address the setting of statistical testing for model comparison. We begin this section with 
our problem settings and notation, and then define a test by showing the asymptotic normality of 
approximate U-statistics. 

3.1 Problem setup 
We consider the case where we have two LVMs P and Q, and we wish to determine which is a 
closer approximation of the distribution R generating our data {xi}

n
i=1.The respective density func-

tions of the models are given by the integrals p(x) =


p(x | z) dPZ(z) and q(x) =


q(x |w) dQW(w). 
As with P, the latent variable w is assumed to take values in a set Wwith prior QW .We assume that 
p(x) and q(x) cannot be tractably evaluated, even up to their normalizing constants. Our goal is to 
determine the relative goodness of fit of the models by comparing each model’s discrepancy from 
the data distribution. Our problem is formulated as the following hypothesis test: 

H0 : KSD P ‖R( ) ≤ KSD Q ‖R
( 

(null hypothesis),

H1 : KSD P ‖R( ) > KSD Q ‖R
( 

(alternative).
(6) 

In other words, the null hypothesis is that the fit of P to R (in terms of KSD) is as good as Q, or 
better. Note that the KSD in (6) is defined by a particular reproducing kernel, and thus different  
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kernels yield distinct hypotheses. For kernel selection, we refer the reader to Section 3.4. 
We next provide an overview of the formal assumptions made throughout the paper. Let 

(Ω, S, Π) be a probability space, where Ω is a sample space, S is a σ-algebra, and Π is a probability 
measure. All random variables (for example, data points xi and draws z(t)

i from a Markov chain 
sampler) are understood as measurable functions from the sample space Ω. The input space X
is equipped with the Borel σ-algebra generated by its standard topology. We assume that Z,W
are Polish spaces with the Borel σ-algebras defined by their respective topologies, on which the pri-
ors PZ, QW are defined. Finally, we require that the two models are distinct; i.e., their marginal 
densities disagree on a set of positive R-measure. 

3.2 Estimating kernel Stein discrepancies of LVMs 
The hypotheses in (6) can be equally stated in terms of the difference of the (squared) KSDs, 
KSD2 P‖R( ) − KSD2 Q‖R

( 
, which motivates us to design a test statistic by estimating each 

term. Let U(t)
n (P, Q) := U(t)

n (P) − U(t)
n (Q) be the difference of KSD estimates, where U(t)

n (Q) is de-
fined as for U(t)

n (P) in (5). Note that U(t)
n (P, Q) is an approximate U-statistic (in the sense of the final 

paragraph in Section 2.2) defined by the difference kernel 

H̅ p,q[(x, z, w), (x′, z′, w′)] := H̅ p[(x, z), (x′, z′)] − H̅q[(x, w), (x′, w′)] 

evaluated on the joint sample {(xi, z(t)
i , w(t)

i )}n
i=1. The statistic takes as input random variables with 

evolving laws, and defining a test require us to understand the behavior of such statistics. This sec-
tion delivers an analysis in a general setting. 

We first characterize the asymptotic distribution of an approximate U-statistic. The following 
theorem shows that such a statistic is asymptotically normal around the expectation of the true 
U-statistic provided its bias vanishes fast. 

Theorem 1 (Asymptotic normality). Let {γt}
∞
t=1 be a sequence of Borel probability meas-

ures on a Polish space Y and γ be another Borel probability measure. Let 
{Y(t)

i }n
i=1 ∼i.i.d. γt, and for a symmetric function h :Y × Y → R, define a 

U-statistic and its mean by 

U(t)
n =

1
n(n − 1)



i≠j

h(Y(t)
i , Y(t)

j ), θt = E(Y,Y′)∼γt⊗γt
[h(Y, Y′)].

Let θ = E(Y,Y′)∼γ⊗γ[h(Y, Y′)]. Let νt := E(Y,Y′)∼γt⊗γt
[|h̃t(Y, Y′)|3]1/3 with h̃t = 

h − θt, and assume lim supt→∞ νt < ∞. Assume that σ2
t = 

4VarY′∼γt
[EY∼γt

[h(Y, Y′)]] converges to a constant σ2. Assume that we have 
θt → θ as t→∞. Then, in the limit of large n and of t growing as a function 
of n such that 

��
n
√

(θt − θ)→ 0, the following two statements hold: if σ > 0, 
we have 

��
n
√

U(t)
n − θ

( 
→
d
N (0, σ2) 

where →
d 

denotes convergence in distribution; in the case σ = 0, 
��
n
√

(U(t)
n − 

θ)→ 0 in probability. 

The proof is in Online Supplementary Material, Section A in the supplement. Note that in the 
preceding and following results, the limit of n and t is taken simultaneously rather than sequential-
ly, such that the condition 

��
n
√

(θt − θ)→ 0 holds: see discussion below and in Section 3.3. By let-
ting Y(t)

i = (xi, z(t)
i , w(t)

i ) and h = H̅ p,q in the foregoing theorem, we obtain the same conclusion for 
the difference estimate U(t)

n (P, Q).
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The asymptotic normality allows us to define a test procedure. Theorem 1 involves unknown 
variance σ2, however; in order to construct a test, we need to be able to estimate it consistently. 
For our test, we propose to use the following jackknife variance estimator: 

vn,t := (n − 1)
n

i=1

(U(t)
n,−i − U(t)

n )2, (7) 

where U(t)
n is defined as in Theorem 1, and U(t)

n,−i the U-statistic computed on the sample with the ith 
data point removed. We defer the discussion on this choice until we introduce our test procedure in 
Section 3.3. Here, we present the required consistency, the proof of which can be found in Online 
Supplementary Material, Appendix A.2 (see Online Supplementary Material, Lemma 1). 

Lemma 2 (Jackknife consitency). Define symbols as in Theorem 1 and the jackknife vari-
ance estimator as in (7). Assume 

lim sup
t→∞

E(Y,Y′)∼γt⊗γt
[h(Y, Y′)4] < ∞.

Let σ2 = limt→∞ σ2
t where σ2

t = 4ζ1,t = 4VarY∼γt
[EY′∼γt

[h(Y, Y′)]]. Then, we have 
the double limit E(vn,t − σ2)2 → 0 as n, t→∞. In particular, the limit holds re-
gardless of the growth rate of t as a function of n.

We have shown that the jackknife estimator allows consistent estimation of the asymptotic vari-
ance of U(t)

n (P, Q). Using the results obtained in this section, we present our test procedure in the 
next section. 

3.3 Test procedure 
We are finally ready to define the test procedure. Recall that our objective is to compare model discrep-
ancies, which can be accomplished by estimating the difference KSD2 P‖R( ) − KSD2 Q‖R

( 
. The pre-

vious section has established the asymptotic normality of the difference estimate U(t)
n (P, Q) and 

provides a consistent estimator of its asymptotic variance. Therefore, we define our test statistic to be 

Tn,t =
��
n
√ U(t)

n (P, Q)
����
vn,t
√ , (8) 

with vn,t being the jackknife variance estimator in (7) computed using the joint sample 
{(xi, z(t)

i , w(t)
i )}n

i=1 and kernel h = H̅ p,q.

The following property follows from Theorem 1 and Slutsky’s lemma (see e.g., van der Vaart, 
2000, p. 13) along with the consistency of vn,t from Lemma 2. 

Corollary 1 Let μP,Q = KSD2 P‖R( ) − KSD2 Q‖R
( 

. Let y(t)
1 and y(t)

2 be i.i.d. variables; y(t)
1 

represents a copy of random variables (x, z(t), w(t)); the variables z(t), w(t) 

are draws from the respective Markov chains of P and Q conditioned on x 
after t burn-in steps, and x obeys R. Assume lim supt→∞ E[H̅ p,q[y(t)

1 , y(t)
2 ]4] < 

∞. If the assumptions in Theorem 1 hold for the statistic U(t)
n (P, Q) with 

asymptotic variance σ2
P,Q > 0, we have 

��
n
√

(U(t)
n (P, Q) − 

μP,Q)/ ����
vn,t
√

→
d
N (0, 1) as n, t→∞, where the required growth of t as a 

function of n is as in Theorem 1. 

Remark Corollary 1 holds for any choice of the Markov chain sample size m ≥ 1.
However, in practice, a small value of m leads to large variance of the score es-
timates s̅p, s̅q, and hence the test statistic Tn,t, which results in a conservative 
test. To improve the test’s sensitivity, we therefore recommend using as large 
an m as possible.  

J R Stat Soc Series B: Statistical Methodology                                                                                           9 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad050/7153413 by U
niversity C

ollege London user on 02 June 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data


Corollary 1 leads to the following simple model comparison test (summarized in Algorithm 1): 
for a given significance level α ∈ (0, 1), we compare the test statistic Tn,t against the 
(1 − α)-quantile τ1−α of the standard normal and reject the null if Tn,t exceeds τ1−α. By this design, 
under the null hypothesis H0 : μP,Q ≤ 0, we have limn,t→∞ Π(Tn,t > τ1−α |H0) ≤ α, and the test is 
therefore asymptotically level α for each fixed R satisfying H0. On the other hand, under any 
fixed alternative H1 : μP,Q > 0, it follows from 

��
n
√

μP,Q →∞ (n→∞) that we have 
limn,t→∞ Π(Tn,t > τ1−α |H1) = 1, indicating that the test is consistent in power. 

We remark that the above analysis will not apply in particular extreme cases, where both 
models are identical, or both perfectly match the data distribution. When these occur, then 
σP,Q = 0 and μP,Q = 0 (note that if μ p,Q ≠ 0, the test statistic diverges as the sample size in-
creases). Applying our procedure as above to this setting, the normal approximation might 
fail to correctly capture the variability of the test statistic, and the type-I error could exceed 
the significance level. To detect this failure mode, we would need to independently check 
that the two models are not identical, either by inspection or via two-sample testing. A 
more systematic treatment could be performed, e.g., by preventing degeneracy using a sample 
splitting technique as proposed by Schennach and Wilhelm (2017), and we leave this refine-
ment for future work. 

We empirically found that our choice of the variance estimator acted as a safeguard against the 
failure mode mentioned above. The jackknife estimator is nonnegative, while individually estimat-
ing the variances and covariance of the two U-statistics might yield a negative estimate. The jack-
knife is also known to overestimate the variance (Efron & Stein, 1981), and its use may result in a 
more conservative test. This estimator is not the only allowable choice, as the variance estimation 
in U-statistics has been extensively studied (for other concrete estimators, see, e.g., Maesono, 
1998, and references therein). In our preliminary analysis, we considered two other estimators, 
but the jackknife estimator controlled type-I errors better than these alternatives in the near degen-
erate case. For details, we refer the reader to experiments in Online Supplementary Material, 
Sections C.4 and C.5 in the supplement. 

The limiting behaviors of the test are only guaranteed when an appropriate double limit is 
taken with respect to the burn-in size t and the sample size n. Theorem 1 suggests that the 
bias of the statistic U(t)

n (P, Q) should decay faster than 1/
��
n
√

in the limit of t.Our practical rec-
ommendation is to take a burn-in period as long as the computational budget allows; this heur-
istic is justified if the bias vanishes as t→∞. For KSD2 P‖R( ) and its estimate, the bias is due to 
that of the score estimate s(t)

p (x) = E
(t)
z |x [̅s p(x | z)], where E(t)

z |x denotes the expectation with re-
spect to P(t)

Z (dz |x). If the score’s bias is confirmed to converge to zero, we can check the bias 
of the KSD estimate by examining the convergence of E(x,x′)∼R⊗R[hp,t(x, x′)], with h p,t(x, x′) a 
Stein kernel defined by the approximate score s(t)

p . The convergence of s(t)
p can be established 

by assuming appropriate conditions on sp(x | z) and the sampler; for instance, for the exponen-
tial family likelihood p(x | z) ∝ exp (T(x)η(z)), if the natural parameter η is a continuous 
bounded function, the weak convergence of the sampler implies that the desired convergence 
(the score s p(x | z) is factorized as η(z)∇T(x)). The quantification of the required growth rate of t 
relative to n needs more stringent conditions on the employed MCMC sampler, which we dis-
cuss in the supplement, Online Supplementary Material, Section B.4. Admittedly, it is often 
not straightforward to theoretically establish an explicit relation between the growth rates 
of t and n. We therefore experimentally evaluate the finite-sample performance of our test in 
Section 4. 

The overall computational cost of the proposed test is O{n2 + n(t + m)}, assuming that the cost 
of sampling a latent is constant. The test statistic in (8) requires evaluating the U-statistic kernel 
H̅ p,q on all distinct sample pairs. Note that we need to perform this computation only once if 
we memoize the evaluated values; in particular, the cost of the variance estimate (2) can be 
made O(n2) with memoization. Thus, assuming that we have evaluated and stored the score values 
{̅s p(xi|z

(t)
i ), s̅q(xi|w

(t)
i )}n

i=1, the cost of evaluating the U-statistic kernel is O(n2), but this operation 
can be easily parallelized over sample pairs. The additional O{n(t + m)} cost comes from evaluat-
ing the approximate score functions, as it requires running Markov chains for each data point (see 
the loop between Lines 3.3–3.3 in Algorithm 1). We can improve the sample-size n dependency in 
score evaluation by parallelization, since MCMC can be performed independently over sample 
points xi.  
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3.4 Kernel choice 
A discrepancy measure such as KSD encodes a particular sense of how two distributions differ. In the case 
of KSD, the magnitude of this discrepancy is affected not only by evaluated models but also the choice of a 
reproducing kernel. Ideally, we should choose a kernel that makes the KSD reflect the discrepancy of fea-
tures relevant to the problem at hand. We provide general guidance on kernel selection as follows: 

Continuous observations: As mentioned in Section 2, ISPD kernels enable the KSD to distin-
guish any two distributions satisfying certain regularity conditions. Of ISPD kernels, in the light 
of practical performances reported in prior work in goodness-of-fit testing (Gorham & 
Mackey, 2017) and distribution approximation (Chen et al., 2019; Riabiz et al., 2022), we advo-
cate for the use of the preconditioned IMQ kernel (Chen et al., 2019) 

k(x, x′) = (c2 + ‖Λ−1/2(x − x′)‖22)−β, (9) 

with Λ being a strictly positive definite matrix, and scalars c > 0 and 0 < β < 1; as a default choice, 
we recommend to take β = 1/2 and c = 1. Following the kernel method literature, we recommend to 
choose the pre-conditioner Λ in a data-dependent way so that the KSD can capture relevant features 
of the data. We suggest two default options: the median heuristic, where Λ = λ2I with λ = 
median{‖xi − x j‖2 : 1 ≤ i < j ≤ n} and I the identity matrix; the sample covariance Λ =

n
i=1 (xi − 

x̅)(xi − x̅)⊤/(n − 1) with x̅ =
n

i=1 xi/n, which should be suitably regularized. Each of these choices 
has its own merits, as we illustrate in a simple example with Gaussian distributions in the supplement 
(Online Supplementary Material, Section B.7). Moreover, in general, the KSD is not invariant to a 
change of coordinates representing the data. The above choices partially address this issue, as they 
ensure that the KSD is invariant to rotation and displacement (see, Online Supplementary Material, 
Section B.9.2 in the supplement; Matsubara et al., 2022, Section 5.1). For continuous observations, 
we additionally need to examine the integrability of the Stein kernel to use the KSD expression of 
Lemma 1. To this end, one might want to make an assumption about the tail decay of the data dis-
tribution. The integrability condition can be alternatively enforced by reweighting the reproducing 
kernel so that the Stein kernel is uniformly bounded; i.e., for a kernel k, define a new kernel kw by 
kw(x, x′) = k(x, x′)w(x)w(x′) where w :X → (0, ∞) is some decreasing function dominating the 
growth of the score function. We discuss how to choose such w in the supplement, Online 
Supplementary Material, Section B.3. This reweighting might reduce the sensitivity of the KSD 
and break the aforementioned property of coordinate-choice independence, however. 

Discrete observations: We have given a condition for a kernel to be ISPD at the end of Section 2; 
e.g., the exponentiated quadratic kernel on one-hot encoding, which can be efficiently 

Algorithm 1: Test procedure  

Input: Data {xi}
n
i=1, models P, Q, and significance level α  

Result: Test the null H0  

/∗Form a joint sample {(xi, z(t)
i , w(t)

i )}n
i=1                                                                                           ∗/ 

1 for i← 1 to n do 

2 Generate m samples z(t)
i = (z(t)

i,1, . . . , z(t)
i,m) after t burn-in steps with an MCMC algorithm to simulate  

PZ(dz |xi); 

3 Generate m samples w(t)
i = (w(t)

i,1, . . . , w(t)
i,m) after t burn-in steps with an MCMC algorithm to simulate 

QW (dw |xi); 

4 end 

5 τ1−α ← (1 − α)-quantile of N (0, 1);  

/∗Compute test statistic Tn,t in equation (8)                                                                        ∗/ 

6 Compute KSD difference estimate U(t)
n (P, Q);

7 Compute variance estimate vn,t;  

/∗Direct computation of Tn,t =
��
n
√

U(t)
n (P, Q)/

����
vn,t
√

can be numerically unstable                ∗/ 

8 If U(t)
n (P, Q) > ( ����

vn,t
√

/
��
n
√

) · τ1−α then Reject the null H0;  
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implemented in a sparse tensor format. In general, however, it is challenging to compute such an 
ISPD kernel for discrete objects in high-dimensions. Note that ISPD-ness is only required to distin-
guish any two distributions. In practice, we only require the KSD to capture aspects relevant to 
model evaluation, and might therefore choose a kernel insensitive to some differences, as long 
as they represent computationally affordable alternatives suited to the given problem. An instruct-
ive example is testing on distributions over graphs. Graphs of V nodes can be represented as ad-
jacency matrices that are elements of {0, 1}V×V . The Dirac delta kernel that examines if two graphs 
are identical is an ISPD kernel but computationally intractable (no polynomial algorithm is 
known). This notion of graph identification is in practice too restrictive, and therefore one typic-
ally uses kernels that convey other relevant graph properties (see, e.g., Borgwardt et al., 2020, for 
more details). We also demonstrate this trade-off in our experiment with latent 
Dirichlet allocation models in Section 4.3, where we can ignore the sequential structure of the data. 

Use of multiple kernel functions: As we have seen, there are often multiple choices of the kernel 
function, and they might represent distinct features. Our recommendation is to test the hypotheses 
corresponding to the kernel choices simultaneously, as it makes evaluation more rigorous. 
However, one has to correct for multiple comparisons such as controlling the family-wise error 
rate. It should be noted that a correction typically makes the test more conservative as the number 
of kernels grows. The user thus needs to control the number of kernels to be used [e.g., using a 
handful of values of scale parameter λ for the above IMQ kernel with Λ = diag(λ, . . . , λ)]. 

Finally, we note that specific kernels can be employed that encode domain-specific expertise in 
particular problem settings: for instance, kernels have been defined on groups (Fukumizu et al., 
2008) and graphs (Borgwardt et al., 2020). KSDs and associated statistical tests can likewise be 
defined for certain of these cases (e.g., Xu & Matsuda, 2020). That being said, it may sometimes 
be preferable to favor an MMD with goal-specific features over an omnibus KSD test. 

3.5 Challenges with likelihood-ratio tests based on marginal density estimation 
As noted in the introduction, a likelihood-ratio test is an alternative choice for comparing LVMs. 
This section details challenges associated with likelihood-ratio tests. There are two paths to de-
signing such tests, depending on how we estimate the (log-)density ratio. One approach is to esti-
mate the marginal density and take the ratio, and the other is to directly estimate the (log-)density 
ratio. We refer the reader to Friel and Wyse (2012) for a review of estimation techniques. 

Methods such as annealed importance sampling (Neal, 2001) belong to the first category. The 
problem with this approach is that an estimator ratio is a (typically heavily) biased estimator 
(let alone the difference of log density estimates); thus, deriving a calibrated test threshold from 
such an estimator is often challenging. In contrast, in our test, we can characterize the bias due 
to MCMC relatively straightforwardly, by evaluating the bias of the approximate Stein kernel. 

The second category includes techniques such as reversible jump MCMC (Green, 1995) and ther-
modynamical integration. It is anecdotally known that reversible jump MCMC can be challenging to 
implement, especially for complex models. Thermodynamic integration uses the formula 

log p(x) =
� 1

0
Ez | x,t[ log p(x | z)]dt, 

where Ez |x,t is the expectation with respect to the posterior over z defined by the tempered likelihood 
p(x | z)t. This technique can in principle be used to construct a likelihood-ratio test, as in our approach. 
For example, we may uniformly sample t from the unit interval to approximate the outer integral, 
while conducting MCMC to estimate the inner expectation. We are not aware of a frequentist test 
based on this construction, however. That said, the computational cost of such an approach would 
be significant: given data of size n, we would generate T samples for the temperature t, then m sam-
ples for the inner MCMC, giving a (naive) computational complexity of O(nmT) (here we compute 
the sum of n log density evaluations rather than the evidence conditioned on the data batch). 

4 Experiments 
We evaluate the proposed test (LKSD, hereafter) through simulations. Our goal is to show the util-
ity of the KSD in model comparison. To this end, we compare our test with the relative MMD test  
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(Bounliphone et al., 2016), a kernel-based frequentist test that supports a great variety of LVMs. 
Note that this test and ours address different hypotheses, as the MMD and LKSD tests use differ-
ent discrepancy measures; it is indeed possible that they reach conflicting conclusions (e.g., a model 
is better in terms of KSD but worse in MMD). To align the judgement of both tests, we construct 
problems using models with controllable parameters; for a given class, a reference distribution, 
from which a sample is drawn, is chosen by fixing the model parameter; two candidate models 
are then formed by perturbing the reference’s parameter such that a larger perturbation yields a 
worse model for both tests. We show that there are cases where the MMD fails to detect model 
differences whereas the KSD succeeds. For completeness, we provide the detail of our implemen-
tation of the MMD test in the supplement (Online Supplementary Material, Section B.5), since it 
requires modification to yield satisfactory performance in our setting. 

Following are details shared by the experiments below. All results below are based on 300 trials, 
except for the experiment in Section 4.2 (see the section for details). In the light of the discussion in 
Section 3, unless specified, the MMD test draws nmodel = m + t samples for each model so that its 
cost matches the additional computation afforded to the LKSD test, which is of O{n(m + t)} from 
MCMC. 

4.1 Probabilistic principal component analysis 
We first consider a simple model in which the score of its marginal is tractable. This allows us to 
separately assess the impact of employing a score function approximation. Probabilistic principal 
component analysis (PPCA) models serve this purpose since the marginals are given by Gaussian 
distributions. Let X = RD and Z = RDz with 1 ≤ Dz < D. A PPCA model PPCA(A, ψ) is defined by 

p(x | z, A, ψ) =N (Az, ψ2Ix), PZ =N (0, Iz), 

where A ∈ RD×Dz , Ix ∈ RD×D, Iz ∈ RDz×Dz are the identity matrices, ψ is a positive scalar, and 0 is a 
vector of zeros. The conditional score function is sp(x | z) = −(x − Az)/ψ2. In particular, the mar-
ginal density is given by p(x) =N (0, AA⊤ + ψ2Ix).

While the posterior in this model is tractable, it is instructive to see how KSD estimation is per-
formed by MCMC. By using an MCMC method, such as the metropolis adjusted Langevin algo-
rithm (MALA) (Besag, 1994; Roberts & Tweedie, 1996) or Hamiltonian Monte Carlo (HMC) 
(Duane et al., 1987; Neal, 2011), we obtain latent samples zi ∈ Zm for each xi, which forms a 
joint sample {(xi, zi)}

n
i=1 ; samples zi are used to compute a score estimate at each point xi, 

s̅p(xi | zi) = − xi − A
1
m

m

j=1

zi,j

  

/ψ2, 

and these approximate score values are used to compute the U-statistic estimate in (5). By choosing 
suitably decaying kernels (Online Supplementary Material, Section B.3), we can guarantee the in-
tegrability condition in Lemma 1. The vanishing bias assumption in Theorem 1 corresponds to the 
convergence in mean, which can be measured by the Kantorovich–Rubinstein distance 
(Kantorovich, 2006) (also known as the L1-Wasserstein distance (see, e.g., Villani, 2009, 
Chapter 6). Note that the negative logarithm of the unnormalized posterior density is strongly con-
vex, and its gradient is Lipschitz; the strong convexity- and Lipschitz constants are independent of 
x. Therefore, using HMC for example, by appropriately choosing a duration parameter and a dis-
cretization step size, we can show that the bias of the above score estimate diminishes uniformly 
over x (Bou-Rabee et al., 2020). 

4.1.1 Type-I error and test power 
We investigate the finite-sample performance of the proposed test in terms of type-I error and 
power rates. We generate data from a PPCA model R = PPCA(A, ψ). The dimensions of the ob-
servable and the latent are set to D = 100, Dz = 10, respectively. Each element of the weight ma-
trix A is drawn from a uniform distribution U[0, 1] and fixed. The variance parameter ψ is set to 1.
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As PPCA models have tractable marginals, we also compare our test with the KSD test using exact 
score functions (i.e., no MCMC simulation), which serves as the performance upper-bound. The 
MCMC sampler we use is HMC; more precisely, we use the NumPyro (Phan et al., 2019) imple-
mentation of No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014); we take t = 200 burn-in 
samples and m = 500 consecutive draws for computing a score estimate ̅s p.

We use two kernel functions: (a) the exponentiated quadratic (EQ) kernel 
k(x, x′) = exp { − ‖x − x′‖22/(2λ2)}, and (b) the IMQ kernel (9) with β = 0.5, c = 1, and Λ = λ2I.
All three tests use the same kernel function, which allows us to investigate the effect of using 
the Stein-modified kernel. The length scale parameter λ is set to the median of the pairwise 
(Euclidean) distances of holdout samples from R so that the parameter (and thus the hypothesis) 
is fixed across trials. We include the EQ kernel in our comparison, as the population MMD is pos-
sible to compute, allowing us to verify the hypothesis in advance. 

We simulate null and alternative cases by perturbing the weight parameter A; we add a positive 
value δ > 0 to the (1, 1)-entry of A. Let us denote a perturbed weight by Aδ. Note that the data 
PPCA model has a Gaussian marginal N (0, AA⊤ + ψ2Ix). Therefore, this perturbation gives a 
model N (0, AδA⊤

δ + ψ2Ix), where the first row and column of AδA⊤
δ deviate from those of AA⊤.

The perturbation is additive and increasing in δ, as each element of A is positive. We create a prob-
lem by specifying perturbation parameters (δP, δQ) for (P, Q). For the EQ-kernel MMD, we nu-
merically confirmed that the perturbation gives a worse model for a larger perturbation. While 
the population KSD is not analytically tractable, this perturbation affects the score function 
through the covariance matrix, and the same behavior is expected for KSD; see Online 
Supplementary Material, Section B.6 in the supplement for details. 

Problem 1 (null). We create a null scenario by choosing (δP, δQ) = (1, 1 + 10−5) (P has a smaller 
covariance perturbation and is closer to R than Q). For different null settings, we refer the reader 
to Online Supplementary Material, Section C.4 in the supplement. We run the tests with signifi-
cance levels α = 0.01, 0.05. Table 1 reports the finite-sample size of the three tests for significance 
level α = 0.05. The result for α = 0.01 is omitted as none of the tests rejected the hypotheses. The 
size of the proposed LKSD test is indeed controlled. The extremely small type-I errors of the KSD 
tests are caused by the sensitivity of KSD to this perturbation; the population KSD value is negative 
and far from zero, and the test statistics easily fall in the acceptance region. The other two tests also 
have their error rates lower than the significance level. Note that their test thresholds are deter-
mined by treating the population discrepancy differences as zero, resulting in conservative tests. 

Problem 2 (alternative). We investigate the power of the proposed test. We set up an alternative 
scenario by fixing δP = 2 for P and δQ = 1 for Q. For comparison with different parameter settings, 
please see Online Supplementary Material, Appendix C.1. The significance level α is fixed at 0.05.
All the other parameters are chosen as in Problem 1. Figure 1 shows the plot of the test power 
against the sample size in each problem. The KSD reaches a near 100 percent rejection rate rela-
tively quickly, indicating that information from the score function is helpful for these problems. 

Table 1. Type-I errors the MMD test of Bounliphone et al. (2016), the proposed LKSD test, and the KSD test in PPCA 
problem 1 

Sample size n Rejection rates  

EQ-med IMQ-med  

MMD LKSD KSD MMD LKSD KSD  

100  0.000  0.013  0.000  0.000  0.010  0.000 

200  0.000  0.000  0.000  0.000  0.000  0.000 

300  0.003  0.007  0.000  0.003  0.003  0.000 

400  0.003  0.007  0.000  0.003  0.000  0.000 

500  0.007  0.013  0.000  0.007  0.007  0.000 

Note. Rejection rates are computed on 300 trials with significance level α = 0.05. The columns EQ-med and IMQ-med 
denote EQ and IMQ kernels with the median bandwidth, respectively.   

14                                                                                                                                             Kanagawa et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad050/7153413 by U
niversity C

ollege London user on 02 June 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data


The effect of the score approximation is negligible in this experiment, as the power curve of the 
LKSD test overlaps with that of KSD. The power of the MMD test is substantially lower than 
the other tests, indicating that the MMD is insensitive to this perturbation to the covariance. 

4.1.2 Effect of kernel parameter choice 
Dependency on scaling parameter. Using Problem 2 above, we examine how the test power is 

affected by the scaling parameter. We use the EQ and IMQ kernels as above, and choose their scal-
ing parameter λ2 from {10−3, 10−2, . . . , 103}. For each n ∈ {100, 300}, we run 300 trials and es-
timate the test power of the LKSD and MMD tests. Figure 2 plots the power curves of the tests. We 
can see that the high-power region of the EQ kernel is localized while the IMQ kernel’s power 
curves are flat, indicating that the IMQ kernel does not depend on the parameter as much as 
the EQ. Therefore, for this problem, the IMQ kernel can be seen as more robust against misspe-
cification of the scaling parameter. Nonetheless, with the right choice of the scaling parameter, the 
EQ kernel yields higher power for both MMD and KSD tests. It can be considered that the distinc-
tion arises because of the local nature of the difference between the two distributions; the EQ ker-
nel is more sensitive in choosing features used to compute the KSD (see Online Supplementary 
Material, Section B.7). 

Different parameterization. We also consider a different parameter choice for the precondition-
ing matrix. Here, we compare the median-scaled IMQ kernel with the same kernel having a covari-
ance preconditioning matrix, as suggested in Section 3.4. Figure 3 shows the power curves of the 
three tests. Here, the relation between the MMD and KSD tests is overturned, and the KSD test 
struggles to detect the perturbation to the covariance. This result demonstrates that certain kernel 
choices can make the testing problem more challenging than others. Using multiple kernels, rather 
than relying on a single choice, could therefore robustify the evaluation, at the expense of a loss of 
power due to multiple testing correction. 

4.1.3 Quality of Markov chain samplers 
The asymptotic property of our test (Corollary 1) hinges on the quality of the Markov chain sam-
plers. This section studies the effect of these Markov chains on the inference. We vary the burn-in 
size t and the score approximation sample size m, which is expected to affect the type-I error rate 
and the power of the test. In the experiments below, we set α = 0.05. We choose t from 
{50, 100, . . . , 600} and m from {1, 10, 100, 1,000}.

In our first experiment, as in the previous sections, we use the NUTS with the same initialization 
strategy for both models. With n = 300, we run the test using Problems 1 and 2 above. Figure 4 
shows rejection rates of the test for different settings of t and m. In both cases, the burn-in length t 
does not affect the test’s performance, indicating the fast convergence of the sampler. The import-
ance of a larger value of m can be seen when the alternative hypothesis holds, since the test power 
improves as m increases. The improved performance is likely due to reduced variance. 

(a) (b)

Figure 1. Power curves of the MMD test of Bounliphone et al. (2016), the proposed LKSD test, and the KSD test 
with the exact score function in PPCA Problem 2. The perturbation parameters are set as (δP , δQ = 2, 1). each result 
is computed on 300 trials. The significance level α = 0.05. Markers: ▿ (the LKSD test); ✩ (the KSD test); ○ (the 
relative MMD test). (a) EQ kernel with median scaling and (b) IMQ kernel with median scaling.   
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We next consider a slow-converging sampler for which the burn-in length t becomes crucial. We con-
sider the null case (Problem 1) and replace the sampler for the first model P with MALA. We set the step 
size for the MALA sampler to make its convergence slow; we use the step size of 10−4D−1/3

z .We ini-
tialize the two samplers differently to make sure that the resulting distributions differ when the sam-
plers have not converged: the MALA sampler for P is initialized with samples from a Gaussian 
N {(1, . . . , 1), Iz} and the NUTS sampler for Q a uniform distribution U[ − 2, 2]Dz . Figure 5 demon-
strates the relation between type-I error rates and choices of t and m. In contrast to the previous experi-
ment, the burn-in has a clear effect on the type-I error: insufficient burn-in leads to uncontrolled error 
rates. The right panel (n = 300) shows that the test has substantially higher type-I error rates than in the 
left (n = 100). Comparison between these cases illustrates that a larger sample size n requires more in-
tensive burn-in, as the test becomes more confident to reject. A large value of m improves the test as in 
the previous experiment. It can be understood that the contribution of burn-in samples is negligible in 
the score approximation. Although our analysis in Corollary 1 requires long burn-in, taking large m 
appears to be more important in practice, especially under a computational budget constraint. This 
experiment thus confirms the importance of the quality of the sampler. 

4.2 Dirichlet process mixtures 
Our next experiment applies our test to a Dirichlet process mixtures (DPM) model. Let ψ(x | z) be a 
probability density function on RD. We consider a mixture density 

�

ψ(x | z) dρ(z), (10) 

(a) (b)

Figure 2. Power curves of the proposed LKSD test and the MMD test in PPCA Problem 2. The perturbation 
parameters are set as (δP , δQ = 2, 1). each result is computed on 300 trials. The significance level α = 0.05.Markers: 
▿ (LKSD test with IMQ kernel); □ (LKSD test with EQ kernel); ○ (MMD test with IMQ kernel); × (MMD test with EQ 
kernel). (a) n = 100 and (b) n = 300.  

Figure 3. Power curves of the MMD test, the proposed LKSD test, and the KSD test in PPCA Problem 2. All the test 
use the covariance-preconditioned IMQ kernel. The perturbation parameters are set as (δP , δQ = 2, 1). Each result is 
computed on 300 trials. The significance level α = 0.05.Markers: ▿ (the LKSD test); ✩ (the KSD test); ○ (the relative 
MMD test).   
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where ρ is a Borel probability measure on a Polish space Z.A DPM model (Ferguson, 1983) places 
a Dirichlet process prior DP(a) on the mixing distribution ρ. Thus, a DPM model DPM(a) assumes 
the following generative process: 

xi|zi, ϕ, F ∼ind.ψ(x | zi), zi|F ∼i.i.d. F, F ∼ DP(a).

Here, a is a finite Borel measure on Z. Note that the marginal density (on a single observation) is 
given by 

EF

�

ψ(x | z) dF(z)
 

.

Although the prior has an infinite-dimensional component, the required conditional score func-
tion is simply sψ(x | z, ϕ); thus we only need to sample from a finite-dimensional posterior 
PZ(dz |x). If a model is conditioned on held-out data D, then the predictive density p(x|D) is 
EF | D[


ψ(x | z) dF(z)], which may be used to estimate the density (10). The score function is given 

by the expectation of sψ(x | z) with respect to the posterior 

ψ(x | z, ϕ)
p(x | D)

F̅D(dz) 

with ̅FD being the mean measure of PF(dF|D). Sampling from the posterior can be performed with a 
combination of the Metropolis–Hastings algorithm and Gibbs sampling (see, e.g., Ghosal & van 

(a) (b)

Figure 4. The effect of MCMC quality on the test’s performance. Rejection rates against burn-in size t with varying 
Markov chain sample size m. PPCA Problems 1 and 2 with α = 0.05. Both samplers use NUTS. Markers: ▿ (m = 1); ◃ 
(m = 10); ▵ (m = 100); ▹ (m = 1,000). (a) Problem 1 (null H0 is true) and (b) Problem 2 (alternative H1 is true).  

(a) (b)

Figure 5. The effect of a poor MCMC sampler on the test. Type-I error rates against the burn-in size t with varying 
Markov chain sample size m. PPCA Problem 1 (the null H0 is true). The dark dashed line indicates the significance 
level α = 0.05. The samplers for P and Q are respectively MALA and NUTS. Markers: ▿ (m = 1); ◃ (m = 10); ▵ 
(m = 100); ▹ (m = 1,000). (a) n = 100 and (b) n = 300.   
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der Vaart, 2017, Chapter 5). For the score formula and the MCMC procedure, we refer the reader 
to Online Supplementary Material, Section B.8 in the supplement. By setting ψ to an isotropic nor-
mal density, for example, we can guarantee the integrability assumption in Lemma 1 (see Online 
Supplementary Material, Section B.3). 

Our problem below considers comparing the predictive densities defined by two models with 
different Dirichlet process priors. Note that since candidate models P, Q here are point estimates 
derived from their respective posterior means of F, we discard some aspects of uncertainty in es-
timating the target (10); our setting only concerns evaluating the quality of those point estimates in 
approximating the data generating distribution R.

Experiment details. For the data distribution R, we use the mixture (10) defined by ψ(x | z) = 
N (x; z, 2I) and ρ =N (0, I); this choice yields R =N (0, 3I). We consider the following simple 
Gaussian DPM model GDPM(μ): 

xi ∼ind.
N (zi, 2I), zi ∼i.i.d. F, F ∼ DP(a), a =N (μ, I), 

where μ ∈ RD. Note that without conditioning on observations, the model’s marginal density is 
simply a Gaussian distribution N (μ, 3I), which does not require approximation. 

We therefore compare predictive distributions, i.e., we compare two GDPM models condi-

tioned on training data Dtr = {x̃i}
ntr
i=1 ∼i.i.d.R. We consider two GDPM models with wrong priors, 

where their prior means are shifted. Specifically, we take two models chosen as Q = GDPM(1̅) 
and P = GDPM(δ1̅) with ̅1 = 1/

���
D
√

.Unlike the preceding experiments, we condition the two mod-
els on the training data and obtain the predictive distributions, denoted by PDtr and QDtr , respect-
ively; our problem is thus the comparison between PDtr and QDtr . The distributions now require 
simulating their posterior, and we use a random-scan Gibbs sampler and the Metropolis algorithm 
with a burn-in period t = 1,000 and the size of the latents m = 500. For sampling observables from 
the models, we use a random-scan Gibbs sampler with a burn-in period 2,000. We expect that if 
the training sample size ntr is small, a larger perturbation would give a worse model as the effect of 
the prior is still present; we thus set ntr = 5. Due to the small sample size, the expected model re-
lation might not hold, depending on the draw of Dtr. Therefore, we examine the rejection rates of 
the LKSD and MMD tests, averaged over 50 draws; for each draw of Dtr, we estimate the rejection 
rates based on 100 trials. Our problem is formed by varying the perturbation scale δ for PDtr , which 
is chosen from a regular grid {0.5, 0.6, . . . , 0.9, 1.1, . . . , 1.5}. This construction gives a null case 
when δ < 1, the alternative otherwise. We set the dimension D to 10 and the significance level α to 
0.05. As in Section 4.1, we use the IMQ kernel with median scaling. 

Figure 6 reports the rejection rates of the two tests for each of n ∈ {50, 100, 200}.Note that the 
curves in the graph do not represent type-I errors nor power, as they are rejection rates averaged 
over draws Dtr, each of which forms a different problem. It can be seen that on average, both tests 
have correct sizes (δ < 1). In the alternative regime (δ < 1), the LKSD test underperforms the MMD 
with a small sample size (n = 50); however, its improvement in power is faster and exceeds the 
MMD at n = 200. These results imply that the LKSD estimate has a large variance for a small sam-
ple size, whereas its estimand (the population difference) is also larger, and thus the mean of the 
test statistic diverges faster. Thus, it may be understood that the KSD is more sensitive to model 
differences in this setting. 

4.3 LDA 
Our final experiment studies the behavior of the LKSD test on discrete data using LDA models. 
LDA is a mixed-membership model (Airoldi et al., 2014) for grouped discrete data such as text 
corpora. We follow Blei et al. (2003) and use the terminology of text data for ease of exposition. 
Accordingly, the following terms are defined using our notation. A word is an element in a discrete 
set (a vocabulary) {0, . . . , L − 1} of size L. A document x is a sequence of D words, i.e., x ∈ 
{0, . . . , L − 1}D is a D-dimensional discrete vector. A prominent feature of LDA is that it groups 
similar words assuming that they come from a shared latent topic, which serves as a mixture com-
ponent. An LDA model assumes the following generative process on a corpus of documents {xi}

n
i=1:  
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1. For each document i ∈ {1, . . . , n}, generate a distribution over K topics θi ∼i.i.d.Dir(a) (the 
Dirichlet distribution), where θi is a probability vector of size K ≥ 1.

2. For the jth word xj
i , j ∈ {1, . . . , D} in a document i,  

(a) Choose a topic z j
i ∼i.i.d.Cat(θi).

(b) Draw a word from x j
i ∼i.i.d.Cat(bk), where bk is the distribution over words for topic k, 

and the topic assignment z j
i = k. 

Here, a = (a1, . . . , aK) is a vector of positive real numbers, and b = (b1, . . . , bK)⊤ ∈ [0, 1]K×L rep-
resents a collection of K distributions over L words. In summary, an LDA model P = LDA(a, b) 
assumes the factorization 

n

i=1

p(xi | zi, θi; a, b)p(zi, θi; a, b) =
n

i=1

D

j=1

p(xj
i | z

j
i , b)pz(z

j
i | θi)

 

pθ(θi | a), 

where zi and θi act as latent variables. 
Because of the independence structure over words, the conditional score function is simply given as 

s p(x | z, θ, a, b) = s p(x | z, b) =
p(x̃ j | z j, b)
p(x j | z j, b)

− 1
 

j=1,...,D
, where x̃ j = x j + 1 mod L.

Score approximation requires the posterior distribution p(z |x; a, b) with respect to z.
Marginalization of θ renders latent topics dependent on each other, and thus the posterior is intract-
able. A latent topic is conjugate to the corresponding topic distribution given all other topics. 
Therefore, an MCMC method such as collapsed Gibbs sampling allows us to sample from 
p(z |x; a, b). As the observable and the latent are supported on finite sets, the use of Lemma 1 is jus-
tified; the finite moment assumptions in Corollary 1 are guaranteed; and the consistency of the popu-
lation mean and variance of the test statistic follows from the convergence of E(t)

z |x [̅sp(x | z)] and 

E
(t)
w |x [̅sq(x |w)] for each x ∈ X .

4.3.1 Synthetic data—prior sparsity perturbation 
In the below two problems, we observe a sample {xi}

n
i=1 from an LDA model R = LDA(a, b). The 

number of topics is K = 3. The hyper-parameter a is chosen as a = (a0, a0, a0); for model R, we set 
a0 = 0.1. Each of three rows in b = (b1,b2, b3)⊤ ∈ [0, 1]3×L is fixed at a value drawn from the sym-
metric Dirichlet distribution with all the concentration parameters one, and the vocabulary size is 
L = 10,000. Each xi ∈ {0, . . . , L − 1}D is a document consisting of D = 50 words. 

(a) (b) (c)

Figure 6. Comparison in Gaussian Dirichlet mixture models. Rejection rates plotted against the perturbation 
parameter δ. The sample size n is chosen from {50, 100, 200}. The rejection rates are averaged over draws of Dtr.

The supposed null and alternative regimes are δ < 1 and δ > 1, respectively. Markers: ▿ (the LKSD test); ○ (the 
relative MMD test). The dark dashed line indicates the significance level α = 0.05. The errorbars indicate the 
standard deviations of the estimated rejections rates. (a) n = 50. (b) n = 100 and (c) n = 200.   
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We design problems by perturbing the sparsity parameter a0. Recall that Dir(a) is a distribution 
on the (K − 1)-probability simplex. A small a0 < 1 makes the prior pθ(θi | a) = Dir(a) concentrate 
its mass on the vertices of the simplex; the case a0 = 1 corresponds to the uniform distribution on 
the simplex; choosing a0 > 1 leads to the prior mass concentrated on the center of the simplex. The 
data distribution R (with a0 = 0.1) is thus intended to draw sparse topic proportions θi, and a 
document xi is likely to have words from a particular topic. By increasing a0, we can design a de-
parture from this behavior. Therefore, as in the PPCA experiments, we additively perturb a0 with 
parameters (δP, δQ) for respective candidate models (P, Q).

As LDA disregards word order, we need a kernel that respects this structure. We use the 
Bag-of-Words (BoW) IMQ kernel k(x, x′) = (1 + ‖B(x) − B(x′)‖22)−1/2; it is simply the IMQ kernel 
computed in the BoW representation B(x) ∈ {0, 1, 2, . . . , D}L whose ℓth entry (counting from 0 
to L − 1) is the count of the occurrences of word ℓ ∈ {0, . . . , L − 1} in a document x. By Online 
Supplementary Material, Lemma 8 in Section B.9.1, this choice ensures that arbitrary reordering 
of text sequences does not change the KSD value; i.e., the KSD does not assess models by their abil-
ity to generate sequences. We also tested differing input-scaling values and found that the band-
width of the IMQ kernel did not have a significant effect on the test power (Online 
Supplementary Material, Section C.3.2). 

For score estimation in the LKSD test, we use a random scan Gibbs sampler; we generate m = 
1,000 latent samples after t = 4,000 burn-in iterations. 

Problem 1 (null). We create a null situation by having (δP, δQ) = (0.5, 0.6). In this case, Q′s prior 
on θ is less sparse than that of P. Table 2 shows the size of the different tests for significance levels 
α = 0.05; the result for α = 0.01 is omitted as both tests did not reject the hypothesis. It can be seen 
that the rejection rates of both tests are bounded by the nominal level. 

Problem 2 (alternative). We consider an alternative case in which the sparsity parameters are 
chosen as (δP, δQ) = (1.0, 0.5) (we consider other parameter choices in Online Supplementary 
Material, Appendix C.3). Here, the model Q is expected to have less mixed topic proportions.  
Table 2 demonstrates the power of the MMD and LKSD tests. The power of the LKSD test im-
proves as the sample size n increases, whereas the MMD has almost no power in this case. In 
this problem, the topics b are not sparse enough for each topic to have a sufficiently distinctive vo-
cabulary. Thus, the problem is challenging for the MMD, as it is unable to find distinguishing 
words, in addition to the high-dimensionality. By contrast, the KSD is able to distinguish the mod-
els by taking advantage of their underlying structure. 

4.3.2 Synthetic data—topic perturbation 
We provide a negative example to illustrate a failure mode of the LKSD test for discrete data. The 
data are generated as in the previous section, whereas we construct two models differently. We set 
up a model by perturbing the topics of the data model R. That is, a model is given by LDA(a, bδ) 
with bδ = (1 − δ)b + δbptb with 0 < δ < 1.We choose bptb as we did for b; the value is drawn inde-
pendently of b. We set the perturbation parameter for Q as δ = 0.01 and vary it for P, where the 
value is chosen from {0.06, 0.11, . . . , 0.51}. Thus, P is morphed from b to bptb and therefore ex-
pected to underperform Q as perturbation δ increases. We run trials with n = 300. For score esti-
mation, we take m = 10,000 and t = 4,000.

Figure 7 shows the plot of rejection rates against perturbation parameters. We see that the 
power of the LKSD test degrades as the perturbation increases. As P’s topic becomes close to 
bptb, some words in the target’s topic b become rare and therefore fall in the low probability region 
of P. This situation leads to increasing variance of the test statistic as δ increases, because the score 
function contains the reciprocal 1/p(x). The LKSD test can therefore fail when the support of the 
model is severely mismatched to that of the data, since the high variance of the statistic makes it 
difficult to detect significant departures from the null. Note that this observation does not apply to 
the continuous counterpart as the score can be written as the gradient of the logarithm of the dens-
ity, which is typically numerically stable. 

4.3.3 Comparing topic models for arxiv articles 
Our final experiment investigates the test’s performance using the arXiv dataset (Cornell 
University, 2020). The dataset consists of meta information of scholarly articles on the e-print  

20                                                                                                                                             Kanagawa et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkad050/7153413 by U
niversity C

ollege London user on 02 June 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkad050#supplementary-data


service arXiv. We treat the abstract of an article as a document and use paper categories to set up 
a problem. Specifically, we construct a problem by choosing three paper categories for model 
P, Q and the data distribution R. Unlike the preceding experiments, for a model category, we 
fit an LDA model to the dataset of abstracts in the category. As the KSD requires the number 
of words to be fixed, then for a given data category, we extract abstracts of length no less than 
D = 100 and subsample excess words. This process yields a dataset of articles of equal length 
D; for each trial, we obtain the data {xi}

n
i=1 by subsampling from the larger set of articles. 

Thus, our problem is to compare two LDA models trained on different article sets and assess their 
fit to the dataset. 

In the following experiments, we examine the power of LKSD and MMD tests. We vary the 
sample size n from 100 to 500. We fix the dataset category to stat.TH (statistics theory) and inspect 
two combinations of model categories. To train an LDA model LDA(a, b), we use the Gensim im-
plementation (Rehurek & Sojka, 2011) of the variational algorithm of M. Hoffman et al. (2010). 
For sparsity parameters a, we use the parameter returned by this algorithm; we point-estimate 
topics b using the mean of the topics under the variational distribution. The number of topics is 
set to 100. The vocabulary set is comprised of words that appear in the abstracts of three chosen 
categories. As in the previous experiments, we use the IMQ-BoW kernel for both tests. We fix the 
significance level α at 0.05. 

As we have seen the numerical instability issue in the previous section, we also consider an 
alternative KSD that is stable but computationally more expensive, as mentioned in Section  
2.1 and the supplement (Online Supplementary Material, Section B.2). For this, we take a 
burn-in size t = 500 and a Markov chain size m = 1,000. We denote this method by 
LKSD-stable. 

Probability theory vs statistical methodology. We choose math.PR (mathematics probability 
theory) for P and stat.ME (statistics methodology) for Q. In addition to the taxonomic proximity 

Table 2. Rejection rates of the MMD test and the LKSD test in LDA experiments 

(a) Type-I errors of the KSD and MMD tests in LDA Problem 1; (δP, δQ) = (0.5, 0.6). The significance level 
α = 0.05.

Sample size n Rejection rates  

MMD LKSD  

100  0.003  0.013 

200  0.010  0.007 

300  0.007  0.003 

400  0.003  0.007 

500  0.007  0.010   

(b) Power of the KSD and MMD tests in LDA Problem 2; (δP, δQ) = (1.0, 0.5). The significance level α is chosen 
from {0.01,0.05}.

Sample size n Rejection rates  

Level α = 0.01 Level α = 0.05  

MMD LKSD MMD LKSD  

100  0.000  0.010  0.007  0.070 

200  0.003  0.030  0.010  0.183 

300  0.000  0.097  0.003  0.283 

400  0.000  0.197  0.010  0.463 

500  0.000  0.280  0.007  0.570 

Note. Each result is based on 300 trials.   
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to stat.TH, the category stat.ME has a larger proportion of articles shared with the target category: 
3, 121 of 18, 973 (stat.ME) vs. 2, 884 of 46, 769 (math.PR). Thus, we expect Q to outperform P.
This combination results in a vocabulary set of size L = 126, 190. For score estimation, we set the 
burn-in length t to 500 and the Markov chain sample size m to 5,000. Additionally, we run the 
LKSD test with m = 15,000 (labelled LKSD-extra) and the MMD test with the model sample 
size nmodel = 10,000 (labelled MMD-extra). The sample size nmodel is thresholded at 10,000 as 
the computational cost exceeds that of the LKSD test (in fact, sampling in this case makes the 
MMD by an order of magnitude slower due to the large vocabulary size). 

Table 3 summarizes the result. The MMD test underperforms all the KSD-based tests; extra 
sampling did not lead to a significant improvement. We can see that increasing the Markov chain 
size m boosts the LKSD test, as it reduces the variance of the score estimator. The low power of the 
MMD test indicates that the model difference is too subtle to discern from the word compositions 
of generated documents; the LKSD tests offer a different viewpoint based on the model informa-
tion. 

Machine learning vs statistical methodology. Our second experiment uses cs.LG (computer sci-
ence machine learning) for P, while Q uses the same category as the previous experiment. With 
this combination, the vocabulary size L is 208, 671. By the same reasoning as above, the second 
model Q is expected to be better than P. We run the same tests as above and compare their 
performances. 

Table 4 summarizes the result. This experiment serves as a negative case study for the LKSD test: 
the MMD tests achieved power 1 for all sample-size choices (MMD-extra is omitted here), where-
as the power of the LKSD test does not exceed even the significance level α for most sample size 
settings (LKSD-extra is omitted as increasing the Markov chain size did not improve the power). 
We attribute this failure to the unmatched support of the model P in the test distribution. This rea-
soning is supported by the high power of the MMD, as the BoW feature easily detects deviation of 
document patterns in this case. Thus, as we noted in the synthetic experiment in Section 4.3.2, the 
LKSD test fails when there is a severe mismatch in data and model support. The stable LKSD test 
approaches the same level as the MMD at n = 500, but still underperforms. While stable, the KSD 
used for this test can also suffer from the mismatch of the support, since it depends on the same 
density ratio as in the unstable counterpart. 

5 Conclusion 
We have developed a test of relative goodness of fit for latent variable models based on the kernel 
Stein discrepancy. The proposed test applies to a wide range of models, since the requirements of 
the test are mild: (a) models have MCMC samplers for inferring their latent variables, and (b) 
likelihoods have evaluable score functions. The proposed test complements existing model 

Figure 7. Power estimates plotted against perturbation parameters δ. The significance level α = 0.05; the sample 
size n = 300. Markers: ▿ (the LKSD test); ○ (the MMD test).   
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evaluation techniques by providing a different means of model comparison, which takes advan-
tage of the known model structure. Our experimental results confirm this view—the relative 
MMD test was unable to detect subtle differences between models in several of our benchmark 
experiments. 

Our asymptotic analysis of the test statistic indicates that the test could suffer from bias if the 
mixing of the deployed MCMC sampler is slow. Removing the assumptions on the bias and the 
moments in Theorem 1 is certainly desirable; we envision that the recent development of unbiased 
MCMC (Jacob et al., 2020) could be used to construct an alternative unbiased KSD estimator, and 
leave this possibility as future work. While we have focused on comparing two models, extensions 
to ranking multiple models are possible as in Lim et al. (2019). Finally, the technique used in this 
article can be applied to other Stein discrepancies requiring the score function (Barp et al., 2019;  
Xu & Matsuda, 2020); one interesting application would be the KSD for directional data (Xu & 
Matsuda, 2020), where densities with computable normalizing constants are scarce. 
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Table 3. Rejection rates of the MMD test and the LKSD test in the math.PR vs. stat.ME experiment 

Sample size n Rejection rates  

MMD MMD-extra LKSD LKSD-extra LKSD-stable  

100  0.150  0.157  0.333  0.673  0.437 

200  0.160  0.167  0.807  0.880  0.845 

300  0.197  0.207  0.913  0.980  0.950 

400  0.180  0.187  0.950  0.986  0.970 

500  0.267  0.263  0.966  0.993  0.983 

Note. Each result is based on 300 trials.  

Table 4. Rejection rates of the MMD test and the LKSD test in the cs.LG vs. stat.ME experiment 

Sample size n Rejection rates  

MMD LKSD LKSD-stable  

100  1  0.000  0.287 

200  1  0.007  0.643 

300  1  0.013  0.833 

400  1  0.013  0.873 

500  1  0.113  0.923 

Note. Each result is based on 300 trials.   
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