
Journal Pre-proofs

The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its
Relationship to Network Metric Change

Lawrence Peter Binding, Peter Neal Taylor, Aidan G. O'Keeffe, Davide
Giampiccolo, Marine Fleury, Fenglai Xiao, Lorenzo Caciagli, Jane de Tisi,
Gavin P. Winston, Anna Miserocchi, Andrew McEvoy, John S. Duncan,
Sjoerd B. Vos

PII: S2213-1582(23)00133-X
DOI: https://doi.org/10.1016/j.nicl.2023.103444
Reference: YNICL 103444

To appear in: NeuroImage: Clinical

Received Date: 8 March 2023
Revised Date: 4 May 2023
Accepted Date: 22 May 2023

Please cite this article as: L. Peter Binding, P. Neal Taylor, A.G. O'Keeffe, D. Giampiccolo, M. Fleury, F. Xiao,
L. Caciagli, J. de Tisi, G.P. Winston, A. Miserocchi, A. McEvoy, J.S. Duncan, S.B. Vos, The Impact of Temporal
Lobe Epilepsy Surgery on Picture Naming and its Relationship to Network Metric Change, NeuroImage: Clinical
(2023), doi: https://doi.org/10.1016/j.nicl.2023.103444

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc.

https://doi.org/10.1016/j.nicl.2023.103444
https://doi.org/10.1016/j.nicl.2023.103444


The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its 
Relationship to Network Metric Change. 

Author list: 

Lawrence Peter Binding1,2, Peter Neal Taylor2,3, Aidan G. O’Keeffe4,5, Davide 
Giampiccolo2,6,7, Marine Fleury2, Fenglai Xiao2,8, Lorenzo Caciagli8,10, Jane de Tisi8, Gavin 
P. Winston2,8,9, Anna Miserocchi2,6, Andrew McEvoy2,6, John S. Duncan2,8, Sjoerd B. 
Vos1,11,12

1 Centre for Medical Image Computing, Department of Computer Science, UCL, London, 
United Kingdom 

2 Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of 
Neurology, London, United Kingdom 

3 CNNP lab, Interdisciplinary Computing and Complex BioSystems Group, School of 
Computing Science, Newcastle University, UK 

4 School of Mathematical Sciences, University of Nottingham, United Kingdom

5 Institute of Epidemiology and Healthcare, UCL, London WC1E 6BT

6 Victor Horsley Department of Neurosurgery, National Hospital for Neurology and 
Neurosurgery, Queen Square, London

7 Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, UK

8  MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom 

9 Department of Medicine, Division of Neurology, Queens University, Kingston, Canada

10 Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of 
Neurology, London, United Kingdom

11 Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University 
College London, London, UK 

12 Centre for Microscopy, Characterisation, and Analysis, The University of Western 
Australia, Nedlands, Australia 



Acknowledgements:
We would like to thank Andrea Hill, radiographer at the Epilepsy Society, for data collection. 
We would also like to thank all participants and colleagues for their great cooperation. The 
authors acknowledge the facilities and scientific and technical assistance of the National 
Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) 
capability, at the Centre for Microscopy, Characterisation, and Analysis, the University of 
Western Australia. 



Authors Contributions:
 Lawrence Peter Binding – Conceptualization, Formal analysis, Investigation, 

Methodology, Visualization, Writing - review & editing
 Peter Neal Taylor – Conceptualization, Methodology, Formal analysis, Writing - 

review & editing, Funding acquisition
 Aidan G. O’Keeffe – Methodology, Writing - review & editing
 Davide Giampiccolo – Writing - review & editing
 Marine Fleury – Writing - review & editing
 Fenglai Xiao – Writing - review & editing
 Lorenzo Caciagli – Writing - review & editing, Methodology, Data curation
 Jane de Tisi – Project administration
 Gavin Winston – Data curation, Funding acquisition, Writing – review & editing 
 Anna Miserocchi – Data curation
 Andrew McEvoy – Data curation
 John S. Duncan – Supervision, Writing - review & editing, Methodology, Funding 

acquisition
 Sjoerd B. Vos – Supervision, Writing - review & editing, Conceptualization, 

Methodology, Funding acquisition

Study Funding: 
 Authors Lawrence P. Binding and Sjoerd B. Vos are supported by Epilepsy Research 

UK (grant number P1904). 
 Authors John S. Duncan receive funding from the Wellcome Trust Innovation 

Program (218380/Z/19/Z) and Epilepsy Research UK (grant number P1904). . 
 Lawrence P. Binding, Sjoerd B. Vos, and John S. Duncan are partly funded by the 

National Institute for Health Research University College London Hospitals 
Biomedical Research Centre (NIHR BRC UCLH/UCL). 

 Peter Taylor is supported by a UKRI Future Leaders Fellowship (MR/T04294X/1). 
 Gavin Winston was supported by the Medical Research Council (G0802012, 

MR/M00841X/1). 
 FX was supported by a Newton International Fellowship of the Academy of Medical 

Sciences and the Newton Fund (NIF\R5\264) and supported by Wellcome trust 
(221934/Z/20/Z)

 Gavin Winston and John Duncan were supported by the medical research council / 
Wellcome Trust between the years of 2008–2013 (MRCG0802012 / 083148)

Disclosures 
 Lawrence P. Binding; Sjoerd B. Vos are supported by Epilepsy Research UK (grant 

number P1904)., 
 John S. Duncan receives funding from the Wellcome Trust Innovation Program 

(218380/Z/19/Z)., 
 Lawrence P. Binding; Sjoerd B. Vos; John S. Duncan are partly funded by the 

National Institute for Health Research University College London Hospitals 
Biomedical Research Centre (NIHR BRC UCLH/UCL).


 Peter Taylor is supported by a UKRI Future Leaders Fellowship (MR/T04294X/1)., 
 Gavin Winston was supported by the Medical Research Council (G0802012, 

MR/M00841X/1)., 



 Anna Miserocchi; Aidan O'Keeffe; Jane de Tisi; Andrew McEvoy; Davide 
Giampiccolo; all report no disclosures relevant to this manuscript. 

Abstract
Background
Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory 
temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of 
individuals experience a naming decline which can impact upon daily life. Measures of 
structural networks are associated with language performance pre-operatively. It is unclear if 
analysis of network measures may predict post-operative decline. 

Methods
White matter fibre tractography was performed on preoperative diffusion MRI of 44 left 
lateralised and left resection individuals with TLE to reconstruct the preoperative structural 
network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI 
scans, were used as exclusion regions on pre-operative tractography to estimate the post-
operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, 
and clustering coefficient were generated by comparing the estimated pre- and post-operative 
networks. These were thresholded based on the presence of the connection in each patient, 
ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds 
was taken. 
We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation 
(SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a 
support vector classifier to assess graph theory metrics on picture naming decline. Picture 
naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months 
post-operatively and the outcome was classified using the reliable change index (RCI) to 
identify clinically significant decline. The best feature combination and model was selected 
using the area under the curve (AUC). The sensitivity, specificity and F1-score were also 
reported. Permutation testing was performed to assess the machine learning model and 
selected regions difference significance. 

Results
A combination of clinical and graph theory metrics were able to classify outcome of picture 
naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical 
regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal 
analysis revealed that betweenness centrality was the best metric to identify patients who 
declined at 3 months, who will then continue to experience decline from 3-12 months. Both 
models were significantly higher AUC values than a random classifier.

Conclusion
Our results suggest that inferred changes of network integrity were able to correctly classify 
picture naming decline after ATLR. These measures may be used to prospectively to identify 
patients who are at risk of picture naming decline after surgery and could potentially be 
utilised to assist tailoring the resection in order to prevent this decline. 

Keywords: White Matter, Anterior Temporal Lobe Resection, Picture Naming Decline, 
Graph Theory, Machine Learning





Introduction

Language is impaired in up to 50% of patients with temporal lobe epilepsy (TLE).1 This 
impairment typically affects naming and verbal fluency,2 especially when the epileptogenic 
zone is within the language dominant hemisphere.3 Longer duration of disease can be 
associated with worse cognitive function.4 For medically-refractory TLE patients, anterior 
temporal lobe resection (ATLR) is effective for seizure control. However, individuals 
undergoing language-dominant resection have a 30-50% risk of significant post-operative 
decline in language-related functions, particularly naming, which can impact daily life5,6. An 
ability to minimize the impact of ATLR on language function would be beneficial.

Language function is subserved by synchronized processing in dispersed cortical regions, 
connected through white matter fibers.7 Lateralization of cortical activation in visual and 
auditory naming functional MRI (fMRI) tasks to the ipsilateral temporal lobe predicts which 
patients will experience language decline.8 However, surgically sparing fMRI-activated 
cortical regions does not avoid a naming impairment in 50% of individuals.9 This suggests a 
possible role of white matter damage in post-surgical language decline.

There is interindividual variation of tract anatomy, functional cortical anatomy, and of tissue 
resected, including for relatively standardised ATLR, resulting in variability of language 
outcome. Highlighting this, cortical stimulation in the temporal lobe showed extremely high 
variability on cortical responses, emphasising a role for plastic reorganisation in individual 
subjects.10 In those with gliomas, distinct patterns of language reorganisation have been shown 
according to tumour location.11 Individuals with epilepsy may undergo reorganisation specific 
to their epileptogenic network, which may be potentially predicted by network analysis.

White matter fibres are anatomically arranged in fibre bundles. Recent work has demonstrated 
that transection of specific fibre bundles within the temporal lobe contributes to picture naming 
decline.12,13 Fibre bundle analysis, however, is limited by our understanding of white matter 
fibre anatomy and function. A direct comparison of whole-brain tractography and fibre bundle 
analysis highlights superiority of the former in predicting postoperative outcome.14 Previous 
research utilising graph theory metrics in TLE has demonstrated the centrality metric was able 
to predict pre-operative picture naming scores to a high degree.15

There is uncertainty as to whether whole-brain network analysis and graph theory metrics can 
predict language decline following ATLR. Our aim is to explore whether the estimated change 
in the cortical region’s network properties after ATLR is able to classify picture naming 
decline, and ultimately might be used to mitigate such risk. The goal is to understand the 
disruption of structural connectivity following ATLR that relates to picture naming decline, 
with the aim of improving future outcomes through enhanced neurosurgical planning. 



Materials and Method

1. Participants
We studied 44 patients with medically refractory left TLE (27 females, mean age: 40yr) and 
left lateralised language who underwent ATLR at the National Hospital of Neurology and 
Neurosurgery, London, United Kingdom between 2010 and 2019. Exclusion criteria were a 
previous history of neurosurgery, incomplete data, or non-dominant, right, or bilateral language 
lateralisation. All patients had a pre-operative: T1-weighted structural MRI; dMRI; task-based 
language fMRI, and a post-operative T1-weighted MRI (obtained between 3- and 12-months 
post-operatively).

All patients had a typical ATLR, removing the anterior temporal lobe and the majority of the 
amygdala and hippocampus. Pathology comprised hippocampal sclerosis (HS; N=27), 
cavernoma (CAV; N=2), dysembryoplastic neuroepithelial tumour (DNT; N=5), dual 
pathology (N=6), and other (N=4).

2. Standard Protocol Approvals, Registrations, and Patient Consents
This project was approved by London – Bloomsbury Research Ethics Committee (REC 
reference: 20/LO/0149; CAG number: 20/CAG/0013). Patient data were pseudo-anonymised. 
This project did not carry any risk to participants and was retrospectively conducted on 
clinically acquired data.

3. Neuropsychology 
Language was assessed via the McKenna Graded Naming Test which is a visual confrontation 
naming assessment (referred to as picture naming).16 This was performed pre-operatively and 
3 and 12 months post-operatively. There were seven patients missing data from the 12 months 
follow-up. These patients were removed from the 12-month analysis. Change in 
neuropsychological performance was assessed using the reliable change index (RCI) which 
was dichotomized to create a binary variable that measured  significant decline vs. no decline. 
An RCI-decline of ≥4 was considered a clinically significant decline as per previous research.8 
There were 17/44 (38.6%) and 11/37 (29.7%) patients who had clinically significant picture 
naming decline at 3 and 12 months, respectively. 

4. Clinical Features
Recent evidence suggests that side of surgery, age of onset, and preoperative naming scores 
are able to predict naming decline with high accuracy.17 While we already divided patients 
based on side of surgery, we extracted the fMRI LI, age at surgery, age of onset and 
preoperative naming scores for inclusion in our analysis. Table 1 includes the mean and 
standard deviation for the clinical variables included split across patients who did and did not 
undergo clinically significant decline (as determined via the RCI). 

Table 1. Descriptive statistics of clinical characteristics. Descriptive statistics are split 
between those with and without clinically significant decline which is determined by the 
reliable change index,

3 Months 
Decline: Mean 

(STD)

3 Month No 
Decline: Mean 

(STD)

12 Months 
Decline: Mean 

(STD)

12 Months No 
Decline: Mean 

(STD)
Age of Onset 13.07(9.12) 20.17(14.82) 23.86(17.81) 15.6(10.98)
Preoperative 
naming score 14.18(6.15) 15.46(5.67) 18.55(5.77) 13.62(5.19)



fMRI LI 0.8(0.13) 0.71(0.2) 0.65(0.26) 0.78(0.14)
Age 40.45(9.09) 40(12.12) 47.91(12.1) 36.85(9.15)

Abbreviations: fMRI LI: functional magnetic resonance imaging lateralisation index; STD: 
standard deviation 

5. MRI Acquisition 
Between 2009-2013 (N=27) patients were scanned on a 3T GE Signa Excite HDx.18Single-
shell dMRI data were acquired using a cardiac-triggered single-shot spin-echo planar imaging 
sequence19: 1.875×1.875×2.4 mm resolution, gradient directions: 6 and 52 at b-values: 0 and 
1200/ mm2, δ/Δ/TE=21/29/73 ms, and a 3D T1-weighted sequence was acquired. For verbal 
fluency fMRI20 gradient-echo planar T2*-weighted images were acquired with 58 contiguous 
2.5 mm oblique axial slices, 96×96 matrix reconstructed to 128×128 for an in-plane resolution 
of 1.875×1.875 mm (TE/TR=25/2500 ms).

Between 2014-2019 (N=17) patients were scanned on a 3T GE Discovery MR750. 18 A 3D T1-
weighted sequence (MPRAGE) was acquired and multi-shell dMRI (2 mm isotropic resolution, 
gradient directions: 11, 8, 32, and 64 at b-values: 0, 300, 700, and 2500 s/mm2; ∂/Δ=21.5/35.9 
ms, TE/TR=74.1/7600 ms). For verbal fluency fMRI20 gradient-echo planar T2*-weighted 
images was acquired with 50 contiguous 2.4mm (0.1 mm gap) slices with a 24 cm field of 
view, 64×64 matrix with an in-plane voxel size of 3.75×3.75 mm (TE/TR=22/2500 ms).

6. MRI Processing 
6.a. Diffusion Processing
Diffusion MRI data were denoised,21 Gibbs-unringed,22 corrected for signal drift,23 and 
distortion corrected using a synthesized b0 for diffusion distortion correction (Synb0-DisCo)24 
with FSL topup.25 Eddy currents and movement artifacts were corrected,26 rotating the b-
vectors.27 Additionally, bias-field correction was performed in MRtrix3.22  Response functions 
for cerebrospinal fluid, white and grey matter were estimated using Single-Shell 3-Tissue29 and 
Multi-Shell 3-Tissue30 CSD in MRtrix3.22 
 
6.b. fMRI Processing
Functional MRI data was used to determine patients’ expressive language lateralisation for the 
inclusion criteria in this study. Each patient performed a verbal fluency task-based fMRI 
language task. This consisted of a block design with 30s of covert object generation beginning 
with the letter presented on screen alternating with 30s of cross-hair fixation for the baseline 
condition over 5.5 minutes.31 Hemispheric language lateralization was calculated using the 
bootstrap method of the lateralization index toolbox implemented in SPM832 on spmT maps. 
The WFU PickAtlas’ anatomical masks of the middle and inferior frontal gyri (including the 
pars triangularis, orbitalis, opercularis) were used based on previous research highlighting 
lateralising reliability of these regions.33,34 LI values were calculated: [LI=(L–R)/(L+R)].

6.c. Resection Mask
Resection masks were drawn based on previous techniques.18 Post-operative T1-weighted MRI 
were affinely registered to pre-operative T1-weighted MRI. Resection masks were then 
manually drawn in MRtrix3 by overlaying the post-operative T1-weighted MRI on the pre-
operative T1-weighted MRI starting at the most anterior coronal slice of the temporal lobe, 
then proceeding posteriorly every three slices. Coronal slices were then joined by drawing in 
every sagittal slice. Masks were saved in pre-operative T1-weighted space. Resection mask 
reliability and validity were assessed via inter-rater reliability between two raters. Impact of 
delineation accuracy was assessed using dilated resection masks (eAppendix 1, eTables 1).



6.d. Network Generation
Anatomically constrained tractography (ACT)35 using hybrid surface and volume segmentation 
in MRtrix336 was performed using second-order integration over fiber orientation distribution 
probabilistic fiber tracking algorithm.37 Tractography was seeded on the boundary of white and 
grey matter and selecting 10 million streamlines. Spherical-deconvolution informed filtering 
of tractograms (SIFT)38 was performed filtering tractograms down to 1 million streamlines. 
This served as our preoperative connectivity. To infer estimated postoperative connectivity, we 
removed all tracts that passed through the resection mask. 

The automated anatomical labelling atlas 2 (AAL2)39 was transformed to native space by 
registering the brain MNI to the native space brain (which was extracted using SynthStrip40) 
using non-linear registration in NiftiReg.41,42 This included 94 cortical regions. To verify 
consistency across parcellations we also generated network metrics using the Harvard-Oxford 
cortical and subcortical structural atlas (114 cortical regions) which can be seen in eAppendix 
2 (eTable 2). Connectivity matrices were generated by assigning tract endpoints within 1mm 
to each subcortical and cortical parcel. Connections from a region to itself were removed. As 
graph theory metrics can vary across the level of threshold applied, a threshold and average 
were applied similar to Bassett et al.43 Matrices were thresholded based on the prevalence of a 
connection across patients. This threshold increased in increments of 5%, from 75% to 100%. 
This was done to increase the reliability of connections included. Graph metrics were then 
averaged across thresholds. Connectivity matrices were transformed using a log10 
transformation due to the distributions being non-normal (see eAppendix 3). 

7. Network Quantification 
Network metrics (graph theory metrics) were generated using weighted and undirected 
versions of functions in the Brain Connectivity Toolbox.44 Network metrics were generated 
taking into account the entire brain. We investigated measures of strength, betweenness 
centrality, and clustering coefficient. 

7.a. Cortical Strength
Cortical strength represents the sum of white matter connections to/from a cortical region, 
encapsulating the number of connections a given region has (Figure 1.). The decrease of white 
matter connecting a cortical region gives an approximation of how the resection has impacted 
on cortical regions’ connectivity involved in the network. Estimated change in strength was 
calculated by dividing post-operative by pre-operative values, because post-operative values 
should never increase.

7.b. Betweenness Centrality
The betweenness centrality of a region represents the number of times a cortical region is a 
point on the shortest path between two other cortical regions (Figure 1.). Betweenness 
centrality has been related to the speed of information processing45 and provides a metric of 
how important that node is in transfer of information. Estimated change in betweenness 
centrality were calculated by subtracting the post-operative by the pre-operative values due to 
their ability to increase or decrease following resection.18

7.c. Clustering Coefficient
The clustering coefficient provides information on the likelihood that neighbours of a given 
cortical region are interconnected with each other (Figure 1.). It can be interpretated as how 



tightly knit the surrounding network is. It is associated with efficient information exchange.46 
Similar to betweenness centrality, the clustering coefficient can increase following surgery, 
thus estimated change is calculated by subtracting the post-operative by the pre-operative 
values.18

Figure 1. A visual representation of the pre-operative and post-operative network and 
network metrics: strength, betweenness centrality and clustering coefficient. Each line 
represents one streamline. Each coloured cortical region (pink, green, yellow, blue) 
represent a hypothetical cortical region. Red represents the resection mask. 

8. Analysis 
In order to assess the classification capability of clinical features, and the estimated change 
from pre- to post-operative graph theory metrics (strength, betweenness centrality, and 
clustering coefficient) both individually and as a group to binarized (via the RCI) picture 
naming decline at 3 and 12 months we used an established machine learning framework.18

8.1. Machine Learning
To produce unbiased feature selection in assessing picture naming decline we used a two-step 
leave-one-out cross validation and feature selection method.18 This resulted in feature 
selection being independent of the test dataset. 

Depending on the prevalence threshold, the range of missing connections per cortical region 
ranged between 25% and 0%. Each feature was harmonised across scanners using 
NeuroCombat performing empirical Bayes harmonization across features with parametric 
adjustment.47 The data were then scaled to a standard deviation of 1. 

Feature (variable) selection was performed using a penalized least squares approach with a 
smoothly clipped absolute deviation (SCAD) penalty function48 with integrated leave-one-out 
cross validation (splitting data into 43 training subjects and 1 test subject, 44 times). This was 
performed to select variables unbiased by the testing dataset, resulting in 44 different models 
being trained.49 With this approach, the coefficient β are those that minimise the function: 
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Here, a represents the concavity parameter for SCAD, which was varied 50 times with values 
evenly spaced between 2 and 10. The  was varied 100 times with a minimum ratio of 0.5, 𝜆
the maximum value was the minimum regularisation parameter which yielded an all-zero 
estimate. This resulted in 5000 unique gamma and lambda combinations for each leave-one-
out model. SCAD was chosen due to its superior performance in feature selection49 and the 
expectation of relatively large coefficients.

To assess the non-zero features for each leave-one-out cross validation remaining after each  𝜆
and a penalisation on picture naming decline, we used a linear support vector classifier 
incorporating a leave-one-out cross-validation scheme. This two-step machine learning 
method allowed feature selection and support vector classification unbiased from the testing 
dataset. Due to class imbalances (3 months: 17/27 ; 12 months: 11/26 ; decline/no decline) 
for each leave-one-out iteration, we incorporated synthetic minority over-sampling technique 
(SMOTE)50 on the training dataset. To increase speed and reduce complexity of the models 
tested, only models under 20 variables were trained / tested in the support vector 
classification. While this does not guarantee the final model will have a maximum of 20 
variables as a result of the two-step leave-one-out cross validation and feature selection, it 
does reduce the number of models and variables tested.  Trained feature coefficients were 
extracted to signify their importance in the model. The resulting model was then tested on the 
patient left out of the training set, with the patient’s predicted and actual outcome saved. 

To select the best model and the best feature combination across each a and  (from SCAD) 𝜆
we used the receiving operator characteristic ‘area under curve’ (AUC), selecting the 
maximum score. The AUC represents the ability of a classifier to distinguish between classes, 
a bigger value represents better proportion between true and false positive rate. The F1-score 
was also calculated as a measure of accuracy from the precision and recall, where precision is 
the amount of true positive predictions divided by total number of positive predictions (true 
positive + false positive), and recall is the amount of the true positive predictions divided by 
the total number of actual positive observations (true positive + false negative).  

The reported models may have different features in each leave-one-out iteration (due to 
incorporating leave-one-out cross-validation in our feature selection to remove bias) and each 
threshold. To accurately describe feature importance, we created the weighted feature 
importance metric. This averaged the mean importance across all leave-one-out and threshold 
iterations. The feature importance was weighted with the percentage of inclusion to identify 



the most important feature across models/thresholds. This was done to avoid skewing results 
with features which were important but only occurring in one model. 

8.2. Longitudinal Support Vector Classifier 
To assess if there were features which were able to classify patients who underwent RCI 
determined decline at 3 months and who then experienced further decline between 3 and 12 
months, we employed a two-step linear support vector classifier classification chain. This 
first aims to correctly classify patients who underwent decline at 3 months, then the features 
and result of this classification are used to predict if patients will then undergo further decline 
by 12 months. Feature selection was performed twice as described above, using both the 3- 
and 12-month RCI decline. As SMOTE is unavailable for multioutput datasets we addressed 
class imbalances by weighting classes based on their proportion of the sample. As feature 
importance can no longer be identified from this model, we instead recorded the prevalence 
of features in each leave-one-out classification model, expecting those with the highest 
prevalence to be the most important. To select the best feature combination, we calculated a 
weighted AUC, which calculated the AUC separately for each timepoint, and then combining 
the results weighting by the number of true instances for each label. 

8.3. Statistical Analysis
We used permutation testing as in Gleichgerrcht et al.51 to assess if model prediction was 
significantly better than chance. Based on the final model, variables were extracted and 
underwent SMOTE. 10,000 permutations were then used, shuffling the picture naming RCI 
and splitting the data into train and test sets. A linear support vector classifier was trained on 
the training data and used to predict the test data. The AUC for each permutation was 
calculated. The p-value was calculated based on the number of times the AUC was higher in 
the permutation model compared to the main model. 

Similarly, we used permutation testing to assess differences between those with and without 
picture naming decline in metrics selected by the machine learning model. For each variable, 
data were split by the picture naming RCI and a Welch’s t-test was performed on the actual 
data to calculate the actual T-value. For permutation testing (10,000 permutations) the RCI 
was shuffled, and each variable data were split by the reshuffled RCI, calculating the T-value. 
The p-value was calculated based on number of times the T-value in each variable was higher 
in the permutation model compared to the actual T-value. The mean p-value was calculated 
for each variable across thresholds and Bonferroni correction to account for multiple 
comparisons was applied. 



Results

1. Machine Learning Overview
The results for classifying binarized (via the RCI) picture naming decline at 3- and 12- 
months are summarised in Table 1. At 3 months, the best performing metric was a 
combination of network metrics and clinical features. At 12 months, the best performing 
metric was the estimated change in strength to cortical regions. Looking at metrics 
classifying decline at 3 months and using that information to classify decline at 12 months, 
estimated betweenness centrality change was the best metric in classifying picture naming 
decline. 

Table 2. Classification capability of clinical and graph theory metrics to picture naming 
decline. 
Timepoint     3 Months              12 Months Longitudinal 

analysis
Model AUC  F1-score AUC  F1-score AUC F1-score
Clinical 
Features

0.79 0.74 0.77 0.67 0.70 0.60

Strength 0.62 0.52 0.86 0.77 0.71 0.61
Betweenness 
Centrality

0.73 0.68 0.76 0.64 0.74 0.67

Clustering 
Coefficient

0.81 0.76 0.67 0.55 0.73 0.64

Combined 
Analysis

0.84 0.80 0.72 0.61 0.67 0.54

2. Picture Naming 3 months: Combined Analysis
The best performing model was a combined analysis, including 26 features. A permutation-
based comparison of this combined model with a random model gave an AUC of 0.84 for the 
former and AUC = 0.50 for the latter (p < 0.001). This equated to a specificity of 85.2% and 
sensitivity of 77.8%, with an overall accuracy of 84.1%. This translates to correctly 
identifying 14/17 with and 23/27 without picture naming decline. When comparing this to the 
Harvard-Oxford cortical and subcortical structural atlas (see eAppendix 2, eTable 2) we 
demonstrate similar results with combined analysis being the best predictor with an AUC of 
0.81 and an F1-score of 0.77. 

Table 3 summarises 15 of the most important features included in the models. This included 
7 betweenness centrality, 5 clustering coefficient, 1 strength, and 2 clinical features with 6 
being ipsilateral to the resection (see Figure 2). The most important feature was the estimated 
change of clustering coefficient in the left sub-callosal anterior cingulate cortex. 



Table 3. 15 of the most important features (as defined by weighted importance) to the 
combined model classification across leave-one-out in a support vector classification model 
for inferring 3 months picture naming decline. Showing the weighted importance across 
leave-one-out models, each cortical region and the associated graph metric contributing 
significantly to the model, the corrected p-value for a permutation test (10,000 permutations, 
Bonferroni corrected), and the mean difference with a higher value representing that metric 
was higher in those with picture naming decline. For each region, the lobule is shown in 
brackets next to the region name. 
Weighted 
Importance

Region Metric p-values Mean-
difference

76.91

Left Sub-callosal 
Anterior Cingulate 
Cortex (SC)

Clustering 
Coefficient 0.001 0.76

66.85

Left Dorsolateral 
Superior Frontal Gyrus 
(F)

Clustering 
Coefficient 0.001 0.9

64.93
Left Superior Frontal 
Gyrus Medial Orbital (F)

Betweenness 
Centrality 0.002 -0.85

64.37 Right Insula (I)
Clustering 
Coefficient 0.004 0.79

61.23 Left Insula (I)
Clustering 
Coefficient 0.001 -0.54

50.51 Right Pallidum (SC)
Betweenness 
Centrality 0.002 0.54

30.99
Pre-operative Picture 
Naming Scores Clinical 0.002 0.85

27.59
Left Anterior 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.002 0.57

22.95
Right Paracentral Lobule 
(P)

Betweenness 
Centrality 0.002 -0.75

17.51
Left Middle Cingulate 
(SC)

Betweenness 
Centrality 0.002 0.69

14.77 fMRI Lateralisation Index Clinical 0.002 1.03

9.73 Right Precuneus (P)
Betweenness 
Centrality 0.002 -0.64

7.98
Right Middle Cingulate 
(SC) Strength 0.002 0.32

3.52
Right Inferior Temporal 
Gyrus (T)

Betweenness 
Centrality 0.002 -0.58

2.89 Right Cuneus (O)
Clustering 
Coefficient 0.001 -0.76

Abbreviations: F: frontal; I: Insula; O: Occipital; P: parietal; SC: subcortical; T: temporal

The anatomical distribution of classification importance for picture naming decline at 3 
months can be seen in the left panel in Figure 2. The right panel shows the mean difference 



between patients with and without picture naming decline. Red represents the mean 
difference was greater for patients with decline while green represents it was greater for 
patients without picture naming decline. 

Figure 2. A mosaic of the most 15 important cortical regions included across all thresholds 
in the 3 months combined analysis classification as described in Table 3. The left panel 
illustrates weighted feature importance. The right panel shows if the metric was higher for 
patients with (red) or without (green) picture naming decline.



3. Picture Naming 12 Months: Strength
The best performing model was the estimated change in strength following surgery, including 
11 features. Using a permutation test to compare how this model performed against a random 
model, an AUC of 0.86 was significantly higher than random (random model AUC = 0.50, p 
= 0.002). This equated to a specificity of 80.77% and sensitivity of 66.67%, with an overall 
accuracy of 83.78%. This translates to correctly identifying 10/11 with and 21/26 without 
picture naming decline. When comparing this to the Harvard-Oxford cortical and subcortical 
structural atlas (see eAppendix 2, eTable 2) we demonstrate different results. The strength 
metric of this atlas had an AUC of 0.57 with an F1-score of 0.45. Rather, betweenness 
centrality was the best predictor which showed similar metrics as presented here (AUC=0.72, 
F1-score=0.61). 

Table 4 summarises the 11 features included in the models. 4 variables were ipsilateral to the 
resection (see Figure 3). The most important feature was the estimated change in strength to 
the left cuneus.

Table 4. The 11 features (ordered by weighted importance) involved in the estimated change 
in strength model classification across leave-one-out in a support vector classification model 
for inferring 12 months picture naming decline. Showing the weighted importance across 
leave-one-out models, each cortical region and the associated graph metric contributing 
significantly to the model, the corrected p-value for a permutation test (10,000 permutations, 
Bonferroni corrected), and the mean difference with a higher value representing that metric 
was higher in those with picture naming decline. For each region, the lobule is shown in 
brackets next to the region name. 
Weighted 
Importance

Region Metric p-values Mean-
difference

134.66 Left Cuneus (O)
Strength

0.001 0.44

108.52
Left Inferior Occipital 
Gyrus (O)

Strength
0.001 -0.63

103.8
Left Orbito-frontal 
Cortex, Medial (F) 

Strength
0.001 -1.14

77.97
Right Cingulate, Middle 
(SC)

Strength
0.001 0.67

51.05 Right Pallidum (SC)
Strength

0.001 -0.39

25.33
Right Anterior Cingulate 
(SC)

Strength
0.001 0.42

2.32
Right Postcentral Gyrus 
(P)

Strength
0.001 0.28

2.25 Left Amygdala (T)
Strength

0.002 0.14

1.77 Right Caudate (SC)
Strength

0.001 -0.56

1.05
Right Superior Frontal 
Gyrus, Dorsolateral (F)

Strength
0.001 -0.17

0.59
Right Middle Temporal 
Gyrus (T)

Strength
0.001 -0.68

Abbreviations: F: frontal; O: Occipital; P: parietal; SC: subcortical; T: temporal



The anatomical distribution of classification importance for inferring picture naming decline 
at 12 months can be seen in the left panel in Figure 3. The right panel shows the mean 
difference between patients with and without picture naming decline. Red represents the 
mean difference was greater for patients with decline while green represents it was greater for 
patients without picture naming decline. 

Figure 3. A mosaic of the 6 cortical regions included across all thresholds in the 12 months 
combined analysis classification as described in Table 4. The left panel illustrates weighted 
feature importance with yellow (more) and purple (less) representing how important that 
feature was for classification. The right panel shows if the metric was higher for patients with 
(red) or without (green) picture naming decline.

4. Picture Naming: Longitudinal Analysis

The best performing model in classifying picture naming outcome at 3 months and using 
these results to classify 12 months outcome was the estimated change in betweenness 
centrality following surgery, this included 25 features. Using a permutation test to compare 
how this model performed against a random model, an AUC of 0.74 was significantly higher 
than random (random model AUC = 0.50, p = 0.001). This equated to a sensitivity of 63.6% 
and 44.4% and a specificity of 63.6% and 61.5% for 3- and 12-months classification, 
respectively, with an overall accuracy of 60%. This translates to correctly identifying 14/15 
and 8/11 of patients with decline and 14/22 and 16/26 without decline at 3- and 12-months, 
respectively. These are similar metrics to those from the Harvard-Oxford cortical and 
subcortical structural atlas (see eAppendix 2, eTable 2). The betweenness centrality metric 
had an AUC of 0.66 with an F1-score of 0.57. However, the combined analysis produced a 
better AUC for this atlas (AUC = 0.79, F1-score = 0.72).

Table 5 summarises 15 of the most important features included in the model, based on feature 
inclusion (see Figure 4.). Six of these variables were ipsilateral to the resection. The most 
important feature was change in betweenness centrality to the right insula. 

Table 5. 15 of the most important features (as defined by weighted importance) to the 
combined model classification across leave-one-out in a chained support vector 
classification model for inferring 3- and then 12-months picture naming decline. As variable 



importance was unable to be extracted, we used the percentage of inclusion in leave-one-out 
models to judge the importance of cortical regions. We show the importance, each cortical 
region and the associated the graph metric contributing significantly to the model, the 
corrected p-value for a permutation test (10,000 permutations, Bonferroni corrected), and 
the mean difference with a higher value representing that metric was higher in those with 
picture naming decline. For each region, the lobule is shown in brackets next to the region 
name.
Percentage 
Inclusion

Region Metric p-values Mean-
difference

100 Right Insula (SC) 
Betweenness 
Centrality 0.002 -0.69

100 Left Fusiform Gyrus (T)
Betweenness 
Centrality 0.002 -0.64

97.3
Left Superior Frontal 
Gyrus Medial Orbital (F)

Betweenness 
Centrality 0.003 -0.65

97.3
Right Posterior 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.001 0.65

94.59
Right Lateral 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.002 -0.64

70.27

Left Dorsolateral 
Superior Frontal Gyrus 
(F)

Betweenness 
Centrality 0.001 -0.44

62.16
Left Anterior 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.002 0.63

24.32
Left Superior Occipital 
Gyrus (O) 

Betweenness 
Centrality 0.002 0.37

21.62
Right Medial 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.002 0.57

8.11
Right Anterior 
Orbitofrontal Cortex (F)

Betweenness 
Centrality 0.002 0.51

2.7 Right Pars Opercularis (F)
Betweenness 
Centrality 0.002 -0.46

2.7 Right Pars Triangularis (F)
Betweenness 
Centrality 0.003 -0.34

2.7 Left Orbitalis (F)
Betweenness 
Centrality 0.001 0.28

2.7 Left Rectus (F)
Betweenness 
Centrality 0.002 0.4

2.7
Left Posterior Cingulate 
(SC) 

Betweenness 
Centrality 0.002 -0.63

Abbreviations: F: frontal; I: Insula; O: Occipital; SC: subcortical; T: temporal



Figure 4. A mosaic of the 15 cortical regions included across all thresholds across the 
chained 3- and 12-months betweenness centrality analysis as described in Table 5. The left 
panel illustrates feature inclusion with yellow (more) and purple (less) representing the 
percentage of inclusion in each leave-one-out cross validation model. The right panel shows 
if the metric was higher for patients with (red) or without (green) picture naming decline.



Discussion 
We combined clinical information with structural brain network measures to infer their 
relationship with naming outcome following ATLR. We demonstrate that, for picture naming 
at 3 months, a combination of clinical and network metrics including strength, betweenness 
centrality, and clustering coefficient can infer naming decline with high accuracy. We also 
showed that for picture naming at 12 months, estimated change in strength had high 
classification accuracy. Longitudinal analyses demonstrated that betweenness centrality was 
the best metric for classifying patients at 3 months and then for assessing further decline at 12 
months.  While previous work has highlighted pre-operative structural network measures 
associated with pre-operative performance,15 we demonstrate the classification utility of the 
estimated change in network metrics with immediate and longer-term post-operative picture 
naming decline.

Previous research indicated the role of clinical characteristics in predicting which patients 
will undergo naming decline.17 We support the notion that clinical characteristics are 
predictive of 3 month post-operative naming decline. Higher pre-operative picture naming 
scores were predictive of a worse outcome following surgery. Patients with higher cognitive 
function have “more to lose”.52 Older age at epilepsy onset was predictive of worse outcome, 
as has been found previously.53 For 12 month and longitudinal post-operative naming 
decline, estimated change in strength and betweenness centrality, respectively, alone 
outperformed clinical characteristics and other networks combined. While we did not 
replicate the same predictive capability of clinical features as in Busch et al.,17 , the 
difference between our and their study population could account for this. We included only 
those having language-dominant ATLR, which is already an “enriched” population at risk of 
decline, and was a strongly predictive variable in Busch et al.17

Language representation in TLE is atypical as reorganisation disperses function to similar 
contralateral regions, ipsilateral regions involved in language take on a greater role, as well as 
regions that are not typically involved in language.7 This could explain why contralateral and 
sub-cortical regions were so prominent, across all analyses. This could also explain why 
classical language regions such as the ipsilateral temporal lobes7 did not appear important.

Picture naming is a complex cognitive function that involves the coordinated activity of 
multiple cortical regions dispersed throughout the brain. Research using graph theory to 
analyse the structural connectome has revealed that the communicability of these regions is 
essential for successful naming, and dysfunction can impair language function in patients 
with TLE.54 These findings demonstrate that preoperative naming performance can be 
predicted to a high degree by analysing graph theory metrics of the structural connectome in 
TLE patients. Our study found that estimated changes in all graph theory metrics (i.e., 
clustering coefficient, betweenness centrality, and strength) and clinical factors were able to 
classify decline in picture naming at 3 months after ATLR with an AUC of 0.89. Previous 
research showed that language function dips immediately after surgery followed by some 
patients improving.12 As such, our results suggest that all clustering coefficient, betweenness 
centrality, strength, and clinical factors play a role in the preparedness of the brain to a 
temporal lobe resection.

Estimated changes in strength to specific cortical regions had the best performance in 
classifying picture naming outcome at 12 months. Specifically, our analysis identified the 
cuneus, inferior occipital gyrus, and orbito-frontal cortex as being strongly associated with 
decline. It is of interest that a post-operative increase in cuneus connection strength was 



associated with better outcome, while decreases in strength were important for the inferior 
occipital and orbito-frontal gyrus – indicating the complexity of the brain network changes and 
functional dependence on the network. The mechanisms underlying the cuneus estimated 
changes are not clear and may reflect a secondary effect with the removal of abnormally 
functioning regions that were interfering with picture naming network function. Further work 
to investigate these results would be essential to understand the mechanism behind the 
observed picture naming improvement. Greater resection of connections to the inferior 
occipital gyrus and orbito-frontal cortex was associated with patients with picture naming 
decline.  The inferior occipital gyrus is part of the ventral visual processing pathway, which is 
essential for object recognition and visual association.55,56 The medial orbito-frontal cortex is 
implicated in successful memory encoding and retrieval.57 Reduced white matter connectivity 
between these regions could impair visual recognition and memory retrieval. We can infer that 
this supports our previous research which linked the integrity of the inferior-fronto-occipital 
fasciculus (IFOF), which interconnects these regions, to picture naming decline at 3 months 
post-injury.12 While our previous analysis did not find a relationship between IFOF integrity 
and naming decline at 12 months, the IFOF encapsulates cortical connections to many regions 
beyond the two regions we included in our analysis.

When investigating which network metric was the best at classifying outcome at 3-, and then 
12-months in our longitudinal analysis, we found that betweenness centrality outperformed 
other metrics and combinations. This could be due to betweenness centrality changes to 
specific cortical regions being more detrimental to post-operative functional reorganisation. 
The features with the strongest inclusion were the right insula, left fusiform gyrus, left superior 
frontal gyrus and right orbitofrontal cortex regions. Increased fMRI activity within the insula 
is proposed to be related to difficulty in articulatory effort.5 Decrease of integration of the 
insula, failing to convey the correct articulatory motor movements with the surrounding 
network could lead to expressive errors or the “tip of the tongue” effect.58 The fusiform gyrus 
shows high specialisation to visual naming tasks, a disconnection of this region from the 
surrounding network could inhibit visual discrimination of objects.7 The orbitofrontal cortex is 
hypothesised to be mainly related to memory, with its function being implicated in learning 
and reversing associations.59 This highlights the multifaceted function of picture naming, and 
language in general, where reductions in any one of the associated functions in an 
interconnected network can lead to an impairment in ability. 

Clinical Utility
The language network is complex and widespread in healthy brains. In TLE, this network is 
atypical with function being dispersed to new regions or regions attaining new functions.7 
Our retrospective analysis of estimated network changes using pre- and post-operative data 
might be used in the future to prospectively predict cognitive outcomes. In line with previous 
suggestions,18 pre-operative whole-brain tractography can be performed and an intended 
resection drawn based on pre-operative structural T1-weighted scans. This could be 
combined with previous work18 to identify the optimal resection cavity for seizure freedom 
and cognitive outcome. An example of the clinical workflow is demonstrated in Figure 5, 
which shows how these could be combined to maximise patient outcome. To reduce the 
impact on the structural network, more limited resections could be used as research shows no 
relationship between resection size and seizure outcome.12,60 Further, the use of laser 
interstitial thermal therapy (LITT) for ablations could reduce the footprint of the surgery, 
limiting the impact on the network.61 



Figure 5. Adapted from Taylor et al.18 The combined clinical utility of the algorithms 
produced in this paper and in Taylor et al.18 From left to right: Pre-operative MRI data is 
acquired and evaluated at multidisciplinary team meetings. If surgery is recommended data 
is a planned resection cavity is drawn and the data are pre-processed, using the resection 
mask to extract the expected change in network metrics. The estimated change in metrics is 
then fed into ours and Taylor et al.18 algorithms to infer if the patient will be seizure free and 
if they will undergo picture naming decline. This information could be used to modify the 
resection plan to minimise the impact on network measures while maximising seizure 
freedom chances. The final plan could be used to inform the patient of the expected risk and 
remission rates.  

Research Evaluation
All patients included in this study had surgery performed by the same two surgeons (AM, 
AMc). This had the benefit of ensuring there was a consistent surgical approach for all cases.  
However, replication studies are required to assess the generalizability of our findings to other 
centers. 

The use of manually-drawn resection masks to estimate post-operative tractography has the 
benefit of the rater being able to visually estimate for brain-shift but may introduce human 
error and image registration issues. Additional analyses were performed to investigate these 
issues and showed minimal impact (eAppendix 1). 

Several steps were taken to ensure the accuracy of our methods. As for tractography: (i) it 
was seeded on the boundary of grey and white matter boundary; (ii) we used ACT to ensure 
tractography could only run through white matter; (iii) we used SIFT to filter down 
probabilistic-tractography; and (iv) we thresholded the connectome based on the presence of 
the connection across individuals, making our results more reproducible. These steps 



increased the accuracy and replicability of our results. However, whole-brain tractography 
still comes with inherent problems such as false positives.62 Furthermore, results will depend 
on data quality, for which we include two levels, single- (poor) and multi- (good) shell data. 
We attempted to addressed this using NeuroCombat, normalising the two scanners output, 
but this does not change the inherent difference in the diffusion quality.  

The current study identified various cortical regions whose estimated change in network 
metrics were associated with picture naming decline. For prospective use, a proposed 
resection cavity mask could be used to generate estimated changes in graph theory metrics to 
determine whether this could infer decline in picture naming. Further research is needed to 
investigate if pre-operative graph metrics alone can accurately predict patient decline, thereby 
increasing the applicability of this approach.

While we performed cross validation with regard to prediction models, we were unable to 
further split data into training, testing, and validation sets because of a limited sample size. 
Our 12 month analysis was already limited by a reduced sample size which could reflect the 
increased classification ability. Additional analysis with the validation cohort would ensure 
unbiased model evaluation and aid in mitigating issues such as overfitting, where the model 
may perform well on the training data, but poorly on new data. Future research should aim to 
expand the sample size to permit a validation dataset.  

We investigated whether network metrics remained stable in classifying outcome across 
different atlases (eAppendix 2). We found that while the overall classification ability 
remained the same at each timepoint, the network metric of importance varied. This could be 
due to differences in cortical anatomy between atlases, for example, the Harvard-Oxford atlas 
splits each temporal gyri into anterior, middle, and posterior portions. Nevertheless, 
application of these results should be done with the same methodology described above for 
maximum reliability. 

Future Directions
Language representation is abnormal in TLE, and there are varying patterns of 
reorganization. This variability could contribute to the high degree of variability observed in 
leave-one-out models, in which the inclusion or exclusion of individual patients can affect the 
classification performance of network metrics. To improve classification accuracy, it may be 
useful to incorporate fMRI to map functional reorganization on a patient-specific level. 
Combining fMRI with dMRI to map the structural network could provide a more 
comprehensive understanding of the interplay between functional reorganization and 
structural connectivity. This approach could lead to more accurate classification of language 
dysfunction following surgery and ultimately inform targeted interventions to preserve 
language function.

While we have limited the scope of this paper to ATLR and naming decline, this method 
could be used in  other epilepsy surgeries, such as frontal lobe epilepsy, in which language is 
impacted differently from TLE.63 Additionally, change in other cognitive domains in TLE 
may be better predicted using these metrics, such as post-operative memory change.64

This research could be utilised for pre-operative interventions to preserve cognitive function. 
Our results highlight the involvement of regions away from the resection site. Transcranial 
magnetic stimulation has demonstrated it can be used to induce suppression of the semantic 
network and upregulation of compensatory regions.65 This could be used on cortical regions 



included in the model to alter activity and the picture naming network. Further fMRI research 
is required to corroborate these results and the activity seen at each cortical region.

The present study relies on the use of resection masks that were manually drawn. Although 
our results show a considerable degree of consistency in the definition of the resection cavity 
across different delineators (as detailed in eAppendix 1), it is imperative that future research 
explores the impact of minor modifications to the boundaries of these masks on the stability 
of graph theory metrics. Such investigations would have valuable implications for the clinical 
utility of this approach, as they would provide insights into the precision required for pre-
clinical assessments of resection masks.”

Conclusion
The estimated changes in network metrics following language-dominant ATLR can classify 
the picture naming outcome of patients with high accuracy at both 3- and 12- months post-
operatively. We also highlight cortical regions in which change in betweenness centrality is 
related to picture naming outcome at 3 months and then at 12 months. This method could be 
used to improve the information available to patients about their risk of naming decline from 
surgery and be utilised in resection planning to minimise the impact on the wider network. 
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Highlights
 Picture naming outcome can be identified via the change in graph theory metrics.
 Combined clinical and graph metrics accurately classifies 3-month decline.
 Change in strength to cortical regions is the best classifier of 12-month decline.
 Outcome across timepoints is best identified by change in betweenness centrality. 
 Multiple cognitive domain dysfunction likely underlies picture naming decline. 


