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Abstract—This paper describes the effects of running in-
network quality adaption by trimming the packets of layered
video streams at the edge. The video stream is transmitted
using the BPP transport protocol, which is like UDP, but has
been designed to be both amenable to trimming and to provide
low-latency and high reliability. The traffic adaption uses the
Packet Wash process of BPP on the transmitted Scalable Video
Coding (SVC) video streams as they pass through a network
function which is BPP-aware and embedded at the edge. Our
previous work has either demonstrated the use of SDN controllers
to directly implement Packet Wash, or the use of a network
function in the core of the network to do the same task.
This paper presents the first attempt to deploy and evaluate
such a process in the edge. We compare the performance of
transmitting video using BPP and the Packet Wash trimming,
against alternative transmission schemes, namely TCP, UDP, and
HTTP Adaptive Streaming (HAS). The results demonstrate that
providing traffic engineering using in-network quality adaption
using packet trimming, provides high quality at the receiver.

Index Terms—Edge Computing, High-speed Packet Processors,
Packet Trimming, Traffic Engineering, SVC Video

I. INTRODUCTION

Recent emerging technologies in networking such as the
use of softwarized and virtualized network functions and edge
computing, together with new protocols, provides a flexible
infrastructure which can be tailored to the various requirements
specific to Internet applications. Multimedia applications, be-
ing one of the most popular applications on the Internet, have
become demanding of resources. This is amplified with the
growth in user expectations and the characteristics of challeng-
ing applications such as remote surgery, AR/VR, and mobile
broadcasting. Therefore, although current video streaming
applications and standards achieve a good performance today,
those future applications will continue to force network and
service operators to evolve towards applications providing
lower latency, higher reliability, and more adaptivity.

The high traffic volume created by video streaming applica-
tions can cause an increase in packet losses, which results in
increased latency due to the retransmissions. Although there
are a number of techniques for addressing this in the server
and the client, Packet Trimming is a promising technique that
can be used to reduce the number of packets lost [1]. Packet
Trimming is a relatively new idea which relies on very fast
hardware to adjust the size of a packet during its transmission

over the network [2] [3]. When the network becomes limited,
the packets are trimmed according to the bottleneck link
capacity rather then dropping the whole packet.

Currently, none of the standard protocols support packet
trimming directly. BPP is a protocol that can utilize trimming
in its design [4]. BPP has been designed as one of the protocols
used for the low latency and high reliability applications in
future networks. From its introduction in 2018 [4], there are a
number of studies related to BPP, which show its usage. The
use of the Packet Wash process, where chunks in packets are
trimmed, has been shown to reduce latency in [2].

In this paper, we propose an architecture, which is based on
Packet Trimming and the BPP protocol to provide low latency
with high Quality of Experience (QoE) for video streaming
applications. We consider a scenario, where there are clients
having different resolutions and rendering capabilities, hence,
the quality of the video should be adapted. Although, video
streaming, using HTTP Adaptive Video Streaming (HAS),
is the most prevalent and successful application in which
the clients adapt the video quality on the basis of observed
network parameters, in this study, we implement in-network
video quality adaptation with the packet trimming approach.

In general, Wide Area Networks (WAN) have the capacity to
transfer video with high quality, however, the bottleneck links
are at the edge where the clients connect to the network. As
each client is different, their network attributes are different,
and the rendering capabilities of each device can be different, a
streaming system has many aspects to factor in. By considering
these, in our architecture the server always transfers the video
at the highest quality, and we rely on the edge to address the
client aspects. We utilize the Packet Wash facilities in BPP to
implement packet trimming, and we virtualize the BPP-aware
network functions at the edge. When the packets arrive to the
edge, the BPP-aware function handles them by implementing
packet trimming based on the characteristics of each client,
and then sends the potentially trimmed packets to the client.
The video transmitted is encoded by using a layered codec,
namely H.264 Scalable Video Coding (SVC) which makes
video packet trimming suitable because of its characteristics
that allows quality adaptation by extracting layers.

No one had previously tested sending media streams using
packet trimming, but we designed and built an implementation



of such a system, and provided some preliminary evaluations
in our previous work [5] and [6]. Those initial results showed
that in-network video quality adaptation can be a promising
technique that can meet the requirements of emerging and
future video streaming applications. In those studies, we
used an SDN controller that implements the BPP functions.
However, these studies also showed that the implementation
architecture has a remarkable impact on QoE. Processing in
the core network creates more load at the center when handling
multiple streams, it is also far from the client, and it is harder
to deal with the various client differences. Hence, we propose
a new architecture that provides higher QoE, is able spread the
processing load, and is closer to the clients. The contributions
of this paper are threefold. First, we show the potential
advantages of in-network quality adaptation by comparing it
to HAS. The next contribution is an architecture that uses the
edge and virtualized BPP functions for delivery. We compare
various protocols, and provide experimental results showing
the QoE obtained, and we also discuss the issues caused
by implementing the packet trimming process directly in an
ONOS SDN controller, showing that deep packet inspection
and packet updates in ONOS is highly CPU intensive and is
not scalable. This new architecture is compatible with 5G/6G
and NFV and provides scalability and with optimized results.

The paper is structured as follows: Background is next, with
a description of the BPP Process in Section III, a comparison
of In-Network Quality Adaption versus HAS in Section IV, a
description of doing BPP processing at the edge in Section V,
and an evaluation of this in Section VI. The conclusions and
further work are in Section VII.

II. BACKGROUND

Layered video codecs such as Scalable Video Coding (SVC)
enables video sequences with various qualities from one
encoded video file [7]. After the video is captured, the video
frames are encoded with various parameter settings, which
produces a number of quality alternatives within the video,
by taking advantage of the similarities between the different
versions of the same frame. Using SVC video has been shown
to have a beneficial impact on video transmission [8].

The transmission of video is usually done in one of 2
ways: (i) as discrete packets using RTP over UDP, which is
unreliable and can have loss at the receiver, or (ii) as data
streams using HTTP over TCP, which is reliable, but can
have delay / latency at the receiver. With UDP, the receiving
application has to deal with packet loss in the network, but the
application does have direct control over requests for resends,
if they are needed. Using UDP works well when low latency
is important. With TCP, the receiver application is responsible
for dealing with the delay, which is commonly done by using
buffering techniques. However, as the application is presented
with a stream of bytes, it has no control over requesting
resends which is directly implemented in the TCP stack of
the kernel. Using TCP works well for video playback, where
there is no interactivity.

RTP is a protocol [9] devised to carry media streams with
a UDP transport. RTP packets have relative timestamps, and
it supports both Sender reports that have a mapping relative
to NTP timestamp, which can be used this for syncing, and
Receiver reports which present packet loss/jitter. RTSP is a
presentation-layer protocol that allows end-users to interact
with media servers via pause and play capabilities. RTSP
is a stateful protocol used for media delivery [10], using
RTP. WebRTC is a combination of standards, protocols, and
JavaScript APIs that enables Real-Time Communications via
a web browser [11], with a latency of sub-500 milliseconds.
WebRTC uses SRTP (Secure Real-time Transport Protocol) to
ensure that the exchanged data is secure and authenticated.

The HTTP protocol sits on TCP [12], and is common
for transmitting video, such as those used by CDNs, include
HTTP Adaptive Video Streaming (HAS) which is today’s de-
facto streaming technology. Dynamic Adaptive Streaming over
HTTP (DASH) [13] is a standard developed by MPEG, for
providing interoperability between the participants of HAS
deployments. The DASH server is designed to send segments
of video, of a few seconds length, at the requested quality. The
client can dynamically adapt the quality of the video being sent
by requesting segments of a different quality, and placing those
video segments into the decoder for viewing. To accommodate
various bandwidths, the source video is encoded multiple times
with a range of qualities. The higher the quality, the higher the
data rate, the bigger the file, and the more bandwidth used.

BPP was designed to be used for low latency and high
reliability applications [4]. It has been evaluated in a number of
studies to determine its effectiveness. In [14], combining BPP
with TSN (Time Sensitive Networking) was used to overcome
the limitations of TSN’s scalability and complexity issues. In
[15], BPP was used for computation offloading in Mobile Edge
Networks. Neither of those papers addressed multimedia over
BPP. Although BPP was designed for media transmission, our
previous work [5] and [6] was the first actual implementation
of video streaming using BPP, and for determining the effects
of sending video over BPP. In [16] we demonstrated that in-
network adaption can be provided when using SVC combined
with the BPP protocol. A more detailed description of the
techniques and mechanisms used for carrying the streams of
SVC video from servers to clients, using the BPP Packet Wash
mechanism is presented in our paper [17].

Work on Packet Trimming has become of interest as hard-
ware has become fast enough to do in-transit packet updates.
Handley et al. considered trimming for the Data Center [1].
They define NDP, a novel data-center transport that achieves
near-optimal completion times for short transfers and high
flow throughput in a wide range of scenarios. With NDP, the
switches trim the packets to just headers and then priority
forward the headers. To improve round trip times across the
network, in [3] the authors suggest that trimming the whole
payload and only keeping the header, can only work well in
Data Centers where the dropped payload may be retransmitted
fast enough to the node that dropped the payload. Such a data
center approach does not generalize to full WANs. Selectively



trimming the packet, rather than the whole payload, offers
a less drastic mechanism that would work in the wide area
network. For enhancing end-to-end transport, a new transport
protocol is defined QUCO [18], which reacts to congestion
by selectively dropping parts of a payload packet (combined
with mitigation mechanisms to handle the loss of part of the
payload). Their scheme reduces the variation in the number of
packets going through the network, and has less delay and less
delay variations than TCP, with a resulting reduction in jitter.
Very recent work is [19], which investigates how trimming
can be implemented in existing programmable switches which
were not specifically designed for trimming. The implemen-
tation using P4 on the Tofino switch ASIC is presented.

Edge Computing is considered an extension of cloud com-
puting, whereby additional computational, data handling, and
networking resources are placed closer to the end systems. As
a consequence, the processes for data processing, networking,
data management, and storage can occur between the end
systems and the cloud servers, not just at the centralized cloud
servers. Edge Computing can be extremely useful for low-
latency applications, as well as applications that generate an
enormous amount of data that cannot be practically transferred
to cloud servers in real-time, due to proximity to the clients, or
bandwidth or time limitations [20]. In recent times, centralized
applications have evolved towards service-oriented architec-
tures and microservices, with small independent and loosely
coupled systems that deal with a very specific tasks being
virtualized and executed autonomously, especially at the edge.

III. BPP PROCESSING

To execute the required BPP processing of packets, BPP
enabled network nodes are necessary. The server is responsible
for constructing the packets, by creating the chunks and by
setting the significance value of each chunk.Our paper [17]
explains this process in detail. Fig. 1 shows the steps of
the Packet Wash process, whereby chunks can be trimmed if
the total amount of data transferred in a specific time period
exceeds the available bandwidth. 1 Packets are constructed
with a BPP header and a number of chunks, and transmitted
across the network. 2 When the packet arrives at a network
node, it is sent for processing. Each programmable network

Programmable 
Network Node 

Packet is transmitted Modified Packet is Forwarded

1 5 

Packet is sent
to the Node

Modified Packet is sent
back to the switch

2 4 

3 

Fig. 1: BPP Processing

node enumerates the number of bits transferred within each
time period, using the size of the packets. If the value exceeds
the available bandwidth, then it determines that trimming
should occur. 3 The node checks each packet to evaluate
which chunks should be trimming from the packet, according
to the available bandwidth measurements. Chunks are trimmed
one at a time, by considering the significance value field of
each chunk, such that the size of a packet should be reduced to
below the specified limit. Chunks whose significance value is
lower than a threshold are not trimmed in any circumstances,
and so the packet size may not be reduced as much as desired.
This means later packets will need more trimming. 4 The
packet, modified or not, is sent back to the switch, and 5

forwarded onwards. The client is responsible for collecting
the chunks from the packets, and reconstructing a valid data
stream, as shown in step 3 of Fig. 2.

The effects of Packet Wash trimming ensures that the client
receives a continuous stream of packets, and so always has
some meaningful data to process. This approach of using the
bandwidth is clearly different from UDP, where packets are
dropped when there is congestion. Although there is no more
usable bandwidth when sending with BPP, our previous work
has shown that it can be utilized and managed more effectively.

We presented the idea of in-network quality adaptation in
our work [16]. That paper showed that it was a promising
approach when compared to other both TCP and UDP. In [21]
we showed the full effects of Packet Wash on SVC video
in limited bandwidth environments. HTTP Adaptive Video
Streaming (HAS), being the one of the most popular video
streaming applications, provides an efficient client driven
adaptation when network conditions change. HAS clients
adapt the quality on the basis of both the observed and the
internal parameters, hence minimizing the negative impacts of
network condition changes on QoE. In this paper, we focus
on the potential advantages of in-network quality adaptation,
at the edge, over quality adaptation at the client.

IV. IN-NETWORK QUALITY ADAPTION VERSUS HAS

To show the potential advantages of in-network quality
adaption we compare it to HAS in order to determine its
effectiveness. Only by doing this we can determine if such
an approach has the benefits we are looking for. The first
approach we considered, in [5] and [6], utilized an ONOS
controller to implement the BPP packet wash process.

The video used in all the experiments is Big Buck Bunny.
The bitrate distribution for video qualities are slightly different
for HAS and other protocols, due to encoding aspects. For
the HAS experiments, we used the packetized video for HAS
systems given in [22]. The bitrates of the qualities of the
packetized encoded video used with HAS are 1 Mbps, 2 Mbps,
and 4.2 Mbps. In the other experiments, using BPP, UDP,
and TCP, the bitrates of the video layers are 1.1 Mbps, 1.9
Mbps, and 5.6 Mbps. However, these bitrates are increased
after the packetization. We decreased the bandwidth values in
accordance with the bitrate of the packetized video, in order
to provide a fair comparison in HAS experiments.
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Fig. 3: Quality Parameters using ONOS Controller for BPP Processing

A. On the Performance of In-Network Quality Adaption

We conducted a set of experiments using an ONOS con-
troller, based on the architecture in Fig. 2, with a number
of network conditions, on a Mininet environment [23]. We
compared the quality adaption with BPP against adaption with
HAS, as well as having regular transmission with UDP and
TCP, where there is no quality adaption. In these experiments,
the bandwidth of the path between the core network and
the client is limited and set to different values, namely 1.5
Mbps, 2 Mbps, 2.5 Mbps, and 3 Mbps. There is also one set
of experiments with dynamic network conditions, where the
bandwidth changes between 1 Mbps and 3 Mbps over time.

In Fig. 3, the different QoE parameters observed by different
protocols are presented. In Fig. 3a, the average bitrate of the
played video on the client’s side are given. In terms of this
QoE parameter, TCP outperforms other approach since TCP
client always get the video at the highest quality. However, this
behaviour has significant costs, with a high level of duration

of pauses, which is the one of the attributes that has a huge
negative impact on QoE, as seen in Fig. 3b. Due to its design,
the HAS client wisely applies a conservative approach to keep
the duration of pauses at minimum, where the clients always
request the video at the lowest quality. As the TCP and HAS
implementations do not change the quality over time, there is
almost no observable quality changes with these experiments,
in Fig 3c, whereas BPP and UDP have many changes. In Fig.
3d, the PSNR values observed for each protocol are given.
We see that TCP has the highest PSNR value since the server
sends video at the highest quality during the whole session.
BPP and HAS values for PSNR are similar, where the PSNR
values obtained with BPP is slightly higher than HAS.

Although the different QoE parameters observed in the
experiments provide some basic information about the nominal
perceived quality on the client side, an overall QoE value
gives a better idea about the general perceived quality. To
calculate this overall QoE value, a linear function is defined



QoEK
1 = α.

K∑
k=1

Qk − β.

K−1∑
k=1

|lk+1 − lk|

− γ.

K∑
k=1

dpk

(1)

dpk =

{
tsk − pk tsk ≥ pk
0 otherwise

(2)

based on one devised in [24]. The importance of different
QoE parameters is specified by setting different weights to the
different terms, based on their effects on perceived quality.

The QoE value formula is given in Equation 1 and it
calculates the overall QoE for the segments numbered between
k and K. In the formula, α, β, and γ are the weights used for
the QoE parameters. Qk represents the video quality in terms
of PSNR or video bitrate for the kth segment. lk is the layer of
the kth segment, therefore the second term in the formula given
the quality change level between two consecutive segments.
dpk represents the duration of pauses experienced during the
playout of the kth segment, and it is calculated by the function
given in Equation 2. In that function, tsk and pk are the
timestamp value of the received time and the playout time
of the kth segment, respectively.

The overall QoE values calculated for this set of experi-
ments are given in Table I. In the QoE calculation, the PSNR
value is used as the Qk values in equation 1. The weights in the
equation, for α, β, and γ, are 2, 0.01, and 0.5, respectively.
These numbers are selected based on the positive / negative
effects of the QoE parameters. The research done on perceived
quality [25] showed that the bitrate is the most important
parameter that affects QoE, and that users prefer quality
changes over a duration of pauses. The table shows that the
highest overall QoE values are observed with BPP in fixed
bandwidth experiments, however, HAS values that are very
close to the BPP values. With dynamic bandwidth conditions,
we observe that BPP outperforms other approaches, giving an
insight into how in-network quality adaption can be beneficial
compared to client-based adaptation.

Bandwidth
1.5 Mbps 2 Mbps 2.5 Mbps 3 Mbps Dynamic

BPP 57.7 59.5 63.4 68.8 63.7
TCP 14.8 35.8 48.3 53.8 41.8
UDP 23.5 24.7 41.2 46.4 24.1
HAS 56.9 59 62.7 64.9 56.9

TABLE I: Overall QoE values for different transmission
schemes and varying bandwidths

B. On the Effects of Implementing BPP in the Controller

The performance results show that BPP adapts the quality
in an efficient way, as there is a lower total duration of pauses
and a higher received average bitrate, when compared to
HAS. However, HAS managed to keep the number of quality
switches to a minimum, when compared to BPP.

The experiments given in the previous section were con-
ducted with one server, one client, and one OpenFlow enabled
switch. The controller sets flow rules in the switches, between
the server and client, at the beginning of the streaming session,
to forward the packets. We observe that if there is just one
client on the network, the SDN controller can manage the
BPP processing for each packet of the stream. However,
if the number of clients increases, problems arise and the
controller starts consuming a high level of CPU resource.
Additionally, sending a packet to the controller from a switch
causes an increase in the end-to-end delay due to an extended
transmission delay between the controller and the switch.

We assume that the network operator and the video stream-
ing company are in co-operation, so the controller gets knowl-
edge about the highest video bitrate from the server. This
information helps the controller to determine if the bandwidth
is enough to transfer the video with the highest quality. If the
available bandwidth of a link is too low to send the video with
the highest quality, then the packets should be trimmed at that
point. During the session, it periodically measures available
bandwidth. In order to limit the computational complexity
on ONOS and reduce the end-to-end delay, we developed
an approach which would only send packets to the controller
when a BPP operation was needed, rather than sending every
packet. To support this, the controller removes the flow rule
related to the video stream from the switch, if the bandwidth
becomes limited. When a packet is received by the switch and
there are no flow rules, it sends a message to the controller to
ask for the flow information related to the video stream. As
the response, the controller sends the trimmed packet, coupled
with the output port information.

We implemented this approach and performed several ex-
periments on Mininet. However, the experiments show that the
scalability of this approach is quite limited since it requires
Deep Packet Inspection (DPI) operations that trims the payload
and headers. Given the number of issues with processing BPP
streams in the controller, including having too much load with
so few streams, we investigated another potential solution.
We proceeded to a new approach and evaluation, which is
to provide in-network quality adaption by implementing BPP
functions as a virtual network function. We replaced the ONOS
controller with one virtual router implementating a BPP-aware
function, located between the server and the client. In our
paper [21] we show how well that approach works.

V. BPP PROCESSING AT THE EDGE

In this paper, we generalized the idea of the virtualized
BPP function implementation and propose a system for larger
networks with more clients connected, where a virtualized BPP
function is used for the BPP operations.

A. Virtualized BPP Function

In general, the bottleneck links are those links that connect
clients to the network. Therefore, in the proposed system, the
virtualized BPP-aware network functions are installed at the
edge routers. In our system, the edge network is an SDN
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domain where the controller is responsible for managing the
network. It periodically measures the available bandwidth of
links that clients connected to the network. This available
bandwidth information is fed to the BPP function.

In the system, shown in Fig. 4, the server sends the video
at the highest quality, considering there are many clients
having different characteristics, such as different bandwidth
conditions, device resolutions, and rendering capabilities. The
packets, which carry all the layers of the video, are transferred
through the network until they arrive to the edge. At the edge,
the packets are sent to the BPP function, where the packets are
trimmed according to the characteristics of each client, such
as the current link bandwidth between the edge and the client,
and then sends the potentially trimmed packets to the client.

When the virtualized BPP function receives a packet, it
determines whether the packet should be trimmed and if it
is, how many chunks should be removed from the packet.
The virtualized BPP function uses the available bandwidth
information of each client based on the information received
from the controller. Packet trimming is done by using a simple
algorithm. For each packet that the function receives, it checks
if the number of bytes sent in the current second is proportional
to the available bandwidth. If the number of bytes sent is
greater than the available bandwidth, it determines that bytes
should be washed. The trim operation is done by removing
the chunks based on their significance value, as described in
Section III step 3 . As the size of the chunks that can be
trimmed may be different to the number of bytes that need to
be trimmed, it can take a number of packets to be trimmed

in order to match the correct bandwidth level. The packets,
modified or not, are distributed to the clients.

B. On the Performance of Implementing BPP at the Edge

Here we present a comparison of two different approaches
to process packet trimming. For this purpose, the video is
streamed between the server and two clients, and the QoE
parameters which are measured on the client side are collected.

These results for Client 1 and Client 2 are in Fig. 5. The
bars labeled “ONOS Controller” represent the results that are
observed when using an ONOS controller which has a module
running the BPP process. On the bars labeled as “Virtualized
BPP server”, the BPP processing is done by a virtualized
function at the edge.

In these experiments, the 2 clients are connected to the
network over different edge links, and the available bandwidth
on those links is 2.5 Mbps. When the packet trimming oper-
ation is done by the virtualized BPP function, all of the QoE
parameters have better values, compared to the experiments
with the ONOS controller, as seen in Fig. 5. In addition to that,
although the clients received the video at a higher quality, the
duration of pauses observed with the virtualized BPP server
is still less than ONOS controller due to the latency added by
the BPP process on the controller as seen in Fig. 5b.

Overall, we see that the QoE obtained by trimming packets
at the edge is better than using the ONOS controller, as uti-
lizing the edge virtualized BPP functions, the QoE parameters
are higher than the those with the ONOS controller.
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VI. PERFORMANCE EVALUATIONS

In this section, we give the performance evaluation of the
virtualized BPP function which is compared with the other
protocols, UDP, TCP, and HAS. In BPP, UDP, and TCP
experiments, the server sends the video at the highest bitrate.

A. Experimental Setup

The video used here is encoded with slightly different
parameters than that of used previously. The bitrate of the
base, first enhancement, and second enhancement layers is
0.9 Mbps, 1.9 Mbps, and 4.4 Mbps, respectively. When the
overhead of packetization using BPP is added, we obtain
similar bitrates of the encoded video used in HAS experiments.

In the experiments, where there are 4, 5, and 6 clients
connected to the server, those are conducted with a fixed
bandwidth value of 2.5 Mbps. In the experiments for different
bandwidth, there are 6 clients connected to the network, having
bandwidth changes between 2.5 Mbps and 4 Mbps. Each
experiment is reconfigured for HAS, UDP, and TCP, using the
same networks conditions. HAS is inherently adaptive, but
there is no quality adaptation in the experiments with UDP
and TCP. The initial buffering time is set to 600 ms for all
approaches, to provide a transmission with low latency. The
performance results observed in these experiments follows.

B. Comparative Performance Evaluation with Multiple Clients

The QoE parameters are collected and averaged in this set of
experiments for each protocol. In Fig. 6a, the average received

video bitrate values are presented for each protocol. The clients
using TCP play the video with the highest quality, since there
is no quality adaptation. The clients with UDP do not adapt
quality, so the bitrate values of the UDP clients are lower than
TCP due to the lost packets. The clients using BPP play the
video with a higher quality compared to UDP and HAS clients.
In Fig. 6b, we see that the HAS clients manage to keep the
duration of pauses lower than all other protocols due to their
policy of keeping duration of pauses at minimum, based on
their buffer fullness. The number of quality changes, in Fig.
6c, is high with BPP since it does not consider this aspect
during the packet wash decision making.

In addition, the Overall QoE value is calculated by using
Equation 1. In the enumeration of the QoE value, the average
received video bitrate is used as the Qk parameter. The α
parameter, which shows the importance of the video bitrate is
set to 0.02. This is lower than the α value used in section
IV-A because the bitrate unit is in Kbps, which is higher
than the other parameters, namely the number of the quality
switches and the duration of pauses. We also increase the
penalty for the number of quality switches and the duration
of pauses, and use the weights 1 and 0.1, for β and γ,
respectively. When we examine the overall QoE values, Fig.
6d, we see that BPP outperforms other approaches with the
fixed bandwidth experiments. In the experiments conducted
with different bandwidth values, the highest overall QoE value
is observed with HAS. The reason for that is this set of



experiments has clients with higher bandwidth connections,
so those HAS clients can play the video with higher bitrates.

VII. CONCLUSIONS

In this paper we have shown the advantages of having in-
network quality adaptation by presenting a number of per-
formance results and comparing it to HAS. The comparative
experiments show that in-network video quality adaptation is
a promising approach that can meet the requirements of future
video streaming applications. The results show that BPP adapts
the quality in an efficient way, such that lower total duration
of pauses and higher average received bitrate can be obtained
when compared to HAS. However, HAS managed to keep the
number of quality switches minimized, compared to BPP.

An architecture that utilizes virtualized BPP functions at
the edge, for video delivery, has been presented. We showed
the use of an ONOS controller as a solution to implement
in-network quality adaptation, but on the other hand, it does
add a huge burden to the controller since it also has the re-
sponsibilities to manage the network. The experimental results
have shown that implementing in-network quality adaptation
at the edge, and by using a virtualized BPP function, provides
scalability and an improvement in QoE.

We compared a number of protocols in this paper, and
demonstrated good performance via the experimental results,
which has shown that the QoE obtained by trimming packets
at the edge is better than using an ONOS controller. In
the experiments utilizing the virtualized BPP functions, the
average video bitrate is higher than those experiments utilizing
the ONOS controller. The insights observed from this study
show that in-network video quality adaption might provide
enhanced QoE. Overall, the QoE value could be even higher if
more refined approaches, which consider the number of quality
changes, are developed. Nonetheless, doing quality adaptation
at the client side will always have the advantage of receiving
information about internal parameters, where one of the most
important among them being the buffer level.

For future work, we will consider a number of improve-
ments. We will adapt the algorithm that trims the chunks from
the packets. Currently, it only pays attention to the available
bandwidth and the bandwidth used, and does not consider the
number of quality changes. This number is quite high in the
experiments, but for better QoE values, and for perceptual
reasons, it is ideal to reduce the number of quality changes for
smoother delivery. We will also investigate the use of packet
trimming using hardware systems, if these become available,
in order to provide higher throughput.
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