
RESEARCH ARTICLE

Estimation of causal effects of a time-varying

exposure at multiple time points through

multivariable mendelian randomization

Eleanor SandersonID
1,2*, Tom G. RichardsonID

1,2,3, Tim T. MorrisID
1,2, Kate Tilling1,2,

George Davey SmithID
1,2

1 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom, 2 Population

Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom, 3 Novo Nordisk

Research Centre, Headington, Oxford, United Kingdom

* eleanor.sanderson@bristol.ac.uk

Abstract

Mendelian Randomisation (MR) is a powerful tool in epidemiology that can be used to esti-

mate the causal effect of an exposure on an outcome in the presence of unobserved con-

founding, by utilising genetic variants as instrumental variables (IVs) for the exposure. The

effect estimates obtained from MR studies are often interpreted as the lifetime effect of the

exposure in question. However, the causal effects of some exposures are thought to vary

throughout an individual’s lifetime with periods during which an exposure has a greater

effect on a particular outcome. Multivariable MR (MVMR) is an extension of MR that allows

for multiple, potentially highly related, exposures to be included in an MR estimation. MVMR

estimates the direct effect of each exposure on the outcome conditional on all the other

exposures included in the estimation. We explore the use of MVMR to estimate the direct

effect of a single exposure at different time points in an individual’s lifetime on an outcome.

We use simulations to illustrate the interpretation of the results from such analyses and the

key assumptions required. We show that causal effects at different time periods can be esti-

mated through MVMR when the association between the genetic variants used as instru-

ments and the exposure measured at those time periods varies. However, this estimation

will not necessarily identify exact time periods over which an exposure has the most effect

on the outcome. Prior knowledge regarding the biological basis of exposure trajectories can

help interpretation. We illustrate the method through estimation of the causal effects of child-

hood and adult BMI on C-Reactive protein and smoking behaviour.

Author summary

Mendelian Randomisation (MR) can be used to estimate whether a potential exposure has

a causal effect on an outcome in the presence of a third (unobserved) variable that affects

both of them and so biases the observed association between them. The effect estimates

obtained from MR studies can be interpreted as the effect of the exposure on the outcome

over the lifetime. However, for some exposures there may be periods during which the
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causal effect on an outcome is greater or lesser than other periods. Multivariable MR

(MVMR) is an extension of MR that allows for estimation of the causal effect of multiple,

potentially highly related, exposures. In this paper we investigate how MVMR can be used

to estimate the causal effect of the same exposure at different points across the lifecourse.

We show that these effects can be estimated through MVMR when the association

between the genetic variants used as instruments and the exposure varies between mea-

surements of the exposures. However, we find that this estimation will not necessarily

identify exact time periods over which an exposure has the most effect on the outcome as

different periods in the lifecourse can only be separated when they are differently associ-

ated with genetic variants.

Introduction

Mendelian Randomization (MR) uses the special properties of germline genetic variation to

strengthen causal inference regarding the effect of modifiable exposures on disease. [1,2] MR

can be implemented as a form of instrumental variable (IV) estimation that uses genetic vari-

ants to estimate causal effects of an exposure on an outcome that is free from bias due to

unmeasured confounding. [3–5] As genetic variants which do not change during an individu-

al’s lifetime are used as instruments the estimated effects are interpreted as the effect of the

genetically predicted exposure over the lifetime, or genetic liability to an exposure if that expo-

sure is binary. [6] Under the assumption of ‘gene-environment equivalence’, i.e. that the effect

of the exposure on the outcome is the same whether variation in the exposure is due to genetic

or environmental variation, the effect estimates obtained by MR can be interpreted as the effect

of variation in the exposure on the outcome. [2,7]

Many exposures, such as BMI, may have varying effects on any particular outcome over the

course of an individual’s lifetime. [8] Higher BMI in childhood is observationally associated

with many health outcomes later in life. However whether this is due to a direct causal effect of

childhood BMI on those outcomes or the high correlation between childhood and adult BMI

with the latter having a causal effect on the outcome, is unclear. [9–12] If a time-varying expo-

sure only affects a (time-invariant) outcome during a particular period then intervening on the

exposure during other periods will not have any effect on the outcome. Conventional observa-

tional studies often use a lifecourse approach with the intention of identifying the particular

period(s) in life that affect an outcome. [13] For example, observational studies have shown

that sunlight (and from this inferred vitamin D level) in childhood, but not adulthood, is asso-

ciated with risk of multiple sclerosis. [14–16] Therefore, in order to prevent multiple sclerosis

it could be important to focus on time spent outside during childhood; intervening in this way

during adulthood would not have any effect on the incidence of multiple sclerosis. A lifecourse

approach contrasts with a MR approach which will generally provide evidence of a causal effect

of the exposure on the outcome regardless of when in the lifecourse the exposure is measured.

[17] For example, MR studies have shown a causal effect of vitamin D levels in the aetiology of

multiple sclerosis [18] but have not identified which period is important.

When the association between genetic variants and an exposure vary over different points

in the lifecourse MR estimates can be interpreted as the genetically predicted liability underly-

ing the entire exposure history up to the time the outcome occurs. [19] That is; the effect esti-

mated will be the effect on the outcome of having a genetic liability for the exposure that

results in a one unit higher level of the exposure at the time the exposure is measured. If the

genetic variants have a (proportionally) constant effect on the exposure across the entire
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lifetime this will be the genetically predicted lifetime effect of having a unit higher level of the

exposure across the lifecourse. [20]

In this paper we explore the use of multivariable Mendelian randomization (MVMR) to

estimate the causal effect of a single exposure measured at different time points in an individu-

al’s lifetime on an outcome measured at a single fixed point in time. Structural mean models

have previously been proposed for estimation of MR models with a time varying exposure.

[21,22] The interpretation of the results from estimation of structural mean models will

depend on the availability of data for the time-varying exposure, particularly how many time

points data are available for. [21] MVMR can be implemented when multiple measures of the

exposures at different points in the lifecourse are available and can be used to estimate direct

effects of the exposure at each of those time points, conditional on the other time points

included in the estimation. The effects estimated by MR and MVMR are described in Box 1.

We outline a model for MR with an exposure measured at multiple time points and explain

how this can be estimated with MVMR. We consider specific examples where the assumptions

of this model do not hold and present simulation results to investigate what happens in these

settings. From these results we explain how the results of such a MVMR estimation can be

interpreted. We illustrate these results with application to estimating the effect of child and

adulthood BMI on circulating C-reactive protein (CRP) and smoking behaviour. The results

presented here show that it is possible to estimate genetically predicted direct causal effects of

different time periods of an exposure on an outcome using MVMR, however careful interpre-

tation of any results obtained from such an analysis is required. Prior knowledge regarding the

biological basis of exposure trajectories can help interpretation.

Methods

Ethics statement

UK biobank has received ethical approval from the UK National Health Service’s National

Research Ethics Service (re 11/NW/0382). All other data analysed were from publicly available

summary statistics generated using relevant ethical approval from their respective studies.

Box 1 –Effects estimated by MVMR with a time-varying exposure

MVMR is an extension of MR that can be used to estimate the causal effects of multiple,

potentially highly related, exposures. [23] The causal effect estimated by MR for an expo-

sure that can only occur once (e.g. birthweight or age at menarche) is the total effect of

the exposure on the outcome. The causal effects estimated by MVMR are the direct effect

of each exposure that is not mediated by any of the other exposures included in the esti-

mation. [24]

MR with one measure of a time-varying exposure estimates the total lifetime effect of lia-

bility to the exposure on the outcome. [19] This will include any effect on the outcome

that acts through the exposure at other time periods. As we illustrate here, MVMR with

multiple measures of a time-varying exposure estimates the direct effect of the liability to

exposure at a particular period, i.e. the effect of the liability to the exposure at a time

point that is not mediated by other time points included in the estimation. MVMR with

a time-varying exposure can be implemented in the same way as MVMR with different

exposures, as outlined in the methods section and in more detail elsewhere. [23,25]
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We consider a model where genetic variants are associated with an unmeasured genetic lia-

bility for the exposure of interest which is associated with the observed value of the exposure.

In this context we use the term genetic liability for the exposure to refer to the collective effect

of all genetic variants associated with the exposure. [19] This liability may differ in different

periods of an individual’s lifetime, however the observed trait is likely to change on a more fre-

quent basis reflecting more short term variation and measurement error. Traits that vary

across the lifecourse may have multiple liabilities that act on the exposure in different ways at

different points in the lifecourse. Each liability is determined by the genetic effects and earlier

liability levels do not have effects on later liability levels, although they maybe correlated

through shared genetic influences and unobserved confounding. The exposure is influenced

by the liability as well as confounders and other environmental influences and as Fig 1 sug-

gests, also the earlier levels of the exposure. These exposures have a direct effect on the out-

come of interest as well an effect on the subsequent value of the exposure in following periods.

The genetic variants used as IVs are associated with liability in at least one period of the life-

course but do not have to have the same association with liability in different periods. This

allows for the association between a genetic variant and an exposure to vary across ages. This

model is given in Fig 1. IV estimation can correct for the bias introduced by measurement

error in the exposure under the assumption that the instrument is not associated with the level

of that measurement error. [26] We therefore assume that the exposures are measured without

error. All of the variables included (other than the individual genetic variants) are assumed to

be continuous. For simplicity we initially limit the number of liability periods to two, however

this model could be generalised to any number of periods. We have also excluded an effect of

unobserved confounding on the liability. This simplification makes no difference to the results

obtained.

Fig 1. Liability exposure model with two periods of exposure. L1 is the earlier liability, L2 is the later liability, G1 is a

set of genetic variants associated with L1, G2 is a set of genetic variants associated with L2, G12 is a set of genetic variants

associated with both L1 and L2. X1 is a measure of the exposure in the early time period X2 is a measure of the exposure

at the second time period, Y is an outcome observed at one time only,U is a set of unobserved confounders of the

exposure at each time period and the outcome. X1 and X2 are potentially measured with error, error in this

measurement is uncorrelated with the genetic variants.

https://doi.org/10.1371/journal.pgen.1010290.g001
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Estimation with MVMR

MVMR can be used to estimate the effect of liability to the exposure during each period, given

the liability to the exposure at all of the other time points included in the estimation, i.e. the

effect of L1 and L2 in Fig 1. MVMR can be conducted with either individual level data or sum-

mary data and so it is possible to use the methods described here with either type of data. Esti-

mation using individual level data requires a dataset with the exposure measured at all time

points considered and the outcome. Summary data from another non-overlapping dataset is

required to enable selection of SNPs for use as instruments, conventionally those which are

genome-wide significant in a GWAS study. Estimation using summary data requires SNP-

exposure effects and SNP-outcome effects taken from separate samples. SNP-exposure associa-

tions for the different time points can be taken from either the same or different datasets. Anal-

ysis using summary level data is more likely to be feasible in many cases, given the large

datasets required and multiple observations at different time points, so we focus here on sum-

mary level analysis.

MVMR can be implemented in a summary data setting using estimates of the association

between each SNP and: the outcome, ðĜÞ; exposure at one time point X1, ðp̂1Þ; and the expo-

sure at another time point X2, ðp̂2Þ, by fitting the following model:

Ĝ ¼ b1p̂1 þ b2p̂2 þ �

Weighted by 1=ŝG
2
, the inverse variance of Ĝ. This approach to MVMR is a straightforward

generalization of the IVW estimation framework for MR. [23,25]

MVMR estimation relies on three assumptions for estimating the causal effect of liabil-

ity to the exposure at each point on the outcome. [23] These assumptions mirror the stan-

dard assumptions required for IV estimation and are that; 1. liability to each exposure is

robustly predicted by the genetic variants conditional on the other exposures included in

the estimation, 2. there is no confounding of the genetic variants and the outcome and 3.

the genetic variants are not associated with the outcome other than via liabilities to expo-

sures included in the estimation, i.e. there are no horizontal pleiotropic effects of the

genetic variants on the outcome via other phenotypes. We address the potential for the

genetic variants to affect the outcome through liability at time points not included in the

estimation in our simulation results.

The first MVMR assumption implies that the exposure at each time period included in the

estimation is associated with a different liability, although those liabilities may be correlated.

This assumption can be tested with a conditional F-statistic. [27,28] As well as having an F-sta-

tistic at each time point greater than 10 to indicate that the genetic variants are strongly associ-

ated with that exposure, it is necessary for the conditional F-statistics to be greater than 10,

indicating that the genetic variants are robustly associated with liability to exposure at each

time period conditional on their association with liability to exposure at the other time periods

included in the estimation.

A heterogeneity Q-statistic can be used to test for violations of the third IV assumption in

the MVMR estimation. [23,27] One potential reason for excessive heterogeneity is that some

of the SNPs may be associated with the outcome through pathways that are not included in the

MVMR estimation, i.e. there is horizontal pleiotropy. This pleiotropy will bias the results

obtained from inverse variance weighted MVMR estimation. [29,30] If pleiotropy is suspected,

alternative estimation methods can be used to estimate MVMR causal effects under different

assumptions of the form the pleiotropy takes. [27,30,31]

All IV estimation requires additional assumptions for interpretation of the point estimates

obtained as causal effects. Firstly, all the MR and MVMR methods implemented here assume
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that the causal effects of the exposure(s) on the outcome are linear and, for MVMR, that there

are no interactions between the effects of the exposures. Secondly, a ‘point-identifying’

assumption is required. Common point identifying assumptions for univariable IV estimation

include homogeneity and monotonicity. [2] The exact definition of this point identifying

assumption will determine the precise causal effect estimated, however, it is not currently well-

understood how these assumptions relate to estimation with multiple exposures as in MVMR.

Verification and comparison

Inclusion of exposures associated with different liability periods. We illustrate the

requirement for genetic separation in the included time periods with a simulation. We have

included an exposure measured at two time points, where both measures of the exposure have

a direct causal effect on the outcome and the exposure at the earlier time point also has a small

direct effect on the exposure at the later time point. Following the liability model described in

Fig 1 we consider two different structures for the relationship between the genetic variants, the

liability and the observed value of the exposure. In the first setting each observed exposure is

associated with a different underlying liability and the genetic variants have different (but cor-

related) effects on each liability. In the second setting both the observed exposures are associ-

ated with the same liability. This means that the genetic variants have the same effect on the

exposure at each time point. These models are illustrated in Fig 2.

In each simulation we included 150 SNPs, two measures of the continuous exposures and a

single continuous outcome. Unobserved confounding was modelled as two continuous vari-

ables that affected the earlier exposure measurement and the outcome or the later exposure

measurement and the outcome and were excluded from the estimation. These confounders

were highly correlated (rho = 0.8). The data simulated were used to generate summary associa-

tions between the SNPs and each exposure from the same sample and for the outcome using a

second sample, drawn from the same population. The true association between the SNPs and

each liability was normally distributed around 0 with variance 0.1/l where l is the number of

SNPs. Effects of the SNPs on each liability were correlated with ρ = 0.25. SNPs associated with

the exposure of interest for the MR estimation, or either exposure for the MVMR, with p-

values< 5×10−8 in the exposure sample where included in the estimation. Effect estimates

were obtained through inverse variance weighting MVMR (IVW–MVMR). [25] The simula-

tions had a sample size of 150,000 and 2000 repetitions.

Fig 2. Models with different relationships between the genetic variants and the exposure at each time point. – L1 is

the liability in the first time period, L2 is the liability in the second period. G1 is a set of genetic variants associated with

L1, G2 is a set of genetic variants associated with L2 and G12 is a set of genetic variants associated with both L1 and L2.

X1 and X2 are observed values of the exposure, where X2 is observed at a later point in an individual’s life than X1. Y is

an outcome. X1, X2 and Y are confounded by a set of unobserved confounders U. In (a) X1 and X2 are associated with

different liabilities. In (b) X1 and X2 are associated with the same liability. X1 and X2 are measured with error, though

this measurement error is uncorrelated with the genetic variants. The direct causal effect of X1 on X2 and Y, and X2 on

Y are given on the digram.

https://doi.org/10.1371/journal.pgen.1010290.g002
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Results for the model with either one or two underlying liabilities are given in Table 1.

These results show that the univariable estimates give an estimate of the total effect of a liability

that is associated with having a unit higher level of the exposure at the time point associated

with the measured exposure. This is larger than either the direct or total effect of the exposure

at either time point on the outcome (given in Fig 2), due to the correlation between the genetic

effects on the exposure at each time period. For example, for the first simulation given in

Table 1 the direct effect of X1 on Y is 0.20, the total effect is 0.23 and the genetically predicted

total effect is 0.34, due to an additional effect of the genetic variants on X2 which then has an

effect on Y.

When the measured exposures are associated with different liabilities, MVMR consistently

estimates the genetically predicted causal effect of being on a trajectory associated with a unit

higher level of that exposure, given the liability to the exposure at the other time period. How-

ever, when the measured exposures are associated with the same liability there is no difference

in the genetic effects on the measured exposures and therefore weak instrument bias is intro-

duced into the MVMR estimation. [27] This is highlighted through low conditional F-statis-

tics. In this setting there is random variation in the direction of the bias for each exposure in

each repetition of the simulation. Therefore, the mean point estimate is close to the true value

of the causal effect. However, the high mean level of absolute bias shows the bias from condi-

tionally weak instruments. This highlights how the MVMR estimates are not only biased by

weak instruments but that the bias could act in either direction, with different repetitions

within the same simulation being biased in opposite directions. Coverage in these simulations

remains high due to the large standard error in the estimation resulting from the weak instru-

ments, however this imprecision means total uncertainty in the simulations is high.

We additionally explored the effect of only selecting genetic variants which had differing

effects at each time point on the results obtained for each of the models described here, as has

previously been applied elsewhere. [32] This analysis shows that although this causes apparent

conditional instrument strength to increase the causal effect estimates are potentially biased

due to genetic variants which differ in the effects on each exposure more than others by chance

by being selected for the analysis. These estimation results have lower power than those using

all SNPs due to the reduction in the number of genetic variants included. We therefore recom-

mend that this approach is avoided and do not consider it further. Results from this estimation

and a full description of the analysis are given in S1 Text.

Estimation in the presence of a causal effect from the outcome to the later time point.

We now consider a model where the outcome has an effect on the exposure measured at the

later time point. The exposure at the later time period is therefore a collider of the earlier expo-

sure and the outcome. This is illustrated in Fig 3 and in all other aspects the model is the same

as that described in Fig 2A. Morris et al (2021) showed that estimation of this scenario with

MR gives consistent estimates when there is a single underlying liability. [19] Here we consider

MVMR estimation of a model with two underlying liabilities.

Simulations were set up in the same way as described for Table 1 with the addition of 50

SNPs included that were associated with the outcome Y. This model was estimated assuming

that X1 and X2 are the true exposures and Y is the true outcome. All genetic variants associated

with the exposure at either time period, selected based on a p-value for the SNP–exposure

association of<5x10-8, reflecting genome-wide significance, were included in the MVMR esti-

mation. Therefore, some SNPs strongly associated with Y were selected as instruments for the

later time period. The model was estimated twice; firstly with no additional restrictions on the

SNPs selected and secondly with Steiger filtering applied to remove any SNPs that explain

more variation in the outcome than the later exposure. [33] Results from this simulation are

given in Table 2.
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Table 1. Simulation results under different relationships between the genetic variants and the exposure at each

time point.

MR MVMR

Exposures associated with different liability periods
β1 Liability effect 0.344 0.200

Effect estimate 0.340 0.1958

Est. Std. Error 0.029 0.0107

Simulation Std. Error 0.011 0.0106

Absolute bias 0.010 0.0092

Coverage 100% 93%

F-statistic 96.31

Conditional F-statistic 55.76

No. SNPs 72 114

β2 Liability effect 0.376 0.300

Effect estimate 0.371 0.297

Est. Std. Error 0.015 0.009

Simulation Std. Error 0.008 0.009

Absolute bias 0.008 0.008

Coverage 99% 94%

F-statistic 129.31

Conditional F-statistic 78.01

No. SNPs 83 114

Exposures associated with the same liability period
β1 Liability effect 0.530 0.200

Effect estimate 0.519 0.207

Est. Std. Error 0.011 0.080

Simulation Std. Error 0.011 0.080

Absolute bias 0.013 0.063

Coverage 82% 94%

F-statistic 96.31

Conditional F-statistic 1.06

No. SNPs 72 86

β2 Liability effect 0.480 0.300

Effect estimate 0.474 0.288

Est. Std. Error 0.009 0.073

Simulation Std. Error 0.009 0.072

Absolute bias 0.009 0.058

Coverage 89% 94%

F-statistic 115.76

Conditional F-statistic 1.06

No. SNPs 83 86

N = 150,000, reps = 2000, Direct effect of exposures on the outcome; X1: β1 = 0.2, X2: β2 = 0.3. Effect of X1 on X2 =

0.1. Effect of the liability for each exposure point are given in the table. Absolute bias is the mean value of the absolute

bias of the effect estimate across the simulations. For each of Effect estimate, Est. Std Error, F-statistic and Conditional
F-statisticmean values across each iteration of the simulation are reported. Simulation Std. Error is the estimated

standard error in the effect estimate across the repetitions in the simulation. Coverage gives the proportion of times

the true effect estimate falls within the 95%CI, No. SNPs is the mean number of SNPS selected for estimation.

https://doi.org/10.1371/journal.pgen.1010290.t001
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Simulation results without Steiger filtering show that although the genetic variants strongly

predict the exposure at each time period conditional on the other, MVMR estimation gives biased

estimates of the direct causal effect of the exposure at both time periods on Y. This bias is due to

conditioning on a variable that depends on both the exposure and the outcome (a collider) in the

estimation, introducing collider bias. [34–37] Because the genetically predicted value of X2

depends on genetic variants associated with Y, X2 becomes the collider in the MVMR estimation.

Conditioning on a collider distorts the estimated association between the other exposure and the

outcome and so means that the estimates obtained in the MVMR are no longer reliable estimates

of the direct effect of the earlier exposure on the outcome. Importantly, the introduction of col-

lider bias in this estimation biases the effect estimates at each time point included in the estima-

tion, including the earlier time point which is not dependent on Y.

Sanderson et al. (2019) showed that MVMR conditioning on a collider does not introduce

collider bias when only genetic variants associated with the exposures are included in the esti-

mation. [23] The different result here occurs because we have allowed for genetic variants asso-

ciated with Y to be included as instruments, which was not the case in Sanderson et al. (2019)

and reflects a situation where the primary phenotype has been mis-specified. [3] When Steiger

filtering is applied to the results given in Table 2 there is no bias in the results obtained, as the

genetic variants are restricted to those which affect the exposure at either time point directly

without acting via the outcome.

Additional excluded liability

We finally consider a model where the exposure has three underlying liabilities associated with

it but where the model estimated only includes the exposure at times associated with two of

those liabilities. The true structure of the data is illustrated in Fig 4 however the model esti-

mated is assumed to be the same as that given in Fig 2A.

We set the simulations up in the same way as described for Table 1 with the addition of a

third liability time period associated with a measured value of the exposure. This third

Fig 3. Model with a causal effect from the outcome to the later time point. – L1 is the liability in the first time

period, L2 is the liability in the second period. G1 is a set of genetic variants associated with L1, G2 is a set of genetic

variants associated with L2 and G12 is a set of genetic variants associated with both L1 and L2. GY is a set of genetic

variants associated with the outcome. X1 and X2 are observed values of the exposure, where X2 is observed at a later

point in an individual’s life than X1. Y is an outcome. X1, X2 and Y are confounded by a set of unobserved confounders

U. X1 and X2 are measured with error, this measurement error is uncorrelated with the genetic variants. The direct

causal effect of X1 on X2 and Y, and Y on X2 are given on the diagram.

https://doi.org/10.1371/journal.pgen.1010290.g003
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Table 2. Simulation results for multiple time points with a causal effect from the outcome to the later time point.

MR MVMR

No Steiger filtering
β1 Liability effect 0.200 0.200

Effect estimate 0.196 0.078

Est. Std. Error 0.016 0.070

Simulation Std. Error 0.016 0.022

Absolute bias 0.013 0.122

Coverage 93% 75%

F-statistic 96.34

Conditional F-statistic 59.85

No. SNPs 72 117

β2 Liability effect 0.076 0.000

Effect Estimate 0.223 0.189

Est. Std. Error 0.056 0.055

Simulation Std. Error 0.018 0.021

Absolute bias 0.147 0.189

Coverage 2% 0%

F-statistic 101.72

Conditional F-statistic 70.82

No. SNPs 82 117

With Steiger filtering 0.200

β1 Liability effect 0.200 0.200

Effect estimate 0.195 0.195

Est. Std. Error 0.016 0.018

Simulation Std. Error 0.016 0.018

Absolute bias 0.013 0.015

Coverage 92% 94%

F-statistic 96.35

Conditional F-statistic 63.68

No. SNPs 72 107

β2 Liability effect 0.076 0.000

Effect Estimate 0.083 0.001

Est. Std. Error 0.017 0.015

Simulation Std. Error 0.013 0.015

Absolute bias 0.012 0.012

Coverage 97% 94%

F-statistic 106.80

Conditional F-statistic 69.98

No. SNPs 72 107

N = 150,000 reps = 2000, Effect of exposure X1 on Y; β1 = 0.2. Effect of Y on X2 = 0.5. Effect of the liability for each

exposure point are given in the table. Absolute bias is the mean value of the absolute bias of the genetically predicted

effect estimate across the simulations. For each of Effect estimate, Est. Std Error, F-statistic and Conditional F-statistic
mean values across each iteration of the simulation are reported. Simulation Std. Error is the estimated standard error

in the effect estimate across the repetitions in the simulation. Coverage gives the proportion of times the true effect

estimate falls within the 95%CI, No. SNPs is the mean number of SNPS selected for estimation.

https://doi.org/10.1371/journal.pgen.1010290.t002
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measured exposure is assumed to be dependent on X2 and subject to overlapping confounding

to both X1 and X2 with Y. We considered two models for the effect of G on L3. In the first there

is no correlation between the association between G and L3 and the association between G and

the other liabilities. In the second correlation between the association between G and L3 and G
and L1 and L2 was added with higher correlation between G−L2 and G−L3 (ρ = 0.25) and a

lower level of correlation between G−L1 and G−L3 (ρ = 0.1). These correlations arise from the

overlap in the genetic effects on each liability. In both cases the outcome is assumed to occur at

or after the time at which X3 is measured and all exposures have a direct causal effect on the

outcome. The results from this simulation are given in Table 3.

When the association between the genetic variants and the excluded liability are correlated

with those for the included periods the effect estimated will include some of the effect that acts

via the omitted liability. The estimated effect of liability to X1 and X2 both consistently estimate

of the effect of the liability at that time point. When the genetic effects on L3 are uncorrelated

with the included liability periods the effect estimated does not include the effect of the later

liability. Additional simulations with no direct causal effect of X2 on Y showed the same pat-

tern of results and are given in Table B in S1 Text.

We finally simulated data where only X2 had a causal effect on the outcome but X1 and X3

(but not X2) were included in the estimation. In this set up we varied the association between

each of L1 and L3 with L2. Results from estimation of this model showed the same pattern of

results as above. The liability effect estimated includes the effect of that time period and some

of the effect of the excluded time period, with the proportion of the effect of the excluded

period included in the estimated effect depending on the genetic correlation between the two

periods. Results from these simulations are given in Table C in S1 Text.

Fig 4. Model with three liability time periods. – L1 is the liability of the exposure in the first time period, L2 is the

liability of the exposure in the second period, L3 is the liability of the exposure in the third period, G1 is a set of genetic

variants associated with L1, L2 and L3, G2 is another set of genetic variants associated with L1, L2 and L3 and G3 is a set

of genetic variants associated with L3. X1 and X2 are observed values of the exposure, where X2 is observed at a later

point in an individual’s life than X1. X3 is a third value of the exposure, X3, L3 and G3 are given in grey to illustrate that

although they have an effect on the outcome they are not included in the estimation. Y is an outcome. X1, X2, X3 and Y
are confounded by a set of unobserved confounders U. X1, X2 and X3 are measured with error, this measurement error

is uncorrelated with the genetic variants. The direct causal effect of X1 on X2 and Y, X2 on X3 and Y, and X3 on Y are

given on the diagram.

https://doi.org/10.1371/journal.pgen.1010290.g004
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Table 3. Simulation results with a relevant liability period excluded.

MR MVMR

Correlated genetic effects
β1 Liability effect 0.363 0.191

Effect estimate 0.326 0.186

Est. Std. Error 0.031 0.020

Simulation Std. Error 0.015 0.013

Absolute bias 0.037 0.011

Coverage 95% 100%

F-statistic 88.50

Conditional F-statistic 54.82

No. SNPs 59 93

β2 Liability effect 0.428 0.353

Effect estimate 0.418 0.351

Est. Std. Error 0.024 0.020

Simulation Std. Error 0.012 0.013

Absolute bias 0.013 0.010

Coverage 100% 100%

F-statistic 102.40

Conditional F-statistic 63.66

No. SNPs 60 93

Independent genetic effects
β1 Liability effect 0.378 0.220

Effect Estimate 0.321 0.211

Est. Std. Error 0.037 0.024

Simulation Std. Error 0.015 0.014

Absolute bias 0.057 0.013

Coverage 80% 100%

F-statistic 80.20

Conditional F-statistic 48.00

No. SNPs 53 92

β2 Liability effect 0.395 0.328

Effect estimate 0.386 0.322

Est. Std. Error 0.027 0.022

Simulation Std. Error 0.013 0.013

Absolute bias 0.013 0.011

Coverage 100% 100%

F-statistic 98.63

Conditional F-statistic 66.32

No. SNPs 62 92

N = 150,000 reps = 2000, β1 = 0.2, β2 = 0.3. Total effect of the exposures; X1 on Y = 0.232, X2 on Y = 0.320. Effect of

the liability for each exposure are given in the table. Absolute bias is the mean value of the absolute bias of the effect

estimate across the simulations. For each of Effect estimate, Est. Std Error, F-statistic and Conditional F-statisticmean

values across each iteration of the simulation are reported. Simulation Std. Error is the estimated standard error in

the effect estimate across the repetitions in the simulation. Coverage gives the proportion of times the true effect

estimate falls within the 95%CI, No. SNPs is the mean number of SNPS selected for estimation.

https://doi.org/10.1371/journal.pgen.1010290.t003
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Application

We consider an illustrative application where we estimate the effect of childhood and adult

body mass index (BMI) on circulating C-reactive protein levels (CRP) and smoking behaviour,

measured as smoking initiation, smoking cessation and cigarettes per day.

Data

Data on child and adulthood BMI were taken from the UK biobank (UKB) study. [38,39]

Between 2006 and 2010, the UK Biobank study enrolled 500,000 individuals aged between 40

and 69 at baseline across 22 assessment centres in the UK. Data were collected on clinical

examinations, assays of biological samples, detailed information regarding self-reported health

characteristics and genome-wide genotyping. In total 12,370,749 genetic variants in up to

463,005 individuals were available for analysis, as described previously. [40] For BMI we

derived a measure of childhood body size using recall questionnaire data asking UKB partici-

pants if they were ‘thinner’, ‘plumper’ or ‘about average’ when they were aged 10 years old

compared to the average. Adult body size was derived using clinically measured BMI data

(mean age 56.5 years), which we categorized into a 3-category variable using the same propor-

tion as the early life measure for comparative purposes. Genetic variants robustly associated

with childhood and adult body size (based on P<5x10-8 and r2<0.001 using a reference panel

from the 1000 genomes project phase 3 [41]) were identified from a previously undertaken

Genome Wide Association Study (GWAS) in UKB. This GWAS has been described in-detail

elsewhere as well as validation studies of the resulting genetic instruments. [8,42,43]

GWAS summary statistics for CRP levels for 204,402 European adults were extracted from

Lighart et al (2018) to avoid sample overlap with UK Biobank. [44] For each of the smoking

behaviour outcomes GWAS data was extracted from Lui et al (2019) using summary statistics

produced excluding UKB. [45] The mean age of smoking initiation across individuals with

available data (excluding UK Biobank) was 17.5 years, with the mean for each study included

in the GWAS ranging from 16.0 to 21.0 years. SNPs associated with smoking initiation were

identified in a sample including smokers and non-smokers. SNPs associated with smoking ces-

sation and cigarettes per day were identified in a sample of smokers only.

For each outcome considered we estimated the genetically predicted total effect of early life

and later life exposure separately through a two-sample MR using the SNPs associated with the

exposure at the relevant time period. We then estimated the genetically predicted direct effects

of the exposure at each time point through a MVMR estimation including both early and later

life body size in the same estimation, including all SNPs associated with the exposure at either

time.

Results

Results for the estimation of the effect of BMI on CRP are given in Table 4. Our MR estimates

showed a strong total effect of liability to body size in childhood and adulthood on CRP (total

effect of a category increase in childhood body size on CRP (log mg/L) = 0.35, 95% CI = 0.27

to 0.42; for adult body size 0.56, 95% CI = 0.50 to 0.62) However, in the MVMR estimation no

effect of early life body size liability was observed and the effect of later life liability remained

largely unchanged implying that the total and direct effects of later life body size liability are

similar (direct liability effect of a category increase childhood body size on circulating CRP =

-0.04, 95% CI = -0.14 to 0.06, for adult body size; 0.56, 95% CI = 0.47 to 0.65).

Similar results were obtained for smoking behaviour, given in Table 5. MR estimates

showed a strong total effect of body size liability in childhood and adulthood on all of the

smoking outcomes (total effect of a category increase childhood body size on number of
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cigarettes per day = 0.13, 95% CI = 0.07 to 0.18, P = 2.11x10-6, for adult body size: 0.25, 95%

CI = 0.20 to 0.30, P = 3.54x10-26). However, in the MVMR estimation no effect of early life

body size liability on number of cigarettes per day was observed and the effect of later life lia-

bility remained largely unchanged implying that the total and direct effects of later life body

size liability are similar (direct effect of a category increase childhood body size on number of

cigarettes per day = -0.05, 95% CI = -0.11 to 0.01, P = 0.174, for adult body size; 0.27, 95%

CI = 0.22 to 0.35, P = 7.15x10-20). Similar results were observed for the other smoking behav-

iour measures with positive total effects of liability to a higher category of childhood body size

on smoking initiation and cessation observed in the MR estimation and no direct effect of

childhood body size liability observed in the MVMR estimation.

These results suggest that there is no direct effect of childhood body size liability on CRP or

smoking behaviour in later life conditional on later life body size. The observed effect in the

MR estimates of childhood body size on CRP and smoking are due to a combination of the

effect of SNPs associated with childhood body size also having an effect on adult body size and

an indirect effect of childhood body size on CRP and smoking behaviour through its effect on

adult body size. Steiger filtering [33] between adult body size and the outcome removed 10

SNPs for CRP and�5 SNPs for any of the smoking behaviours and did not change the results

obtained, results given in S1 Text.

We have not explored the potential for biases that often arise in MR and MVMR studies in

the results presented here, such as biases due to pleiotropy or selection bias. [29,36,46] SNPs

for smoking cessation and cigarettes per day were identified in smokers only. This leads to the

potential for collider bias in the GWAS results, which would then bias the MR and MVMR

Table 4. Univariable and multivariable estimates for effect of child and adulthood BMI liability on circulating CRP.

MR–total effect MVMR–direct effect

nSNPs β 95% C.I. P-value β 95% C.I. P-value

CRP
age_10 190 0.35 [0.27 0.42] 2.87E-20 -0.04 [-0.14 0.06] 0.488

adult 339 0.56 [0.50 0.62] 2.62E-74 0.56 [0.47 0.65] 3.90E-38

nSNPs; number of SNPs associated with the exposure, β; MR effect estimate, 95% CI; 95% Confidence Interval for MR estimate, P-value; P-value for MR estimate.

https://doi.org/10.1371/journal.pgen.1010290.t004

Table 5. Univariable and multivariable estimates for effect of child and adulthood BMI liability on smoking behaviour.

MR–total effect MVMR–direct effect

Exposure nSNPs OR 95% C.I. P-value OR 95% C.I. P-value

Smoking Initiation
age_10 265 1.22 [1.12 1.32] 2.35E-06 0.97 [0.86 1.09] 0.614

adult 467 1.36 [1.26 1.47] 1.77E-16 1.40 [1.27 1.55] 3.62E-11

Smoking Cessation
age_10 267 1.12 [1.02 1.24] 7.18E-03 0.95 [0.83 1.09] 0.420

adult 469 1.25 [1.15 1.35] 2.69E-07 1.31 [1.16 1.47] 2.83E-06

nSNPs β 95% C.I. P-value β 95% C.I. P-value

Cigarettes per day
age_10 266 0.12 [0.06 0.18] 4.71E-06 -0.05 [-0.11 0.01] 0.174

adult 467 0.24 [0.20 0.27] 7.05E-28 0.27 [0.21 0.33] 7.15E-20

nSNPs; number of SNPs associated with the exposure, OR; MR estimated odds ratio for binary outcomes, β; MR effect estimate for continuous outcome, 95% CI; 95%

Confidence Interval for MR estimate, P-value; P-value for MR estimate.

https://doi.org/10.1371/journal.pgen.1010290.t005
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results given here. These results should therefore be taken as an illustration of the application

and interpretation of the methods discussed.

Discussion

When multiple measures of an exposure at different time points are available, MVMR can be

used to estimate the causal effect of changing the liability of the exposure at different time

points on the outcome. The interpretation of the MVMR estimate is the direct effect of having

a liability associated with a unit higher level of the exposure at that time point, for a given lia-

bility for the exposure at the other time points included in the estimation. That is, the effect of

having a liability associated with a unit higher level of X1 while keeping the liability for X2 con-

stant. If measures of the exposure at different time periods are available, it is possible to iden-

tify whether the exposure effects persist over time or key periods exist in the lifecourse.

As shown in simulation results given in Table 1, an important restriction for estimation of

these models is that the association between the genetic variants and the exposure must vary

over the periods included in the estimation. Although genetic variants themselves do not vary

over an individual’s lifetime, variation in their effects could arise from different genetic vari-

ants having different levels of importance in the development of the exposure at different ages.

In the simulations we have assumed that each liability only directly affects the exposure at one

time period but that genetic variants can be associated with multiple liabilities. However, the

results obtained would be the same if we had allowed each genetic variant to influence one lia-

bility only but for the liabilities to affect the exposure at multiple time periods and each expo-

sure to be influenced by multiple liabilities.

Our simulation results highlight how it is possible to introduce collider bias to the results

obtained when genetic variants for the outcome are selected as instruments for the exposure.

Steiger filtering should be applied to help remove this bias if there is potential for the outcome

to mediate some of the relationship between the exposure at the time periods included in the

estimation.

Our final set of simulations show how the effects of any time periods excluded from the esti-

mation but associated with genetic variants included in the estimation will form part of the

effect estimated. The size of this effect will depend on the level of correlation between the liabil-

ities for the included and excluded time periods. It is likely that for many exposures the genetic

variants associated with the trait at one time point will also be associated with the trait at

another time point to some degree. Therefore, an observed effect for one time period may not

be due to the exact time period measured. If MVMR is being used to identify which periods in

the lifecourse are most important, then the other potentially important periods also need to be

included in the estimation.

Our application to smoking behaviour illustrates how genetic correlation between time

points can mean that a particular point can appear important even though any effect is likely

to have occurred earlier in the lifecourse. The results obtained show an effect of adult body size

liability (mean age: 56.5) on smoking initiation (mean age: 17.5 years) once childhood body

size liability has been controlled for. Typical age of smoking initiation therefore precedes the

measurement of adulthood body size. The large effect of body size liability at the age measured

in our sample on risk of smoking is unlikely to be causal at the point of time that the exposure

and outcome were measured. If liability for higher body size in adulthood is associated with

liability for higher body size in adolescence/early adulthood the effect we estimate may reflect

the effect of body size in adolescence on smoking initiation even though it is actually measured

at a later time point. This model is illustrated in Fig 5. Data on BMI at different ages between

childhood and adulthood would potentially enable estimation of the effect on smoking
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behaviour at a range of different ages and so identification the period between childhood and

adulthood that was most important in the development of smoking behaviour. Implementa-

tion of this approach with MVMR would however rely on those periods being differentially

associated with the genetic variants used as instruments. This difference has been shown previ-

ously for body mass index (BMI) at different points across childhood and between childhood

and adulthood. [8,47,48] However other research has shown that the genetic influences on

BMI are consistent across adulthood. [49] This would prevent using this approach to deter-

mine which point in adulthood is most important for risk of smoking behaviour.

Previous work using this estimation approach has shown that early life BMI liability does

not have a direct effect on type 2 diabetes and coronary heart disease. [8] Therefore if an indi-

vidual with a high BMI in early life reduces their excess weight in later life their risk for type 2

diabetes and coronary heart disease will not be increased via this pathway. Our analysis of the

effect of body size on circulating CRP levels show a similar result, larger body size in early life

will not have an effect on increased CRP levels if the excess weight is reduced in adulthood.

These results however do not identify the periods in adulthood that are most important.

The methods described here also require the general assumptions of MR estimation to

hold. The assumption that all of the data is from the same underlying population is important

to all summary-data MR analysis. [50,51] This is likely to be particularly important when con-

sidering the same exposure at different ages as changes in the distribution of the exposure or

the relationship between the exposure and the outcome between different cohorts could poten-

tially bias the results obtained. The choice of datasets should be carefully considered if the

same data cannot be used for each time point. For example; the distribution of childhood BMI

levels has changed notably over the last 50 years and therefore it would not be correct to

assume that BMI measured in groups of adults and children at the same point in time would

represent measures from the same population.

If some SNPs are differently associated with more than one time period for the exposure

and the causal effect of the exposure on the outcome varies over time there may be heterogene-

ity in the results obtained, even in the absence of pleiotropy. In this case those SNPs that have

a larger association with the exposure in the time period with the largest causal effect will esti-

mate a larger causal effect of the exposure on the outcome. This will inflate the heterogeneity

Q-statistic even in the absence of conventional pleiotropic effects, unless all relevant time peri-

ods are included in the estimation.

Throughout this work we have only considered a single measurement of the outcome. For

many exposures and outcomes it may be possible that the outcome could also vary over time

with the relationship between the exposure and outcome varying at different time points, and

potentially also effects of earlier values of the exposure on later values of the outcome. This

Fig 5. Estimated relationship between adiposity and smoking behaviour. – Figure shows (a) the estimated

relationship between adiposity and smoking behaviour and (b) a potential underlying model that would give this

result.

https://doi.org/10.1371/journal.pgen.1010290.g005
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type of relationship, with multiple different outcomes, cannot be estimated with standard

MVMR methods. This is therefore left as an area of future research.
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