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Abstract
Machine learning (ML) is used to provide reactions rates appropriate for models of low
temperature plasmas with a focus on A + B→ C + D binary chemical reactions. The regression
model is trained on data extracted from the QBD, KIDA, NFRI and UfDA databases. The
regression model used a variety of data on the reactant and product species, some of which also
had to be estimated using ML. The final model is a voting regressor comprising three distinct
optimized regression models: a support vector regressor, random forest regressor and a
gradient-boosted trees regressor model; this model is made freely available via a GitHub
repository. As a sample use case, the ML results are used to augment the chemistry of a BCl3/H2

gas mixture.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Utilizing the unique properties of the low-temperature plasma
has become an integral part of almost every industry sector,
spanning over a wide range of applications such as medi-
cine, biotechnology, surface modification, microfabrication,
harvesting energy, thrusters, ozone generation or abatement
systems, to name just a few. As an example of the importance
of the low-temperature plasma technologies for our every day
lives, it has been estimated that as much as one-third of steps
involved in the manufacturing of microelectronic technologies
are plasma-based [1]. While providing desirable properties,
the very complex nature of low-temperature plasma systems
also poses challenges for describing and understanding plasma
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phenomena. Understanding the plasma properties is crucial
for the optimization of plasma-based processes and technolo-
gies and the only way to acquire an insight of any significant
depth is through numerical modeling techniques. Therefore,
any work aiming to improve modeling of plasma physics phe-
nomena has the potential to carry high impact for the field.

There are many methods available for modeling low-
temperature plasma properties and behaviour which vary in
both accuracy and complexity. No matter what kind of plasma
model of whatever spatial dimensionality is considered, each
is built around a chemistry set which describes the volumet-
ric interactions between all the species tracked in the model,
and additionally, the interactions between the species and sur-
faces. A volumetric and surface chemistry set is a very import-
ant base for every plasma model, accounting for the majority
of sources and sinks of species. Many pre-compiled detailed
chemistry sets for various feed gases and applications can
be found in the literature, see for example [2–9]. As a con-
sequence of advances in gas kinetics, published chemistry sets
are becoming increasingly larger. For plasma physics mod-
eling applications, chemistry sets may routinely include up
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to a hundred species and many thousands of reactions. For
example, Koelman et al [10] provide a chemistry set for the
splitting of CO2 in non-equilibrium plasmaswhich contains 73
unique species involved in 5724 reactions. In the combustion
modeling community, where very large chemistry sets have
been used for longer than in the plasma modeling community,
some applications require sets that may contain several hun-
dred or even thousands of species and tens of thousands of
reactions [11].

A major problem faced by the plasma modelers is the avail-
ability of the reaction kinetic data. Each reaction needs to
have its kinetic parameters specified and these data are not
always readily available. The are a number of online data-
bases of kinetic processes for modeling low-temperature plas-
mas such as Quantemol Database (QDB) [9], and LXCat [12]
which largely contains data on electron collisions, Phys4Entry
[13] for modeling atmospheric re-entry plasmas; databases
for astrochemical modeling include KIDA [14, 15], UDfA
[16] and BASECOL [17]; fusion oriented databases include
the Japanese NIFS database [18], the Korean NFRI database
[19] and the ALADDIN database maintained by the Interna-
tional Atomic Energy Agency [20]. These databaes provide
only a finite and limited set of data. Models of new plasma
chemistries (e.g. to model plasma in a novel gas mixture) or
which extend an existing chemistry set (e.g. to cover a differ-
ent range of conditions than those the source chemistry set was
compiled for) often cannot find published kinetic data for key
reactions.

Under these circumstances plasma modellers often fall
back on estimation by analogy or an educated guess. In fact,
in a typical published chemistry set, a substantial subset of
the reaction kinetics may actually be estimated. For example,
Turner [21] performed a review of the state-of-the-art chem-
istry set for helium–oxygen atmospheric pressure plasmas,
carefully tracing the primary sources of kinetic data for all
the reactions in the set. He found, that 63 out of the total
373 reactions had estimated kinetic data. This is a high frac-
tion considering that He–O2 is a fairly simple system and can
be expected to have better coverage than more complicated
chemistries. The same phenomenon can be observed also in
online databases. For example, 1298 reactions in the KIDA
database, as well as 869 reactions in the UDfA database share
the same reaction rate coefficient k= 7.5× 10−8 (T/300)−0.5,
and the same reference, pointing to the publication by Harada
and Herbst [22]. This paper which, which actually cites Smith
et al [23] as the data source, only lists a single reaction with
this value of k:

C3N
− + C+ → C3N+C, (1)

All the reactions in KIDA and UDfA pointing to this source
are mutual neutralisation reactions of the general form

R−
1 + R+

2 → P1 +P2 (+P3 +P4), (2)

and their reaction rate coefficients have been estimated by ana-
logy with reaction (1). The practice of making such estim-
ated has a place in plasma modeling, but requires researchers

insight and experience which so far has been difficult to
algorithmize and automate. An approximate, automated and
fast method for estimating of unknown kinetics could be very
beneficial; machine learning (ML) offers this possibility.

Given the expense of measuring individual reaction rates,
it has been argued, for example by Mason and Tennyson in
The 2017 Plasma Roadmap: Low temperature plasma science
and technology [24] and by Bartschat and Kushner [25], that
the majority of atomic and molecular data required by the
plasma modeling community for diverse modeling applica-
tion is expected to be derived from theoretical calculations.
However, such calculations remain expensive and the accur-
acy needed for reliable quantitative predictions remains a chal-
lenge in many cases [25]; theory is therefore still far from
providing all the data required by plasma modelers.

ML is already being used very extensively in plasma phys-
ics, processing, and modeling, as well as in computational
chemistry. A sizable body of research has been done on arti-
ficial neural network (ANN) models used as surrogate mod-
els for prediction of macroscopic plasma processing outputs
(such as etch rate, deposition rate, etc) from the processing
reactor control variables, such as RF power, pressure, or feed
gas flows. Examples from plasma etch process modeling and
real-time process control include, among others, the extensive
work of Kim et al [26–29], Himmel and May [30], Rietman
and Lory [31], Han et al [32], Stokes and May [33], or
Tudoroiu et al [34]. The same is true for other areas of plasma
processing. The plasma deposition process control modeling
researchers such as Rosen et al [35], Bhatikar and Mahajan
[36], Chen et al [37], or Ko et al [38] have also been using
ML. ANNs have been further used to model plasma spray
processes (e.g. by Guessasma et al [39], Jean et al [40], and
Choudhury et al [41]), for modeling of plasma sputtering (e.g.
by Krueger et al [42] or Kino et al [43]), plasma-assisted nano-
particle synthesis (e.g. by Leparoux et al [44]), or plasma sur-
face modification (e.g. by Wang et al [45], or Abd Jelil et al
[46]). Finally, there is also a large amount of work dedicated
to the utilization of ANNs in any plasma processing generally,
such as by Rietman [47], Salam et al [48], Molga [49], Kim
et al [50, 51], or Mesbah and Graves [52].

Apart from modeling plasma processing, control, and dia-
gnostics, ANNs have also been used to augment some tradi-
tional quantum chemistry calculation methods. For example,
Dral et al [53] used ML models to learn the parameters for
semi-empirical quantum chemistry calculation methods from
molecule structure, while Komp and Valleau [54] used deep
ANNs to predict quantum reaction rate constants for simple
systems trained on calculated data, to overcome the high cost
of ab initio calculation. Zhang [55] used ANNs to estimate
the standard enthalpies of formation of several kinds of acyc-
lic alkanes, and Hansen et al [56] used ML methods for pre-
dicting molecular atomization energies. The review paper by
Goh et al [57] summarizes the use of deep learning in compu-
tational chemistry.

Pertinent to the present work, ML techniques were also
used in the calculation of chemical kinetics. Ventura et al
[58] and Galvan et al [59] used ANNs for curve-fitting
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complex experimental kinetic data, bypassing kinetic mod-
els built around chemistry sets altogether. Bas et al [60, 61]
developed an ANN model for estimating the reaction rates
of the catalyzed enzymatic hydrolysis of maltose into gluc-
ose, also bypassing a kinetic model. Valeh-e-Sheyda et al [62]
applied ANN trained on experimental data to estimate the
reaction rate of methanol dehydration as a function of temper-
ature, pressure, and the purity of the feed stream. Tumanov and
Gaifullin [63] describe ANNs learning the activation energies
of reactions of phenyl radicals with hydrocarbons at a single
given temperature. Allison [64] trained an ANN to learn to
predict rate coefficients of reactions of ·OH radicals from the
bonds and bends of the selected set of possible reactants. Choi
et al [65] discuss the feasibility of activation energy prediction
of gas-phase reactions by gradient-boosted trees method from
structural and thermodynamical properties of themolecules, as
does Grambow et al [66] using deep learning. Kuang and Xu
[67] showcased the use of a convolutional neural network for
the prediction of kinetic triplets for pyrolysis processes from
experimental data, more specifically the temperatures at pre-
selected values of conversion degrees. Very similar work has
also been done byHuang et al [68], and Vieira andKrems [69].
In most cases, a research work intersecting ML and chemical
kinetics introduces ANNs and other ML model techniques (or
soft computing) as an alternative to the hard kinetic model of
a system, which typically integrates the differential equations
governing the species densities to calculate the reaction rates.
Inputs to such models are typically absorbance, concentration,
temperature, pH, etc. This ‘soft’ approach for chemical kinet-
ics is reviewed nicely in the paper by Amato et al [70].

In this work we explore the use of ML to supply unknown
reaction rates in plasma chemistries thus allow complete
chemistry sets to be generated without resorting to estimation
or guesswork.

2. Method

2.1. ML algorithms

In this work we test the use of ML, as implemented in the
Scikit-learn [71] Python library, to fill gaps in kinetic data. We
concentrate on chemical reactions represented by anArrhenius
form. Almost all regressor classes offered by the Scikit-learn
package were tested; three of these regressor classes showed
noticeably better performance than the rest. Thus the three
regression model classes used here are the Support Vector
Machine (SVM) regression model, the Random Forest regres-
sion model, and the Gradient-boosted Trees regression model.
These are briefly discussed below; the full theory behind these
models can be found in standard textbooks onML such as [72].

A SVM is a class of powerful and versatile algorithms
capable of performing linear and non-linear classification and
regression. The SVMs were developed by Boser et al [73] ori-
ginally for classification problems. The most common kernels
used with SVMs are the linear, polynomial and the Gaussian
radial basis function kernels; each kernel has its own set of
hyperparameters.

Random forests are among the most powerful and versat-
ile regression and classification ML algorithms available [72].
The simpler decision tree regression model forms a funda-
mental component of random forests. Decision trees [74, 75]
are a class of ML algorithms that can perform both classific-
ation and regression. The decision tree recursively splits the
dataset into two subsets, building a binary tree of such splits
all the way down to the leaf nodes. Each leaf node then cor-
responds to its range in the feature space and fits all the tar-
gets inside this range with a single value y. The decision nodes
are built greedily from the root down, and the decision feature
and the decision threshold for each decision node are determ-
ined by the CART algorithm (Classification and Regression
Tree) [74]. For each decision node, the CART algorithm finds
the feature and the threshold, which minimizes the weighted
mean square error (MSE) for both subsets created by splitting
the dataset by that feature and threshold. Instead of training a
single decision tree on the whole training dataset, it is possible
to train many separate decision tree regressors on random sub-
sets of the training dataset and aggregate the predictions; this
is called the random forest [76].

The gradient boosting method was introduced by Brieman
[77] and further developed Friedman [78]. Gradient-boosted
trees regressor follows a similar idea to random forests, that is,
it combine many weak-learning trees to form a single power-
ful regressor. However, instead of building many trees on dif-
ferent subsets of the training dataset, in the gradient-boosting
method the trees are added in a sequence, and each additional
tree is trained on the residual errors of the previous tree. The
regressors used in present work were trained to estimate the
kinetic data from available data belonging to their reactants
and products (ranging from trivial, such as charges, to more
sparsely available, such as enthalpies of formation).

2.2. Training data

Kinetic parameters for plasma reactions can be found in sci-
entific publications and in online databases. Here we extracted
these from various databases. All the data used for training and
testing the regression models were automatically scraped from
the following databases: QDB [8], NFRI [19], KIDA [14], and
UDfA [16]. These four widely-used databases provide a good
quantity of kinetic data a for binary heavy-species collisions
at or near room-temperature.

We have direct access to the QDB database, so simply quer-
ied its underlying relational database structure, which made
data extraction simple. The UDfA database provides its raw
data as a simple ASCII text file, with a clear structure, docu-
mented in the accompanying paper [16], which meant UDfA
data could be extracted with a short text parser. The data from
NFRI and KIDA databases were extracted using web scraping
techniques using python package Scrapy [79], directly from
the web user interface. The databases were all scraped in 2020.

The regression model developed here describes binary
heavy-species collisions only. In addition, several other data-
filtering criteria were established, to further limit the scope of
the project. These criteria naturally make the resulting trained
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regression model only applicable to a well-defined but fairly
narrow set of cases. The full set of criteria for the training/test
data set acquisition are summarised as follows.

(i) Only heavy-species reactions are considered. Electron
collisions and heavy-species collisions follow completely
different dynamics, which would make it impractical to
mix them in a single model. Furthermore, electron colli-
sions are usually required for plasma simulations in the
form of cross-section, which have a much more complic-
ated form than reaction rate coefficients, which are typic-
ally sufficient to represent heavy-species collisions.

(ii) Only binary reactions are considered. This is a practical
choice, as the reaction rate coefficient changes units with
the number of reactants in the reaction.

(iii) Only reactions with two products are considered as part
of the dataset feature-space directly describes the species
of the reactions (both reactants and products) and their
physical properties; limiting the dataset to only reactions
with the same number of reactants and products prevents
the problems that arise with datasets that have inherently
missing values.

(iv) Reactions involving photons are not considered. All the
databases used to source the data support photons as spe-
cies in their reactions. These, however, make up only a
small fraction of the reactions listed, and were therefore
excluded from the dataset.

(v) Only reactions involving stateless species are considered.
This choice disallows great many reactions from enter-
ing the dataset, and limits the applicability of the result-
ing model considerably. However, the reprentation of the
internal states of molecules is beyond the scope of an ini-
tial project.

The data collection also ignored any reactions which did
not conserve charge, or elemental stoichiometry. Additional
considerations for the data collection are discussed below.

The kinetics for heavy-species collisions are represented in
QDB by the coefficients of the modified Arrhenius formula,
parametrizing the temperature dependence of the reaction rate
coefficient by three parameters, α, β, and γ, as

k(T) = α

(
T
300

)β

exp
(
−γ

T

)
. (3)

The pre-exponential factor α is mandatory for each reaction,
while the parameters β and γ are optional, and are indeedmiss-
ing for many of the reactions listed. For these reactions, the
rate coefficient is simply described as a constant, without any
temperature dependence.

In theQDBobjectmodel, the reactants and products of each
reaction are instances of the species object, which can hold
its own properties. The following data were collected for each
reaction stored in QDB: the kinetic coefficients α, β, and γ,
and for each reactant and product of the reaction their formula,
charge, and their enthalpy of formation at normal temperature,
if available. QDB does not provide any range of validity its
reactions, so every reaction adhering to the criteria listed above

was collected. In some cases, QDB contains multiple data for
the same reaction; in such cases, the reaction was added mul-
tiple times

In contrast to QDB, the NFRI database does not provide
Arrhenius parameters for heavy-species reactions; rather it
represents the reaction kinetics for each reaction as discrete
points of either the reaction rate coefficient, or the cross-
section, as a function of temperature. As this work is focussed
on cold plasma applications, only those reactions whose kin-
etic data range overlapped a temperature of T= 300 K± 10%
were collected. With this filtering criterion applied, only a
handful of reactions remained in the cross-sectional form,
which were excluded. NFRI does not provide any additional
structure around its reactions’ species, therefore only the spe-
cies names (formulas) were collected, together with the reac-
tion kinetics in the form of one or more [T,k] pairs.

The NFRI data presented an additional challenge over units
of the reaction rate coefficient. Two different units for reac-
tion rate coefficient data appear in the database: cm3·s−1, and
cm3·mol−1·s−1. The distributions of rate coefficient values for
the two units should be both fairly similar and only differ-
ing from each other Avogadro number; however, plot of the
data showed otherwise, implying that some of the reactions in
the NFRI database must have incorrect rate coefficients units.
Units were (re-)assigned following the simple rules:

• if the value of k(300 K)< 10−6, then k is in cm3·s−1,
• if the values of k(300 K)> 104, the unit is cm3·mol−1·s−1,
• if 10−6 ⩽ k(300 K)⩽ 104, the unit cannot be trusted and the
reaction is removed.

Another source of data rejection was reactions involving spe-
cies with ambiguous formulas and charges. Although con-
siderable work was performed parsing as many species from
NFRI reactions as possible, due to the fact that species are only
represented by their formula string in this database, many spe-
cies formulas could not be parsed and correctly identified.

LikeQDB, theKIDAdatabase represents the heavy-species
kinetics using the three parameters, α, β, and γ. However,
KIDA supports three different temperature dependence func-
tions for its reaction rate coefficients: the kinetics are paramet-
rized either by the modified Arrhenius formula equation (3),
or by one of the formulas for ion–polar systems, describing
the rate coefficients for unmeasured reactions between ions
and neutral species with a dipole moment, computed using the
Su-Chesnavich capture approach [14, 80, 81]:

k(T) = αβ

(
0.62+ 0.4767γ

(
300
T

)0.5
)
, (4)

or

k(T) = αβ

(
1+ 0.0967γ

(
300
T

)0.5

+
γ2

10.526
300
T

)
. (5)

Each of the reactions (4), and (5) is defined for a different tem-
perature range, α represents the branching ration of the reac-
tion, β is the Lanagevin rate, while γ determines the temper-
ature dependence for the given temperature range.

4



J. Phys. D: Appl. Phys. 56 (2023) 374001 M Hanicinec et al

Figure 1. ER diagram showing the relevant attributes of the unified dataset aggregating the data instances collected from all four databases.

The KIDA database also has a species model, and stores
additional attributes for each reactant and product of any reac-
tion. For each eligible KIDA reaction, the following data were
collected: the kinetic parameters α, β, and γ, the type of reac-
tion rate temperature dependence formula to interpret those
parameters, and finally, for each reactant and product of the
reaction, mass and charge were collected, and if present, also
the enthalpy of formation at the normal temperature, polariz-
ability of the species and its dipole moment.

KIDA also provides 4 tiers of data evaluation, assigning
to each reaction one of the following values: not recommen-
ded, not rated, valid and recommended. The reactions labeled
not recommended were ignored and not added to the data-
set, while the reactions with all the other evaluation labels
were added and treated equally. KIDA often lists multiple
sets of kinetic parameters for a single reaction, and as in the
case of QDB, these were all preserved and added into the
dataset as individual data instances. Finally, each reaction in
KIDA has a valid temperature range attached, and only reac-
tions where this range of validity overlaps with the range of
T= 300 K± 10% are added to the dataset.

The last database scraped for data was the UMIST Data-
base for Astrochemistry. The kinetics of reactions in the UDfA
database is described exclusively by the modified Arrhenius
formula of equation (3). Each reaction also has a temperature
range of validity, and the criterion for adding the reactions into
the datasets was the same as in the case of QDB and KIDA;
the temperature range must overlap with a range around the
room temperature. No additional species data are provided by
UDfA, only strings representing their formulas. This means
that the species charges, elemental stoichiometry, and possible
states had to be parsed from the formulas.

2.3. Dataset unification

The structure of the final unified dataset, aggregating the data
from all the four databases, can be summarized by the entity
relationship (ER) diagram given in figure 1 (only the relev-
ant parameters are shown). In this model, every reaction is
uniquely identified by two species as reactants, two species

as products, and the set of kinetic parameter values, α, and
optionally β, and γ. Each species is then uniquely identified
by its elemental stoichiometry and a charge.

For simplicity, different isomers having the same elemental
composition and charge were collapsed to a single species,
characterised by its stoichiometry and charge. As an example,
the following three species collected from KIDA with their
unique formulas of HNCCC, HCCNC, and HCNCC, were all
unified into a single species characterised by the elemental
stoichiometry of {‘H’: 1, ‘C’: 3, ‘N’: 1}, and the charge q= 0.
If the enthalpy of formation∆fH◦, the polarizability α, or the
dipole moment pwas found in KIDA or in QDB for more than
one such isomer, the resulting species got assigned the para-
meters of the isomer with the lowest∆fH◦.

Species from all four databases were identified by parsing
the (database-specific) species formulas and extracting the ele-
mental stoichiometry and charges from the formula strings.
The species were also further validated with the help of the
pyvalem python package by Hill [82], and by checking the
charge and stoichiometry conservation of the reactions they
appear in. The species masses were determined from the ele-
mental stoichiometry and checked against the masses scraped
from the databases, adding an additional layer of confidence
in correct parsing of the species formulas.

The polarizability and dipole moment species parameters
were populated exclusively from the KIDA database, where
present. The enthalpy of formation values were being searched
for, in order, in the KIDA database, the QDB database, and the
NIST-JANAF [83] andATcT [84] tables, which had previously
been scraped by Lu [85].

Finally, in addition to the reaction criteria listed above, two
additional criteria for reactions elimination were introduced
based on a first analysis of the unified dataset. When creating a
training dataset, it helps to eliminate obvious fringe and outly-
ing data instances to increase the data coherence [72]. These
additional criteria were:

(i) Only reactions with neutral or singly-ionized species are
kept. Doubly ionized species made up only less than 0.3%
of all the species in the dataset.
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Table 1. The sums of reactions in the final dataset per source
database.

Source database Number of reactions

QDB [8] 1586
NFRI [19] 1171
KIDA [14, 15] 4862
UDfA [16] 1851

(ii) No reactions with free electrons are kept. The associative
electron detachment reactions made up only about 1.7%
of all the reactions in the dataset, and were therefore elim-
inated for sake of the dataset coherence.

After removing duplicate reactions the final dataset con-
sists of 9470 reactions involving 1080 distinct species. Table 1
provides the number of reactions in the final dataset sourced
from each one of the four databases. The final dataset, fol-
lowing the relational structure depicted in figure 1, is given
as data_final.yaml file in the project GitHub repository
https://github.com/martin-hanicinec-ucl/regreschem.

3. Kinetics regression model

3.1. Targets

First we need to select the outputs (‘targets’) the model
aims to regress. Kinetics for heavy species reactions are usu-
ally described by a modified Arrhenius formula equation (3),
which parameterizes the temperature dependence of the reac-
tion rate coefficient k(T) by three parameters α, β, and γ.
Ideally, these three parameters could be predicted by a mul-
tivariate regression model. However, for this to work all the
three parameters also need to be present in the training dataset
as targets for supervised learning and most of our data sources
do not give a full set of Arrhenius coefficients; in practice,
the majority of reactions in our dataset are characterized by
a single reaction rate constant parameter, α. The kinetic data
in the NFRI database [19] are provided as a series of reac-
tion rate coefficient values for different temperatures. In prin-
ciple, the desired Arrhenius coefficients could be fitted to these
data, but this would require at least three data points. How-
ever, less than 4% of the NFRI reactions offer 3 or more data
points; for more than 90% of NFRI reactions only a single data
point is provided which is the reaction rate constant for a tem-
perature within 10% margin around 300 K. For the QDB [8],
KIDA [14, 15], and UDfA [16] databases, which offer kinetic
data already in Arrhenius form, only about 3% of the reactions
selected actually contained all the three Arrhenius parameters.

We therefore decided to limit our regression model to a
single-value prediction of a reaction rate constant expressed
for T = 300 K. In practice we used its logarithm as the rate
coefficients need to be well resolved in a range of many orders
of magnitude; the trick of target values logarithmization has
been used before on a similar topic [54]. Therefore as the
targets vector y⃗, we used the vector of log10 k(300 K) values
expressed for all the reactions in the dataset, with k in cm3 s−1.

There were two more uses with the targets which need con-
sidering: duplicate reactions, and target capping. The same
kinetic data describing a particular reaction appeared in many
cases in more than one database. These duplicates were detec-
ted based solely on the set of reactants, set of products, and
k(300 K), or the target. While iterating over the dataset, each
reactionwas removed if it had the same two reactants, the same
two products, and the k(300 K) value within 10% to another
reaction present already.

The regression models train to minimize the error meas-
ure between the vector of predicted values and the vector
of targets, usually the root MSE (RMSE) or the mean abso-
lute error (MAE) [72]. With logarithmic targets, however,
it would be a bad strategy to treat all data instances with
the identical prediction error equally. Predicting e.g. kpred1 =
10−5 cm3 s−1 for a data instance with the target of k1 =
10−7 cm3 s−1 is clearly more significant, than, for example,
predicting kpred2 = 10−25 cm3 s−1 for a data instance with the
target k2 = 10−27 cm3 s−1, even if the two instances will share
the same square (and absolute) error in the logarithmic target
space. This is because reactions with low rate coefficients will
have relatively little impact on the solutions of plasma models.
As a workaround we define an effective minimal rate coeffi-
cient kmin = 10−20 cm3 s−1. The targets of all reactions with
k< kmin were capped to the minimal value of log10 kmin. The
predicted values were capped the same way, when evaluating
different model classes, or when optimizing the model hyper-
parameters. Figure 2 shows histograms of all the dataset tar-
gets before and after capping. The bimodal distribution of k
values is discussed in section 3.3.

3.2. Features

We tried to collect data on as many as possible features which
might possibly correlate with the reaction rate coefficients
being predicted. These data form the raw dataset.

3.2.1. Raw dataset table. The data collected in the raw data-
set could be divided into two categories:

(i) Data describing the individual species: 26 attributes
were collected for each species, totaling 104 columns in
the raw dataset table (26 per 2 reactants and 2 products).
These attributes are:

• mass m in [amu],
• charge q in [e],
• standard enthalpy of formation∆fH◦ at room temperat-
ure T = 298.15 K in [kJ·mol−1]

• enthalpy of formation of a neutral ∆fH◦
n0 describing

∆fH◦ of the neutral counterparts to charged species,
• polarizability α in [Å3],
• dipole moment p in [D],
• number of atoms summed per each block of the periodic
table (4 attributes, for 4 blocks: s, p, d, f)

• number of atoms summed per each group of the periodic
table (16 attributes, for 16 groups: IA, IB, IIA, . . ., VIIB,
VIIIA, VIIIB).
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Figure 2. Histograms of all the dataset target values before (top) and after (bottom) capping to kmin = 10−20 cm3 s−1.

For neutral reactants and products,∆fH◦
n0 =∆fH◦. The

m and q values are naturally fully populated, but the
rest of the values are not present in each data instance.
The atom counts per block and group are an attempt to
encode the elemental composition of the species into the
data instances.

(ii) Data describing the exchanged fragment: This cat-
egory of raw dataset table columns regards species frag-
ments exchanged between reactants, in order to create the
products. As an example, in the reaction

H+NH→ H2 +N, (6)

a single H atom is exchanged. The attributes encoding the
exchange fragments are the mass, the number of atoms,
and the number of atoms per block and group of the peri-
odic table, as in the previous point. This makes in total 22
columns. In some cases, a single fragment is not enough
to turn reactants into products, and the values simply sum
all the fragments exchanged. In most cases, multiple ways
exist to turn reactants into products, and the fragments
exchanged with the lowest total mass are picked. So in the
reaction

OH− + CCl4 → OCl− + CHCl3, (7)

the fragments Cl (passed from CCl4 to OH−), and H
(passed from OH− to CCl4) are selected in favour of frag-
ments O, and CCl3.

The entire raw dataset table is available in the project repos-
itory https://github.com/martin-hanicinec-ucl/regreschem
as dataset_raw.csv. Apart from the columns described
already, several additional columns exist, containing extra

metadata about, such as reaction strings (e.g. ′SF4 +
SF6- -> SF5 + SF5- ′), the name of the database the reac-
tion instance belonged to ( ′qdb ′, ′kida ′, ′umist ′, or ′nfri ′),
the doi identifier of the primary source, where available in
the database, or the names and source databases for the indi-
vidual species in each reaction (data instance) line. These
columns are not used to construct features in the regression
models.

3.2.2. Data imputation. ML algorithms typically can not
accept missing data [72]. This is a problem, there are many
instances were at least one of the ∆fH◦, ∆fH◦

n0 , α, or p val-
ues is missing for at least one reactant or product. Limiting
the dataset to only instances with all the values present would
decrease the dataset size considerably. Figure 3 gives an over-
view of howmany data instances are missing which attributes.
As an example, well over half of the instances are missing e.g.
α at least one of its species, but hardly any instances are miss-
ing α for every one of its species. To prevent decreasing the
dataset size to less than a half, the missing values must be
imputed.

The IterativeImputer class, available in the
sklearn.impute python module [71], was use to regress
the missing data in a dataset from all the other attributes. In
each iteration, a single column containing some missing data
gets filled by an imputation regression model, which is trained
on all the other completely populated columns. In this way,
the imputation model is just another regression model, which
is trained to predict the missing values, in order to produce
a complete features matrix. The IterativeImputer model
can use different regression model classes to perform the
imputation; we used the default Bayesian Ridge regressor. The
Scikit-learn implementation, the BayesianRidge regression
model, is based on an algorithm described by Tipping [86] and

7
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Figure 3. Bar plots showing the fraction of instances in the dataset with missing∆fH
◦, ∆fH

◦
n0 , α, or p for its reactants and products.

Figure 4. Histograms showing the distribution of α values in the dataset before and after the imputation of missing values.

MacKey [87]. As an illustration, figure 4 shows histograms of
the polarizability α before and after imputation of the missing
values.

All the data instance attributes described in section 3.2.1
do not yet form the feature matrix for the regression models.
Typically, it makes sense to manipulate the values in a way
so that the final features utilize some heuristics already known
about the system, or some more sensible representations [72].
This manipulation is referred to as feature engineering and is
the key to a successful ML model [88].

3.2.3. Feature engineering. As with model selection and
hyperparameters tuning, feature engineering is domain-
specific and the features matrix X⃗ needs to be optimized, often
iteratively by trial and error [88]. Here we describe our final
set of features obtained from a lengthy process of optimization
for the lowest prediction errors.

As the order of reactants and products in any reaction is
purely a matter of chance or convention, the features encod-
ing attributes of reactants and products should be symmet-
ric with respect to swapping the two reactants (or products).

8
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The features encoding the reaction species were engineered as
follows:

• Masses m of both reactants were replaced by the reduced
mass µ of the left-hand-side (LHS) of the reaction. For a
generic reaction

A+B→ C+D, (8)

µLHS =
mAmB

mA +mB
. (9)

The same was done for the products, and the right-hand-side
(RHS) of any reaction.

• Charges q of both reactants were replaced by a series of
one-hot encoded charge combinations. For the reaction left-
hand-side, this resulted in three boolean-valued features:
Q00

LHS, Q
+0
LHS, and Q+−

LHS. As an example, for the generic
reaction (8),

Q+0
LHS =

{
1 if(qA = 0 and qB = 1) or (qA = 1 and qB = 0)

0 otherwise.

(10)

The reactant charges are converted by the same token in the
features Q00

RHS, and Q
+0
RHS. The charge combinations charac-

terized by the features Q−0
LHS and Q−0

RHS, were dropped from
the dataset as there were very few collisions between neut-
rals and negative ions present in the dataset so nearly all val-
ues for these features were zero.

• Enthalpy of formation∆fH◦ values for both reactants and
products were turned into the enthalpy of formation of each
side of the reaction. For the generic reaction (8), this made
two features

∆fH
◦
LHS =∆fH

◦
A +∆fH

◦
B, (11)

∆fH
◦
RHS =∆fH

◦
C +∆fH

◦
D. (12)

Additionally, the total enthalpy of formation for the whole
reaction was explicitly added as a feature

∆fH
◦
total =∆fH

◦
RHS −∆fH

◦
LHS. (13)

The ∆fH◦
n0 values were manipulated exactly the same way.

• Polarizability values α were turned into 2 distinct features

Fα
LHS = αA|qB|+αB|qA|, (14)

Fα
RHS = αC|qD|+αD|qC|, (15)

following the species naming convention from the generic
reaction (8). The choice of these features is motivated by
the fact that the electrostatic force between a charged and
a polar particle will, in the first approximation, be propor-
tional to the product of the charge and the polarizability of
the particles.

• Dipole moment values p of all the reactants and products
were turned into the features FpLHS and FpRHS, following the
same reasoning used for the polarizability: the electrostatic
force between a charged particle and a particle with a dipole
moment will be roughly proportional to the product of p and
square of the charge, therefore

FpLHS = |pA|q2B + |pB|q2A, (16)

FpRHS = |pC|q2D + |pD|q2C. (17)

• Finally, the species attributes describing the elemental com-
position of the reactants and products were all collapsed into
just 7 features: Nbl.=s, Nbl.=p, Ngr.=IA, Ngr.=IVA, Ngr.=VA,
Ngr.=VIA,Ngr.=VIIA. For an explanation by example,Nbl.=s is
the number of atoms appearing on the LHS of the reaction,
which belong to the s block of the periodic table of elements.
There are very few species in the dataset made of elements
belonging to the d block and none of elements belonging
to the f block. Therefore, only the features describing the
s and p blocks were retained in the features matrix. Sim-
ilarly, the vast majority of species in the dataset are com-
posed of elements belonging to one of the IA, IVA, VA, VIA,
VIIA groups of the periodic table. All the other groups were
dropped from the features space. All the 7 features described
are evaluating the numbers of atoms found on the LHS of
any reaction only. As each reaction conserves the species
stoichiometry, the features belonging to RHS is identical so
are not needed.

Apart from the features encoding the reactants and products,
there are 9 more features describing the elements exchanged
between the two reactants in order to create the two products.
Following the same nomenclature as in the list above, these
features are fairly self-evident:mX,NX,Nbl.=s

X ,Nbl.=p
X ,Ngr.=IA

X ,
Ngr.=IVA
X , Ngr.=VA

X , Ngr.=VIA
X , Ngr.=VIIA

X . Here, X refers to a
hypothetical particle made of the exchanged elements (see
section 3.2.1), and NX is simply a number of atoms of X, no
matter which block or group.

Table 2 shows the final list of features forming the features
matrix X⃗ in this work. Also shown are the feature names con-
sistent with the code in the project repository, and the features
data types. In total, 33 features were used.

Finally, scale sensitivity is typically handled by apply-
ing a scaling to all the numeric features [72]; this was
done by adding the StandardScaler instance from
sklearn.preprocessing module [71] into the data trans-
formation pipeline. The standard scaler subtracts the mean
from each feature column and scales all the values to unit
variance. Figure 5 shows the distribution of the final ∆fH◦

total
feature (using the∆fH◦ values after imputation) with different
horizontal axes belonging to the original and standard-scaled
feature data.

3.3. Dataset analysis

As mentioned above, duplicate reactions were identified as
identical reactions with very close reaction rate coefficients
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Table 2. The final list of features; also given are the feature names
used in the project repository code and to the data types of all the
features values.

Symbol Feature name Data type

∆fH
◦
total delta_hform real

∆fH
◦
n0,total delta_hform_neutral real

Q00
LHS lhs_charge_00 boolean

Q+0
LHS lhs_charge_+0 boolean

Q+−
LHS lhs_charge_+- boolean

µLHS lhs_mu real
∆fH

◦
LHS lhs_hform real

∆fH
◦
n0,LHS lhs_hform_neutral real

Fα
LHS lhs_polarizability_factor real
FpLHS lhs_dipole_moment_factor real
Nbl.=s lhs_block_s integer
Nbl.=p lhs_block_p integer
Ngr.=IA lhs_group_IA integer
Ngr.=IVA lhs_group_IVA integer
Ngr.=VA lhs_group_VA integer
Ngr.=VIA lhs_group_VIA integer
Ngr.=VIIA lhs_group_VIIA integer
Q00

RHS rhs_charge_00 boolean
Q+0

RHS rhs_charge_+0 boolean
µRHS rhs_mu real
∆fH

◦
RHS rhs_hform real

∆fH
◦
n0,RHS rhs_hform_neutral real

Fα
RHS rhs_polarizability_factor real
FpRHS rhs_dipole_moment_factor real
mX exchanged_mass integer
NX exchanged_atoms integer
Nbl.=s
X exchanged_block_s integer

Nbl.=p
X exchanged_block_p integer

Ngr.=IA
X exchanged_group_IA integer

Ngr.=IVA
X exchanged_group_IVA integer

Ngr.=VA
X exchanged_group_VA integer

Ngr.=VIA
X exchanged_group_VIA integer

Ngr.=VIIA
X exchanged_group_VIIA integer

and were filtered out of the dataset. However, the dataset still
contains many reactions which share the same reactants and
products but have significantly different reaction rate coeffi-
cients. Thosemight be sourced either from different databases,
or from the same database, but from different source publica-
tions. In some cases, the reaction rate coefficients for identical
reactions differ vastly across different data samples. Figure 6
shows different target values found in the dataset for each one
of three chosen reactions. As the data samples belonging to a
single reaction will share the features vector, those form con-
flicting data samples in the dataset.

It can be seen from figure 6, that the difference in reac-
tion rate coefficient k between two conflicting training data
samples can in some instances be over 10 orders of magnitude.
The difference between the maximal and minimal value was
evaluated for each reaction having conflicting reaction rate
coefficients in the dataset. Out of the total of 1916 reactions
with multiple k values, the vast majority of reactions have
fairly consistent k values within a single order of magnitude.

There are, however, a significant number of samples with a
muchwider spread. This naturally has implications for the lim-
its of how well any regression model can actually perform.

Another thing worth analyzing is the distribution of tar-
get values. Figure 2 showed the overall distribution of k val-
ues across the dataset with a distinct bimodal appearance.
The individual peaks of the bimodal distribution correlate
with the charge combinations of reactants or with the fea-
tures Q00

LHS, Q
+0
LHS, Q

+−
LHS, as can be seen in figure 7. The rate

coefficients belonging to reactions of two neutrals (Q00
LHS = 1)

and to neutral–ion reactions (Q+0
LHS = 1) together form the first,

broader peak, while the reactions between positive and negat-
ive ions (Q+−

LHS = 1) form the second, tighter peak. Most of the
anion–cation collisions in the dataset are mutual neutralization
reactions.

A closer look at the anion–cation collisions samples reveal
two populous reaction rates. First, as discussed above, 953
reactions share the same target value, corresponding to the
reaction rate coefficient

k(T) = 7.5× 10−8 (T/300)−0.5 cm3 s−1,

and all appear to be a generalization of a single mutual neut-
ralization reaction (1) sourced from Harada and Herbst [22].
Second, 166 reactions, all acquired from QDB, share the same
value of k = 1.0 × 10−7 cm3 s−1.

3.4. Training the model

The performance of our trained ML model is measured as a
prediction error scored on a set of data using the error func-
tions are RMSE and MAE functions. As the predicted tar-
get values were capped to ymin, corresponding to kmin = 1×
10−20 cm3 s−1, the error functions are defined by:

RMSE
(⃗
y, ⃗ypred

)
=

√√√√∑N
i=1

[
yi − cap

(
ypredi

)]2
N

, (18)

MAE
(⃗
y, ⃗ypred

)
=

∑N
i=1

∣∣∣yi − cap
(
ypredi

)∣∣∣
N

, (19)

where

cap(y) =

ymin =−20 if y< ymin, (20)

y otherwise. (21)

There, y⃗ and yi refer to the known target values, while ⃗ypred and
ypredi are the values predicted by the model. N is the number of
data samples the prediction error is evaluated on. Note that the
known target values y⃗ are already capped at ymin.
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Figure 5. Histogram showing the distribution of the∆fH
◦
total feature values in the original unit space (bottom horizontal axis), and in the

rescaled space (top horizontal axis).

Figure 6. Different target values found in the dataset for three chosen reactions.

We followed the standard practice of splitting our dataset
into training and a test set with a training error for the training
set, and a generalization or out-of-sample error [72] evaluated
using the test set. A low training error and high generalization
error is indicative of over-fitting [72]. Here we withheld 20%
of a randomly selected samples as the test set giving a training
set of 7576 reactions and a test set of 1894 reactions.

To overcome potential biases an n-fold cross-validation
technique [89] is very often used. In n-fold cross-validation,
the training set is split into n non-overlapping subsets, and
each subset is used both as a training and validation set, in
a sequence of n trials. We optimized the hyperparameters for
the selected model classes by minimizing the mean validation
error of a 5-fold cross-validation. Two techniques were used
predominantly: grid search and randomized search. Hyper-
parameters were optimized for all three shortlisted regression

models (support vector regressor, random forest regressor,
and gradient-boosted trees regressor). The optimization was
carried out using the mean MAE error given in equation (19)
over 5-fold cross-validation, with some attention to the dif-
ference between training and validation errors. We chose to
optimize for MAE, as the RMSE of equation (18) is more
sensitive to outlier samples, which are definitely present in
the dataset, as shown in figure 6. Finally, the three optimized
models were combined into a single voting regression model,
with the optimized vector of weights of the constituent mod-
els, as the only hyperparameter. For the full reproducibility,
the optimized regression models and their hyperparameters as
a code snippet in figure 8.

The mean cross-validation MAE errors µMAE for each
model are listed in table 3, together with the stand-
ard deviations σMAE over the 5-fold cross-validation trials.
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Figure 7. Distributions of k values in the dataset shown on three separate histograms for neutral–neutral collisions (Q00
LHS = 1),

neutral–cation collisions (Q+0
LHS = 1), and finally anion–cation collisions (Q+−

LHS = 1).

Results for two more models are listed as benchmarks.
LinearRegression model [71] simply performs a linear
regression in the features space. MedianEstimator model is
an extremely naive custom estimator, which simply assigns
each sample from the validation set (or test set) with the
unknown target value the value of the median of all the known
target values from the training set (while completely ignor-
ing the features matrix). The results in table 3 were obtained
with scikit-learn version 0.24.2 and with random (but
repeatable) train/test, and train/validation splits. All the code
is available as a Jupyter notebook [90] in the project repos-
itory https://github.com/martin-hanicinec-ucl/regreschem for
full reproducibility.

4. Results and discussion

Table 4 shows the MAEtest error evaluated on the test set
obtained using regression model optimized in its final form
(figure 8). For comparison, the error measures of the two
benchmark estimators are listed in the table. Our final model is
the VotingRegressor instance with the optimal hyperpara-
meters. Also shown for comparison next to the MAEtest values
are the mean cross-validation errors µMAEval from table 3. The
value of MAEtest = 0.593 means that there is a bit more than
half order of magnitude average difference between the reac-
tion rate coefficients for the reactions of the test set predicted
by the final model, and their known target values.

The test errors are slightly but significantly lower than
the mean cross-validation errors; this is surprising and in
general improbable. Thorough hyperparameters tuning will
typically overfit to the training subset data instances, mak-
ing the cross-validation errors (evaluated on the training set)
typically lower than the test set error [72]. It is a hall-
mark of a well-trained and optimized model, that the test
error is very close to the validation error (while both being
as low as possible), but typically the test error is higher
than the validation error. This anomaly can be explained
by looking at not just the mean cross-validation error
µMAEval , but at the individual validation errors of the cross-
validation folds MAEval

1 —MAEval
5 . The individual folds valid-

ation errors are shown in figure 9, together with the test error
MAEtest.

The MAE errors for individual cross-validation folds dif-
fer considerably between folds, which are trained on subsets
randomly drawn from the same training set. It is possible, that
the hyperparameters of the final voting regressor (and its con-
stituent models) were optimized conservatively enough not to
cause over-fitting to the training set, and at the same time, the
withheld test just by chance consists of data instances respond-
ing to the final trained model exceptionally well. As discussed
below, the whole test (and training) dataset can be split into
various subsets, each with significantly different own test (and
validation) errors. For a concrete example, the neutral–neutral
reactions subset of the test set has much higher MAE than the
cation–anion reactions subset, reactions of which get predicted
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Figure 8. Python code snippet showing instantiation of the three regression model classes with their optimized hyperparameters, together
with the final voting regressor combining them into a single regression model. Where not stated explicitly, the default values of
hyperparameters were used.

by the final model relatively precisely. In this case, the final
MAE error measure might be quite sensitive to the ratio of
neutral–neutral reactions and cation–anion reactions among

the data instances, which can be more favorable for the test set
than for the training set, just by the act of the random train/test
split.
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Table 3. table of mean MAE cross-validation errors and their standard deviations for all the three shortlisted optimized models, as well as
the final voting regressor model and two naive benchmark models.

Model µMAE σMAE

MedianEstimator 1.329 0.031
sklearn.linear_model.LinearRegression 0.992 0.021
sklearn.svm.SVR 0.673 0.021
sklearn.ensemble.RandomForestRegressor 0.679 0.017
sklearn.ensemble.GradientBoostingRegressor 0.668 0.020
sklearn.ensemble.VotingRegressor 0.646 0.018

Table 4. Final MAE evaluated on the test set shown for the final regression model together with two basic models shown as benchmarks.
The values are shown in comparison to the mean cross-validation errors, listed in table 3 already.

Model µMAEval MAEtest

Median estimator 1.329 1.278
Linear regression 0.992 0.955
Final model 0.646 0.592

Figure 9. Comparison of the final generalization MAE error measure on the withheld test set with errors of the individual cross-validation
folds.

Table 5. MAEs evaluated on different subsets of the test set
showing that the combination of charges among the two reactants
has a great influence on the mean absolute prediction error.

Test subset Instances MAE

All 1849 0.592
Neutral–neutral 336 1.289
Ion–neutral 1271 0.509
Cation–anion 287 0.143

4.1. Analysis of reactants charge combinations

Table 5 gives average prediction errors for different charge
combinations of the reactants. Figure 10 illustrates the dis-
tributions of prediction errors plotted for each of the subsets
from table 5. It is evident that different charge combinations

among the reactants translated into different mean prediction
errors. The very low MAE error measure for the cation–anion
reactions is hardly a surprise. This subset had a very tight
distribution of target values in the first place, tightly centered
around a single value, as discussed in section 3.3 and shown
in figure 7. The final regression model evidently recovered
this tight distribution fairly well. The fact that neutral–neutral
reaction rate coefficients span a larger range than the predom-
inantly fast ion–neutral collisions is probably the reason that
they are predicted by the model with much higher errors.

As the neutral–neutral, ion–neutral, and ion–ion collisions
have such obviously different prediction error distributions,
as well as target values distributions (figure 7), it was worth
exploring the idea of training a dedicated regression model for
each of those subsets. Unfortunately, this did not lead to any
lower prediction errors. Tests showed that the distribution of
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Figure 10. The distribution of prediction errors plotted for different subsets of the test set. It can be seen that the combination of charges
among the two reactants has a great influence on the prediction errors.

target values in the dataset as a whole and in the test set were
similar.

4.2. Analysis of feature importance

The regression models based on decision trees (random forest
and gradient-boosted trees in our case) offer a measure of fea-
ture importance as the average depth any particular feature
appears as a decision node across all the constituent trees of
the ensemble. Figure 11 shows the feature importance meas-
ure for every single feature in the dataset, as assessed by two
parts of the final voting regressor: the random forest regressor
and the gradient-boosted trees regressor.

Three interesting facts can be noted about the feature
importance values shown in figure 11. Firstly, the features
encoding the properties of reactants (lhs_ prefix) appear to
be more relevant for predicting the reaction rate coefficients,
than the features encoding the properties of products (rhs_
prefix). Notably, the rhs_polarizability_factor (Fα

RHS)
and the rhs_dipole_moment_factor (FpRHS) features, see
equations (15), (17), both appear to be completely irrelev-
ant for predicting the rate coefficients, while their reactants
counterparts (Fα

LHS, F
p
LHS) proved to be somewhat important.

Furthermore, the features designed to encode the fragments

exchanged between reactants (exchanged_ prefix, see
section 3.2.3 and table 2) all appear to be almost completely
ignored by the model when predicting rate coefficients. Lastly,
it can be seen that the boolean features explicitly encod-
ing the charge combinations among reactants and products,
lhs_charge_00, lhs_charge_+0, lhs_charge_+-,
rhs_charge_00, rhs_charge_+0 (or Q00

LHS, Q
+0
LHS, Q

+−
LHS,

Q00
RHS, Q

+0
RHS respectively), are being completely ignored by

the random forest and gradient-boosted trees regressors. And
yet, the distinct distributions of rate coefficients for categor-
ies represented by different values of those features were
correctly recovered in the predicted rate coefficient values.
This implies, that the same information (distinguishing the
Q00

LHS = 1, Q+0
LHS = 1, and Q+−

LHS = 1 cases) must have been
encoded implicitly by other features, assessed as more import-
ant by the final regressionmodel, such asFα

LHS in equation (15)
or FpLHS in equation (17).

4.3. Analysis of the biggest outliers

Figure 10 clearly shows that some of the test set instances
(mainly belonging to the neutral–neutral category) were
predicted by the model with some significant prediction
errors. Tables 6 and 7 show the ten reactions with the most
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Figure 11. Feature importances for all the model features, pulled out of the random forest and gradient-boosted trees regressors (as two
constituent models of the final voting regressor model). For clarity the feature names from the project GitHub repository are used, see
table 2 for a list of features used.

Table 6. Top ten reactions with the most overestimated predicted rate coefficients. For each reaction, the prediction error is listed as well as
the predicted value of the reaction rate coefficient and the target value. If there exist alternative rate coefficient targets in the dataset, those
are also shown.

Prediction error Prediction Target

ID Reaction logkpred − logktarget kpred(cm
3 s−1) ktarget(cm3 s−1) k(2)target(cm

3 s−1) k(3)target(cm
3 s−1)

7800 C4H
+
3 +HCN→

C4H2 +HCNH+
10.72 5.19× 10−10 1.00× 10−20

213 H+ +HCN→ H+ +HCN 10.57 3.72× 10−10 1.00× 10−20 1.00× 10−09 1.47× 10−08

2569 CH3 +HCO+ → CH+
4 +CO 10.06 1.14× 10−10 1.00× 10−20

5105 C3H2 +HCNH+ →
C3H

+
3 +HCN

9.84 6.92× 10−11 1.00× 10−20 1.96× 10−09

9044 C8H2 +HCNH+ →
C8H

+
3 +HCN

9.68 4.77× 10−11 1.00× 10−20

5041 N2 +NH+
4 → N2H+ +NH3 9.56 3.61× 10−11 1.00× 10−20

3540 H2O+HCNH+ →
H3O+ +HCN

9.55 3.51× 10−11 1.00× 10−20 1.00× 10−20 8.80× 10−13

5403 HCO+ +N2 → CO+N2H+ 9.50 3.13× 10−11 1.00× 10−20 6.70× 10−10 2.00× 10−09

8560 C6H2 +HCNH+ →
C6H

+
3 +HCN

9.45 2.79× 10−11 1.00× 10−20

5192 C2H4 +C3H
+
3 → C5H

+
5 +H2 9.39 2.73× 10−10 1.10× 10−19 5.50× 10−10 1.10× 10−09

overestimated and underestimated rate coefficient predictions,
respectively; both tables show reaction instances from the full
dataset, not only the test set. The prediction error in the tables
refers to the test errors for instances of the test set and training
errors for the instances of the training set. Apart from the pre-
diction errors and predicted and target values of reaction rate
coefficients, also alternative rate coefficient target values are
shown for each reaction where they exist in the dataset.

It is very encouraging to see, that in all the cases where
any alternative target values exist, they agree with the pre-
dicted value much closer than the most diverging target value
responsible for flagging these predictions as outliers. Even

without inspecting the sources and credibility of the data
instances, it could be argued that the data instances with the
very low target values of k< 10−20 cm3 s−1 from table 6 are
very probably erroneous, as the same reactions can in many
cases be found in the dataset with rate coefficients about ten
orders of magnitude lower. The cases from table 6 could then
be considered erroneous data samples, rather than erroneous
predictions.

Taking as an example the elastic reaction

H+ + HCN→ H+ + HCN (22)
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Table 7. Top ten reactions with the most underestimated predicted rate coefficients. For each reaction, the prediction error is listed as well as
the predicted value of the reaction rate coefficient and the target value. If there exist alternative rate coefficient targets in the dataset, those
are also shown.

Prediction error Prediction Target

ID Reaction logkpred − logktarget kpred(cm
3 s−1) ktarget(cm3 s−1) k(2)target(cm

3 s−1) k(3)target(cm
3 s−1)

7041 CH3CHCH2 +H+
3 → C3H

+
7 +H2 −17.89 9.36× 10−09 7.26× 1009

3837 C3H2 +H3O+ → C3H
+
3 +H2O −8.78 1.66× 10−09 1.00× 1000 4.60× 10−09 3.00× 10−09

7495 C4H+ S+ → C3H+ +CS −8.59 1.28× 10−09 4.98× 10−01

7494 C4H+ S+ → C4S+ +H −8.24 2.85× 10−09 4.98× 10−01 3.17× 10−09 1.00× 10−09

5114 C2H4 +H→ C2H3 +H2 −7.28 4.70× 10−17 9.00× 10−10 1.00× 10−20

97 H+OCN→ CN+OH −6.69 2.04× 10−17 1.00× 10−10

4427 C2H2 +H→ C2H+H2 −6.39 4.11× 10−17 1.00× 10−10 1.00× 10−20 1.00× 10−20

949 C+H2 → CH+H −5.87 2.00× 10−16 1.50× 10−10 1.00× 10−20

2690 H2 +O→ H+OH −5.87 4.63× 10−16 3.44× 10−10 9.16× 10−18 1.00× 10−20

7848 CH2F2 +H→ CHF2 +H2 −5.56 4.11× 10−16 1.49× 10−10

labeled with ID 213, it can be seen in table 6 that it has 3 data
samples in the dataset:

(i) The first comes from KIDA [15] with k=
10−9 exp(−7850/T) cm3 s−1, which gives 4.32 × 10−21

at T = 300K and gets capped to the value of k= 10−20.
This value is very low and a careful examination of the
entry in KIDA database reveals the reason: KIDA lists
it as the H+ +HCN→ H+ +HNC reaction, therefore
the low rate coefficient belongs to a reaction changing
the isomer from hydrogen cyanide HCN, to hydrogen
isocyanide HNC, rather than the elastic reaction (22)
appearing in the dataset, which does not resolve differ-
ent species isomers, as discussed in section 2.3. The rate
coefficient of k= 10−20 therefore does not apply for the
reaction (22) and the model was right to regress much
higher value. KIDA cites Harada et al [91] as the data
source, but we could not find this reaction explicitly in
the cited publication.

(ii) The second was sourced from UDfA [16], which lists
the reaction with the coefficient value of k(2) = 10−9 cm3

s−1, without any temperature dependence (and without
any citation).

(iii) The third available data sample is also from KIDA, which
lists it with rate coefficient in the form of one of the
formulas for ion–polar systems see equation (4), giv-
ing k(3) = 1.47× 10−8 cm3 s−1. UDfA cites work by
Woon and Herbst [80] for this coefficient value, where
the authors performed quantum-chemical calculations for
neutral molecules, among others for HCN. This data
sample could be considered the most reliable out of the
three as it actually contains the citation to a paper relev-
ant for the reaction. The prediction error compared to this
data instance is still about 1.6 orders of magnitude, but
this is well within the main peak of the prediction errors
distribution shown in figure 10.

Similar conclusions could be drawn about the most diver-
ging data samples from table 7. For example, in the case of
the first four reactions in table 7, it is obvious that the target
values responsible for such high prediction errors are way too

high and clearly incorrect. In the case of reactions with IDs
3837 and 7494 in table 7, the alternative target values are very
close to the predicted one, validating the predictions. And in
the case of the first reaction (ID 7041) in table 7, with the
highest prediction error of the whole dataset, the data sourced
fromKIDA is also very obviously wrong. KIDA cites Hickson
et al [92] as the source publication for the value of the reac-
tion rate coefficient described by the functional dependence
given in equation (5). KIDA lists the parameter β (which cor-
responds to the Langevin rate in cm3 s−1) as β = 3.5 × 109

when it clearly should have been β = 3.5 × 10−9. This typo
was corrected in February 2021 which was after the train-
ing data for this project was scraped. With the correct β
coefficient, the rate coefficient for this sample evaluates to
k= 3.76× 10−9 cm3 s−1, which is fairly close to the predicted
value.

4.4. Analysis of missing features

Figure 11 shows that the features ∆fH◦
total, F

α
LHS, and FpLHS

appear on average fairly high in the decision trees of the ran-
dom forest and the gradient-boosted trees regression models,
which signals their relatively high importance for the pre-
diction of reaction rate coefficients. These three features are
also among those derived from values that were not present
for all the data samples. More specifically, dipole moment
p and polarizability α of both reactants were used to evalu-
ate these features, as were the enthalpies of formation ∆fH◦

of all the reactants and products in any reaction. The miss-
ing species data had to be imputed and it could be interest-
ing to see how the prediction error correlates with features
data availability. Such a correlation is shown as a bar plot in
figure 12.

At the first glance, there appears to be a negative correla-
tion between the number of values missing relevant for the fea-
tures discussed, and the MAE error measure, where one might
expect (if any) a positive correlation. After all, the imputation
process will likely be fairly crude in guessing missing values
of a species from its other attributes. However, this correla-
tion is in fact caused by a bias in the dataset, as shown in
figure 13. The subsets of samples with more species attributes
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Figure 12. Correlation of MAEs and a number of missing values of enthalpy of formation ∆fH
◦ among reactants and products, and

polarizability α and dipole moment p among reactants. These values are used to evaluate the features∆fH
◦
total, F

α
LHS and F

p
LHS, that were

found to be important for the prediction of rate coefficients (figure 11).

Figure 13. Correlation of fraction of instances with a particular combination of reactant charges, and the number of missing values of
enthalpy of formation ∆fH

◦ among reactants and products, and polarizability α and dipole moment p among reactants. Reactant charges
combination greatly affects the prediction error (figure 10, table 5).

values missing tend to have a higher ratio of cation–anion
reactions, and a lower ratio of neutral–neutral reactions. This
greatly affects the prediction errors, as the neutral–neutral
reactions get predicted with much lower accuracy than the
cation–anion reactions. If data similar to those in figure 12 are
plotted for e.g. ion–neutral reactions only, the negative cor-
relation disappears and the MAE error measure appears to be
independent of the number of missing values. This implies the
imputation process is fairly effective in recovering the missing
data.

4.5. Packaging of the final regression model

As the final step in the regression model development, we
wrapped the final optimized regression model into a cus-
tom Regressor class, which takes care of capping the
predicted data to the minimal value ymin = log10 kmin =
−20 after prediction, and recovers the reaction rate coef-
ficients in the original units of cm3 s−1 by exponen-
tiating the predicted values back to kpred = 10y

pred
. We

chained this custom regressor behind the data transformation
pipeline, which takes care of missing data imputation,
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Figure 14. A jupyter notebook python code snippet detailing the required form of input for the trained regression model. The code in the
figure shows how an example input DataFrame is instantiated from the csv table provided by the project repository. The regression model
requires a DataFrame with 72 columns, given as the output of the cell [3].

features engineering, and scaling (and which is described in
section 3.2.3). The resulting final regression model pipeline
was trained on the whole dataset and persistently saved
as final_regression_pipeline.joblib by the joblib
module from Python standard library. This ready-to-use
trained regression model can be easily imported to any
python code from the utils module in the project repos-
itory, by calling the get_final_regression_pipeline
function.

The model needs to be fed by a pandas.DataFrame [93]
instance, with rows representing the reactions for which the
rate coefficients should be estimated. The project reposit-
ory provides a sample input as sample_input.csv which
can be read by pandas into the DataFrame required as
the input for the trained model. Figure 14 shows a jupyter
notebook python snippet detailing how the example_input
DataFrame is instantiated from the sample_input.csv table
and showing all the DataFrame columns required by the
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Figure 15. A continuation of the jupyter notebook python code snippet from figure 14, showing how the ready-to-use trained regression
model can be imported from the utils python module. The regression model is then fed by the previously built example_input
DataFrame instance (see figure 14) to predict the reaction rate coefficients in cm3 s−1.

model. All the columns required are given as the header in the
sample_input.csv table, while the first column of the table
indexes the rows by their unique IDs. All the DataFrame val-
ues are required in units described in section 3.2.1.

Finally, figure 15 gives a continuation of the code from
figure 14, showing how the ready-to-use trained regression
model can be imported from the utils python module. To
obtain the predicted rate coefficients for all the reactions
described by the input DataFrame, the predictmethod of the
regression model instance must be called with the input table
as a single parameter, as detailed by figure 15. This returns a
NumPy array of reaction rate coefficients in cm3 s−1.

5. Example use case

In this section, we present how the algorithm can be used to
fill data gaps in chemistry sets and how this might impact the
results of a plasma simulation. As a gas mixture, we chose
BCl3/H2; note, that neither the gas mixture nor the process
parameters used in this example are meant to replicate any
specific plasma process but were rather arbitrarily chosen to
have missing reactions to be filled with the ML algorithm and
to show significant differences in the result when comparing
the simulations with and without the additional reaction data.
A case which can be compared to experimental data would be
preferable; this would, however, necessitate bespoke experi-
ments, which are beyond the scope of this work.

A basic BCl3/H2 set was created with data from QDB using
its set generator described in [9]. Cross-sectional data and rate
coefficients for this set are taken from [94–136]. In this basic
set, reactions between the various BClx species andH aremiss-
ing. For some candidates, rate coefficients have been reported;
[137, 138] report data for the reaction

BCl3 +H→ BCl2 +HCl (23)

and [139] gives a rate coefficient for the reaction

BCl+H→ HB+Cl. (24)

However, both of these reactions are highly endothermic
yielding rate coefficients on the order of 10−15 cm3 s−1 or

smaller at 300 K. Hence, they are unlikely to have a significant
impact at the temperature the ML algorithm was trained for.
As additional candidates we consider

BCl2 +H→ BCl+HCl (25)

and

BCl+H→ B+HCl. (26)

Reaction (25) is exothermic while (26) is endothermic;
therefore, we add reaction (25) but neglect (26). Using the
ML algorithm for reaction (25) yields a rate coefficient of
1.3× 10−11 cm3 s−1. It should be noted, that there are also
candidates for ion-neutral charge exchange and ion-ion recom-
bination reactions; however, these either had no significant
impact on the results or their rate coefficients as determined
by the ML algorithm are close to common estimates. There-
fore, they are not discussed for the sake of brevity.

To show the impact of adding the generated data to a chem-
istry set might have, we conducted global plasma simulations
using the pygmol plasma model as detailed in [9]. We tested
two sets with and without reaction (25) with (arbitrary) pro-
cess parameters:

• A pressure of 10 Pa
• An absorbed power of 10W
• A chamber radius of 0.1m
• A chamber height of 0.1m
• A total flow of 100 sccm
• The relative flow of BCl3 was varied between 10% and 90%
with the remainder as H2 flow.

Figure 16 shows the densities of the species involved in reac-
tion (25) as a function of the relative BCl3 flow for the pro-
cess parameters discussed above. We observe significant dif-
ferences between the basic set and the one with reaction (25)
added, namely:

• The density of BCl is between half an order of magnitude
and a whole order of magnitude larger with the additional
data; qualitatively it increases somewhat slower than in the
basis set.
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Figure 16. Densities of the neutrals involved in reaction (25) as a function of the relative BCl3 flow as calculated by the pygmol global
plasma model [9].

• BCl2 shows densities which are one to two orders of mag-
nitude smaller than in the basis set. Qualitatively, its density
increases faster as a function of the BCl3 flow than in the
basis set.

• HCl shows the smallest difference with a similar qualitat-
ive behaviour and higher absolute densities up to a factor of
about 5.

• H displays a very different behaviour; in the basis set it stays
relatively constant and only drops off for large BCl3 flows,
while with the added reactions it is monotonically decreas-
ing. In absolute terms, the densities are roughly the same for
small BCl3 contents, but differ by an order of magnitude for
large ones.

Overall, the example shows how adding a reaction with a
hitherto unknown rate coefficients has a significant impact

on the chemical composition of the discharge with densit-
ies of neutrals differing by up to two orders magnitude. This
highlights the importance of taking such reactions into con-
sideration for which our ML algorithm likely gives better
estimates than intuitive guesses, while being faster than pre-
cise measurements, calculations, or calibrations. This and sim-
ilar chemistries can constructed within the QDB environment
using a combination of the assembled data and the in-house
ML algorithm.

6. Conclusions and outlook

Here we present a ML-based regression model for fast
approximation of unknown plasma reaction rate constants at
T = 300K from commonly available reaction and species data.
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The model was restricted to binary reactions of heavy species.
The room-temperature rate coefficients are regressed from
features built from masses, charges, enthalpies of formation,
polarizabilities, dipole moments, and elemental data of both
reactants and products. The final model is a voting regressor
consisting of three distinct optimized regression models: a
support vector regressor [73], random forest regressor [75],
and a gradient-boosted trees regressor [77]. This work forms a
natural counterpart to our previous study [140] which presen-
ted a method of ranking the species in a chemistry set accord-
ing to their importance for modeling densities of a pre-defined
set of species of interest.

The model was trained on a training set of over 7500 data
instances acquired from four popular databases of plasma pro-
cesses. The final generalization MAE error of the reaction
rate coefficient prediction, evaluated on a withheld test set of
around 1900 instances, was just under 0.6 orders ofmagnitude,
compared to about 0.95 orders of magnitude for a benchmark
case of a simple linear regression. The overall distribution of
the reaction rate coefficients from the test set was recovered
very well in the predicted values, as were the distributions for
distinct subsets of neutral–neutral, ion–ion, and neutral–ion
reactions.

The ability of the model to flag instances of erroneous data
instances is demonstrated: we found that out of the ten most
underestimated and overestimated predicted rates, the major-
ity could be attributed to erroneous training targets, rather than
incorrect predictions.

The most obvious potential for future work is the expansion
of the model applicability space. The model presented was
trained exclusively on reactions of two heavy-species react-
ants, and two heavy-species products, without any excited
states, which means that the model applies only to such
reactions. As a subject of future research, the model could
be expanded to also handle three-body collisions, dissociat-
ive or associative processes with different numbers of react-
ants and products, ionization processes with electrons among
the products, and similar. Furthermore, the model could be
expanded to handle vibrational and/or electronic excited states
among reactants and products. Such an expansion will require
redesigning the feature space of the model to capture state-
specific properties of species, and to allow features built from
more than two species per reaction side.

Electron collisions form a somewhat distinct category of
plasma reactions, as full collisional cross-sections are usu-
ally required to model low-temperature plasma phenomena.
This, with the fact that electron collisions are driven by com-
plicated underlying physics, would probably make the task of
expanding the current model to also handle electron collisions
challenging. Instead, the development and training of a sep-
arate model for electron collisions might be a more sensible
approach and another topic of possible future research.

The model presented only regresses rate coefficients
expressed for the room temperature, while a much more valu-
able output of the model would be a temperature dependence
k(T) in some form such as the triplet of parameters for the
modified Arrhenius formula of equation (3). Training such a
model would, however, require training data instances with

temperature-dependent target values of rate coefficients, for
which there was limited data in our data sources.

Building a higher-quality training dataset would
undoubtedly improve the predictions provided by our model.
We found that our training dataset contained a number of reac-
tions with multiple data instances with diverging target values,
sometimes differing by many orders of magnitude. Curating
the training dataset such that it contains only trustworthy data
instances might be a very costly effort, but one which would
undoubtedly also improve the quality and performance of any
regression model trained on such a curated dataset.

Rejecting untrustworthy data would reduce the size of the
training dataset meaning that exploring additional training
data sources makes for another significant direction of future
work. The training dataset could also benefit from an analysis
of the biases present, as the selection of data sources inevitably
influenceswhich reaction classes, or which rate coefficient cal-
culation methods, experimental techniques, etc, are dominant
in the dataset. A careful bias analysis helps to understand how
the biases in the training dataset translate to the expected pre-
diction accuracies for, e.g. different reaction classes. Finally,
testing the regression model on various well-established pub-
lished chemistry sets by replacing a fraction of real rate coef-
ficients with data synthesized by the model and comparing the
model results, presents itself perhaps as another logical next
step in this research.
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