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Summary.
We propose a methodology for modeling and comparing probability distributions within a
Bayesian nonparametric framework. Building on dependent normalized random measures,
we consider a prior distribution for a collection of discrete random measures where each
measure is a linear combination of a set of latent measures, interpretable as characteristic
traits shared by different distributions, with positive random weights. The model is non-
identified and a method for post-processing posterior samples to achieve identified inference
is developed. This uses Riemannian optimization to solve a non-trivial optimization problem
over a Lie group of matrices. The effectiveness of our approach is validated on simulated
data and in two applications to two real-world data sets: school student test scores and
personal incomes in California. Our approach leads to interesting insights for populations
and easily interpretable posterior inference.

Keywords: Comparing probability distributions; Dependent random measures; Latent
factor models; Normalized random measures; Riemannian optimization

1. Introduction

Modeling a set of related probability measures is a common task in Bayesian statistics, the
most common example being when covariates are associated with each observation. In this
work, we consider the case of a single discrete-valued covariate, which might be regarded
as a group indicator, that is, when data are naturally divided into subpopulations or
groups. One of the main motivations for these kinds of analyses is combining data from
different sources or experiments, where, for each source, a set of observations is collected:
pooling together all the data could ignore important differences across populations while
modeling each group separately might result in poor performance especially if the number
of observations in each group is small. Applications range from population genetics (Elliott
et al., 2019) to healthcare (Müller et al., 2004; Rodríguez et al., 2008) and text mining (Teh
et al., 2006).

Within this setting, our goal is to propose a flexible model that, in addition to combin-
ing heterogeneous sources of data, gives an efficient way of representing the difference in
distribution across populations. Consider for example Figure 1, which displays the distri-
bution of the personal annual income (on the log scale) in four different geographic areas
of California: two in Los Angeles and two in San Francisco. In this case, similarities and
differences between the distributions can be easily spotted by eye: the two areas in Los
Angeles are associated with (much) lower incomes than the areas in San Francisco. When
the number of groups increases, it is not possible to carry out these comparisons by eye.
Our model provides a way to decompose the area-specific densities into a linear combi-
nation of “common traits”, which are themselves probability measures. In Section 6.2, we
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Fig. 1: Kernel density estimates of the (log) personal incomes in four areas in California
(left plot): two in Los Angeles (middle plot) and two in San Francisco (right plot).

provide a thorough analysis of the Californian income data, finding four common traits,
associated with an average distribution of income, and a prevalence of low, medium, and
high incomes respectively. By looking at the weights (of the linear combination of common
traits) associated with the four groups in Figure 1, we easily spot differences between the
Los Angeles and San Francisco areas: the weight associated to the low-income trait is large
in the first areas and low in the second two; vice versa for the weight associated to the
high-income trait. See Figure 8 for more details.

To formalize the discussion above, let (y1, . . . ,yg) denote a sample of observations
divided into g groups where yj = (yj1, . . . , yjnj

). A common assumption is that data are
exchangeable in each group, but exchangeability might not hold across different groups. In
particular, by de Finetti’s theorem, this is tantamount to assuming that there is a vector of
random probability measures (p1, . . . , pg) ∼ Q such that, in each group, yj1, . . . , yjnj

iid∼ pj
and that independence, conditionally on p1, . . . , pg, holds across groups. We focus here on
mixture models of the kind pj(y) =

∫
Θ f(y | θ)p̃j(dθ).

The construction of a flexible prior Q that can suitably model heterogeneity while
borrowing information across different groups has been thoroughly studied in Bayesian
nonparametrics. See Quintana et al. (2022) for a recent review of such constructions.
Previously proposed approaches consider constructing p̃1, . . . , p̃g in a hierarchical model
fashion (Teh et al., 2006; Camerlenghi et al., 2019; Bassetti et al., 2020; Argiento et al.,
2019), considering convex combinations of shared and group-specific random measures
(Müller et al., 2004), and starting from additive processes (Griffin et al., 2013; Lijoi et al.,
2014). Another fruitful approach to borrow strength across different groups is to cluster
the p̃j ’s by building Q using nested processes, such as is the case of the nested Dirichlet
process (Rodríguez et al., 2008), of which several extensions and modifications have been
proposed in the last few years starting from Camerlenghi et al. (2019), see, for instance,
Denti et al. (2021); Beraha et al. (2021); Lijoi et al. (2022). As previously mentioned, the
focus of the present paper is slightly different. First of all, we are interested in the situation
when the number of groups g is large relative to the sample size in each group nj . Then, it
is likely that the dataset cannot inform the huge number of parameters that are associated
with extremely flexible models and we advocate for a more parsimonious model where
substantial sharing of information is encouraged across different groups of data. Moreover,
in addition to modeling the densities p1, . . . , pg, we also want to identify the main differences
in distribution of the data across groups. To the best of our knowledge, this question has not
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been addressed systematically in the Bayesian nonparametric literature. In the frequentist
one, several approaches to principal component analysis for probability distribution have
been proposed, see for instance Pegoraro and Beraha (2022) and the references therein.

The setting “large g, small nj” is somewhat reminiscent of high-dimensional data anal-
ysis, where the dimension of each observation is large relative to the sample size. In this
case, latent factor models (see, e.g., Arminger and Muthén, 1998) provide a powerful tool.
In a latent factor model, it is assumed that each observation xi ∈ Rp is a linear combination
of a set of H d-dimensional latent factors weighted by observation-specific scores, plus an
isotropic error term. We follow this analogy and propose normalized latent measure factor
models, a class of prior distributions for a vector of random probability measures p̃1, . . . , p̃g.
Informally, our model amounts to considering p̃j as a convex combination of a set of latent
random probability measures, see Section 2.

Our construction shares similarities with Griffin et al. (2013) and Lijoi et al. (2014).
There, the authors assume each p̃j as the normalization of a random measure obtained
by superposing several completely random measures. Essentially, this is analogous to our
approach if we let all the scores (before some normalization step, see Section 2) be zero
or one. The main difference is that, since their scores are binary, they usually assume
that the number of latent factors H is larger than the number of groups g. This leads to
posterior simulation algorithms that can scale and/or mix poorly with g. Moreover, they
do not consider the problem of decomposing the populations’ distribution into interpretable
common traits, which necessarily requires H to be much smaller than g.

As is usually the case for latent factor models, our model is not identifiable, due to
two parameter matrices entering multiplicatively. To tackle this issue, we propose post-
processing the MCMC chains to find an “optimal representative” for both parameters which
leads to a non-trivial optimization problem. Indeed, taking into account the invariance
to scaling of normalized random measures leads to formulating the optimization over a
Riemannian manifold of matrices, specifically the special linear group (matrices whose
determinant is equal to one). Moreover, additional constraints must be taken into account
to ensure the positiveness of both parameters and we propose an iterative algorithm based
on gradient descent. The first constraint (determinant equal to one) can be tackled by
means of differential geometric tools: leveraging the differential structure of the special
linear group, we use a variant of Riemannian gradient descent which ensures that all
the intermediate points of the algorithm lie inside the special linear group. To take into
account the positivity constraints, we propose to use the augmented Lagrangian multiplier
method within the previously discussed Riemannian framework, leading to a Riemannian
augmented Lagrangian multiplier method.

We consider two motivating applications. The first one is the scores on a mathematics
test of approximately 40, 000 students in 1048 Italian high schools from the invalsi dataset.
The median number of students taking the test in each high school is as few as 37, the
minimum being 4 and the maximum 131. The second one comes from the US income survey.
Here, the groups are represented by geographical units called PUMAs, which correspond
to areas with roughly 100, 000 inhabitants. We show how our model can be adapted to
induce correlation between the distribution of incomes in PUMAs that are geographically
close, by assuming that the scores are distributed as a log Gaussian Markov random field.
Compared to traditional spatial factor models, we introduce the spatial dependence in the
loadings matrix instead of the latent factors.

The rest of the paper is organized as follows. Section 2 formalizes our model and
discusses its statistical properties. Section 3 describes the MCMC algorithm for poste-
rior inference and we present our post-processing algorithm in Section 4. Section 5 and
Section 6 present numerical illustration on simulated data and real data, respectively.
Finally, we discuss possible extensions of the proposed approach in Section 7. The Sup-
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plementary Material collects background material on Riemannian optimization and com-
pletely random measures, proofs of the theoretical results, and additional simulations.
Python code implementing the MCMC and the post-processing algorithms is available at
github.com/mberaha/nrmifactors.

2. The Model

For simplicity and specifity, we assume that each yji ∈ Rd and that Θ ⊂ Rq for some d
and q. The results can be easily extended to the case when yji are elements of a complete
and separable (i.e., Polish) metric space and Θ is Polish as well.

To keep the discussion light, we defer all technical details and the proofs of the results
to the Supplementary Material.

2.1. Preliminaries
Before presenting our model in detail, we give some background material on completely
random measure and their normalization. This will constitute the backbone of our ap-
proach.

Let (Θ,B(Θ)) be a complete and separable metric space endowed with its Borel σ-
algebra. A random measure is a random element µ taking values in the space of probability
measures over Θ, such that µ(B) < +∞ almost surely for all B ∈ B(Θ). Such a measure is
termed completely random by Kingman (1967) if, for pairwise disjoint B1, . . . , Bn ∈ B(Θ),
the random variables µ(Bj), j = 1, . . . , n, are independent. For our purposes, it is sufficient
to consider completely random measures of the kind µ(A) =

∫
R+×A sN(ds dx), where N

is a Poisson point process on Θ× R+ with base (intensity) measure ρ(ds dx). We further
assume ρ(dsdx) = ν(ds)α(dx) where ν is a Lévy measure on the positive reals, α is a
Borel measure on Θ. See, e.g., Kingman (1993) for a detailed account of random measures.

A fruitful approach to constructing random probability measures is by normalization
of completely random measures, i.e., by setting p(·) = µ(·)/µ(Θ), which was originally
introduced in Regazzini et al. (2003). For the random measure p to be well defined, one
must ensure that µ(Θ) > 0 and µ(Θ) < +∞ almost surely. As shown in Regazzini et al.
(2003), sufficient conditions are

∫
R+
ν(ds) = +∞ and

∫
R+

min{1, s} ν(ds) < +∞.

2.2. Normalized Latent Measure Factor Models
As already mentioned in the Introduction, we assume

yj1, . . . , yjnj
| p̃j

iid∼ pj :=

∫
Θ
f(· | θ)p̃j(dθ)

and that each p̃j is a normalized random measure, that is

p̃j(·) =
µ̃j(·)
µ̃(Θ)

, j = 1, . . . , g.

Then, the model is specified by a choice of the mixture kernel f(· | ·) and a prior distri-
bution for (µ̃1, . . . , µ̃g). Let (µ∗1, . . . , µ

∗
H) be a completely random vector (i.e., a vector of

completely random measures). Let λjh, j = 1, . . . , g, h = 1, . . . ,H be a double sequence
of almost surely positive random variables (specific choices of the distribution of the λjh’s
are discussed later). We assume

µ̃j(·) =

H∑
h=1

λjh µ
∗
h(·). (1)
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Note that (1) generalizes the construction in Griffin et al. (2013) and Lijoi et al. (2014).
Specifically, we recover the GM-dependent Dirichlet process in Lijoi et al. (2014) by set-
ting g = 2, H = 3, fixing (λ1,1, λ1,2, λ1,3) = (1, 0, 1) and (λ2,1, λ2,2, λ2,3) = (0, 1, 1), and
assuming that the (µ∗1, µ

∗
2, µ
∗
3) is a vector of independent Gamma processes. In the CNRMI

process in Griffin et al. (2013), H > g is generic and Λ is a g × H binary matrix. The
random measures µ∗h’s are independent completely random measures with Lévy intensity
Mhν(s)dsα(dx). In the most general formulation, Griffin et al. (2013) set H = 2g−1 and
the h-th column of Λ is fixed equal to the binary representation of h. Then, the authors
propose to perform variable selection on the columns of Λ by assuming a prior for theMh’s
parameters that is a mixture of a point mass at 0 and a diffuse distribution on R+. Indeed,
if Mh = 0 then µ∗h(A) = 0 for any measurable A, that is equivalent to removing the h-th
column of Λ.

We could choose (µ∗1, . . . , µ
∗
H) to be independent and identically distributed random

measures, i.e.
µ∗h(·) =

∑
k≥1

Whk δθ∗hk
(·)

where {Whk, θ
∗
hk}∞k=1 are the points of a Poisson point process on [0,+∞) × Θ with, for

instance, intensity νh(dsh dxh) = ρ(sh)dsh α(dxh), i.e., all the intensities are equal. This
choice leads to a particularly tractable model for (µ̃1, . . . , µ̃g) as we have that marginally,
each µ̃j is a completely random measure as specified in the following proposition.

Proposition 1. Let µ̃j =
∑H

h=1 λjhµ
∗
h where the µ∗h’s are completely random measures

with associated Lévy intensity ν∗h(dsh, dxh) = ρ∗h(sh)dsh α
∗
h(dxh). Further, assume that the

µ∗h’s are independent. Then µ̃j is a completely random measure with Lévy intensity

νj(ds, dx) =

H∑
h=1

1

λjh
ρ∗h(s/λjh)α∗h(dx)

We find that a more suitable model for our applications arises when µ∗1, . . . , µ
∗
H share

their support points. In particular, we will assume that µ∗1, . . . , µ
∗
H is a compound random

measure (CoRM, Griffin and Leisen, 2017). That is,

µ∗h(·) =
∑
k≥1

mhkJkδθ∗k(·),

where mhk are positive random variables such that mk = (m1k, . . . ,mHk), k ≥ 1, are inde-
pendent and identically distributed from a probability measure on RH+ , and η =

∑
k≥1 Jkδθ∗k

is a completely random measure with Lévy intensity ν∗(dz)α(dx). We argue that a CoRM-
based construction should be preferred to an independent CRMs-based one since (i) shar-
ing atoms across all measures is linked to better predictive performance (Quintana et al.,
2022), (ii) the number of parameters involved is much smaller, which ultimately leads to
the possibility of fitting this model to large datasets, and (iii) each latent factor µ∗h can
be interpreted separately (through the post-processing algorithm presented in Section 4).
The effectiveness of this model comes with a tradeoff in analytical tractability, since, as
shown in the Supplementary Material, the random measure (2) is not completely random.

In this case we can write

µ̃j(·) =
∑
k≥1

(ΛM)jkJkδθ∗k(·), (2)

where Λ is the J × H matrix with entries λjh, M is a H × ∞ matrix, so that Γ =
ΛM is a g × ∞ matrix with entries γjk, j = 1, . . . , g, k ≥ 1. Note that, in analogy to
CoRMs, our model includes shared weights Jk for all the measures µ̃j . We find that the
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additional borrowing of strength obtained through the Jk’s is useful in practice since, in
our applications, the µ̃j ’s are usually similar.

Equations (1) and (2) share analogies to latent factor models, where the observed vari-
able is X ∈ Rp and its `-th entry is modeled as X` ≈

∑H
h=1 ω`hZh, for Z = (Z1, . . . , ZH)

an H-dimensional random variable. In particular, we could consider µ∗1, . . . , µ
∗
H to be

measure-valued factor loadings and the λjh’s to be factor scores. This yields an interpre-
tation similar to functional factor models (Montagna et al., 2012). On the other hand, we
could consider the measure-valued vector (µ̃1, . . . , µ̃g) as a single high-dimensional obser-
vation, and model it as a linear combination of measure-valued factors with loadings λjh’s.
Both interpretations make sense and lead to interesting analogies. We use the latter one
and call Λ the loadings matrix and the µ∗h’s the latent measures.

Prior elicitation is required to set the Lévy intensity ν∗ of the CoRM, the distribution of
the scores mhk, and the distribution of Λ. Following Griffin and Leisen (2017), we assume
that mhk

iid∼ Ga(φ), where Ga(φ) denotes the law of a gamma random variable with shape
parameter φ and rate parameter 1 (we will also use Ga(φ, β) to denote a gamma random
variable with rate parameter β 6= 1). Therefore, the dependence across the µ̃j ’s depends
on H, ν∗, and Λ.

The prior for Λ allows us to address several interesting modeling questions. When no
additional group-specific information is available, such as comparing the distribution of test
results in different schools, a natural choice would be to assume the λij ’s i.i.d. from some
probability distribution with support on R+, such as the gamma distribution. We find
it more convenient to specify a shrinkage prior on Λ, to automatically select the number
of latent factors H. This approach has received considerable attention in Gaussian latent
factor models, see, for instance, Bhattacharya and Dunson (2011); Legramanti et al. (2020);
Schiavon et al. (2022). In our example, we consider Λ distributed as the variances of a
multiplicative gamma process (Bhattacharya and Dunson, 2011), i.e., we assume:

λjh = (φjhτh)−1, τh =

h∏
j=1

θj , θ1 ∼ Ga(a1), θ2, . . .
iid∼ Ga(a2), φjh

iid∼ Ga(ν/2, ν/2). (3)

With an abuse of notation, in the rest of the paper, we say that Λ is distributed as
a multiplicative gamma process if (3) holds. In Section 3 we propose a variant of the
adaptive Gibbs sampler of Bhattacharya and Dunson (2011) to automatically select H in
the first iterations of the MCMC algorithm.

If group-specific information, such as covariates, is available, we can model the finite-
dimensional matrix Λ. For example, the PUMAs in the Californian income data are indexed
by a specific areal location. This can be modelled using a g × g spatial proximity matrix
denoted by W , where Wj` = 1 if areas j and ` share an edge and Wj` = 0 otherwise, but
more general choices of proximity could be considered in other examples. Then, we can
encourage spatial dependence between the µ̃j ’s by assuming

logλh
iid∼ NH

(
µ, (τ(F − ρW ))−1

)
, h = 1, . . . ,H (4)

where λh = (λ1h, . . . , λgh) is the h–th column of the matrix Λ, F is a diagonal matrix with
entries Fii =

∑
jWij , and ρ ∈ (0, 1). We suggest setting µ = log(1/H, . . . , 1/H) in (4) to

encourage a priori each µ̃j to be a convex combination of the µ∗h’s with equal weights. The
model could also be applied to geo-referenced data using a log Gaussian process,

logλh
iid∼ GP(µ,K), h = 1, . . . ,H

where λh = (λ1h, . . . , λgh) is the h–th column of the matrix Λ. In a similar fashion, if
group-specific covariates xj ∈ Rq were available, these could also be included in our model

6



by assuming

log λjh |βh, s2
h

ind∼ N (x>j βh, s
2
h), j = 1, . . . , g, h = 1, . . . ,H

and standard parametric priors could be assumed for (βh, s
2
h). Of course, more com-

plex functional relationships between the mean (and/or variance) of the log λjh’s and the
available covariates can be also assumed, together with standard priors on the associated
parameters

2.3. Statistical Properties
In this section, we discuss some distributional properties of the measures µ̃1, . . . , µ̃g in light
of the prior assumption above. We assume that the λjh’s are independent of µ∗1, . . . , µ

∗
H .

Firstly, it is clear that

E[µ̃(A)] =

H∑
h=1

E[λjh]E[µ∗h(A)].

When we consider the normalized measures, the expression of the expected value is more
complex.

Theorem 1. Let (µ∗1, . . . , µ
∗
H) be a CoRM with i.i.d. scores. Denote the Laplace trans-

form of the scores’ distribution by Lm(u) := E[e−um] and let κm(u, n) := E[e−ummn]. Then
for all measurable A ⊂ Θ

E[p̃j(A)] =

α(A)

H∑
h=1

∫
E

λjhψρ(uλj1, . . . , uλjH)

∫
R+

z
∏
k 6=h
Lm(uλjkz)κm(uλjhz, 1)ν∗(dz)

du

where ψρ is the Laplace functional of (µ∗1, . . . , µ
∗
H) (evaluated at the constant functions

uλj1, . . . , uλjH).

Although it is not possible to evaluate the quantity in Theorem 1 analytically, a priori
Monte Carlo simulation can be used to numerically estimate the expected value of p̃j(A).

To characterize the dependence induced by the latent measure factor model, an intuitive
measure is the covariance between two random measures.

Proposition 2. The following expression holds.

Cov [µ̃j(A), µ̃`(B)] =∑
h,k

{E[λjhλ`k]Cov(µ∗h(A), µ∗k(B)) + Cov(λjh, λ`k)E[µ∗h(A)µ∗k(B)]} (5)

If the λjh’s have the same marginal distribution, the µ∗h’s have the same marginal distri-
bution, λj = (λj1, . . . , λjH) and λ` (defined analogously) are independent, E[λjhλ`h] = κ,
Cov(λjh, λ`h) = ρ for all j, `, h, then:

Cov [µ̃j(A), µ̃`(B)] =

Cov(µ∗1(A), µ∗1(B))κH +m∗1(A)m∗1(B)ρH +
∑
h6=q

λ̄2
11Cov(µ∗h(A), µ∗k(B))

where λ̄jh := E[λjh] and m∗h(A) = E[µ∗h(A)].
Finally, if in addition the µ∗h’s are independent, the latter sum disappears
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From (5), it is clear that Cov [µ̃j(A), µ̃`(B)] increases with: (i) the correlation of the
measures at the latent level (Cov(µ∗h(A), µ∗k(B)) large), (ii) the correlation of the scores
(Cov(λjh, λ`k) large), (iii) large values in the scores (E[λjhλ`k] large), (iv) random measures
with large masses (E[µ∗h(A), µ∗k(B)] large), and (v) large values of H (more terms in the
summation).

The correlation between µ̃j(A) and µ̃`(B) can be formally derived from (5) but its
expression is not easily interpretable in general. The next proposition specialises it to the
case A = B.

Proposition 3. For any measurable A, let Cov(µ∗h(A), µ∗k(A)) = Cov(µ∗m(A), µ∗n(A)) =:
cA, E[µ∗h(A)] = E[µ∗k(A)] =: mA. Then

Cov [µ̃j(A), µ̃`(A)] = E[µ∗1(A)2]

(
H∑
h=1

E[λjhλ`h]

)
+

(cA +m2
A)

∑
h6=k

E[λjhλ`k]

−m2
A

∑
h,k

λ̄jhλ̄`k


Let us specialize the above expression further. Consider first the case of independent scores
λjh

iid∼ Ga(ψ, 1). The correlation between µ̃j(A) and µ̃`(A) amounts to(
1 +

mA

(Var[µ∗1(A)] + cA(H − 1))ψ

)−1

(6)

which is an increasing function ofH and ψ as expected. See Section B of the Supplementary
Material for a proof.

To evaluate mA, and cA we use the following result.

Proposition 4. Consider a CoRM with Ga(φ) distributed scores and gamma process
marginals (i.e., each µ∗h is distributed as a gamma process). Then for any measurable A:

(a) E[µ∗h(A)] = α(A),

(b) E[µ∗h(A)µ∗k(A)] = (α(A) + α(A)2)φ2(B(1, φ))23/2, where B(a, b) denotes the Beta
function.

Consider now the case when Λ is distributed as a multiplicative gamma process, see
(3). In this case, we don’t have an interpretable expression for the correlation between
µ̃j(A) and µ̃`(A). In Section B of the Supplementary Material we report the expressions
for Cov [µ̃j(A), µ̃`(A)] and Var[µ̃j(A)] which might be used to numerically compute the
desired correlation. Figure 2 displays the correlation between µ̃j(A) and µ̃`(A) for a set
A such that α(A) = 0.5. We notice that when the CoRM has gamma process marginals,
the parameter φ has little effect on the correlation between the µ̃j ’s. On the contrary,
there is a strong interaction between a2, ν, and H. For smaller values of ν, larger values
of H imply a higher correlation. When ν is sufficiently large (e.g. larger than 6), the
effect of H is less evident. Moreover, larger values of a2 imply a weaker correlation. This
is expected as it essentially reduces the number of active latent measures. In Figure E.1
in the Supplementary Material, we show the correlation between µ̃j(A) and µ̃`(A) under
prior (4) for different choices of areas j and `, as a function fo τ and ρ.

Since the atoms are shared across all the measures µ̃j ’s, another possible way of charac-
terizing the dependence between two measures is to consider the ratio of weights associated
to the k–th atom in µ̃j and µ̃`,

rkj` :=
(ΛM)jk
(ΛM)`k

=

∑H
h=1 λjhmhk∑H
h=1 λ`hmhk

. (7)
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Fig. 2: Correlation between µ̃j(A) and µ̃`(A) for a set A such that α(A) = 0.5, under the
multiplicative gamma process prior (3). a1 = 2.5, φ = 2. From left to right H = 4, 8, 16.
The values of a2 vary across the x-axis in each plot, the values of ν across the y-axis.

Indeed, the closer to one the rkj`’s are, the more similar µ̃j and µ̃` will be, since their weights
will be similar and the atoms are shared. On the other hand, values of rkj` closer to 0 or
much larger than 1 indicate that µ̃j and µ̃` will be very different. A trivial upper bound
for (7) is

rkj` ≤
H∑
h=1

λjh
λ`h

.

Multiplying and dividing by H in (7) and taking the logarithm yields

log rkj` = log

(
1

H

H∑
h=1

λjhmhk

)
− log

(
1

H

H∑
h=1

λ`hmhk

)
.

By the strong law of large numbers, we have that log rkj` → 0 as H → ∞ if, for instance,
λjh and λ`h are independent and identically distributed across the values of h. This further
strengthens the assumption that H � g in order for the model to make sense. Moreover,
it is clear that the variance of rkj` increases with the variance of the λjh’s. On the contrary,
observe that if H = 1 the µ̃j ’s are all different but, because of the normalization, p̃j = p̃k =
µ∗1/µ

∗
1(Θ) for any j, k = 1, . . . , g. In Section E of the Supplementary Material we report an

a prior Monte Carlo simulation comparing rj` as a function of H under different priors for
Λ, namely and i.i.d. prior with Ga(ψ) distributed λjh’s, the multiplicative gamma process
in (3) and the variances of the cumulative shrinkage prior (Legramanti et al., 2020). It
is clear that under the two latter shrinkage priors, the choice of H has a smaller impact
on the prior. For the sake of computational efficiency, we will adopt the multiplicative
gamma process prior in our simulations, when no additional group-specific covariates are
present. Instead, when we consider the case of area-referenced groups, we consider H to
be a hyperparameter and perform model selection based on predictive performance

3. Posterior Inference

Let α be a measure on Θ, ν∗ a Lévy intensity on R+, and φ > 0. We denote with
CoRM(φ, ν∗, α) the law of a compound random measure with i.i.d. Ga(φ)-distributed
scores with directing random measure with intensity ν∗(z)dz α(dθ). Our model can be

9



compactly summarized as

yji | θji
ind∼ k(· | θji), i = 1, . . . , ni

θji | µ̃j
iid∼ µ̃j/µ̃j(Θ), i = 1, . . . , ni

µ̃j :=

H∑
h=1

λjhµ
∗
h,

(µ∗1, . . . , µ
∗
H) ∼CoRM(φ, ν∗, α), Λ ∼ π(Λ).

(8)

In this section, we describe a simple MCMC scheme based on a truncation of the
random measures. While we find the truncation convenient for algorithmic purposes, this
is not necessary to fit the model. Indeed, in Section C of the Supplementary Material, we
also describe a slice sampling algorithm based on Griffin and Walker (2011) that does not
require truncating the random measure. In particular, let K > 0 denote a fixed number of
atoms, we set

µ∗h =

K∑
k=1

mhkJkδθ∗k

where Jk
iid∼ pJ , with pJ being a probability distribution, and θ∗k

iid∼ G0 := α/α(Θ).
Campbell et al. (2019) provide a thorough review of truncation methods for completely
random measures including the choice of pJ for different random measures. We use
pJ = Beta(φ/K, φ) so that

∑K
k=1 Jkδθ∗k converges to a Beta process as K → +∞. This

combined with gamma-distributed mhk imply that marginally µ∗h follows a gamma process
(see Griffin and Leisen, 2017). Although this simple truncation might result in an approx-
imation error that is large a priori, as shown in Nguyen et al. (2020), posterior inference is
usually robust and no significant difference is detected. The choice of fixing K also allows
for (much) faster code since the number of parameters is now fixed, and our implementa-
tion can thus take advantage of modern parallelization and vectorization algorithms. This
is in line with our ultimate goal of fitting very large datasets with our model.

3.1. MCMC Algorithm for the Truncated Model

Observe that in (8), θji = θ∗k with positive probability. Therefore an alternative repre-
sentation is achieved by introducing latent cluster indicator variables cji such that cji are
independent categorical variables with support {1, . . . ,K} and

P (cji = k | {λjh}, {mhk}, {Jk}) ∝ (ΛM)jkJk.

Let Tj :=
∑

k(ΛM)jkJk. Writing p(· | ·) for a generic conditional density, the joint distri-
bution of data and parameters under (8) is then

p({yj,i}, {cj,i}, {λj,h}, {mh,k}, {J`}, {θ∗`}) =

g∏
j=1

T
−nj

j

nj∏
i=1

f(yj,i | θ∗cj,i)(ΛM)j,cj,iJcj,i ×
K∏
h=1

[
G0(θ∗h)pJ(Jk)

K∏
k=1

Ga(mhk |φ)

]
π(Λ).
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To facilitate posterior inference, we introduce a set of auxiliary variables uj , which are
gamma distributed with shape parameter Tj and rate parameter nj . Then

p({yj,i}, {cj,i}, {λj,h}, {mh,k}, {J`}, {θ∗`}, {uj}) =

g∏
j=1

1

Γ(nj)
u
nj−1
j

nj∏
i=1

f(yj,i | θ∗cj,i)(ΛM)j,cj,iJcj,i × exp

− g∑
j=1

uj

K∑
`=1

(ΛM)j,`J`


K∏
h=1

[
G0(θ∗h)pJ(Jk)

K∏
k=1

Ga(mhk |φ)

]
π(Λ)

It is then possible to sample from the posterior distribution via a Gibbs sampler:

(a) Update the atoms from

p(θ∗h | · · · ) ∝
g∏
j=1

∏
i:cj,i=h

f(yj,i | θ∗h)G0(θ∗h)

(b) Update the J ’s from

p(J` | · · · ) ∝ Jq`` exp

− g∑
j=1

uj(ΛM)j,`J`

 pJ(J`)

where q` =
∑g

j=1

∑nj

i=1 I[cj,i = h].

(c) Update the m’s from

p(M | · · · ) ∝
g∏
j=1

K∏
`=1

(ΛM)q`j,` × exp

− g∑
j=1

uj(ΛM)j,`J`

× H∏
h=1

K∏
k=1

Ga(mhk |φ)

The update of M can be done in a single block via Hamiltonian Monte Carlo.

(d) Update the λ’s from

p(Λ | · · · ) ∝
g∏
j=1

K∏
`=1

(ΛM)q`j,` × exp

− g∑
j=1

uj(ΛM)j,`J`

π(Λ)

Again, we can update Λ using a single step of Hamiltonian Monte Carlo.

(e) Update the cluster indicators from a categorical distribution over {1, . . . ,K} with
weights

P (cj,i = h | · · · ) ∝ f(yj,i | θ∗h)(ΛM)j,hJh

(f) update the u’s from p(uj | · · · ) ∝ u
nj

j e
−Tjuj , where we recognize the kernel of a

Gamma(nj , Tj) random variable

Finally, when the prior for Λ is the multiplicative gamma process (3) we propose to
gain computational efficiency by selecting H through an adaptive Gibbs sampling scheme
as in Bhattacharya and Dunson (2011). In particular, when adaptation occurs, we look at
the “empty columns” of Λ. We define a column h of Λ to be empty if

g∑
j=1

λjh∑H
k=1 λjk

< ελ̄
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where λ̄ = H−1
∑H

h=1

∑g
j=1

λjh∑H
k=1 λjk

. In our experience ε = 0.05 provides satisfactory
results. If there are no empty columns, we add a column sampled from the prior to Λ and
a row sampled from the prior to M . Instead, if empty columns are found, we drop them
from Λ and the corresponding rows from M .

Bhattacharya and Dunson (2011) propose to adapt Λ at each iteration ` with a proba-
bility p` that decreases exponentially fast. This choice is possible also within our algorithm
but, in our experience, it significantly impacts run-time. This is due to the choice of using
HMC to sample Λ and M and, in particular, to the use of the tensorflow-probability
Python package, in combination with LAX compilation. For technical reasons, every time
the size of Λ andM change, big chunks of the code must be recompiled, so that it’s not effi-
cient to adapt every few iterations. Instead, we propose to have a fixed adaptation window
of 1, 000 iterations, where the adaptation occurs every 50 iterations. In our experience,
this simple modification reduces the overall runtime by at least one order of magnitude.

4. Resolving the non-identifiability via post-processing

As already mentioned in the introduction, our model is not identifiable due to the mul-
tiplicative relation between Λ and (µ∗1, . . . , µ

∗
h). This is not surprising, as the same holds

for common latent factor models (Geweke and Singleton, 1980), where the likelihood is
invariant to the action of orthogonal matrices. In that context, a common practice to re-
cover identifiability is to constrain the matrix Λ to be lower triangular with positive entries
on the diagonal (Geweke and Zhou, 1996). More recently, it has been proposed to ignore
the identifiability issue and obtain a point-estimate of the posterior distribution either by
post-processing the MCMC chains (see Papastamoulis and Ntzoufras, 2022; Poworoznek
et al., 2021, and the references therein) or by choosing the maximum a posteriori (Schi-
avon et al., 2022). In particular, Poworoznek et al. (2021) propose to orthogonalize each
posterior sample of Λ and then solve the sign ambiguity and label switching via a greedy
matching algorithm.

The non-identifiability in our model is more severe than the one of common latent
factor models. In fact, for any Q s.t. Q−1 is well defined, the likelihood is invariant
when considering Λ′ = ΛQ−1 and M ′ = QM . Nonetheless, the constraints that Λ′ ≥ 0
(element-wise) and M ′ ≥ 0 greatly reduce the number of matrices Q that can cause non-
identifiability. In particular, we don’t need to worry about sign ambiguity.

4.1. The Objective Function
Consider equation (2). Factorizations of the kind Γ = ΛM where all the three matrices
have nonnegative entries are common in blind source separation (BSS) problems, where
the goal is to estimate “source components” M and “mixing proportions” Λ such that the
observed signal Γ is approximately ΛM . Two well-established approaches to BSS are non-
negative matrix factorization (NMF, Sra and Dhillon, 2005) and independent component
analysis (ICA, Hyvärinen, 2013). The main difference between the two consists in the loss
function optimized. In NMF it is usually the norm of the approximation error, while, in
ICA, the mutual information between the source components is minimized alongside the
approximation error. This takes into account the goal of separating the components. Since
in our analogy the sample size of the latent factor model is just one (i.e., in our model
there is one single vector µ̃1, . . . , µ̃p instead of multiple realizations), it is not possible to
use the same criteria of ICA to define what we mean by “separated components”. Hence,
we propose to optimize with respect to the following interpretability criterion:

L(Q;M,J, θ) =
∑
i<j

(∫
Y

[∫
Θ
f(y | θ)µ′i(dθ)

] [∫
Θ
f(y | θ)µ′j(dθ)

]
dy

)2

. (9)
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where

µ′j =

K∑
k=1

(QM)jkJkδθ∗k

Low values of L(Q;M,J, θ) in (9) are attained when the transformed random measures
µ′h, mixed with the mixture kernel f , result in well separated densities. Indeed, note that,
defining gi(y) :=

∫
Θ f(y | θ)µ′i(dθ) it is clear that (9) can be interpreted as the sum of the

squared inner products (in the L2 sense) between gi and gj . Since the gi’s are positive
functions, low values of the inner products can be obtained only if µ′i and µ

′
j give mass to

different portions of the domains. The L2 distance is not commonly used to measure the
discrepancy of densities. A more familiar option would be to consider

∫ √
gi(y)

√
gj(y)dy,

that is 1− dH(gi, gj) where dH denotes the Hellinger distance. However, this choice of loss
function leads to a more complex optimization problem, that cannot be solved with our
approach. Indeed, as discussed later in Section 4.3, the positivity of the gi’s might not be
preserved by the intermediate steps of the algorithm. Therefore, we need a loss function
that continues to make sense for negative gi’s.

4.2. The Optimization Space
Consider now the space over which one should minimize (9). First of all, we must require
the existence of Q−1 to interpet Λ′ = ΛQ−1. Moreover, for the model to make sense we
need to ensure the positivity of the coefficients involved, i.e. Λ′ = ΛQ−1 ≥ 0 and M ′ =
QM ≥ 0. Finally, we observe that (i) given an “optimal” Q such that L(Q;M,J, θ) = 0,
L(γQ;M,J, θ) = 0 for any γ > 0, and (ii) L(Q;M,J, θ) attains lower values when the
entries in Q are small. Despite the preference for small Q in the optimization problem,
the resulting model is invariant to such rescalings since it involves the normalization of the
underlying random measures. Hence, to overcome both issues we propose to add a further
constraint in the optimization problem, namely detQ = 1, which prevents having several
optimal solutions differing by a constant and does not allow for matrices with entries too
close to 0.

In conclusion, we propose to optimize (9) over the special linear group SL(H) = {Q ∈
RH×H : detQ = 1}, with the additional positivity constraints, i.e. our optimization
problem becomes

min
Q∈SL(H)

H∑
h,k=1

L(Q;M,J, θ) s.t. ΛQ−1 ≥ 0, QM ≥ 0. (10)

The special linear group is not a linear space, therefore common gradient-based optimiza-
tion techniques cannot be used to solve (10). However, we can take advantage of the
differential structure of SL(H). In fact, it is a Lie group (hence, a smooth differentiable
manifold) with associated Lie algebra sl(H) = {A ∈ RH×H : trA = 0}. See Section A.2
of the Supplementary Material for some basic details regarding Riemannian manifolds and
Lie groups.

4.3. A Riemannian Augmented Lagrangian Method
We are now in place to state the algorithm. For notational convenience, define the func-
tions c1

jh(Q) = −(ΛQ−1)jh and c2
hk = −(QM)hk. Denote with cj the collection of all such

functions. The positivity constraints are equivalent to cj ≤ 0 for all j’s. Following the
augmented Lagrangian method (Birgin and Martínez, 2014), we can deal with the con-
straints ΛQ−1 ≥ 0 and QM ≥ 0 by introducing auxiliary parameters ρ, γj and define the
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Algorithm 1. Augmented Lagrangian Multiplier Method
[1] input Starting point Q, initial values ρ, γj , target threshold ε∗, initial threshold ε.
[2] repeat
[3] Q = Q′

[4] solve Q′ = arg minQ Lρ(Q, γ) for fixed ρ, γ with theshold ε using Algorithm 2
[5] γj = γj + ρcj(Q

′)
[6] ρ = 0.9ρ ε = max{ε∗, 0.9ε}
[7] until ε ≤ ε∗; ‖Q−Q′‖ ≤ ε
[8] end

Algorithm 2. Lie RATTLE Optimization
[1] input Starting point Q,P , momentum τ , stepsize s, threshold ε.
[2] repeat
[3] P = τ

(
P − sΠsl(H)(∂QLρ(Q, γ), Q)

)
[4] Q = Q expm(χP ), χ = cosh(− log τ)

[5] P = τ
(
P − sΠsl(H)(∂QLρ(Q, γ), Q)

)
[6] until ‖Q−Q′‖ ≤ ε
[7] end

augmented loss function

Lρ(Q, γ) = L(Q;M,J, θ) +
ρ

2

∑
j

max

{
0,
γj
ρ
cj(Q)

}
(11)

Then, we can solve (10) by alternating between minimizing (11) for fixed values of ρ, γj
and updating ρ, γj as in Algorithm 1. As in the usual augmented Lagrangian method,
the constraints might be violated in the intermediate steps. Intuitively, the fact that the
penalty term γj is increased at every iteration if the constraint is violated should force
the solution of the problem inside the feasible region. See Birgin and Martínez (2014) for
convergence results of the augmented Lagrangian method.

It is now left to discuss how to solve (11) for fixed ρ and γj . We propose to tackle
this problem with the Riemannian dissipative RATTLE algorithm in França et al. (2021),
reported for the special case of optimization over SL(H) in Algorithm 2. In particular,
Πsl(H) is the projection over the Lie algebra sl(H) while expm denotes the matrix expo-
nential, which is a map sl(H)→ SL(H). Informally, Algorithm 2 resembles an accelerated
gradient method, where a momentum term is introduced to speed up the convergence. We
further have

∂QLρ(Q, γ)ij =
∂QLρ(Q, γ)

∂Qji

(note the index flip ij → ji, in other words ∂Qf(Q) = ∇Qf(Q)> where ∇ stands for the
usual Euclidean gradient). Moreover, the following proposition gives a computationally
convenient way of evaluating Πsl(H).

Proposition 5. Let X an H ×H real valued matrix. Then

Πsl(H)(X) = (X − diag(X))T +

H−1∑
`=1

X∗`

where diag(X) is the diagonal matrix with entries equal to the diagonal of X and X∗` is a
diagonal matrix whose only nonzero entries are the (`, `)-th and the (`+ 1, `+ 1)-th ones,
which equal to Xi,i −Xi+1,i+1 and −Xi,i −Xi+1,i+1 respectively.
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The parameters involved in the optimization problem are: the stepsize s and momentum
factor τ in Algorithm 2 as well as the initial values ρ, γj and the target and thresholds
ε∗, ε in Algorithm 1. We suggest as defaults s = 10−6, τ = 0.9, ρ = γj = 10, ε∗ = 10−6,
ε = 10−2. Finally, to set the starting point Q we we solve the unconstrained optimization
problem (equivalent to setting γj = 0 in (11)) using Algorithm 2 and use that solution as
starting point for the constrained optimization. The initial momentum term P in Algorithm
2 is always the zero matrix.

Convergence of the augmented Lagrangian method is difficult to study, particularly so
in the case of optimization on Riemannian manifolds. Given that the objective function is
nonconvex, we con only establish that our algorithm converges to a local minimizer of (9).
See Liu and Boumal (2020) for further discussions

4.4. The Label-Switching Problem
Observe that another source of non-identifiability comes from the labeling of µ∗1, . . . , µ

∗
H .

Namely, the likelihood and the loss function (9) are invariant under permutation of the
indices{1, . . . ,H}, provided that the columns of Λ are permuted as well. This prevents the
possibility of computing reliable posterior summaries of the µ∗h’s and Λ from the MCMC
chains.

We propose to post-process the output of our sampling algorithm to get rid of this
problem. In particular, as in Poworoznek et al. (2021), we propose to align the latent
measures at each iteration to a given template. Let µ̂1, . . . , µ̂H denote the template. For
instance,

µ̂h =

K∑
k=1

(Q(`)M (`))jkJ
(`)
k δθ(`)k

where we denote with the superscript ` the index of the MCMC sample. We choose `
to approximate the maximum a posteriori. Q(`) denotes the associated optimal transfor-
mation matrix obtained as outlined above. Let d(µ̂h, µ

′
j) denote a dissimilarity between

two measures. Two specific choices are discussed later. We align each (µ
′(j)
1 , . . . , µ

′(j)
H ) :=

Q(j)(µ
∗(j)
1 , . . . , µ

∗(j)
H ) to µ̂1, . . . , µ̂H by learning an optimal permutation σ of {1, . . . ,H},

associated to a permutation matrix Pσ that minimizes
∑

h d(µ̂h, µ
(j)′
σ(h)) by solving

inf
P∈PermH

H∑
h,k=1

d(µ̂h, µ
(j)′
k )Phk

where PermH denotes the space ofH×H permutation matrices. Naively, this would require
H! computations. Instead, we solve the relaxed optimization problem by looking for the P
stochastic matrix (i.e., rows and columns sum to one) that minimizes the objective above.
That is, we solve for the Wasserstein distance between the empirical measures ν1 and ν2

defined as

ν1 =
1

H

H∑
h=1

δµ̂h
, ν2 =

1

H

H∑
k=1

δµ(j)′
k

where νi is a probability measure on the space of positive measures over Θ. Birkhoff’s
theorem ensures that the solution to the relaxed optimization problem is a permutation
matrix.

As far as the dissimilarity d(µ̂h, µ
′
j) is concerned, in our examples we considered

d(µ̂h, µ
′
j) =

∥∥∥µ̂h(Θ)−1

∫
Θ
f(y | θ)µ̂h(dθ)− µ′j(Θ)−1

∫
Θ
f(y | θ)µ′j(dθ)

∥∥∥
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where ‖ · ‖ stands for the L2 norm. This distance requires the numerical evaluation of a
mixture density on a fixed grid, to compute the associated L2 distance. This is easy when
the dimension of the data space is small, typically when data are uni or bi-dimensional.
See Section D of the Supplementary Material for a more efficient alternative in higher
dimensions.

5. Simulation Study

We present two simulations to assess the performance of our model. In all the examples,
we consider Gaussian mixture models, i.e., θ∗h = (µh, σ

2
h) and f(· | θ) = N (· |µ, σ2). The

scoresmhk in the CoRM are gamma distributed and each µ∗h is marginally a gamma process
(before the truncation) with total mass equal to 1 and base measure equal to the Normal-
inverse-Gamma distribution, i.e. G0(µ, σ2) = N (µ |µ0, σ

2/λ)IG(σ2 | a, b). We set µ0 equal
to the empirical mean of the observations, λ = 0.01, a = b = 2. We truncate the CoRM
to K = 20 jumps to perform posterior inference. Specific choices of the prior for Λ are
discussed case-by-case.

5.1. Interpretation of the posterior distribution
Before giving details on the numerical illustration, we discuss how to obtain interpretable
summaries of the posterior distribution, after post-processing. This also allows us to set
some notation used in the next sections.

Interpreting the unnormalized latent factor densities
∫

Θ f(· | θ)µ∗h(dθ) is difficult because
of the lack of a common scale to which the densities should be referred. In fact, note that
these are not probability densities. Let pj be the j-th group-specific density. We can write

pj =

∫
Θ
f(· | θ)¯̃p(dθ) +

H∑
h=1

sjh

∫
Θ
f(· | θ)εh(dθ)

where ¯̃p(dθ) is the average of p̃1, . . . , p̃g, p′h = µ′h/µ
′
h(Θ), εh = p′h − ¯̃p(dθ) and the scores

sjh’s are defined as

sjh =
λ′jhµ

′
h(Θ)∑H

k=1 λ
′
jkµ
′
k(Θ)

(12)

Note that εh is a signed measure. Instead of comparing the latent factor densities, we find
it considering the residual factor densities

∫
Θ f(· | θ)εh(dθ) leads to easier interpretations.

Note that, by definition, the residual factor densities might be negative.
Moreover, we can associated to each µ′h an importance score Ih defined as Ih =

∑g
j=1 sjh

The rationale comes from writing µ′h = µ′h(Θ)p′h so that

pj =

∫
Θ
f(· | θ)

H∑
h=1

λ′jhµ
′
h(Θ)∑H

k=1 λjkµ
′
k(Θ)

p′h(dθ) =

H∑
h=1

sjh

∫
Θ
f(· | θ)p′h(dθ)

that is, we express each p̃j as a convex combination of probability measures and with weight
sjh.

As far as posterior summaries of the µ∗h’s and Λ are concerned, we first perform the
post-processing of the MCMC chains described in Section 4. Then we define the posterior
point estimates µ′h and Λ′ as

µ′h =
1

M

M∑
`=1

∑
k≥1

(
P (`)Q(`)M (`)

)
hk
J

(`)
k δθ∗(`)k

, Λ′ =
1

M

M∑
`=1

(
Λ(`)(Q(`))−1

)
(P (`))> (13)
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where the superscript `, ` = 1, . . . ,M is used to denote the iteration of the MCMC al-
gorithm, Q(`) is the matrix found with Algorithm 1, and P (`) is the permutation matrix
found as in Section 4.4. Essentially, the posterior point estimates are obtained by first
collapsing the MCMC draws from the multimodal posterior around one specific mode, and
then averaging these transformed draws.

5.2. Only Group Information
We consider here a simulated example with g = 100 groups of data, where each nj = 25. We
consider the situation where we tend to observe only small differences across populations
by considering the following data generation process

yj,i
iid∼ wj1N (−2, 2) + wj2N (0, 2) + wj3N (2, 2), i = 1, . . . , nj

and for each group we simulate wj = (wj1, wj2, wj3)
iid∼ Dirichlet(1, 1, 1). In most of the

groups, the data generating density is unimodal and they differ mainly because of different
levels of skewness.

As prior for Λ, we assume the multiplicative gamma process (3) setting H = 20. We run
the MCMC chains for a total of 11, 000 of which the first 1, 000 are used for the adaptation
and the following 5, 000 are discarded as burn-in. The adaptation phase quickly finds
between 3 and 5 latent measures, 4 being the final value. We post-process the chains as in
Section 4.

Figure 3 shows the inferred latent factors densities before and after the post-processing.
It is clear that solving the label switching is essential. Although not particularly evident
from the plot, the matrices Q(j) found by the optimization algorithm were significantly
different from the identity, hence showing the usefulness of the post-processing. Our ap-
proach identifies the main common traits in the data. Factors 1 and 3 peak around −2 and
2 respectively, while the second and fourth factors are both more concentrated around the
origin, with the second one presenting a light skewness and heavier right tail. The residual
factor densities can be used to infer the same description of the latent measures. With
the exception of finding one extra latent factor, our model infers exactly the sources of
variability in the data generating process, which are the three Gaussian densities centered
in -2, 0, and +2 respectively.

We also compare the fit of our model to other possible competitors. As two standard
baselines, we consider (i) pooling all the data together, i.e., disregarding the group infor-
mation and (ii) fitting a simple Dirichlet process (DP) mixture to the whole dataset, and
fitting a separate DP mixture to each of the groups independently. Then, we consider
(iii) the GM-dependent DP in Lijoi et al. (2014) implemented in the R package BNPMix
(Corradin et al., 2021), and (iv) the CoRM model with Gamma marginals in Griffin and
Leisen (2017) and we use the code from Camerlenghi et al. (2022) to fit the model. As last
competitor, we consider (v) a dependent stick-breaking process defined as

p̃j,i :=

K∑
k=1

wk(xj,i)δθ∗k

where all the atoms are shared (as in our model) and the weights follow a logit stick-
breaking process prior (Rigon and Durante, 2021) where we associate to each observation
a covariate xj,i ∈ R100 such that xj,i,h = 1 if and only if observation yj,i belongs to group j.
To fit this model, we used the C++ library BayesMix (Beraha et al., 2022) and fix K = 20.

We report the boxplots of the Kullback-Leibler divergences between the true data gen-
erating densities and the estimated ones (across the 100 groups of data) for all the models
under analysis in Figure 4. Our model achieves the best performance with the GM-DP
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Fig. 3: Posterior summaries for the simulation in Section 5.2. Top row: draws from the
posterior distribution of the latent factor densities. Middle row: draws after post-processing
and normalization, the red density denotes the template. Bottom row: posterior draws of
the residual factor densities.

being a close runner-up. As expected, pooling together all the data and fitting each group
independently produces the worst performance. We did not thoroughly investigate the
runtimes, since each method is implemented in a different programming language and with
different programming techniques. We limit ourselves to report that the dependent Dirich-
let process is the slowest to fit, while the single DP with pooled data and the independently
fitted DPs are the fastest, also due to the heavy optimizations of the BayesMix library. Our
method is slightly slower than the GM-DP (but this is implemented in C++ while ours in
pure Python) and an order of magnitude faster than the CoRM.

5.3. Area-Referenced Data
We consider data over a regular lattice on 0, 1, . . . , q × 0, 1, . . . , q ⊂ Z2. We consider
q = 4, 8, 16 so that the number of groups is g = 16, 64, 256 respectively. Following the
simulation study in Beraha et al. (2021), we generate data at each location from a three-
component Gaussian mixture with means −5, 0, 5 respectively and variances equal to one.
Let xj , yj denote the x and y coordinate of location j on the lattice. The location-specific
weights are

(wj1, wj2, wj3) =
(
ew̃j1 , ew̃j2 , 1

)/(
1 + ew̃j1 + ew̃j2

)
where

w̃j1 = 3(xj − x̄) + 3(yj − ȳ), w̃j2 = −3(xj − x̄)− 3(yj − ȳ)

and (x̄, ȳ) denote the center of the lattice. For each location, 25 observations are simulated.
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Fig. 4: Boxplots of KL divergences between the true data generating densities and the
estimated ones in the 100 groups of data of the simulation in Section 5.2. From left to
right, ordered by the median error, our latent factor model (LF) the GM-dependent DP
(GM), the compound random measure (CoRM), the dependent Dirichlet process based on
the logit stick-breaking prior (DDP), the estimate obtained pooling together all the groups
(POOL), and the one obtained fitting independently each group (INDEP).

We compare our model with prior (4) for H = 1, 2, 3, 5, 10 with the spatially dependent
mixture model (SPMIX, Beraha et al., 2021) and the Hierarchical Dirichlet Process (HDP,
Teh et al., 2006). Although the latter does not take into account the spatial dependence,
it is shown in Beraha et al. (2021) that the HDP performs well when the number of groups
g is small.

We truncate the CoRM to K = 20 jumps and set the number of components in SPMIX
to 20 as well. Prior distributions can be assumed for τ and ρ in (4). However, since
the likelihood is invariant with respect to rescalings of Λ, we found that having a prior
on τ led to non-convergent MCMC chains for Λ. In particular, after a few thousand
iterations, the values of the entries in Λ were in the order of 10100. Hence, we suggest
fixing τ to a sufficiently large value. In our simulations, we always set τ ≡ 2.5. Assuming
a prior for ρ does not have such an impact on posterior inference. However, it would
require re-computing the determinant of Σ−1 at every MCMC iteration, which requires
O(g3) operations. Hence, we fix ρ to 0.95 to encourage strong spatial dependence in our
examples. Another possibility would be to fix a grid of values in (0, 1) and assume a discrete
prior for ρ over it, which allows the computation of all the required matrix determinants
beforehand.

All the MCMC chains are run for 10, 000 iterations, discarding the first 5, 000 as burn-
in. It is clear from Figure 5 (top row) that our model outperforms the competitors when
g = 16, 64 and performs slightly better than the spatial mixture model when g = 256. In
all the settings, the best performance is associated with H = 3 latent measures. Posterior
samples of the latent factor densities are reported in Figure 5 (bottom row) for the setting
with g = 64 and H = 3. In this case, the latent densities are already well separated so
that there is no need to post-process the MCMC chains using the algorithm described in
Section 4. The three latent densities give mass to one of the three modes in the data each.

6. Real Data Illustrations

In this section, we illustrate our methodology on two real datasets. In both cases, data are
univariate and we let f(· | θ) be the Gaussian density with parameters θ = (µ, σ2). The
base measure G0 is the Normal-inverse-Gamma distribution, whose parameters are set as
in Section 5. Moreover, we always truncate to K = 20 points the support of the random
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model (LF) the Hierarchical Dirichlet process (HDP) and the spatially dependent mixture
models (SPMIX). From left to right g = 16, 64, 256. Bottom row: Posterior samples for
the latent factor densities when g = 64 and H = 3

measures.

6.1. The Invalsi Dataset
We consider the Invalsi dataset† that collects the evaluation of a unified math test un-
dertaken by all Italian high-school students. Grades vary from 1 to 10 with 6 being the
passing grade. We pre-process the data by adding a small Gaussian noise with zero mean
and standard deviation equal to 0.25. The dataset contains the scores of 39377 students,
subdivided into 1048 schools. The number of students per school varies from 4 to 131, with
37 students per school on average with a standard deviation of 12 approximately. Another
approach to model this kind of data would be to assume another mixture kernel (other than
the normal one) which corresponds to the probability mass function of a random variable
taking values {1, . . . , 10}. For instance, we could adopt the method in Canale and Dunson
(2011), whereby a Gaussian mixture is assumed for latent variables (one for each observa-
tion). However, our main interest here is not density modelling but rather explaining the
difference in distribution across different schools, and we believe that posterior inference on
the latent measure factors would remain qualitatively unchanged using this more complex
approach.

We assume the multiplicative gamma process prior for Λ as in (3) with H = 20. The
initial adaptation phase identifies 5 latent factors. Draws from the latent factor densities
are displayed in Figure 6. It is clear that some label switching is happening between the
fourth and fifth factors. After the post-processing, for ease of visualization, we discretized
the estimated normalized latent factor densities to the original grades i = 1, . . . , 10 by

†available for research purposes at https://invalsi-serviziostatistico.cineca.it

20

https://invalsi-serviziostatistico.cineca.it


2.5 5.0 7.5 10.0
0.0

0.5

1.0

1.5

2.0

2.5

2.5 5.0 7.5 10.0
0

1

2

3

4

5

6

2.5 5.0 7.5 10.0
0

1

2

3

4

2.5 5.0 7.5 10.0
0

2

4

6

8

2.5 5.0 7.5 10.0
0

2

4

6

8

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 6: Summary of posterior inference on the Invalsi dataset. Top row: draws from the
posterior distribution of the latent factor densities. Middle row: estimates of the discretised
normalised latent factor densities after post-processing. Bottom row: average density in
each cluster discretised on the intervals [i− 0.5, i+ 0.5), i = 1, . . . , 10.

evaluating
∫ i+0.5
i−0.5 f(y | θ)µ′h(dθ)/µ′h(Θ). The estimated factors are displayed in the first two

rows of Figure 6. They represent a wide range of behaviors: the first one is concentrated
on negative grades below the passing threshold, the second one is centered on the passing
grade, and the third one on grades way above the passing grade. The fourth and the fifth
represent more complex distributions: the former one covering the range of “just below the
passing grade and just above it”, the latter one instead represents a distribution peaked at
5 with a heavy right tail.

The importance scores Ih are approximately 331, 184, 351, 165, 16. Hence, we can in-
terpret that the two most relevant common traits are the ones represented by µ′1 (that
combines a sharp peak in 4, with a heavy right tail), and by µ′3, which gives mass to grades
above the passing threshold.

Finally, we look at the scores λjh’s after the post-processing. We can understand the
similarities between schools by clustering the scores for each school from the corresponding
row of the matrix Λ′. Using a hierarchical clustering algorithm yields four clusters (the
dendrogram is shown in Figure E.4 in the Supplementary Material). We then compute
the average value λ̂` = (λ̂`1, . . . , λ̂`H) for each of the four clusters, to which a probability
measure p̃` ∝

∑H
h=1 λ̂`hµ

′
h and report the associated mixture density in the bottom row

Figure 6.We define a cluster-specific mean distributions p̃` ∝
∑H

h=1 λ̂`hµ
′
h by taking the

average value λ̂` = (λ̂`1, . . . , λ̂`H) for each of the four cluster. the associated mixture
densities are shown in the bottom row Figure 6. The clusters are easily interpretable and
the mean distributions p̃1, . . . p̃4 are substantially different.
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Fig. 7: Summary of posterior inference on the Californian income dataset. Top row: draws
from the posterior distribution of the latent factor densities. Bottom row: average of the
residual factor densities after post-processing.

6.2. Californian Income Data
We consider the 2021 American Community Survey census data publicly available at https:
//www.census.gov/programs-surveys/acs/data/experimental-data/2020-1-year-pums.html.
Specifically, we consider the PINCP variable that represents the personal income of the sur-
vey responders and restrict to the citizens of the state of California. For privacy reasons,
data are grouped into geographical units denoted as PUMAs, roughly corresponding to
100, 000 inhabitants. There are 265 PUMAs in California. We consider yj,i to be the loga-
rithm of the income of the i-th person in the j-th PUMA. The total number of responders
is 43, 380, with the median number of observations per PUMA being 164.

As shown in Figure E.5 in the Supplementary Material, the distributions of the income
in different PUMAs are quite varied with clear spatial dependence. This is also confirmed
by the analysis of Moran’s I index for the average log-incomes, which is approximately
0.55. A permutation test confirmed that the spatial correlation is not-negligible. We
assume independent log Gaussian Markov random fields priors for each column of Λ as
in (4), where we fix τ = 2.5 and ρ = 0.95. We choose H by evaluating the predictive
goodness of fit for H = 1, . . . , 10 using the widely applicable information criterion (WAIC,
Watanabe, 2013). The best performance is associated with H = 4, therefore we comment
on the posterior inference obtained under this model.

Figures 7 and 8 summarize the posterior findings. The draws from the latent factor
densities (top row) show some evidence of label-switching in the third and fourth factors.
Post-processing the chains with our algorithm estimates the four latent factors in Figure
E.6 in the Supplementary Material. However, it is easier to interpret the residual factor
densities displayed in the bottom row of Figure 7. The second and the fourth factors are
associated with the largest variations. In particular, the second one gives mass to higher
incomes while the fourth one gives mass to lower incomes. The first one is more represen-
tative of the average population since the variations are small. The third factor instead
corresponds to average incomes and gives less mass (compared to the average population)
to both low and high incomes. To visualize the spatial effect of the latent factors, we plot
the scores sjh for each factor. Note that the third latent factor is predominant in several
areas, where sj3 is larger than 0.8. Instead, sj2 is small in all of California except for a
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Fig. 8: Spatial distribution of the scores in the Californian income dataset. Top row: the
scores sjh for h = 1, . . . , 4 from left to right. Middle row: zoom on the San Francisco area.
Bottom row: zoom on the Los Angeles area

few PUMAs in San Francisco, Long Beach, and San Diego, where the highest incomes are
observed. In particular, zooming on San Francisco (middle row of Figure 8), we note that
the second factor is highly represented in Palo Alto, home to several tech tycoons, and
San Rafael, home to entertainers. Finally, note that the fourth factor (associated with the
lowest incomes) has a high weight in the two PUMAs neighboring Mexico as well in some
areas in Los Angeles. Notably, the PUMA around the port and the one corresponding to
the “south LA” neighborhoods going from University Park to Green Meadows. This is in
accordance with the 2008 Concentrated Poverty in Los Angeles report (Flaming and Mat-
sunaga, 2008), which estimates that the percentage of households in poverty is typically
above 40% in those areas.

7. Discussion

Modeling a collection of random probability measures is an old problem that has received
considerable attention in the Bayesian nonparametric literature, see, e.g. Quintana et al.
(2022) for a recent review. In this article, we have considered specifically the case when data
are naturally divided into groups or subpopulations, and data are partially exchangeable.
Taking a nonparametric Bayesian approach, we assumed that observations in each group
can be suitably modelled by a mixture density, and proposed normalized latent measure
factor models as a prior for the collection of mixing measures in each group. Similar to the
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Gaussian latent factor model, our model assumes that each group-specific directing mea-
sure is a linear combination of a set of latent random measures. We can interpret the latent
random measures as the latent common traits shared by the subpopulations. Moreover, the
prior for the linear combination weights can include additional group-specific information
such as geographical location. As a result of our construction, the group-specific random
measures are not completely random. This precludes the study of important theoretical
properties of our model, such as the posterior distribution of these random measures, at
least with the classical tools employed in BNP. Moreover, expressions for marginal covari-
ances between different measures are complex and not available analytically, which makes
prior elicitation more demanding: we do not provide default values for the hyperparameters
and suggest that prior elicitation should be carried out on a case-by-case basis, possibly
through a priori Monte Carlo simulation as done in this paper.

To account for the non-identifiability of our model, we developed an ad-hoc post-
processing algorithm leading to a constrained optimization algorithm over the special linear
group, that is the group of matrices whose determinant is equal to one. To solve the op-
timization problem, we leveraged recent work on optimization on manifolds, proposing a
Riemannian augmented Lagrangian method. Through simulations and illustrations on two
real datasets, we validate our approach and show its usefulness, focusing in particular on
the interpretation of the latent measures and the associated weights. We remark here that
the post-processing is only necessary to estimate the latent random measures, and is super-
fluous if one’s interest is predictive performance or estimating the group-specific densities.
The model opens up many directions for future research which we discuss below and aim
to investigate thoroughly in the future.

Our factor model approach can be extended to a wide range of dependence structures
between the groups. For example, including observation-specific covariates in the model
or time-dependent data. We can also build models which allow for the discovery of latent
structure in the groups by further modeling the loadings matrix Λ. For instance, Rodríguez
et al. (2008), Camerlenghi et al. (2019), Beraha et al. (2021), and Denti et al. (2021) build
models which cluster groups according to the homogeneity of their distributions. We could
achieve this by assuming that each of the group-specific directing measures is equal to one
of the latent measures, i.e. only one of λj1, . . . , λjH are non-zero, which would be similar
to exploratory factor analysis (Conti et al., 2014). Alternatively, we can achieve a “soft
clustering” of the group-specific distributions i.e. cluster together similar distributions as
opposed to homogeneous ones by assuming a mixture model for the rows of the matrix Λ.
More generally, Λ could be expressed in terms of further low-rank matrix to find similarities
between the group-specific factor loadings.

The post-processing identification scheme leads to estimated latent measures which are
maximally separated according to the interpretability criterion. This allows us to interpret
the factor loadings as an H-dimensional summary of the group-specific distribution where
each element of the summary measures different parts of the distribution. In a similar way
to scores from dimension reduction techniques, such as Principal Components Analysis,
or embeddings in machine learning, these estimates can then be used as inputs into other
statistical analyses. We effectively use this idea in the analysis of the Invalsi data-set where
the estimated group-specific factor loadings are clustered to find groups of schools with
similar distributions. This approach could have much wider applications. For example,
the analysis of the Californian income data leads to estimated factor loadings for each
PUMA which could be used in a regression model in place of other summaries such as
median income, or the percentage of incomes below/above a threshold. These estimated
factor loadings should provide more information than a single measure and be a more
efficient representation than a large number of measures (for example, using a large number
of thresholds). It would be particularly interesting to investigate this approach beyond
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univariate data, such as continuous or discrete multivariate observations where it’s difficult
to find efficient low-dimensional summaries of distributions.
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