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Abstract Automated program modification underlies two successful research
areas — genetic improvement and program repair. Under the generate-and-
validate strategy, automated program modification transforms a program, then
validates the result against a test suite. Much work has focused on the search
space of application of single fine-grained operators — copy, delete, re-
place, and swap at both line and statement granularity. This work explores
the limits of this strategy. We scale up existing findings an order of magnitude
from small corpora to 10 real-world Java programs comprising up to 500k LoC.

We decisively show that the grammar-specificity of statement granular ed-
its pays off: its pass rate triples that of line edits and uses 10% less com-
putational resources. We confirm previous findings that delete is the most
effective operator for creating test-suite equivalent program variants. We go
farther than prior work by exploring the limits of delete’s effectiveness by
exhaustively applying it. We show this strategy is too costly in practice to be
used to search for improved software variants.

We further find that pass rates drop from 12–34% for single statement
edits to 2–6% for 5-edit sequences, which implies that further progress will
need human-inspired operators that target specific faults or improvements.

A program is amenable to automated modification to the extent to which
automatically editing it is likely to produce test-suite passing variants. We are
the first to systematically search for a code measure that correlates with a
program’s amenability to automated modification. We found no strong corre-
lations, leaving the question open.
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1 Introduction

Automating routine program improvements and fixes promises to free soft-
ware developers to tackle more challenging tasks. With progress in automated
program repair (APR) and genetic improvement (GI), this future might be
closer than previously thought. APR’s focus is on automatically fixing soft-
ware bugs (Gazzola et al. (2019)), while GI uses automated search to find
improved software variants (Petke et al. (2018)). Both fields have vibrant
research communities and enjoy impact both in academia beyond computer
science and in industry. For example, Langdon et al. (2015) and Langdon and
Lam (2017) used GI to improve runtime of large open-source bio-informatics
software, with patches being incorporated into development; while Haraldsson
et al. (2017); Marginean et al. (2019) and Kirbas et al. (2021) incorporated
APR techniques into their companies’ software development processes.

Both APR and GI share a key commonality: they automatically create
program variants from existing software. We refer to this shared feature as
automated program modification (APM). Software variants created via APM
are represented as a sequence of software edits applied to an initial program,
i.e., patches to existing code.

Notwithstanding APM’s successes, a key challenge remains: how to effec-
tively and efficiently navigate the APM search space (Petke et al. (2019)) and
scale up the size of individual edit sequences to match the size of patches rou-
tinely applied by software developers, e.g., to fix bugs (Zhong and Su (2015)).

A seminal goal of APM is to find operators and search strategies that
bring multi-edit improvements into reach. Further progress hinges on a bet-
ter understanding of the landscape of APM program transformation spaces.
Landscape studies (Reeves (1999)) seek to characterise a search space, in its
entirety, unfiltered. The goal is to look for topological features that may be
exploitable to efficiently and effectively navigate the search space. In our case,
this means that we consider all patches to a working program, including the
majority, which break the program. Our experimental procedure covers an
unprecedented scale for an APM landscape study.

Current practice has focused on the delete, swap, copy, and re-
place operators (CDRS) at line and statement granularity, because these
operators at these granularities are universal : they can be combined to pro-
duce any valid program, including desirable improved variants. This univer-
sality comes at a cost, however, as they produce a huge number of variants,
and that number grows exponentially in the number of times the operators are
applied. Previous studies (Harrand et al. (2019)) have thus focused on single
edits to use testing resources efficiently under the assumption that the results
from considering a single edit would generalise.

We drop this assumption and advance the state of the art by systematically
studying multi-edit patches up to five edits. We deploy two tactics to scale to
five edits. First, we employ the power of uniform sampling. Second, we restrict
edits to hot methods, those which profiling identifies as frequently used. We
turn to the goal of APM to justify this bias. APM seeks to improve a program;
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in general, improving a hot method will more substantially improve a program
than improving a cold method. This justification rests on the fidelity of the
probability distribution over a program’s inputs used to identify hot methods.
We approximate this distribution with a program’s test suite. We acknowledge
the attendant validity threat of making this assumption. We are not alone,
however, in resorting to it: much of the related work resorts to it to make
progress. Technically, we leverage the genetic improvement tool, Gin1, to focus
on hot methods.

APM research has focused on finding successful variants, not the cost of
doing so. To achieve industrial uptake, APM should now more carefully model
and report its costs. With this in mind, we formalise the cost of APM into its
three stages — mutating, compiling, and testing. Of these, mutation requires
choosing an operation, finding where to apply it, and then applying it. Sur-
prisingly, mutation’s three-part cost has often been neglected. We hope that
our formalisation encourages standardisation in how APM researchers report
the costs of their techniques.

As usual, we require a test suite and quantify the effectiveness of a patch as
the proportion of tests the program variant produced by its application passes.
We systematically study the APM landscape, asking five research questions:
(1) What is the relative effectiveness of the conventional edit operators: copy,
delete, replace and swap? (2) How effective is delete when used alone?
(3) Which is more effective: line or statement granular CDRS edits? (4) How
much does effectiveness drop with the number of edits in a patch? and (5)
What is the correlation between subject’s features and its plasticity — the
likelihood that applying APM to it will be effective?

For the first question, we find that the median single edit pass rates for
statement deletions are highest, at 30.2%, while statement swaps are second
highest, with 23.6% pass rates (Section 5.2). This finding ranks delete first,
in line with previous findings Le Goues et al. (2012); Harrand et al. (2019).
The effectiveness of delete could be due to test suite inadequacy, in which
case, if its application is not too expensive, delete might serve as a measure
of (in)adequacy. Prior work has also suggested that delete produces variants
that are themselves more amenable to APM, i.e. it increases plasticity Har-
rand et al. (2019)2. In either case, we wondered if delete’s search space
contained rare, jagged regions. With these ideas in mind, we asked the sec-
ond question above: “How effective is delete when used alone?”. To answer
it, we are the first to exhaustively explore delete’s space of single applica-
tions on hot methods (those which profiling identifies as frequently used) at
both statement and line granularity. For 10 projects, we found that delete’s
search space is smooth. Further, single statement deletion pass rates reached
82%. More study is needed, but this finding suggests that uniformly sampling

1 https://github.com/gintool/gin
2 Harrand et al. (2019) define plasticity as the “intrinsic capability at being changed to

another code, while keeping functional correctness, with respect to a given test suite”
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delete applications may effectively measure test suite adequacy or increase
plasticity (Section 5.3).

A seminal question in APM is to find, for an improvement goal, an edit
granularity that produces the richest search space. To reduce the cost of finding
edit locations, most research has centered on two granularities — line and
statement. Among these two, we definitively answer the third question. Line
edits produce 1

3 test passing variants of statement edits, while costing twice as
much computational resources on average (Section 5.4). Therefore, statement
granular edits should be preferred.

Most developer patches make multiple edits (Zhong and Su (2015); Callan
et al. (2022)). Although genetic improvement has successfully improved
software using CDRS, it typically uses genetic programming and/or local
search Blot and Petke (2021) to navigate the space of CDRS edits. The fourth
question essentially asks how sparse are effective modifications in a multi-edit
space? Using systematic random sampling, we conclude that compilation rates
alone reduce by roughly 50% with each additional line edit and by 25% with
each additional statement edit (Section 5.5). This result implies that clever
search heuristics are needed to efficiently and effectively navigate the multi-
edit search space. Based on this finding, we argue that, to better approximate
human patches, we either need to devise equivalence classes over variants to
reduce the search space or to sacrifice universal operators that can produce any
patch for less widely applicable operators that make more extensive changes.
The resulting landscapes will necessarily be less general, built for particular
problems or improvements, similar to defect classes Monperrus (2014).

Finally, we want to know which programs are amenable to APM. This
would give developers guidance about where CDRS-based APM would be most
effective or how to adapt a method to facilitate APM. Unfortunately, none of
the code measures we tested show a strong correlation with test pass rate. Only
cyclomatic complexity and normalised def-use show any correlation with pass
rate, and it is weak. Our study, therefore, leaves open the question of where
to best apply APM. To facilitate future work, we provide a list of methods
that we found to be particularly amenable to APM (and those that are not)
for future research (Section 5.6).

To summarise, our key contributions are:

– We formalise the cost of automated program modification (Section 2.2);
– We show that exhaustively applying delete generates a smooth search

space, suggesting that uniformly sampling delete applications may mea-
sure test suite adequacy and increase plasticity (Section 5.3).

– We provide conclusive evidence that statement granular edits are more
effective than line (Section 5.4);

– To spur future work, we propose plasticity, the problem of identifying code
amenable to APM, conduct preliminary experiments that show how hard
it is, and provide two lists of methods — those particularly amenable and
those particularly resistant to APM (Section 5.6).
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All our scripts and data are available in the following repository: https:
//github.com/automatedprogrammodification/automatedprogrammodifi

cation/.

2 Bedrock Program Modification Landscapes

The success of automated program modification (APM) rests on finding ways
to effectively search a space of useful program variants. For example, hill-
climbing efficiently searches convex spaces. Navigating this space requires un-
derstanding its landscape (Reidys and Stadler (2002)), which can be defined
as follows:

Definition 2.1 (Fitness Landscape (Ochoa et al. (2008))) A landscape
is a 3-tuple (S, V, f) where

1. S is a set of potential solutions or search space,
2. V : S → 2S assigns a set of neighbours to every solution to form a neigh-

bourhood structure, and
3. f : S → R is a fitness function.

This definition assigns a fitness value to each solution. Usually, the higher
the fitness value, the closer the quality of that solution to optimal. For ge-
netic improvement, solutions are programs and fitness is a program’s value
to the users (which could be expressed as the number of test cases passed,
runtime performance, etc.). Applied to program modification, the challenge
is to define the neighbourhood structure via single-step program transforma-
tions that approximate human modifications in order to devise a universal,
domain-independent fitness function.

When modifying a program, the neighbourhood function V in Defini-
tion 2.1 is M , a set of mutation operators on a program, or program trans-
formations3. An operator m ∈ M has the form l → r: it matches the pattern
l in the source and replaces it with r. A pattern that l matches is a redex.
We permit l to mix variables and terminal symbols; this permits a pattern
to use terminals as anchors and its variables to span the symbols between
two anchors. This permits a redex to span arbitrary subsequences of P . An
operator’s right hand side r can be shorter than its l and remove characters
or longer and add characters. For us, two solutions (a.k.a. programs) share
a neighbourhood (i.e., an edge connects them) if a single application of an
operator transforms one into the other.

M ’s operators can be universal or language-specific and, if language-
specific, they can be only syntax-aware or, additionally, semantics-aware. A
syntax-aware deletion operator can avoid deleting definitions or the header
of a loop. A semantics-aware insertion operator can rename the variables in

3 In Martinez and Monperrus (2015)’s terminology, M is a repair model and m ∈M is a
repair action.

https://github.com/automatedprogrammodification/automatedprogrammodification/
https://github.com/automatedprogrammodification/automatedprogrammodification/
https://github.com/automatedprogrammodification/automatedprogrammodification/
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the text it inserts, either to correctly bind them to in-scope variables or to
avoid name capture. For almost all programming languages, the number of
well-formed programs is vast, but very few of them are valuable to users, e.g.,
meet a specification. Thus, the challenge is to define M and an accompanying
search procedure that efficiently finds valuable programs.

Universal operators require no parsing or analysis to find their redexes, and
they can, in principle, produce any interesting improvement, because they de-
fine languages that contain all improved versions of P . Their drawback is that
they generate vast, sparse search spaces that include many variants that fail to
improve upon P , let alone those that do not even compile. Language-specific
operators are restricted to the language they target and require parsing, for
syntax-awareness, or static analysis, when semantics-aware. They usually pro-
duce variants that compile and they can greatly reduce search space, because of
the constraints on their redexes. Semantics-aware operators cannot, however,
realise all improvements. Due to computational complexity, they must target
specific functional or non-functional improvements and, even for a particular
improvement type, they can only fix some subset.

Given these trade-offs, most automated program improvement approaches,
have targeted universal operators — character-granular to produce Σ∗ or line-
granular generating L(lines) — or weakly syntax-aware operators, notably
statement-granular producing L(stmt) (Petke et al. (2018)). Two key reasons
underlie this preference: 1) the search spaces of universal and weakly syn-
tactic operators contain all functional and non-functional improvements and
2) semantics-aware operators must be tailored to specific improvements. Two
subproblems lurk in the second reason: it is not clear which improvements to
target and, having chosen specific improvements, it is often not clear how to
define or tailor effective operators for them. In the limit, when the improve-
ment is sufficiently unique, no effective operator can be extracted from the
edits that realise the improvement. In short, research to date has preferred the
challenge of trying to efficiently traverse a vast search space to the challenge
of designing bespoke operators. Although some progress has been made in
the field of automated program repair, where template-based approaches have
been tried (e.g., Liu et al. (2019); Martinez and Monperrus (2018)). Much less
progress has been made in the field of non-functional genetic improvement
(Petke (2017)).

2.1 Landscape Formation: The Operators Studied

This paper’s focus is on the limits of universal or weakly syntactic operators, so
we consider four: copy, delete, replace and swap, at line and statement
granularity. To identify statements, we generate an AST and consider only
statement nodes. For a program, let L be the set of its lines, S be the set
of its statements and its source text be the sequence p = ⟨u1, u2, . . . , un⟩, for
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ui ∈ L⊕ ui ∈ S. For i, j ∈ [1..n], we have

copy(p, i, j) = ⟨. . . , ui, uj , ui+1, . . . , un+1⟩
delete(p, i, j) = ⟨. . . , ui−1, ui+1, . . . , un−1⟩

replace(p, i, j) = ⟨. . . , ui−1, uj , ui+1, . . . , un⟩
swap(p, i, j) = ⟨. . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . , un⟩, i < j.

where delete ignores its third parameter.
replace replaces a line or a statement with another one, copied from

somewhere else in the program. swap, as its name implies, swaps the locations
of its operands: it can model micro refactorings and/or optimisations. While
GenProg used swap, most recent work in non-functional optimisation has not.
Indeed, Le Goues et al. (2012) observed that replace is often preferred to
swap, because swap has been found to be an order of magnitude less effective
than other operators.

delete and insert are universal primitive operators, able to construct Σ∗

for any finite alphabet Σ. Thus, we would like to include both. delete actu-
ally shrinks the variant search space, but raw, unconstrained insert grows it,
making landscape analysis infeasible. Dropping insert altogether produces a
stale, artificial landscape: insert is overwhelmingly the most common opera-
tor used to construct code.

To conduct a landscape analysis, such as ours, we therefore need to square
the circle and find an insert operator that defines a feasibly sized yet still
realistic search space. One solution is the bounded insert over the terminals of
the grammar of the programming language of the subject programs, in our case
Java. The trouble is the mismatch between these terminals and the length of
tokens: a large enough bound to produce tokens, like keywords and identifiers,
would be prohibitive. To solve the problem of a feasible insert that is realistic
in the sense that it can, in some cases, match insertions developers make, we
use copy. This operator is a form of insert with its input domain restricted to
inserting token sequences (in this study, either lines or statements) that already
occur in the subject program. In using copy, we are in good company; many
papers in the APM space use it (Petke et al. (2018)) and it is an application
of the plastic surgery hypothesis (Barr et al. (2014)).

2.2 Fitness for Automated Program Modification

Effective automated program modification requires knowing whether a change
indeed improves a program, i.e., whether it fixes a bug, or preserves functional
semantics while improving a non-functional property (latency, memory con-
sumption, energy efficiency, etc.). Definitively answering this question requires
an oracle that checks the program’s behaviour, pre and post modification,
against its specification. Unfortunately, we usually lack the specification, so
APM techniques often resort to the program’s test suite, which underapprox-
imates its specification (Petke et al. (2018)).
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Variants that pass all of the tests in a test suite are equivalent under that
test suite. The literature calls such variants neutral (Schulte et al. (2014)).
These variants are candidates for non-functional improvements, unless one is
willing to sacrifice functional correctness for improvements; they form a neu-
tral landscape whose neighborhood may contain functional fixes not immedi-
ately reachable from the subject program (Schulte et al. (2014)). Thus, these
test-passing variants are key to understanding the APM search space. Two
measures of this set are Schulte et al. (2014)’s software mutational robustness
and Harrand et al. (2019)’s neutral variant rate:

Definition 2.2 (Mutational Robustness, Neutral Variant Rate) Let
M(P ) = V be the set of variants generated by applying sequences of mutations
from M to the program P . Let Vc ⊆ V denote all program variants that
compile and VT ⊆ Vc denote all program variants that pass all the tests in P ’s
test suite T . Then, software mutational robustness (SMR) and neutral variant
rate (NVR) are calculated as follows:

SMR =
|VT |
|V |

(2.1) NVR =
|VT |
|Vc|

(2.2)

SMR shows how large the program search space is for APM under the test
suite T . To test a program, we must successfully compile it: both compilation
and testing can be expensive. NVR shows the proportion of the test passing
variants over those that successfully compile; it is the proportion of variants
on which we spent the resources to both compile and test them. It measures
how well mere compilation indicates successfully passing T ’s tests.

For generate and validate approaches, the goal is to maximise |VT | while
using as few resources as possible, and each such resource contributes an ob-
jective to our multi-objective optimisation problem. We will now formalise
this. Without loss of generality, we assume a single resource that is additive
in nature, such as time taken or energy consumed, and our objective is to
minimise it. First, given a program P and a set of APM operators M , let
δ = (m1, · · · ,mk) be a sequence of k operators from M . Then

v = δ(P ) = mk(mk−1(· · · (m1(P ))), mi ∈ M ∈ 2O (2.3)

is one variant generated by applying a sequence δ of k operators to P . Next,
given a set of variants V , which can be obtained by edits from M , and a
test suite T , we define the total APM cost (Equation 2.4) as the sum of:
(1) finding and applying those edits to produce the variants (Equation 2.5),
(2) the compilation cost (Equation 2.6), (3) and the testing cost (Equation 2.7)
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of the successfully compiled variants Vc:

$(V ) = $M (V ) + $c(V ) + $T (Vc) (2.4)

$M (V ) =
∑
v∈V

(
cost(find(δ)) + cost(δ(P ))

)
s.t. δ(P ) = v (2.5)

$c(V ) =
∑
v∈V

cost(compile(v)) (2.6)

$T (Vc) =
∑

vc∈Vc

∑
t∈T

cost(test(vc, t)) (2.7)

where cost measures a property of interest (e.g., runtime or energy), find de-
notes a search procedure, compile(v) denotes compilation of the given variant
v, and test(vc , t) denotes running test t on a successfully compiled variant vc.
|V \ VT | is the set of generated variants that do not pass the test suite, and
hence its generation is wasted. Given these costs, the overarching problem that
we are trying to solve in APM is inherently multi-objective:

argmin
Mi∈2O

$(V ) (2.8) argmax
Mj∈2O

|VT | (2.9)

subject to Mi = Mj .

Here, we aim to find the set of operators that minimise the overall cost
(Equation (2.8)) while maximising the number of test-suite passing variants,
VT (Equation (2.9)). To demonstrate that Equation (2.4) is practical, we in-
stantiate it later in Section 5.4 by empirically solving it when 2O contains
only two sets — one containing line and the other statement granular copy,
delete, replace, and swap operators.

We highlight two points. First, the set of operators M is bounded only by
human ingenuity, so researchers will need to propose differentM to explore this
problem’s search space. Second, because the components in $(V ) interact, we
cannot decompose the problem. For example, cost-efficient variant generation
(in Equation (2.5)) may be detrimental if few of its variants pass the tests (in
Equation (2.7)). Hence, the problem needs a holistic approach.

Lastly, our definition in Equation (2.4) can be further adjusted according
to the situation at hand. For example, firstly, if we move from sets to multi-
sets in our definitions, then we can incorporate the cost incurred by finding
both duplicates and equivalents, which can happen in the stochastic search for
patches. Secondly, because many costs are stochastic, we could wrap the right-
hand side of all defining equations with E, the expectation operator. In our
formulation above, we follow the common practice in noisy optimisation: this
expectation optimisation is not spelled out, and the true mean is approximated
through sampling.



10 Justyna Petke et al.

3 Research Questions

In this section we present our research questions. Firstly, we consider the
sparsity of bedrock landscapes induced by applications of our operators at
two granularities. APM is expensive. To reduce that cost, we ask, in clos-
ing, whether we can identify lightweight program features that indicate how
amenable a subject program is to APM.

To answer all of the research questions below, except RQ4, we produce a
variant as follows: for each method in each program in our corpus, for each
operator, we uniformly choose a location within the target method at the
operator’s granularity, then apply the operator once. We do this repeatedly to
sample the variant space and explore the landscape. Under this construction,
all variants are a single step from the starting program. In RQ4, we apply
operators up to k times. Sections 4.2 and 4.4 detail these procedures.

Given the lack of specifications, comparing operators in terms of effective-
ness is not easy (Section 2.2). Variants that improve non-functional properties
or define a neutral landscape (Schulte et al. (2014)) that can serve as the stag-
ing ground for a repair (Renzullo et al. (2018)) are a subset of test-passing
variants, so, to the extent to which the test suites adequately capture the sub-
ject programs’ semantics, test-passing variants establish an upper bound on
the number of improving program variants. Thus, we answer RQ1–4 in terms
of the number of test-passing variants.

Operator Effectiveness We aim to systematically explore and characterise
the APM search space. We would like to know: which edit operators are most
likely to produce test-passing variants? Universal, unrestricted edit opera-
tors produce an infeasible search space, especially when those operators can
lengthen the subject program. So we instead consider our copy, delete, re-
place, and swap operators (Section 2.1) and ask the more concrete question:

RQ1 How often do single applications of the copy, delete, replace,
and swap (CDRS) operators produce test-passing variants?

The compilation and testing that testing-based APM requires is expen-
sive. A strong separation in operator performance will point to operators to
be dropped or replaced. While no consensus has emerged about the other
three, delete has been repeatedly found to be the most effective operator at
both bug fixing (Le Goues et al. (2012)) and generating test-passing program
variants4 (Harrand et al. (2019)), often leading to efficiency improvements.
Our high-level finding confirms previous results: delete generates the most
testing-passing variants (Section 5.2).

The high pass rate of delete’s variants is puzzling, because human patches
tend to add more than they remove (Zhong and Su 2015, Finding 9). Psy-
chology research has shown that we humans are biased toward additive over
subtractive solutions (Meyvis and Yoon (2021)). The reason for delete’s pass

4 In Harrand et al.’s nomenclature, test-passing variants are called “test-suite neutral”,
because test-based fitness does not differentiate them.
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rate may be that there is more scope for subtractive solutions in code than
we find intuitive; and it may be that software often contains over-engineered
code or broken future-proofing against a future that will never come.

Alternately, delete’s pass rate may just reflect the degree to which the
test suite used during APM underapproximates the specification. When this
underapproximation is intentional, delete could be an effective way to auto-
matically specialise a program, reducing its CPU and memory consumption,
for that portion of its behaviour that the test suite exercises. When this under-
approximation is unintentional, delete’s test-passing, but incorrect, variants
may help localise and understand a defect. Indeed, Qi et al. (2015) stated

“The Kali [Qi et al.’s deletion-focused APR tool] patches often pinpoint
precisely the exact line or lines of code to change. And they almost
always provide insight into the defective functionality, the cause of the
defect, and how to correct the defect.”

Ginelli et al. (2022) did not confirm this claim, but found that delete variants
revealed problems with the test suite. This suggests that delete’s test-passing
variants can guide the search for new tests to add to improve the given test
suite. Finally, delete’s pass rate could be used as a new measure of test suite
quality: if delete succeeds too often, the test suite is inadequate.

Exhaustive Deletion Since it shrinks the search space, delete is well-
suited to landscape analysis. This fact and the pass rate of its variants raises
the next research question, which we are the first to consider exhaustively:

RQ2: What percentage of all variants produced by exhaustively apply-
ing delete to each line or statement in a method passes all tests?

If the cost of computing this percentage is affordable, it can be used
to assess test suite quality. If this percentage is also substantial, then re-
searchers may want to consider applying delete first to produce its set of
test-passing variants, then using that set as the launchpad for subsequent
modifications. Exploiting this set may increase both the effectiveness and effi-
ciency of APM (Harrand et al. (2019)). For instance, Callan et al. (2022) have
recently shown that the most frequently used strategy by Android developers
for performance improvements is redundancy removal. Section 5.3 presents our
answer to RQ2.

Operator Granularity The vast majority of APM work has improved pro-
grams at the granularity of either lines or statements. An et al. (2018) were
the first to compare these granularities in the context of automated program
repair. They found that statement-level changes tend to be more effective at
bug-fixing, but less efficient in terms of overall runtime. Their study rests on
the results of a single tool on a small Python benchmark.

Here, we extensively compare the two granularities over our CDRS land-
scape on a substantial corpus of large, popular Java programs (Section 4.1). A
trickiness in comparing the two granularities is that they are not isomorphic.
Section 4.5 discusses the specifics of how our experimental harness handles this
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issue. Line granular operators generate a set of strings that subsume any pro-
gramming language and can even improve non-code properties, like comments
or configuration settings. Statement granular operators are language-specific,
since they still require parsing. Because they are weakly syntactically aware,
statement-granular modifications are more likely to compile than line-granular
modifications. Because some statements contain others, modifying them affects
more lines than line granular operators. To discover which is better, we ask:

RQ3: At which granularity — line or statement — do single applica-
tions of the CDRS operators produce more test-passing variants?

Improving APM’s overall effectiveness depends on making it more efficient.
Answering this research question will shed light on how best to improve its
efficiency. Given that localising where to fix or improve code will always be
imprecise, we deem it beneficial to continue to focus on generic operators, like
line-granular ones, and look to either speed or constrain search or is it better to
instead consider operators that can only make some improvements but create
a smaller search space? Section 5.4 reports our findings.

Multiple Edits Most developer-authored patches contain many edits.
APM must find a way to generate such patches if it is to substantially increase
the productivity of industrial developers. Some edit sequences first break, then
restore syntactic validity. How often does this occur? To find out just how
sparse the multi-edit search space is, we ask:

RQ4: How often does a sequence of CDRS edits create a test-passing
variant?

This question will have different answers, depending on the techniques used
to choose the edit sequence. We expect this question to be seminal, to open a
new line of research into techniques aimed at making multi-edit patches feasible
for APM. In this setting, it stands to reason that grammar-aware operators will
be worth their parsing cost and further separate themselves from universal op-
erators. Indeed, improvement specific semantic operators may overcome their
cost and limited applicability for generating multi-edit patches. It may also be
worthwhile to consider operators that take the sequence so far, including er-
rors, into account. However, if grammar-oblivious edits recover often enough,
it may be more efficient to continue to use them over devising property-specific
operators. Section 5.5 answers this question and presents our findings.

Suitability for Automated Program Modification Conducting the search
to find test-passing variants is expensive: computing fitness involves running
a program’s test suite. We would use testing resources more effectively if we
could efficiently identify those programs, or parts of programs, that are more
likely to be suitable for APM. Therefore, we ask:

RQ5: Which features predict code’s plasticity, its amenability to APM
modulo a test suite?

To answer this question, there is a plethora of features to consider, rang-
ing from syntactical through structural to application domains. We focused
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on the following measures: cyclomatic complexity, the count of source state-
ments (excluding comments), the number of possible execution paths (Nejmeh
(1988)), the median and average number of lines between variable definitions
and their subsequent use in the target methods. For a selection of methods,
we correlate these measures and test pass rates to see if any of these measures
indicate a program’s suitability for APM. The consequences of any successful
finding would be immense: it would lower one of the most significant barriers
to APM’s industrial adoption: its poor yield on the computation resources it
requires. A negative result, on the other hand, would suggest that other or
new measures are needed. Worst case, it would lend evidence to the hypothe-
sis that suitablity to APM may fall into the AI-complete category of “I know
it when I see it” Gewirtz (1996) properties. Section 5.6 details our findings.

4 Experimental Setup

To answer our research questions we sample parts of the patch space, as de-
fined by the line and statement CDRS operator sets. We measure the impact
of the code changes for a given patch by running unit tests that execute meth-
ods containing the patch, recording the effect on compilation and unit test
behaviour. We ran two experiments: Random Sampling and Delete Enumera-
tion. The random sampling experiment is designed to generate data to answer
RQ1, RQ3, RQ4, by uniformly sampling the space of CDRS operators, with
both line and statement granularity, with patches of 1–5 edits. The delete enu-
meration experiment is designed to generate data to answer RQ2, and provide
additional data to answer RQ3. Post-hoc analysis of the results from the ran-
dom sampling experiment was carried out to answer RQ5. Full details of both
experiments follow over the remainder of this section.

For all our experiments we use Gin, a dedicated tool for experimentation
with genetic improvement (Brownlee et al. (2019)). Gin is open-source, avail-
able on GitHub5. To the best of our knowledge Gin is the only GI tool that
contains an in-built profiler that automatically determines which test cases
cover which methods. Additionally, we wrote a PatchSampler class to calculate
the single-edit search space for our 10 subject programs, and the PatchTester
class that we use to calculate self-repairs via recoveries to previous software
version (Section 5.5).

4.1 Corpus

To empirically evaluate the impact of different transformation operators, we
apply them to a corpus of large, widely-used, and actively maintained open-
source Java projects hosted on GitHub. Our core goal is APM landscape anal-
ysis. We want to know how amenable is a program to mutation under the

5 Gin is available at https://github.com/gintool/gin. We used Gin’s version at commit
e897ad3487eaf21511e740a6828c6c20b168a278.

https://github.com/gintool/gin
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Table 4.1: CSA: Curated projects selected for experimentation.

Project Description Licence LoC

jcodec audio and video codec FreeBSD 136k
mybatis-3 SQL mapper framework Apache 2.0 115k
spatial4j geospatial library Apache 2.0 14k

Table 4.2: CSB : Projects obtained from systematic search.

Project Description Licence LoC

arthas diagnostic tool GNU GPL 3.0 30k
disruptor inter-thread messaging library Apache 2.0 20k
druid database connection pool Apache 2.0 497k
gson (de-)serialization library Apache 2.0 58k
junit4 testing framework Eclipse PL 1.0 50k
mybatis-3 SQL mapper framework Apache 2.0 115k
spark web framework Apache 2.0 15k

CDRS operators. We do not focus on any particular improvement objective.
The ability to change code automatically brings into reach non-functional im-
provements, and also can allow fixing bugs not revealed by (existing) tests.
Therefore, we start with test-passing software. We selected our corpus system-
atically. We consider two sets: (a) three hand-curated projects chosen as par-
ticularly appropriate for this experimentation, denoted CSA and (b) a larger
set of projects systematically generated by querying GitHub, denoted CSB . In
both cases we had a number of criteria in mind, which were formalised when
generating the second corpus:

– Java as the main language.
– Open-source with a permissive licence.
– Test suites with only passing tests.
– Widely used (over 7000 stars on GitHub).

In selecting CSA we also tried to select projects from a variety of applica-
tion domains; we manually searched lists of popular Java projects on GitHub,
examining individual projects and selecting those primarily or completely us-
ing pure Java, and possessing test suites that would allow us to extensively
evaluate the impact of operator application. The projects chosen for CSA are
given in Table 4.1.

For CSB 55 projects6 met our criterion, of which we systematically elim-
inated those projects that were not primarily code-focused or did not com-
pile and test cleanly on our experimental platform. A summary of the chosen
projects is given in Table 4.2.

6 From https://tinyurl.com/github10kstarsjava, accessed on 17 December 2018.

https://tinyurl.com/github10kstarsjava
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Table 4.3: Mean µ and median x̃ for various measures over the hot methods
identified by Gin’s profiler in each project, and all methods in the classes
containing the hot methods. ‘Tests’ refers to unit tests. ‘Cyc cmp’ is cyclomatic
complexity. Instruction and branch coverage (inst cov & br cov) refer to the
% of instructions / branches covered by the test suite for all / hot methods.
The aggregate figures over all projects are taken over the separate figures for
each method in each project.

Project All methods in classes containing hot methods

Method Method Lines/ Statements/ Cyc cmp/ Inst Br
count count method method method cov cov

µ x̃ µ x̃ µ x̃ % %

arthas 1638 8 57 12.5 47.13 11.5 15 5 5 7
disruptor 375 159 7.87 5 4.23 2 1.44 1 82 78
druid 18440 8297 10.32 5 8.61 2 2.96 1 75 65
gson 899 504 10.15 6 8.33 4.5 3.45 2 83 79
jcodec 6591 1879 10.97 7 9.25 5 3.29 2 46 34
junit4 1617 1216 6.24 4 4.65 2 1.72 1 86 84
mybatis-3 2501 1255 8.13 4 6.66 3 2.31 1 83 80
opennlp 3694 829 12.41 6 10.62 4 3.59 2 35 37
spark 853 452 6.32 4 4.65 2 1.79 1 71 60
spatial4j 723 435 9 5 7.31 3 2.76 1 79 72

all 37331 15034 9.84 5 8.13 3 2.84 1 77 68.5

hot methods

Method Method Lines/ Statements/ Cyc cmp/ Inst Br Tests/
count count method method method cov cov method

µ x̃ µ x̃ µ x̃ % % µ x̃

arthas 1638 3 135.67 16 112 15 34 7 79 75 1.00 1
disruptor 375 12 11.33 7.5 7 3.5 2.5 1 100 100 1.16 1
druid 18440 534 19.87 9 18.54 8 5.32 2 90 82 2.55 1
gson 899 68 18.41 13 14.76 9 4.65 2 93 90 3.58 2
jcodec 6591 477 16.77 13 14.35 10 4.66 3 94 85 2.51 1
junit4 1617 403 6.67 4 5.1 3 1.82 1 88 90 5.26 3
mybatis-3 2501 323 12.53 9 10.82 8 3.35 2 91 88 5.26 2
opennlp 3694 204 22.26 14 20.15 12 5.74 3 93 86 3.21 1
spark 853 56 14.82 10 12.36 8 4.05 2.5 90 81 4.39 1
spatial4j 723 77 12.3 6 10.26 4 3.61 2 93 91 10.05 2

all 37331 2157 15.51 9 13.59 7 4.17 2 92 85 3.9 1

Our experiments target hot methods identified by Gin’s profiler (Sec-
tion 4.3). These methods are those that occur most frequently on the stack
trace during test runtime, thus we ensure these are covered by existing test
suites. Consequently, these methods are also a good target for improvement
of runtime, although in this work we do not consider any particular improve-
ment objective. To understand the generality of our results, we now consider
whether hot methods are fundamentally different to general methods in our
corpus. Table 4.3 gives method-level statistics for the hot methods identified
by Gin’s profiler, compared to all methods in the classes containing the hot
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methods, broken down by project, with figures for all projects in the last
line. We report the number of methods in each category, number of lines and
statements in each method, cyclomatic complexity of each method7, and test
coverage8. Test counts refer to those unit tests found to have called a method
by the profiler, so are only given for the hot methods.

In terms of these measures, hot methods are broadly representative of all
methods. Wilcoxon signed rank tests comparing the values for all methods
with those for hot methods, over all projects, found p < 0.001 for all mea-
sures (i.e., line and statement counts, cyclomatic complexity, and coverage).
However, this is largely due to the large sample sizes: the effect size for all
these tests was < 0.2, usually regarded as small (Cohen (1969)), and equiva-
lent to more than 85% overlap in the distributions. So, hot methods do show
a statistically significant difference to methods in general, but the differences
in median values for each measure are still small. Lines and statements per
method define the search space at each granularity: hot methods tend to be
fairly small, with medians of 9 lines and 7 statements, and means of 15.5 and
13.6, per hot method across the whole corpus. However, methods in general
are slightly smaller (medians being 2 less and means being 5 less for both
lines and statements). Cyclomatic complexity for hot methods (median 2) is
higher than for methods in general (median 1). Instruction and branch cov-
erage are higher for the hot methods, confirming that our profiling identified
the portions of the code that are most exercised by the test suite (although
interestingly, this high coverage is achieved even though hot methods have a
median of 1 unit test each (Section 6)). For instance, a mean of only 5% of
instructions for arthas are covered by the test suite, while a mean of 79% of
instructions in the hot methods are covered. Although arthas is an outlier in
terms of proportion of hot methods in classes containing hot methods, it was
not an outlier in our results (Section 5). Overall, among our corpus hot meth-
ods are slightly smaller, and slightly more complex, than the average method,
with the only substantial difference being that hot methods have much greater
test coverage.

4.2 Overall Procedure

Our experiments targeted ten open source applications P; here, we consider
each application as a target program P . Since we study large real-world pro-
grams, it would be infeasible to analyse the whole CDRS edit space. We sample
the space as follows:

For each program P we identified hot methods,HP , which are those that use
most of the computation time when the tests are executed. We also identified
the set of unit tests THP

that result in a call to each hot method h ∈ HP .

7 Reported by the checkstyle tool, Version 8.36.2 — https://checkstyle.sourceforge

.io/config_metrics.html
8 Reported by the Jacoco tool, Version 0.7.9.201702052155 — https://www.jacoco.org

/jacoco/

https://checkstyle.sourceforge.io/config_metrics.html
https://checkstyle.sourceforge.io/config_metrics.html
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/
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Algorithm 1: Experimental Procedure: hotMethods(P ) uses profiling
to identify target methods HP and tests that call these methods THP

;
£ denotes cost, e.g., time and memory usage; ec is a compiler error;
Tδ is the set of tests that call methods changed by δ; and rt is the
result of running a test t on a compiled program variant vc — it can
pass, fail or return an error.

Input: P // Corpus

Input: M = {CDRSl,CDRSs} // Operator sets

Input: k = 1..5 // Number of edits per patch

Input: count = 10000 // Patches per number of edits

Input: sample // Sampling procedure, returns a set of patches

Output: R // Set of result tuples

1 R← ∅
2 forall P ∈ P do
3 ⟨HP , THP

⟩ ← hotMethods(P )
4 forall M ∈ M do
5 R← R ∪ runTests(sample, P,HP , THP

,M, k, count)

6 return R

7 def runTests(sample, P,HP , THP
,M, k, count):

8 R← ∅
9 forall δ ∈ sample(P,HP ,M, k, count) do

10 ⟨v,£δ⟩ ← δ(P )
11 ⟨vc,£c⟩ ← compile(v)
12 forall t ∈ Tδ = {t ∈ THP

| δ(h) ̸= h ∈ HP } do
13 Rt ← {⟨t, ec, 0⟩}
14 if ec = ∅ then
15 ⟨rt,£t⟩ ← test(vc, t)
16 Rt ← {⟨t, rt,£t⟩}
17 R← R ∪ {⟨P, δ, v,£δ, vc,£c, Rt⟩}

18 return R

This process is detailed in Section 4.3. We then ran two experiments applying
large numbers of edits to the hot methods.

The Random Sampling experiment generated 10 000 patches for each
edit granularity type (line and statement), for 1–5 edits, for each of the 10
projects, making a total of 1 000 000 patches. The Delete Enumeration ex-
periment generated every possible line and statement delete edit over all the
hot methods. Section 4.4 details each experiment’s edit sampling procedure.

Algorithm 1 presents the overall, shared experimental framework. For each
program P ∈ P, after we identify hot methods and their associated tests (line
3, Section 4.3), for each of our two operator setsM, containing CDRS operators
either at the line or statement level (line 4), we sample count patches with
k edits each (line 9), applying each patch δ to P (line 10), compiling it (line
11), and, upon successful compilation, running tests Tδ that call the methods
modified by δ (line 15) on the compiled program variant vc. We record all
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compilation errors, as well as all test results (including failure types) for each
test t that was run9.

4.3 Profiling

Any practical APM process will first profile the code to identify the most
promising parts of software for improvement. In the context of automated
program repair, for instance, fault localisation techniques are used for this
purpose. In the context of runtime improvement, one might target code that
uses the most time to execute. The code targetted for improvement will be
deemed hot in this work.

For each program P , we use Gin’s profiler (as implemented in its Profiler

class) to determine the set of hot methods HP . In Gin these are the methods
that are seen most often at the top of the stack trace, when the tests are
executed. The assumption is that these are the methods that consume most
of the given program’s computational time. Note that, however, the hot-ness
measure can easily be replaced with other measures; thus, one can redirect the
focus to other non-functional properties or even functional ones.

The same hot methods were then targeted in both Random Sampling and
Delete Enumeration experiments. Summary statistics for the hot methods
identified in each project can be found in Section 4.1.

4.4 Edit Sampling

Our two experiments use two samplers, which we now detail. Our experiments
define locs, in Equation (4.1), to limit the source and target of an operator
m ∈ {copy, delete, replace, swap}. This definition limits copy’s and
replace’s source operand to the class containing a hot method h; it limits
swap’s source to only to the code of a hot method itself and limits all operators’
targets to the code of a hot method. Note that delete does not have a source,
only a target. The locs returns the set of possible combinations at the correct
granularity (line or statement).

locs(m,h) = (4.1)
source(class(h))× target(h) if m = copy ∨m = replace

target(h) if m = delete

source(h)× target(h) if m = swap

Algorithm 2 shows the sampler used in our Random Sampling experi-
ment. For a given budget of edit applications given by k, it generates count
patches, where it generates each patch by uniformly choosing a hot method,

9 We record patch application and patch compilation costs for a sample of 1000 patches
in Table 5.2. All other parameters are reported for all patches from the two experiments.
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Algorithm 2: Multi-edit patch sampler. We choose() uniformly at
random.
Input: P // Target class

Input: HP // Hot methods in P
Input: M // Operations

Input: k = 5 // Number of edits

Input: count = 10000 // Patches per edit length

1 V ← ∅
2 for i in [1..k] do
3 for count times do
4 h← choose(HP ) // Choose hot method

5 δ0 ← P // Initial, identity patch

6 for j in [1..i] do
7 m← choose(M) // Choose operator

8 (l0, l1)← choose(locs(m,h)) // Choose locations

9 δj ← m(δj−1, l0, l1)

10 V ← V ∪ {δi}

11 return V

then the edit operator m, before calling locs and applying the operator. All
edits in a single patch target the same hot method. Gin’s RandomSampler class
implements this sampler. Note that the first loop iteration initialises δ0 with
the original program in Line 5, and all subsequent patches build upon it, i.e.
each δj represents a patch with j edit operations.

Algorithm 2 picks each of the delete, copy, replace and swap operators
with equal probability. This samples more of delete’s space relative to the
other operators, because the space for delete is only the number of editable
locations, rather than the product of two editable locations as for all other
edits. As far as we know, all heuristic-based improvement frameworks to-date
more intensively sample delete’s search space. We follow the same strategy
and leave considerations of equally sampling each operator’s space to future
work. Smigielska et al. (2021) showed that sampling strategy that searches
an equal proportion of each operator’s search space could indeed help find
useful patches for the purpose of bug fixing. This might be due to delete not
being as effective at bug fixing yet sampled frequently using standard sampling
strategy. Results might look different for runtime improvement, for instance.
Here we are concerned with the more general idea of how plastic is code under
APM, leaving considerations of effectiveness of particular operator types for
specific improvement objectives for future work.

The sampler for the Delete Enumeration experiment builds and samples
V = {δ1 | h ∈ HP ∧ (−, l) ∈ locs(d, h) ∧ δ1 = d(P, l)}, where d(P, l) denotes
deletion of location l in program P . For each granularity (line or statement),
this procedure visits each location in HP and creates a patch comprising a
single delete edit for that location. Gin’s DeleteEnumerator class implements
this sampler.
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1 private void skippedQuietly(org.junit.internal.AssumptionViolatedException

e, Description description, List<Throwable> errors) {

2 try {

3 if (e instanceof AssumptionViolatedException) {

4 skipped((AssumptionViolatedException) e, description);

5 } else {

6 skipped(e, description);

7 }

8 } catch (Throwable e1) {

9 errors.add(e1);

10 }

11 }

1 private void skippedQuietly(org.junit.internal.AssumptionViolatedException

e, Description description, List<Throwable> errors) {

2 skipped(e, description);

3 }

Fig. 4.1: Example of a swap edit. The red parts in the original listing (top)
are effectively deleted by the edit that swaps the try..catch block (lines 2-10)
with the skipped() method invocation (line 6), producing the patched listing
(bottom).

4.5 Operator Implementation

The implementation details of edit operations affect the likelihood of producing
test-passing variants, so we summarise them, for both granularities, and note
the implications.

Within a given patch it is possible to have the same target location ad-
dressed by more than one operation. Moreover, it is possible to have the target
location of an earlier operation addressed as the source for a later operation.
In Gin, consistent substitutions within a patch are maintained by the following
rules: (1) all operations affect only their target location. The IDs of other code
locations are unaffected (so, e.g., deleting line n does not cause line n + 1 to
be relabelled as n); (2) to prevent a later operator wasting effort by nullifying
an earlier one, once a location is changed by a delete, swap or replace op-
eration it cannot serve as a source for a subsequent operation in the patch,
so operations using it as a source become noOps; (3) copy inserts to a given
target location are chained after the target location. The inserted code can-
not be addressed as a source for subsequent operations and cannot be deleted
by subsequent operations; (4) once a location is deleted, subsequent delete,
swap and replace operations to that location in the patch have no effect.
However, copy operations can still target an insertion at this location.

A line can contain multiple statements or none, as when a single state-
ment is formatted across several lines. More frequently, however, statements
contain multiple lines, because control statements tend to contain statement
blocks that, in turn, contain statement lists. Consider the main event loop of
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any reactive system or the instruction loop of an interpreter when these are
implemented using a while statement. Denominated in lines, then, statements
tend make more changes than line operators do. For this reason, we consider
edits of both statement and line granularity in our experiments. It is impor-
tant to note that our definition of statement is that of JavaParser’s, and thus
includes block statement (i.e., lists of smaller statements wrapped in braces,
such as the body of a loop or if structure). This makes it possible for larger
sections of code to be deleted or moved in a single operation, and both block
statements and the statements contained within them can be manipulated by
our edits.

One important implication of this is connected to our implementation for
swap, as this is relevant to our explanation of the results later. We implement
swap as a pair of delete-insert operations. In the case where one of the pair of
statements to be swapped is contained within the other, effectively the swap
becomes a delete operation. An illustrative example is in Figure 4.1. Here, the
swap targeted two statements in JUnit’s TestWatcher class. The first statement
was the whole try...catch block (lines 2–10), and the second was the skipped()

method invocation (line 6). The result was the deletion of most of the method,
which still compiles correctly.

5 Results

In this section, we detail our computational resources we used, the scale of our
experiment, and the patch filtering we used for RQ1, RQ2, RQ4, and R5, then
answer each research question.

We provide full experimental results, and the scripts required to reproduce
those results using Gin: https://github.com/automatedprogrammodificat
ion/automatedprogrammodification/blob/main/replication_package/.

Execution Environment We conduct all experiments on a compute server with
four AMD Opteron 6348 (2.8 GHz) processors (total: 48 physical cores), 128
GB RAM, using Java 1.8.0 192 on CentOS 6.9. Both during profiling and
each experimental run, each test case is run once with a timeout of 10s (Gin’s
default). On this machine, our experimental runs took a little under two weeks
of single-core wallclock time. Gin’s Profiler run for all 10 projects took 48.5
hours. The Random Sampling experiment took 38.2 hours for line and 150.4
hours for statement edits. The Delete Enumeration experiment took 50.6 hours
for all 10 projects.

5.1 Experimental Scale

Our experimental procedure covers an unprecedented scale for an APM land-
scape study. We have covered 10 real-world open source projects, and our
sampling procedure was designed to test enough applications of edits across

https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/
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Table 5.1: Search space sizes for statement and line edits in Gin.

Project Single line edits Single statement edits

arthas 526 538 343 642
disruptor 57 272 16 693
druid 38 907 104 46 219 904
gson 1 327 524 903 400
jcodec 6 386 328 4 203 594
junit4 734 594 405 950
mybatis-3 2 761 544 1 738 527
opennlp 2 095 158 1 438 388
spark 226 328 116 515
spatial4j 445 162 273 041

to start making more general conclusions. In particular, we applied every sin-
gle possible line and statement delete edit to the hot methods identified in
these projects.

Overall we analyse 1 000 000 randomly sampled sequences of edits, and
33 458 single-line and 24 396 single-statement edits. The largest corpus for an
APM study was used by Harrand et al. (2019), where they analysed 180 207
single-statement edits. Note we are analysing the search space of test-suite
adequate program variants. Arguably, we could have started with the fixed
versions of the famous Defects4J10. However, we thought of it as a dataset de-
signed specifically for the APR community. Instead, we systematically sampled
open source projects to avoid such a bias. Furthermore, the most widely stud-
ied, original version of Defects4J contains programs whose size totals 321kLoc,
while here druid alone contains 497kLoc.

Table 4.3 contains a summary of the data extracted. The numbers of all
possible single line and single statement edits are presented in Table 5.1. The
data shows that the search space size for line edits is roughly twice as big as for
statement edits, with the exception of druid, having more possible statement
than line edits. Moreover, druid’s search space is much larger than that of other
projects, even though the number of hot methods, although largest, is not that
much bigger than that of jcodec, as seen in Table 4.3.

Random Sampling The random sampling experiment generated a total of
1 000 000 patches; 10 000 per patch size, sizes 1–5, 2 granularity levels, and 10
projects). For line edits, after removal of duplicates and identity patches, we
were left with 73 301, 97 349, 99 585, 99 847, and 99 916 patches of 1–5 edits,
respectively. Over all line patches, 7731 were identity patches, and 23 892 were
duplicates (1621 were both identity and duplicates). Duplicates appeared at
different rates. There are far fewer possible delete edits, because delete
only has one associated location rather than two. There are also fewer swap
edits, because the two locations are limited to the same hot method rather
than one location being drawn from the whole class. Over all single line edit

10 https://github.com/rjust/defects4j
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patches, the number of duplicates removed were 926 copy, 14 031 delete,
956 replace, 6577 swap. For statement edits, after removal of duplicates and
identity patches, we were left with 61 066, 91 959, 97 871, 98 948, and 99 223
patches of 1–5 edits, respectively. In total, we report results for 469 998 (line)
and 449 067 (statement) unique random patches, with 1 to 5 edits. Over all
line patches, 7731 were identity patches, and 23 892 were duplicates (1621 were
both identity and duplicates). Duplicates appeared at different rates. There
are far fewer possible delete edits, because delete only has one associated
location rather than two. There are also fewer swap edits, because the two
locations are limited to the same hot method rather than one location being
drawn from the whole class. We can only easily analyse single edit patches for
this because multi-edit patches can contain a mixture of edit types, but over
all single line edit patches, the number of duplicates removed were 926 copy,
14 031 delete, 6577 replace, 956 swap. For statement edits, after removal of
duplicates and identity patches, we were left with 61 066, 91 959, 97 871, 98 948,
and 99 223 patches of 1–5 edits, respectively. Over all statement patches, 27 502
were identity patches, and 32 028 were duplicates (8597 were both identity and
duplicates). Duplicates also appeared at different rates for statements. Over
all single statement edit patches, the number of duplicates removed were 2118
copy, 15 236 delete, 2001 replace, 8755 swap. In total, we report results
for 469 998 (line) and 449 067 (statement) unique random patches, with 1 to
5 edits.
Delete Enumeration In total there were 33 458 and 24 396 single-delete edits
for line and statement types respectively. Interestingly, single delete edits make
up less than 1% of the overall transformation space in our experiments.

Patch Filtering In answering all research questions other than RQ3 and RQ5,
we exclude identity patches, those that do not change the code’s syntax, e.g.
replacing line 10 with line 10. Formally, an identity patch is one with an edit
sequence δ where P = δ(P ), for all programs P . Such “do nothing” patches
are rare. We removed them because they simply waste resources. Section 5.1
reports how many identity function we filter. The goal of this work is to ex-
plore the search space of CDRS edit operations. Duplicated patches simply
repeatedly visit the same location in this space, adding no new information,
so we report results on unique patches only.

5.2 Which Edit Operators Maximise Test-Passing Variants?

To determine which edit operators, among copy, delete, replace, swap
(CDRS), are most effective when applied once we analysed the single 73 301
line and 61 066 single statement edits from the Random Sampling experiment.
We calculated the frequency with which each single edit type still passed all
the tests. These rates per operator type vary per project, and so are presented
per project in Figure 5.1. delete is by far the most effective single edit oper-
ator, with swap being second-best. This echoes the work by Le Goues et al.
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Fig. 5.1: The percentage of variants produced by a single application of each
edit operation that pass the tests.

(2012) on C programs, where the delete was found most effective, followed
by replace and swap (equally effective), with copy being least effective. In
our case, however, swap was found to be significantly better than replace.
The test pass rates of copy and replace never exceed that of delete and are
generally less than half that of delete at either line or statement granularity.

Now, we are in a position to answer RQ1: “How often do single applications
of the copy, delete, replace, and swap (CDRS) operators produce test-
passing variants?”. Under our sampling scheme (see Section 4.4), we find that:

Answer to RQ1

The median single edit test pass rates for our edit operators are:
delete (line: 16.5% / statement: 30.2%) > swap (5.6% / 23.6%) >
copy (4.6% / 11.6%) > replace (1.7% / 9.6%), with a substantial
gap (10.9 points / 6.6 points) between delete and swap.

Interestingly, for statement edits, the swap operator turned out to be the
next most effective after delete in our experiments. Figure 5.1 shows swap
having around twice the pass rate of copy and replace on disruptor, druid,
gson, jcodec, and mybatis-3, and exceeds even delete on junit4 and spatial4j

for statement-level edits. Some of this might be explained by the situation de-
scribed in Section 4.5, whereby swapping nested statements effectively deletes
the parent statement. In our experiments we found that, among the single-edit
patches sampled, this occurs for around 13% of all swap edits; though the rate
varies per project from 8.9% for jcodec to 18.3% for junit4. Assuming the test
suite adequately tests the effect of a swap, swap-produced variants pass when
the order of the swapped snippets does not matter functionally. A deep dive
on the target methods for the four projects having the highest effective state-
ment edit rates for swaps according to Figure 5.1 (jcodec, junit4, mybatis-3

and spatial4j) revealed that they also appeared to have a large number of
independent statements. Examples include assignments to local variables, or
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swapping the content of an else block to after the closing brace, where the
corresponding if finished with a return. Swapping may, however, provide a
non-functional benefit, when the new order better fills the CPU’s instruction
pipeline. For improvement of non-functional properties then, the decision to
drop swap should be revisited.

One big picture goal of this study is to point to ways to make APM more
effective. We asked RQ1 to find which primitive operators are most effec-
tive. We pose that constraining operators or defining new ones might be still
more effective. Thus, we investigated the reasons for test failures for single-
edit patches11 to look for any patterns that might suggest such constraints or
new operators. Overall, the most common reasons for test failures for compil-
able edits were due to either a java.lang.NullPointerException (5.3% of cases) or
java.lang.AssertionError (5.9% of cases). This finding suggests that introduc-
ing a new operator that makes a simple, conservative null pointer check after
applying a CDRS operator might pay off. Line granular edits can break a lan-
guage’s syntax in many more ways than can statement granular edits. Indeed,
the compilation rate of statement granular edits was 26.1%, 16.7 points greater
than the 9.4% of line granular ones. It is not surprising then that statement
granular changes exhibited more test failures for compilable variants (14 889
vs 5955) and test failure types (72 vs 62) than line granular ones, because the
statement granular sample size is larger.

5.3 delete’s Landscape

delete was the most effective. This is well-known, but still surprising because
most developer commits add more code than they delete. delete also has
the smallest search space. Thus, we can, and are the first to, exhaustively
determine the upper bound on its effectiveness in a nontrivial search space, so
we now turn to answering RQ2.

In total, there were 33 458 and 24 396 single-delete edits for line and state-
ment types respectively. As an exhaustive search, these already comprised only
unique edits. This experiment took just under 53 hours (single-core wallclock
time) for all 10 projects: 17 hours and 54 minutes for the line deletions and 35
hours and 1 minute for the statement deletions. While there were one-fifteenth
as many patches as in the random sampling experiment, this time it was not
15x shorter because many patches failed to compile, which means we can skip
to the next patch without also running the unit tests. The differing compile
rates also explain the shorter run times for line edits (see Figure 5.3).

We report compilation rates between 15% and 41% for line edits, 31%
and 90% for statement edits, pass rates (SMRs, see Equation 2.1) between

11 Data for all patches from the Random Sampling experiment is visualised here: https:
//github.com/automatedprogrammodification/automatedprogrammodification/blo

b/main/replication_package/results/graphs/sample/TestEdits_STATEMENT.png and
https://github.com/automatedprogrammodification/automatedprogrammodification/b

lob/main/replication_package/results/graphs/sample/TestEdits_LINE.png

https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_LINE.png
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Fig. 5.2: Pass rates and neutral variant rates, per project, for single deletes.

12% and 38% for line edits, 22% and 82% for statement edits, and neutral
variant rates (NVRs, see Equation 2.2) between 38% and 96% for line edits,
and between 37% and 92% for statement edits. Pass and neutral variant rates
for all projects are shown in Figure 5.2.

We also gathered data for the most common reasons for test failures of
single deletes. In 61% of cases the patch did not compile and in 28% in-
stances the test passed. For the compiling patches the most common reasons
for test failures encountered have been: java.lang.AssertionError and java.lang

.NullPointerException12. Interestingly, null-pointer exceptions are also among
the most common types of error that programmers encounter Coelho et al.
(2017); Hassan et al. (2020).

We are now able to answer RQ2. “What percentage of all variants produced
by exhaustively applying delete to each line or statement in a method passes
all tests?”:

Answer to RQ2

Pass rates for delete reach 38% and 82% for line and statement gran-
ularity, respectively. delete mostly fails at compile time, with 60% of
compiling variants passing all tests for both line and statement deletes.

This finding means that delete is not only successful in bug fixing Le
Goues et al. (2012), but also has most potential for improvement of non-
functional properties. However, exhaustive enumeration of single-deletes is un-
likely to be cost-effective (in terms of wall-clock time). Perhaps, if the most
frequently used methods were only investigated, this could be used as a first
step, before GI with other edit operators is run on such an abridged software.

12 https://github.com/automatedprogrammodification/automatedprogrammodificati

on/blob/main/replication_package/results/graphs/delete/TestSingledeletes_LINE.

png and https://github.com/automatedprogrammodification/automatedprogrammodifica

tion/blob/main/replication_package/results/graphs/delete/TestSingledeletes_STA

TEMENT.png

https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/delete/TestSingledeletes_STATEMENT.png
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Interestingly, the median pass rates we report here, over exhaustive enumera-
tion, are close to the pass rate of variants produced by delete during the edit
sampling experiment (Section 5.2). Over all projects, delete’s median pass rate
was 17.5% (line) and 34.5% (statement) for enumeration vs 16.5% and 30.2%
for sampling. Section 6 discusses the construct validity threat that test suite
inadequacy poses to the test-passing results reported here.

5.4 Operator Granularity: Line vs Statement

The vast majority of APM work has improved programs at the granularity of
either lines or statements. Here, we compare the two and report our findings
over our CDRS landscape. The previous two experiments — edit sampling
and exhaustive delete enumeration — generated the data we need to answer
RQ3. First, we compare the granularities in terms of pass rate, then their costs.
For this experiment, we do not, however, delete duplicate or identity patches,
since we must account for their cost.

For the edit sampling experiment, Figure 5.1 shows that pass rates for
line edits are lower than for statement edits: 0.03–10.97% vs 2.32–33.88%,
with medians, across all projects, being 5.07% vs 15.05%. Looking at specific
examples for illustration, delete’s pass rate on arthas is 38% for line and
83% for statement; on disruptor, copy’s is 4% for line and 11% for statement.
Across all edit operators and all projects in our corpus, the rates for line are
around a third that for statement. Compilation rates explain much of this
difference: the median compilation rate for single edits across all projects is
9% for line and 26% for statement edits.

The delete enumeration experiment tells a similar story. Figure 5.2 re-
ports compilation rates of 15%–41% for line and 31%–90% for statement edits.
The figure clearly shows that the rates for line, on any one project, are around
half that of statement. Unsurprisingly, line edits are typically more likely to
break syntax and produce uncompilable code than statement edits. In con-
trast, the fractions of compiling code that then passes the tests are very close:
38%–96% for line edits and 37%–92% for statement edits, leading to overall
pass rates of 12%–38% for line and 15%–41% for statement. The medians over
all projects are 5% and 15%, respectively. This suggests that the major differ-
ence in the effectiveness of line and statement granularities is in getting past
compilation: if the edits produce code that compiles, the chances that it will
then pass the tests are much the same at either granularity.

Unlike line edits, statement edits are grammatically aware: they cannot
introduce imbalanced parentheses, for instance. The only syntax error they
can introduce is creating empty statement lists where the grammar requires
a nonempty list. Thus, our compilation finding is perhaps surprising only in
that statement granular edits do not outperform line granular ones by a still
greater factor. Both granularities waste resources on failed compilations, al-
though statement generates fewer. The grammar-awareness of statement gran-
ular edits has a price — parsing. To quantify the cost of constructing VT (i.e.,
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Table 5.2: Median times (ms) and total times (s) for each stage of applying and
testing single edits across all projects (rounded to 3 sig. figs.), for a subsample
of 100 edits for each project drawn uniformly from the Random Sampling
results (i.e., 5000 edits in total for each granularity).

Count Median time (ms) Total time (s)
Measure Line Statement Line Statement Line Statement

Apply Edit 5000 5000 0.135 7.937 1.077 98.461
Apply Edit (VT ) 71 334 0.152 6.423 0.012 5.074
Apply Edit (V \ VT ) 4929 4666 0.135 8.049 1.065 93.386
Compile (all) 5000 5000 9.073 31.089 111.116 250.238
Compile (fail) 4844 4134 8.890 29.929 94.261 195.261
Compile (success) 156 866 62.428 37.269 16.854 54.977
Test (all) 156 866 2.889 2.425 448.356 254.058
Test (fail tests) 85 532 3.136 2.650 441.242 229.108
Test (pass tests) 71 334 2.368 1.819 7.114 24.949

Table 5.3: The cardinalities of the variants produced, those that compile, and
those that pass the test suite T , over all 10 000 edits and the 10 projects.

Line Statement

|V | 73301 61066
|Vc| 6855 15946
|VT | 4537 10312

Table 5.4: Total costs in seconds over entire sample set; columns 2–5 are Equa-
tion 2.4.

M $M (V ) + $c(V ) + $T (V ) = $(V ); $(V \ VT )

CDRSl 1.08 111 448 560 536
CDRSs 98.5 250 254 603 517

program variants that pass all tests) under both granularities, we repeated
the random sampling experiment with additional time measurements for 100
edits sampled uniformly from the 10 000 for each project and granularity. This
experiment was much smaller in scale than those described in Section 4.2: run
time measurement is notoriously noisy, so to mitigate this as far as possible the
timing runs were performed one at a time on a standalone workstation (Debian
OS, two 16-core Intel Xeon E5-2620 v4 CPUs @2.1 GHz, with 32GB DDR4
RAM), with no graphical desktop environment and no other CPU-intensive
tasks running. The results for this are in Table 5.2.

Applying line edits requires only dividing source into a list of strings. For
statement edits we must build a parse tree. Over all projects in our ran-
dom sampling experiment, the median cost of applying a single line edit was
0.135ms, considerably faster than the 7.94ms to apply a single statement edit.
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Compilation time varies with success. Syntax errors, for example, terminate
compilation early. In Table 5.2, the greater gap between successful compila-
tions vs failed compilations for line vs statement reflects this fact. Indeed, this
gap implies that the majority of failures for line edits are syntactic, whereas
grammar-aware statement edits tend to produce errors that are detected later,
such as variables out-of-scope.

Only variants that compile (Vc) can be tested. Ignoring test suite adequacy,
only those that pass the tests (VT ) do not waste effort. The cardinalities of
these two sets are compared in Table 5.3: it is clear that large numbers of edits
are excluded from Vc, then VT in turn, for both granularities. Across all the
edits, including both passing and failing variants, the median cost of testing
was similar for line and statement edits: 2.89ms and 2.43ms. This difference is
much smaller than those for applying edits or compiling the resulting variants.
The testing timings in Table 5.2 do not necessarily mean that the statement
edits produced faster variants than line edits: while the set of all line edits
was applied to the same target methods as the set of all statement edits, the
methods for which these edits compile were different, so different unit tests
would have been run for each.

Table 5.4 summarises and compares the cost, in seconds, of the two granu-
larities in terms of Equation 2.4, drawn from the 100 edit subsample results in

Table 5.2. $(V \VT )
$(V ) is wasted computation, up to test suite adequacy: Line edits

wastes 536
560 = 95.7% and statement wastes 517

603 = 85.7%. Where the two really
separate is the cost paid for each test passing variant, i.e. |VT |, we obtain by
normalising against the cardinalities in Table 5.3. 560

4537 = 123ms for line vs
603

10312 = 58ms for statement: line edits cost over twice as much for each test
passing variant. This factor grows with multiple edits. As Section 5.5 shows,
the pass rate for line edits drops off much faster than that for statement.

These results enable us to answer RQ3: “At which granularity — line or
statement — do single applications of the CDRS operators produce more test-
passing variants?”. Across all projects, we find that:

Answer to RQ3

Line edits generate 1
3 as many test passing variants as statement edits,

with median test pass rates over all projects of 5% vs 15%. They waste
10% more computational resources, and cost twice as much on average.

This finding means that there is little motivation for further focus on edits
that ignore language grammar as line edits do. Rather, it provides strong
justification for further research into more strongly grammar-aware edits. Once
the cost of parsing has been paid, more sophisticated statement edits than
CDRS can be applied with little extra computational effort (Brownlee et al.
(2020)). It also justifies investigation into even more expensive, property-aware,
edits that rely on program analysis to select where they should be applied and
produce variants with known properties, like correctness modulo an oracle,
thereby obviating testing.
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A caveat on this conclusion concerns non-code modifications, notably in
comments. Unlike line granular edits, statement granular edits cannot make
them. Because we lack tests, let alone test oracles, for non-code modifications,
our results here do not account for this advantage that line granularity has
over statement granularity (Zhong and Su 2015, Finding 1).

Statements form a tree, which can contain nested statements. Thus, a
single statement edit can span multiple lines and make a larger change than a
single line edit. Nesting may also explain the performance of swap discussed in
Section 5.2. This fact poses a construct validity threat to these results, which
compare the two granularities in terms of edits. To mitigate this threat, we
now show below that the average conversion of statement edits into line edits
is three and observe that mulitiple line edits perform even worse than a single
edit, thereby establishing that our central finding understates the disadvantage
line granular operations have relative to statement.

To determine the extent of statement nesting, for every statement in a hot
method, we computed its height and fanout. Over all statements the median
height is 1 (IQR 2), and median fanout is 1 (IQR 1). Lest this result be
dismissed as uninteresting because it is dominated by atomic statements, we
also report these measures for the block statements of method bodies, whose
median height is 4 (IQR 4), and median fanout is 2 (IQR 3). Because a method
body always contains at least one statement, we found these results for method
bodies to be surprisingly low. Despite both findings, over all statements in our
corpus, we found that a substantial proportion (45.2%) contain at least one
nested statement.

To approximate the granularity of statement edits when converted into
lines, we reviewed all statement edits generated in our random sampling ex-
periment. Across all edits applied in our experiments, the median number of
lines covered by a statement edit was 3. One might expect that the figure
would be lower than this; the average is pulled up by JavaParser’s definition
of statement, which includes blocks (i.e., anything in braces). So, to make the
same magnitude line change as that of a single statement edit using line edits
we need three line edits. The compilation rate for patches of one statement
edit is 25% (the first STATEMENT bar in Figure 5.3), while, for patches of
three line edits, it is 1.3% (the third LINE bar in Figure 5.3). The point here
is that even controlling for the increased number of lines that statement edits
cover compared to line, line still performs worse. Section 5.5 shows that this
difference only increases with the number of edits applied.

Our definition of swap means a child node can replace its parent. This
coupled with the prevalence of statement nesting partially explains why swap
has performed so well in our study: it is acting more like a delete. Over all
449 966 unique non-identity statement patches, there were 1 434 100 individual
edits (recall that we generated patches with 1–5 edits), of which 377 460 (or
26%) were swap. Of these, 49 415 (13% of all statement swap edits) were
nested child statements replacing an ancestor, thereby implicitly causing many
deletions. Different projects had different rates of such nesting: the lowest was
jcodec with 8.9%, and highest was junit4 with 18.3%.
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5.5 Pass Rate of Multi-Edit Patches

We now present the results of applying patches containing 1–5 edits sampled
at random from the search space. Figure 5.3 gives a head-to-head compari-
son of compilation rates over all operators for the two granularities. For each
operator type and each edit sequence size, this is the percentage of patches
that resulted in code that compiled successfully. We also considered the same
results broken down by project. There was little variation between projects.
The trend in compilation rates for each granularity and across the number of
edits in each patch per project appears to be consistent with the overall trend
in Figure 5.313.

There are three major observations from these results. Firstly, similarly
to the results of Langdon and Petke (2017) on non-Java software, we see a
remarkable robustness for single edits: compilation rates of 4%–15% for line
and 16%–45% for statement edits per project. Secondly, there is a power law
drop-off in compilation rates per project and per edit type. Thirdly, as for
single edits, compilation rates for line are worse than for statement edits.

With regards to pass rates, aggregated across all projects, the trends are
similar to those for compilation rates in Figure 5.3. As with compilation rates,
the breakdown of pass rates for each application does not vary substantially
from the overall trend across all projects. However, more variability per project
is seen in neutral variant rates, which are shown in Figure 5.4. For the majority
of patches that compile, the modified code runs without error. The dropoff in
NVR varies per project, with disruptor actually showing an increase from 1 to
2-edit patches. NVRs vary from around 40% to 90% for 1-edit patches, and
20% to 90% for 5-edit patches. Harrand et al. (2019) report 16% to 30% neutral
variant rates for single edits. This is contradictory to our results, which show
much higher neutral variant rates. Interestingly, Langdon and Petke (2017)
report high neutral variant rates (up to 89%) for three non-Java programs.
One explanation is that non-object-oriented programs, such as C, are more
amenable to APM mutations. With regards to the difference with Harrand et
al.’s results, they focus on whole Java classes, while we modify methods.

We find that, for up to five edits, the pass rate is quite low (median 0.14%
for line and 6.2% for statement granular edits across all projects), confirming
the conventional wisdom about the sparseness of this search space. This sug-
gests that grammar-aware operators are indeed needed. Interestingly, however,
many of the test-passing multi-edit patches contain evidence of interaction be-
tween edits in the form of self-repairs.

We can now answer RQ4, “How often does a sequence of CDRS edits create
a test-passing variant?”:

13 Per project data visualisation is available here: https://github.com/automatedprogra
mmodification/automatedprogrammodification/blob/main/replication_package/resul

ts/graphs/sample/Compiled_LINE.png and https://github.com/automatedprogrammodif

ication/automatedprogrammodification/blob/main/replication_package/results/gra

phs/sample/Compiled_STATEMENT.png

https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_LINE.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_STATEMENT.png
https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_STATEMENT.png
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Fig. 5.3: % of patches for which the code successfully compiled, for sequences
of 1–5 edits.

Fig. 5.4: % of patches for which the code successfully passed the test cases,
normalised to only those for which the code also compiled, for sequences of
1–5 edits (the Neutral Variant Rate).

Answer to RQ4

Compilation rates are reduced by roughly 50% with each additional line
edit; and by 25% for statement edits. Pass rates for multi-edit patches
are low and drop with the number of edits.

In practice, real-world patches usually change multiple lines or statements.
Yet we observe a consistent drop in the number of program variants that pass
tests as the number of edits in a patch increases, using our universal opera-
tors at either granularity. We also find that statement edits outperform line
edits, which we attribute to their grammar-awareness. These results confirm
the conventional wisdom at unprecedented scale: the APM search space is
sparse. We believe that future work needs to tackle sparsity straight-on. Two
promising paths are exploring operators that are not universal, but instead tai-
lored to specific defect classes or improvements, and definition of equivalence
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classes that permit cheaply, but accurately, discarding variants without expen-
sive analysis or testing. Bespoke operators can make more extensive changes
to a smaller, more focused set of program locations, similar to the templates
already finding success in the APR community( Liu et al. (2019)). Varfix
(Wong et al. (2021)) exemplifies leveraging equivalence classes. Other exam-
ple approaches leverage information from existing bug fixes for more effective
patch selection (Soto and Goues (2018); Koyuncu et al. (2020)).

Some edits in a patch interact. For instance, two edits may both be needed
for a patch to fail or pass. An edit interaction is a self-repair when first edit
takes a test-passing variant and produces a test-failing variant and the second
edit fixes the first edit’s breakage and produces a test-passing variant. Recall
that, for an edit sequence δ, we write δ(P ) to apply δ to the program P and
produce the variant of P under the edits δ (Section 2). For the program P , test
suite T , and the patch with edit sequence δ ∈ CDRS∗, δ contains a self-repair
if there exists a decomposition of δ, αmbβmrγ = δ, such that mb,mr ∈ CDRS
and α(P ) passes T , αmb(P ) fails T , while αmbβmr(P ) passes T .

From our data of 919 065 unique patches, we gathered those whose edit
sequences had length two or greater and produce test-passing variants. We
focus only on those for which we have data for intermediate patches (i.e., for
patches with n-edits we have data for patches with (n−1)−. . . 1−edits). There
were 11 259 such patches. In the majority of cases, each subsequence of edits
was a passing one, leaving 2344 cases (775 for line, and 1569 for statement),
where although the patch ultimately passed the test suite, it contained edit
sequences that either caused a compilation error or a test failure. 92% of
these self-repairs contain recoveries from a compilation failure. Many of these
recoveries are simply due to edits that undo the change that caused compilation
failure leaving the code unchanged: e.g., a delete followed by a copy that
places an identical piece of code back in the same place.

To determine the nature of self-repairs that are not effectively identity
patches, we now present a deep dive on opennlp. This subject had the highest
percentage of self-repairs that did not simply revert to a previous software
version, 98%. Manual investigation of opennlp’s 212 (57 for line, 155 for state-
ment) self-repairing patches revealed that, typically, those line edits that broke
compilation and yet could be repaired were the deletion or insertion of braces,
due to the later addition or removal of another brace. Statement edits that
broke compilation typically copied a variable out of scope, duplicated variable
declarations, copied a return statement creating dead code, or, in one case,
copied a case: outside of a switch block. In the majority of cases, a later edit
‘repaired’ these by deleting the enclosing statement. In one case, a variable
declaration was deleted and a later edit deleted the only reference to that
variable. In another, a long if. . . else block that set the value of a variable
had the content of its else block deleted, breaking compilation because the
variable may have been uninitialised in later use. A later edit ‘repaired’ this
by copying a value assignment to immediately after the variable’s declaration.

Across all 5-edit patches, self-repairs are infrequent: 1.9% for line and 2.1%
for statement. Considering only test-passing patches, however, self repair av-
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erage 21% over all patches, pulled up by the maximum of 31.6% for 5 edit
patches. In short, eventually successful patches are much more likely to self-
repair, i.e. to be plastic. As we have shown, computing which patches are
eventually successful is expensive! This self-repair finding, therefore, brings to
the fore the question of whether we can identify plastic code snippets more
cheaply than via testing. Any efficient means of identification would leverage
code features, leading us to our final research question, which we answer next.

5.6 Which Methods are Plastic, or Amenable to APM?

We conducted an initial exploration of the most plastic methods, and which
software metrics might influence code plasticity. The idea is that these metrics
might serve as a proxy so we might better target edits to specific locations, or
avoid costly evaluations of the patched code.

Finding a definitive set of interpretable measures remains an open question.
Here we select a classic well-known set of measures. Additionally, we added
def-use distance because we hypothesised that a large def-use distance between
variables gave more space for edits to move or duplicate code between variables’
definition and use.

We applied the checkstyle tool14 to the hot methods in each project. For
each method, the cyclomatic complexity, the count of statements excluding
comments (referred to by checkstyle as non-commenting source statements
— JavaNCSS), and the number of possible execution paths (NPATH) were
calculated. NPATH (Nejmeh 1988) is an extension of cyclomatic complexity
that seeks to address issues like nesting level within a function and lack of
distinction between different kinds of control flow structures. In addition, we
used the Soot static analysis tool15 to collect data on the median and average
number of lines between variable definitions and their subsequent use in the
target methods. We also calculated normalised values of these metrics adjusted
for method length in lines.

The full set of random sampling results targeted 2157 methods across the
ten projects. These were filtered to include results for only those methods with:

– a length of 10 lines or more (leaving 741 methods), and
– those whose code was sampled relatively frequently relative to the number

of lines (i.e., those with a number of patches equal to or greater than the
method length in lines – leaving 467 methods), and

– those with 100% test coverage of their statements (leaving 272 methods).

We applied the length filter above to ensure that the normalised def-use dis-
tances and other complexity measurements were sampled from large enough
tracts of code to be meaningful. The other two filters above were applied to
avoid potential bias arising from sparse sampling and coverage. In addition

14 Version 8.36.2 — https://checkstyle.sourceforge.io/config_metrics.html
15 Version 3.0.3 at: https://github.com/soot-oss/soot

https://checkstyle.sourceforge.io/config_metrics.html
https://github.com/soot-oss/soot
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Table 5.5: Correlations between complexity metrics and test pass rates for
each edit type. Bold figures indicate where the p-value associated with the
correlation is < 0.05.

Metric Line edits Statement edits

Cyclomatic -0.164 -0.028
Cyclomatic normalised -0.132 0.074
JavaNCSS -0.029 -0.078
JavaNCSS normalised 0.041 0.036
NPATH -0.067 -0.039
NPATH normalised -0.081 -0.021
Average def-use distance 0.063 0.030
Average def-use distance normalised 0.253 0.204
Median def-use distance 0.108 0.070
Median def-use distance normalised 0.224 0.190
Method Length -0.074 -0.095

there are also three percent of the corpus of methods where the Java process-
ing toolchain was unable to return an accurate linecount and, on the same
method, Soot was unable to extract def-use dependencies. The distributions
of pass-rates for line and statement edits for the 229 excluded methods are
not significantly different (according to the Mann-Whitney two-tailed U-test)
from those for the 1929 methods in the rest of the corpus.

Over the filtered results, we calculated the Pearson’s correlation between
test pass rate and the measures above. We also calculated correlations for av-
erage def-use distance, and for method length in lines. The results are given in
Table 5.5. Normalised average and median def-use distance show a weak posi-
tive correlation with pass rates for both edit types, and cyclomatic complexity
shows a weak negative correlation with test pass rates for line edits. However,
both correlations are very weak, and none of the other measures show much
of a relationship at all, so it would seem that none of these metrics reliably
predict plasticity. It is possible that stronger correlations to code metrics are
present at the level of individual projects. To test for this possibility we ran
the same correlation analysis for each project with enough individual samples.
The results of this analysis mirrored the findings for the entire corpus. A small
proportion of project/metrics produced moderate to week correlations with a
significant p-value but no features or patterns in the results provided paths to
follow up.

Case Study: Looking for Rogues: The foregoing analysis shows only
weak correlations between the above features and methods’ plasticity. In this
section, we briefly survey the characteristics of methods whose plasticity is
more easily predicted (good-citizens) and those whose plasticity defies easy
prediction (rogues). In particular, by identifying distinctive features of rogues
we can identify promising ways to boost the skill of future predictive models
of plasticity.

To split rogues from good citizens we built four linear predictive models to
be able to identify methods that are:
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Table 5.6: The four best predictive models derived from grid search using the
variables for: normalized average def-use distance (normAveDU); normalized
median def-use distance (normMedDU); and cyclomatic complexity. The best
models depended only on normAveDU and normMedDU.

EditType Predict Plastic Predict Non-plastic

line (1) normMedDU >= 0.51 (3) normMedDU <= 0.2 ∧ normAveDU <= 0.3
statement(2) normMedDU >= 0.53 (4) normMedDU <= 0.2 ∧ normAveDU <= 0.31

1. highly plastic with respect to line edits,
2. highly plastic with respect to statement edits,
3. non-plastic with respect to line edits, and
4. non-plastic with respect to statement edits.

To build these models, we first ranked all methods according to their plas-
ticity w.r.t single line and w.r.t single statement edits. Then we searched for
the best versions of each model above scored according to the ratio:

model score =
correct prediction count

incorrect prediction count + 1

where correct prediction count is the number of methods predicted to be plas-
tic (non-plastic) and were actually in the top (bottom) quartile for plasticity.
Similarly, the incorrect prediction count is the number of methods predicted
to be plastic (non-plastic) but were actually in the bottom (top) quartile for
plasticity.

A grid search (with a pitch of 0.01) was carried out over the three variables:
normalized average def-use distance (normAveDU); normalized median def-use
distance (normMedDU); and normalised cyclomatic complexity. The best four
predictive models depended only on the first two variables and these models
are shown in Table 5.6. We used these models to look for good citizens and
rogue methods. For the task of predicting plastic methods, the rogue methods
were those that were predicted to be plastic, by models 1) and 2) in Table 5.6,
but were actually in the lowest quartile for plasticity. These, deceptively non-
plastic methods (four methods for statement edits and five methods for lines
with three in common — six unique in total) all had one or more of the
following features. The number of methods exhibiting the features is shown in
brackets after each listed feature.

– relatively short method length (two methods).
– long statements or inlined classes, whose presence induces a longer def-

use distance (measured in lines) while the intra-method dependencies are
actually very tight (two methods).

– references to class variables because of the implicit data and control de-
pendencies that they introduce (two methods);

– calls to methods with side-effects (two methods);
– strong implicit control dependencies (three methods).



Program Transformation Landscapes for APM Using Gin 37

For the first point above, the average length of the deceptively non-plastic
methods is 16 lines whereas the average length for the predictably plastic
methods is 21 lines. The use of normalised def-use distances may be noisier
on short methods because normalisation amplifies even very short absolute
def-use distances.

Corresponding to the second point above, an example of a deceptively
non-plastic method is filterLine in the baseTestRunner class of the junit4
project (https://tinyurl.com/y356k3r5). This method contains a multi-
line string array which increases the nominal def-use distance when counted in
lines when, in reality, the method has quite tight intra-method dependencies.

Corresponding to the third point above, another deceptive method is the
configure method in the StaticFilesConfiguration class of the spark
project (https://tinyurl.com/yc7wwdyb). This short method has few ref-
erences to its parameters, but makes multiple changes to object state that
introduce implicit inter-statement dependencies.

For the task of predicting non-plastic methods using models 3) and 4)
in Table 5.6, there were only five unique rogues identified (all five were
wrongly predicted by the statement-based model — two overlapping by the
line-based model). These rogues were less distinct from the good citizens
but seemed to exhibit localised dependencies that admit some re-ordering of
lines or statements. The extractObjectFromList in the ResultExtractor

class in mybatis (https://tinyurl.com/2p97jadz) is one example. This
method contains an if-statement with inter-statement dependencies in each
clause but some scope for re-ordering of guarded clauses. Another example
is the getParameterType method in the MapperAnnotationBuilder in my-
batis (https://tinyurl.com/yc8xwhv5), which has strong intra-method
dependencies but has nested logic that might only be executed in exceptional
circumstances — unless these circumstances are exercised in tests, destructive
edits to the innermost edits will not be detected.

For the good citizens, the methods correctly predicted as plastic (20 unique
methods — the same set for line and statement edits) exhibit few sequential
dependencies — often consisting of long disjoint conditionals or case state-
ments or initialisation of unconnected fields in structures. The good citizens
correctly predicted as non-plastic (17 unique methods) exhibited very tight
sequential dependencies.

Our broad observations of rogues, in particular, indicate ways in which
we can refine (boost) our models to search more broadly for dependencies
and adjust our metrics to account for shorter methods. Following the Anna
Karenina principle, from Tolstoy:

All happy families are alike; each unhappy family is unhappy in its
own way.

We would expect that there would be a lot of diversity in ways in which
methods can be rogues w.r.t. any model but the above features might serve
as a useful starting point. In addition, there is a lot of potential for using a
broader set of features and learning models to empirically derive models of

https://tinyurl.com/y356k3r5
https://tinyurl.com/yc7wwdyb
https://tinyurl.com/2p97jadz
https://tinyurl.com/yc8xwhv5
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plasticity. Such models, even if they are of moderate skill, are a promising
way to improve the efficacy of APM.

We can now answer RQ5: “Which features predict code’s plasticity, its
amenability to APM modulo a test suite?”. We find that:

Answer to RQ5

No code measure we tested showed a strong correlation with test pass
rate. Only cyclomatic complexity and normalised def-use show any cor-
relation with pass rate, and it is weak. The presence of tight sequential
dependencies also seems to offer some indication of plasticity.

Our earlier results (Section 5.5) revealed that pass rates fall off quickly as
more edits are applied. We might improve pass rates by targeting edits to code
regions on which they are more likely to work well (termed “plastic regions”
by Harrand et al. (2019)). We have shown that cyclomatic complexity and
normalised def-use show a small correlation with APM-ability, but it is not
enough to reliably predict an edit’s success. We might consider three possible
explanations for this result.

First, there is a defining characteristic of APM-able code but our measures
do not capture it. We have considered some basic code complexity measures
as a basis for a simple linear model. Future work could consider the many
other measures that have been applied in software fault prediction (Pandey
et al. (2021)) that could be deployed; knots, nesting levels, number of unique
operands, and counts of if-then or other structures are a small selection of
candidates that could be tested. Higher order and non-linear models should
also be considered as part of this work.

Second, it is possible that no set of code measures or rules can be defined
to predict APM-ability, and this becomes more likely as additional measures
and model types are considered as suggested above but still fail. We note that
this kind of “I know it when I see it but I can’t define it” problem is where
artificial neural networks (ANNs) seem to work well in practice, and indeed
ANNs have already shown some potential in software fault prediction (Li et al.
(2017)). The trouble with ANNs is having sufficient training data. Larger scale
experiments than those in our study are of course possible, but costly. An
alternative might be to mine software repositories such as GitHub for examples
of small edits, although labelling these would also prove challenging.

Third, it may simply be that the basic CDRS operators that we have con-
sidered produce a search space that is too large to thoroughly sample.obscuring
any signal from the code measures. In addition to the motivation provided by
the answers to our earlier RQs, this further justifies the design of ‘fat’ oper-
ators that reduce that search space (at the cost of limited applicability due
to loss of universality); over these reduced search spaces the signal should
be more evident. We conclude that measures to improve search by exploring
more sophisticated, grammar-aware, and more human-like, operators; must be
prioritised.



Program Transformation Landscapes for APM Using Gin 39

A complementary approach to increasing search effectiveness is to exploit
equivalence classes in the edit-space by immediately pruning from search those
edits that produce variants whose behaviour is equivalent to a variant that has
already been tested. Varfix Wong et al. (2021) falls under this broad approach
by avoiding repeated runs of execution paths by merging the program state
induced by different edits in multi-edit patches. We expect that work to further
exploit equivalence classes in the edit space has great potential to increase the
power of search.

6 Threats to Validity

Our results generalise to the extent to which our corpus is representative.
Our corpus has two parts: one we manually selected to be well-suited for our
experimental setup and a second that we systematically selected. Although we
only use 10, we have used a systematic approach to select the most popular,
large, real-world projects, which represent a wide range of Java applications
(see Table 4.1 and Table 4.2). Section 4.1 details our selection procedure. Other
than our restriction to Java, we have no reason to believe our selection criteria
introduced systematic bias. We note that our corpus is the largest used in a
landscape study in the arena of automated program modification, both in total
number of projects it contains (10) and the size of each project. Despite our
focus on Java, comparison with previous work on C suggests that our results
might generalise beyond one programming language.

A less standard threat to this study’s external validity is our decision to
narrow testing to only hot methods, as identified by profiling. This focus was
necessary to make this landscape study feasible over large, real-world Java
programs, due to the high computation cost of APM. Section 4.1 and Table 4.3
answer the question of whether the hot methods are representative of methods
in general. We found no dramatic difference between hot methods and other
methods within the corpus; while the differences were statistically significant,
they all have small effect sizes (< 0.2). We also considered whether the high
test coverage for hot methods might be skewed by very short methods such
as getters and setters. We found this unlikely: removing getters and setters
changed the coverage figures by less than one percentage point for all projects,
and reduced the method size by a median of one line and one statement across
all projects.

In general, a test suite underapproximates a program’s specification and
the degree of that underapproximation is usually unknown, even unknowable.
Thus, testing can only approximately measure a program’s correctness: A pro-
gram can pass a test suite and still be arbitrarily incorrect. Such programs are
said to overfit the test suite. Overfitting is a construct validity threat faced
by all APM approaches that use testing as a measure of correctness. In an at-
tempt to better approximate a program’s actual specification, we could have
employed ideas for enhancing the test suite (e.g. Ye et al. (2021); Xiong et al.
(2018); Xin and Reiss (2017); Yang et al. (2017)). We decided against doing
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so, because we can only speculate (and hope) that the new tests are con-
sistent with the actual specification and to avoid the computational cost of
running them. Like all other work in this space, we rely on the assumption
that test-passing programs are unlikely to all overfit, as the fact of meeting the
partial specification encoded in a test suite (witnessed by passing its tests),
does not entail violating the rest of the specification. Furthermore, test-passing
programs sample a smaller search space that all correct programs inhabit.

Concerning the question of whether our restriction to hot methods exac-
erbates this construct threat, we believe that we did not make the problem
much worse, as our hot method focus restricts testing to hot method tests.
As a consequence, our study does not run and cannot overfit tests for non-hot
methods.

7 Related Work

To date, there has only been a handful of analyses of automated program
modification search spaces Petke et al. (2019); Harrand et al. (2019) — this
stands in stark contrast to the extensive analysis of such spaces in the field of
meta-heuristic program synthesis Gulwani (2010). Petke et al. (2019)’s survey
on search space landscapes in genetic improvement (including search-based
program repair) identified only 14 papers, with none systematically exploring
the search space of multi-edit patches for traditional mutation operators, nor
comparing line and statement granular edits for Java. Our work thus fills this
gap in the literature. Moreover, we formalise the cost of APM, and investigate
characteristics of methods that are particularly plastic, i.e., amenable to APM.

7.1 Code Plasticity

Our study focuses on analysing how plastic is Java code under the CDRS
operators. Harrand et al. (2019) define plasticity as the “intrinsic capability
at being changed to another code, while keeping functional correctness, with
respect to a given test suite”. Identification and exploration of plastic regions
is important, as these, intuitively, represent the places where improvements to
non-functional behaviour of software might be found (without changing soft-
ware’s functional behaviour as specified by its test suite). Moreover, Renzullo
et al. (2018) show that such regions often form basis for an eventual repair.
Although APR tools that generate multi-edit patches exist (Mechtaev et al.
(2016); Saha et al. (2019)), in none of the work we found, do they analyse the
whole search space of multi-edit CDRS sequences.

The closest work to ours is Harrand et al. (2019)’s study, who sampled the
space of six Java projects (four from the commons-collection) to calculate neu-
tral variant rates. They consider three mutation operators, copy, delete and
replace, applied at statement granularity, and report NVRs (Equation (2.2))
of between 15.7% and 30% for single edits. This result is consistent with our
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finding of NVRs between 9.6% and 30.2%. We much extend their analysis
by considering two granularities (line and statement), an additional mutation
operator (i.e., swap), a larger corpus (systematically chosen), and the space
of multi-edit patches. Moreover, we exhaustively analyse the search space of
delete, the most effective operator (Section 7).

7.2 Size of APM landscapes

Due to the size of the APM search space with CDRS operators, exhaustive
studies have only been conducted on toy programs, with a restricted mutation
set. For instance, Langdon et al. (2017) conducted an exhaustive study, but
they mutated binary comparison operators only. In particular, they used the
triangle program, that, given three integers, outputs whether these form the
edges of a triangle and, if so, whether that triangle is isosceles, scalene, or
equilateral. With 6 comparison operators and overall 17 possible mutation
points, this APM search space contains 617 mutation points. This study shows
the difficulty of exhaustively exploring APM landscapes.

More recently Wong et al. (2021) proposed variational execution to effec-
tively reduce the cost of exploring edit spaces and realised in it VarFix. VarFix
uses program transformations that simultaneously encode multiple patches
(i.e. distinct edits) into Boolean-guarded paths. For each of the transformed
program’s tests, a variational execution engine Wong et al. (2018) then enu-
merates the distinct states induced by patched paths leveraging state-merging
to avoid a state-explosion. The effectiveness of state-merging rests on the em-
pirical observation that there are often few interactions in a program’s state
space between individual edits. Their approach succeeded in greatly reducing
the number of test runs required to explore combinations of large number of
edits. Because VarFix provides a means to speed up search space exploration,
its contribution is orthogonal to the current work: its use might speed our
landscape traversal but would not change any of the findings of this work.

7.3 APM Granularity

When considering APM landscapes, most research has focused on navigating
the space of statement granular operators Petke et al. (2019). However, both
line (e.g., Langdon and Harman (2010)) and expression (e.g., Haraldsson et al.
(2017); Wen et al. (2018)) granular changes have proved effective at finding
software improvements. It is worth noting that expression-granular changes
vastly increase the search space, producing even more unviable program vari-
ants unless constraints and/or prioritisation strategies are introduced. Central
to our work is our effort to exhaustively study CDRS within our resource con-
straints. Additional granularities would greatly expanded our search space and
made our study shallower. Wen et al. (2018) resort to prioritisation strategies
to narrow the search space for bug fixes, a tactic that runs counter to goal to
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map and characterise the search landscape. This fact, coupled with the promi-
nent use of line and statement granularity in the literature, is why we decided
to focus solely on line and statement granularity.

The question of determining at which operator granularity APM is most
effective has been tackled in the literature.

For example, Binkley et al. (2019) compared line and statement granularity
in the observational slicing context. In particular, they compared a slicer that
deletes lines of code with one that removes AST subtrees. They used 14 C
and 6 Java programs, with less than 1.5k LoC each. They concluded that
although the slices are identical in the majority of cases, the tree-based slices
are occasionally larger. They also take longer to obtain. Interestingly, in our
work we show that statement granular edits are actually more attractive than
line granular edits in terms of effectiveness and time cost. We do, however,
focus on smaller edits than commonly encountered in the slicing literature.

An et al. (2018) ran their program repair tool with two sets of APM oper-
ators (copy, delete, and replace), at line and at statement granularity, on
a 3.6k LoC Python program. They conclude that the statement-granular edits
are more effective, finding a correct fix for one more bug than the line-granular
ones. However, statement-granular edits are less efficient. They produce more
syntactically valid patches than the line granular ones, leading to more test
case evaluations, thus taking longer to produce a patch. Their study, however,
has a different focus to ours. Rather than direct bug fixes, we are interested
in finding neutral program variants. Moreover, also taking compilation costs
in Java into account, we find that line-granular edits waste 10% more compu-
tation resources than statament-granular ones.

7.4 APR Landscapes

In the field of automated program repair (APR), studies on APM search
spaces, understandably, largely focused on finding bug fixes within them,
rather than on NVRs. Below we summarise latest work in this direction.

Recently, Etemadi et al. (2022) studied ca. 55k commits to statically esti-
mate whether a bug fix is within a search space of current APR tooling. They
show that only 1.35% of those bug fixing commits lie in the search space of
at least one current APR tool. In order to best choose which tool might be
best fit for fixing bug in a given project, they thus proposed a light-weight
approach for checking whether previous fixes lie in the search space of a given
APR tool.

Along similar lines, Ginelli et al. (2022) empirically investigated the search
space of an APR tool that only uses delete to generate candidate patches.
The authors showed that, not only were candidate patches generated infre-
quently (< 3% of bugs), but also they did not correctly fix a given bug in 96%
of cases. Of these incorrect fixes, they find 63% is due to the inadequacy of the
test suite used. Unlike that work, we exhaustively enumerate the space of all
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candidate delete operations over the subject program’s hot methods, which
have high test coverage (see Table 4.3).

Furthermore, Ahmad et al. (2022) recently sampled space of variants pro-
duced by four program repair tools, and used syntactic and semantic com-
parison measures. They conclude that searching in the right place is more
important than searching broadly, over a semantically and/or syntactically di-
verse set of variants. This supports our decision to focus on hot methods. They
suggest that a deeper understanding of how repairs are distributed throughout
syntactic and semantic search spaces is needed.

Unlike the aforementioned work, we are not interested in the ability of
individual tooling to find a bug fix. We investigate the landscape of primi-
tive APM operators that are universal in the sense that they can produce
any variant, paying particular attention to neutral variants. These variants
can be exploited to improve both functional software properties, such as bug
fixing Renzullo et al. (2018), and non-functional ones Petke et al. (2019).

APR work has largely focused on the Boolean result of test cases when
investigating search landscapes. This creates landscapes with plateaus, sep-
arated by one test case failure. To address this critique, Yuan and Banzhaf
(2020) and Bian et al. (2021) proposed fitness functions that take into account
the types of test failures (e.g., NullPointerException ranked lower than incor-
rect numerical output). Techniques, like this one, that smooth the landscape
of the search space would benefit all forms of APM. Unfortunately, followup
work has cast doubt on this direction, showing that it does not improve APR
effectiveness in practice (Guizzo et al. (2021)). It remains to be seen whether
this direction remains promising when relaxing the search away from directly
finding patches to neutral variants.

8 Conclusion

Automated program modifications have proven successful in optimising vari-
ous software properties, both functional, e.g., fixing bugs, and non-functional,
e.g., decreasing software’s runtime. However, the question of which edit oper-
ators should be applied to software and at what level of granularity, is largely
unsolved. Therefore, in this work we investigated the Java program search
space, to make a step towards answering that question. We have not only con-
sidered the effect of the traditional operators, used in genetic improvement,
including search-based automated program repair, both at the statement and
line-level, but also considered the largely unused swap operator and focused
on the differences between programs to which GI and APR is applied to.

Our study on the largest APM benchmark to-date shows that statement-
level operators yield more program variants that still pass test suites, though
among the variants that compile the rate of those that pass is higher for the
line-level operators. We also show that the time required to apply and evaluate
line edits is much wasted on ineffective patches. Overall, we thus recommend
the use of statement-level edits over line-level ones in future APM work.
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Similarly to bug fixing work, the delete operator is the most effective,
yet swap, as implemented in the Gin toolbox we use, is second-best effective.
Moreover, even though the larger the set of random edits applied to software,
the less likely it is to pass its test suite, these edit sequences can also include
self-repairs, that recover from previous failures. Perhaps those patterns could
be extracted to produce multi-edit operators.

Finally, we saw no correlation between test pass rate and several traditional
code metrics, leaving the question of which methods are more amenable to
APM, and thus have potential to be effectively improved, yet to be solved.
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the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech
Republic, July 13-17, 2019, ACM, pp 985–993, DOI 10.1145/3321707.3321841, URL
https://doi.org/10.1145/3321707.3321841

Brownlee AEI, Petke J, Rasburn AF (2020) Injecting shortcuts for faster running java
code. In: IEEE Congress on Evolutionary Computation, CEC 2020, Glasgow, United
Kingdom, July 19-24, 2020, IEEE, pp 1–8, DOI 10.1109/CEC48606.2020.9185708, URL
https://doi.org/10.1109/CEC48606.2020.9185708

Callan J, Krauss O, Petke J, Sarro F (2022) How do android developers improve non-
functional properties of software? Empir Softw Eng 27(5):113, DOI 10.1007/s10664-022
-10137-2, URL https://doi.org/10.1007/s10664-022-10137-2

Coelho R, Almeida L, Gousios G, van Deursen A, Treude C (2017) Exception handling
bug hazards in android - results from a mining study and an exploratory survey. Empir
Softw Eng 22(3):1264–1304, DOI 10.1007/s10664-016-9443-7, URL https://doi.org/

10.1007/s10664-016-9443-7

Cohen J (1969) Statistical Power Analysis for the Behavioral Sciences. Academic Press, NY
Etemadi K, Tarighat N, Yadav S, Martinez M, Monperrus M (2022) Estimating the potential

of program repair search spaces with commit analysis. J Syst Softw 188:111263, DOI
10.1016/j.jss.2022.111263, URL https://doi.org/10.1016/j.jss.2022.111263

Gazzola L, Micucci D, Mariani L (2019) Automatic software repair: A survey. IEEE Trans
Software Eng 45(1):34–67, DOI 10.1109/TSE.2017.2755013, URL https://doi.org/10

.1109/TSE.2017.2755013

Gewirtz P (1996) On ”I know it when I see it”. The Yale Law Journal 105(4):1023–1047,
DOI 10.2307/797245, URL http://www.jstor.org/stable/797245

Ginelli D, Martinez M, Mariani L, Monperrus M (2022) A comprehensive study of code-
removal patches in automated program repair. DOI 10.1007/s10664-021-10100-7, URL
https://doi.org/10.1007/s10664-021-10100-7

Guizzo G, Blot A, Callan J, Petke J, Sarro F (2021) Refining fitness functions for search-
based automated program repair - A case study with ARJA and arja-e. In: O’Reilly U,
Devroey X (eds) Search-Based Software Engineering - 13th International Symposium,
SSBSE 2021, Bari, Italy, October 11-12, 2021, Proceedings, Springer, Lecture Notes in
Computer Science, vol 12914, pp 159–165, DOI 10.1007/978-3-030-88106-1\ 12, URL
https://doi.org/10.1007/978-3-030-88106-1_12

Gulwani S (2010) Dimensions in program synthesis. In: Kutsia T, Schreiner W, Fernández
M (eds) Proceedings of the 12th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, July 26-28, 2010, Hagenberg, Austria, ACM,
pp 13–24, DOI 10.1145/1836089.1836091, URL https://doi.org/10.1145/1836089.18

36091

Haraldsson SO, Woodward JR, Brownlee AEI, Siggeirsdottir K (2017) Fixing bugs in your
sleep: how genetic improvement became an overnight success. In: Bosman PAN (ed)
Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15-19, 2017,
Companion Material Proceedings, ACM, pp 1513–1520, DOI 10.1145/3067695.3082517,
URL http://doi.acm.org/10.1145/3067695.3082517

Harrand N, Allier S, Rodriguez-Cancio M, Monperrus M, Baudry B (2019) A journey
among Java neutral program variants. Genetic Programming and Evolvable Machines
20(4):531–580, DOI 10.1007/s10710-019-09355-3, URL https://doi.org/10.1007/s1

0710-019-09355-3

Hassan F, Bansal C, Nagappan N, Zimmermann T, Awadallah AH (2020) An empirical
study of software exceptions in the field using search logs. In: Baldassarre MT, Lanubile
F, Kalinowski M, Sarro F (eds) ESEM ’20: ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, Bari, Italy, October 5-7, 2020, ACM,
pp 4:1–4:12, DOI 10.1145/3382494.3410692, URL https://doi.org/10.1145/3382494.

3410692

https://doi.org/10.1109/TEVC.2021.3070271
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1109/CEC48606.2020.9185708
https://doi.org/10.1007/s10664-022-10137-2
https://doi.org/10.1007/s10664-016-9443-7
https://doi.org/10.1007/s10664-016-9443-7
https://doi.org/10.1016/j.jss.2022.111263
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
http://www.jstor.org/stable/797245
https://doi.org/10.1007/s10664-021-10100-7
https://doi.org/10.1007/978-3-030-88106-1_12
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1145/1836089.1836091
http://doi.acm.org/10.1145/3067695.3082517
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1145/3382494.3410692
https://doi.org/10.1145/3382494.3410692


46 Justyna Petke et al.

Kirbas S, Windels E, McBello O, Kells K, Pagano MW, Szalanski R, Nowack V, Winter ER,
Counsell S, Bowes D, Hall T, Haraldsson S, Woodward JR (2021) On the introduction
of automatic program repair in bloomberg. IEEE Softw 38(4):43–51, DOI 10.1109/MS
.2021.3071086, URL https://doi.org/10.1109/MS.2021.3071086
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