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Abstract  

Background and objectives: Studies associate chronic kidney disease (CKD) with 

neurodegeneration. This study investigated the relation between kidney function, 

blood, cerebrospinal fluid (CSF), and structural brain MRI markers of 

neurodegeneration, in a sample including individuals with and without CKD.  

Methods: Participants from the Gothenburg H70 Birth Cohort Study, with data on 

plasma-neurofilament light (P-NfL), estimated glomerular filtration rate (eGFR) and 

structural brain MRI were included. Participants were invited to also have CSF 

collected. The primary endpoint of the present study was to determine any 
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association between CKD and P-NfL. Secondary endpoints included cross-sectional 

associations between CKD, eGFR and cerebrospinal fluid (CSF)- and MRI-derived 

markers of neurodegeneration and Alzheimer’s disease (AD) pathology (MRI: cortical 

thickness, hippocampal volume, lateral ventricle volume, white matter lesion volume; 

CSF: β-amyloid (Aβ) 42, Aβ42/40, Aβ42/p-tau, t-tau, p-tau, NfL). Participants with P-

NfL and eGFR at baseline were re-examined on eGFR, 5.5 (5.3; 6.1) years (median; 

IQR) after the first visit, and the predictive value of P-NfL levels on incident CKD was 

estimated longitudinally, using a Cox proportional hazards model.  

Results: We included 744 participants, 668 without CKD (Age 71 (70; 71) years, 50% 

males) and 76 with CKD (age 71 (70;71) years, 39% males). Biomarkers from 

cerebrospinal fluid (CSF) were analysed in 313 participants. 558 individuals returned 

for a re-examination of eGFR (75% response rate, age 76 (76; 77), 48% males, 76 

new cases of CKD). Participants with CKD had higher P-NfL levels than those with 

normal kidney function (median; 18.8 versus 14.0 pg/mL, p<0.001), while MRI and 

CSF markers were similar between the groups. P-NfL was independently associated 

with CKD after adjustment for confounding variables, including hypertension and 

diabetes (OR; 3.231, p<0.001), in a logistic regression model. eGFR, and CSF Aβ 

42/40: R=0.23, p=0.004 correlated in participants with Aβ42 pathology. P-NfL levels 

in the highest quartile were associated with incident CKD at follow-up (HR; 2.08 

(1.14: 4.50)). 

Discussion: In a community-based cohort of 70-year olds, P-NfL was associated with 

both prevalent and incident CKD, while CSF and/or imaging measures did not differ 

by CKD status. Participants with CKD and dementia presented similar levels of P-

NfL.   
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Glossary 

Aβ = β-amyloid; AD = Alzheimer’s disease; BMI = body mass index; CDR = clinical 

dementia rating; CSF = cerebrospinal fluid; CKD = Chronic kidney disease; COPD = 

chronic obstructive pulmonary disease; CRP = C-reactive protein; eGFR = estimated 

glomerular filtration rate, HDL = high-density lipoprotein, LDL = low-density 

lipoprotein; LP = lumbar puncture; MRI = magnetic resonance imaging; NfL = 

neurofilament light protein; P = plasma; p = phosphorylated; t = total 

 

Introduction 

Decline in renal function and an increasing prevalence of neurodegenerative 

conditions, including Alzheimer’s disease (AD), cerebrovascular disease and 

polyneuropathy, are all related with ageing 1, 2. Chronic kidney disease (CKD) has a 

prevalence of around 11% in the western world 3 and is one of the fastest growing 

causes of death globally alongside dementia 4. Dementia had an estimated global 

prevalence of 57 million people in 2019, a number expected to increase to 153 

million by 2050 1.  

CKD has previously been associated with blood-based biomarkers of 

neurodegeneration (phosphorylated tau (p-tau), amyloid beta 42/40(Aβ42/40) and 

neurofilament light protein (NfL)) 5-9 and different neurodegenerative conditions 

including dementia 10 and polyneuropathy 11. This association has previously been 

examined in the clinical context of different patient groups, including patients from 

memory clinics 12-14. As the kidney has a function in amino-acid recycling, and 

clearance of circulating peptides. Smaller proteins, such as insulin (5.8 kDa) and 

glucagon (3.5 kDa) pass the glomeruli pores and are long-known to be cleared in the 
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kidney tubuli to a significant degree 15. Larger proteins such as albumin (67 kDa), are 

not normally filtered out by the glomeruli, but can leak to the urine in a state of 

albuminuria16. This occurs in a smaller fraction of patients with mild CKD, but is more 

frequent as the disease progresses 17. The rapid advances in the development of 

blood-based biomarkers of neurodegeneration also brings a need for understanding 

what comorbidities influence the measurements. Some authors suggest that CKD 

and kidney function could alter a biomarkers normal reference range, and should be 

considered when utilized in clinical screening and diagnosis in cognitively healthy 

populations, or in clinical studies of neurodegeneration 6, 7, 18, 19.  

P-NfL is one promising biomarker of neurodegeneration for use in a primary care 

setting, as it is analysed from blood and not CSF. P-NfL segregates depression from 

dementia in elderly, and while only mildly elevated in patients with AD, it is an 

efficient marker for ruling out underlying neurodegeneration 20, 21. P-NfL is also high 

in ALS, atypical parkinsonian disorders, frontotemporal dementia and in Down 

syndrome patients with AD, providing evidence of an underlying neurodegenerative 

cause of a patient’s symptoms 21-23.  

Studies on the influence of several comorbidities and different blood-based 

biomarkers have reported an influence of kidney function on P-NfL 6, 7, 9. However, 

studies specifically focused on the interaction between kidney function and different 

neurodegenerative markers in a community-based setting of elderly with CKD and 

normal kidney function are currently few. The Alzheimer’s Association has 

specifically highlighted the need for studies on the influence of kidney disease on the 

diagnostic performance of P-NfL as one of the top research priorities in its recent 

statement paper on the use of blood-based biomarkers 24. The aim of this study was 
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to investigate kidney function associations with P-NfL and several other markers of 

neurodegeneration, in individuals with and without CKD. 

 

Methods 

Study design and population using data from The Gothenburg H70 Birth 

Cohort Study. 

This study was conducted in participants from the Gothenburg H70 Birth Cohort 1944 

25 with data available on plasma neurofilament light protein (P-NfL), estimated 

glomerular filtration rate (eGFR) and established structural magnetic resonance 

imaging (MRI) variables in studies of dementia; mean cortical thickness 26, mean 

lateral ventricle volume 26, mean hippocampal volume 26 , total white matter lesion 

volume 27 (n=744) (Figure 1). The cohort is derived from a population-based study 

which invited all citizens of Gothenburg, born on specific birthdates in 1944, to attend 

a health examination the year they turned 70. In total, 1203 accepted the invitation 

(response rate 72.2%), and the examinations were conducted between 2014 and 

2016, previously described in detail 25. The primary endpoint of the present study was 

to determine any association between CKD and P-NfL. Secondary endpoints include 

associations between CKD and other markers of neurodegeneration, as well as any 

association between kidney function measured as eGFR and cerebrospinal fluid 

(CSF)- and MRI-markers of neurodegeneration.  

Beside health interviews, blood sampling and physical examinations, all participants 

who did not present with any contraindications were also invited to a brain MRI 

examination and a lumbar puncture. Due to the limited participation rate for CSF 

sampling, associations determined with CSF biomarkers were conducted as a sub-
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study of participants with available CSF and complete data on fluid-based biomarkers 

of neurodegeneration (n=313). Blood samples were collected at the first study visit, 

brain MRI was conducted within 3 months of the initial study visit and lumbar 

puncture was performed within 2 months of the MRI examination. 

 

Standard protocol approvals, registrations, and patient consents 

This study was conducted according to the Helsinki Declaration approved by the 

Regional Ethical Review Board in Gothenburg (869-13, T076-14, T166-14, 976-13, 

127-14, T936-15, 006-14, T703-14, 006-14, T201-17, T915-14, 959-15, T139-15). All 

the participants and/or their close relatives gave written consent before any study 

related procedures were done.  

 

Data availability statement 

Anonymized data can be obtained by reasonable request from any qualified 

investigator. 

 

Baseline health interview and medical examination 

All participants attended a health examination at the Neuropsychiatric Clinic at 

Sahlgrenska University Hospital in Gothenburg, Sweden, conducted by the 

Gothenburg H70 Birth Cohort Study team. Participants underwent a health interview 

covering social and medical aspects. Anthropometric variables were determined, 

including weight, height and blood pressure. BMI was calculated as weight (kg) / 
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height2 (m), eGFR was calculated according to CKD-epi 28, using the formula below. 

CKD was defined as an eGFR below 60 mL/min/1.73 m2 29. 

            (
          

     
     )

     

    (
          

     
     )

      

                            

 

Kappa = 0.7 (females) or 0.9 (males)  

Alpha = -0.329 (females) or -0.411 (males) 

 

Medical comorbidities were determined through a combination of health interviews, 

data in the Swedish National In-patient register and collected clinical variables. CDR 

was assessed by research nurses with specific training, dementia was diagnosed 

according to the Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, 

revised criteria. CDR score and dementia diagnoses were also verified by study 

physicians in consensus conferences. Hypertension was defined as a systolic blood 

pressure >140 mmHg, a diastolic blood pressure >90 mmHg, or a history of 

hypertension with ongoing medication reported by the participant.  

A stroke was determined if the participant or a close relative reported the diagnosis, if 

it was diagnosed in the Swedish National In-patient register, or there were stroke-

specific findings on the MRI scan. A history of transitory ischaemic attacks was not 

classified as a stroke. Diabetes was defined as a previous diagnosis of diabetes, or if 

the participant presented a fP-glucose ≥ 7.0 mmol/L at the study visit.  

 

Fluid-based biomarker analysis 

Blood samples were collected in the morning after overnight fasting. Creatinine, 

fasting plasma glucose (fP-glucose), homocysteine, c-reactive protein and LDL-

cholesterol were analysed at the Sahlgrenska Clinical Chemistry laboratory. P-NfL 
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was analysed using the NF-Light kit on a Simoa HD-X Analyser (Quanterix, Billerica, 

MA) at the Neurochemistry Laboratory at Sahlgrenska University Hospital, Mölndal, 

according to the manufacturer’s instructions. Quality control samples presented a 

7.6% repeatability and 8% intermediate precision (at 6.6 pg/mL) and a 7.2% 

repeatability and 7.8% intermediate precision (at 50.5 pg/mL). 

Blood was collected for APOE genotyping with the KASPar PCR SNP genotyping 

system (LGC Genomics, Hoddesdon, Herts, UK). APOE ε2, ε3, and ε4 alleles were 

defined by single nucleotide polymorphisms rs7412 and rs429358 (n=744). 

Lumbar puncture was performed on a separate day by a medical doctor specialised 

in psychiatry or neurology 25. CSF samples were centrifuged, gently mixed, and 

stored at -80°C until analysis.  

T-tau and p-tau in CSF were analysed using commercial enzyme-linked 

immunosorbent assays (ELISA) (INNOTEST htau Ag and PHOSPHO_TAU [181P], 

Fujirebio [formerly Innogenetics], Ghent, Belgium) 30, 31, while INNOTEST® Aβ1-42 

was used to measure the 42 amino acid-long version of Aβ (Aβ42) 32. The V-PLEX 

Aβ Peptide Panel 1 (6E10) Kit (MesoScale Discovery, Rockville, MD) was used to 

measure the CSF Aβ42/40 ratio 33. Aβ pathology status was defined as Aβ42 levels 

below 530pg/mL in accordance with a previously conducted longitudinal study 

predicting incident AD 34. 

CSF NfL was measured with an ELISA developed at the Mölndal Clinical 

Neurochemistry Laboratory 35, 36. All assays are used in routine clinical analyses at 

the Mölndal Clinical Neurochemistry laboratory.37 Analytical runs passed quality 

control criteria for the calibrators and internal quality control samples were approved 

as described in detail previously 37.  
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MRI 

Brain MRI was conducted at the Aleris Clinic in Gothenburg using a 3.0T Philips 

Achieva system as previously described in detail 25. Mean cortical thickness, mean 

lateral ventricular and hippocampal volumes were quantified using FreeSurfer 6.0.0 

(http://surfer.nmr.mgh.harvard.edu/) through the TheHiveDB 38, and the mean volume 

between left and right side was calculated for ventricles and hippocampus 6. Total 

white matter lesion volumes were measured using the open-source segmentation 

toolbox LST 2.0.15 implemented in the SPM software 

(https://www.fil.ion.ucl.ac.uk/spm/) as previously described 39. All volumes were 

normalised by ratio to total intracranial volume, as described previously 6.  

 

Follow-up examination 

Participants in H70 Birth Cohort 1944 were invited for a re-examination after the age 

of 75. Individuals without CKD and with P-NfL and eGFR measured at baseline were 

included in the study for a longitudinal evaluation on incident CKD, defined as a 

follow-up eGFR<60 mL/min/1.73 m2. 

 

Statistical methods 

Categorical variables are presented as n (%) and continuous variables as median 

[interquartile range (IQR)] unless otherwise specified. Categorical variables were 

compared between groups with Chi2 or Fisher´s exact test as appropriate. For group-

wise comparisons of continuous variables, Mann-Whitney U test or Kruskal-Wallis 

tests were used. Correlations were determined using Spearman correlations. For the 
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cross-sectional logistic regression analysis with CKD as the dependent variable, and 

P-NfL as the independent, continuous variable, three models were constructed with 

age, sex and years of education as covariates in model I. Model II included additional 

adjustments for medical history of hypertension or diabetes, and model III with 

additional adjustments for smoking, BMI, fP-glucose, S-LDL cholesterol, P-CRP and 

P-homocysteine. Non-normally distributed variables were log-transformed prior to 

analysis. For P-NfL, one outlying sample (more than 10 SD higher than the mean) 

was identified, and statistical tests were performed with and without this individual as 

a sensitivity analysis. The analyses of the association between P-NfL and eGFR was 

repeated in the full H70 Birth Cohort of 1151 individuals, with data on eGFR and P-

NfL. Cross-sectional linear regression analysis was also performed with P-NfL as the 

independent continuous variable, and eGFR as the dependent variable, adjusted for 

the same variables as in the logistic regression model. For longitudinal statistical 

analysis of the predictive value of P-NfL on incident CKD, a Cox proportional hazards 

model was used, adjusting for the same variables as in the other regression models. 

P-NfL divided by quartiles was used as a categorical variable, in the Cox proportional 

hazards model. The proportional hazards assumption was tested through a 

hierarchical regression strategy, where each regression model was followed up by 

the addition of time-dependent interaction terms. No model was significantly 

improved through this addition. GraphPad Prism (version 9.0.0, GraphPad Software) 

was used for the plots and statistics therein, and SPSS (version 26, IBM) was used 

for all other statistical analysis. 
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Results 

Characteristics 

From the Gothenburg H70 Birth Cohort 1944 (N=1203, 559 men, 644 women, 96.5% 

born in Europe), 744 individuals met the inclusion criteria for this study. The 

characteristics of the participants are provided in Table 1, with additional information 

on medications as supplementary material (eTable 1 in the Supplement) (n=744). 

Seventy-six of the 744 individuals (10.2 %) included in the study had CKD. 

Comparing participants with and without CKD, there were no statistically significant 

differences in sex distribution, age, and years of education (Table 1). Considering 

medical history, the prevalence of hypertension was higher in participants with CKD, 

as was their BMI. There was no difference in the distribution of CDR=0 and 0.5 

between participants with or without CKD, and the prevalence of dementia was 

overall low (<2%). The prevalence of APOE ε4 genotype, stroke and diabetes, as 

well as fasting levels of glucose did not differ between the two groups. By definition, 

eGFR was lower in participants with CKD, and creatinine levels were higher. As 

expected, the vitamin-B deficiency marker homocysteine, as well as the inflammatory 

marker CRP and S-triglycerides, were higher in participants with CKD, while B-Hb 

and S-HDL-cholesterol were lower 40, 41. P-NfL levels were also higher in participants 

with CKD (Table 1). 

 

Imaging-based measurements of neurodegeneration 

Measurements of mean cortical thickness (Figure 2A, p=0.2591), mean lateral 

ventricular volume (Figure 2B, p=0.7806, mean hippocampal volume (Figure 2C, 

p=0.9012) and total volume of white matter lesions (Figure 2D, p=0.0790) were 
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comparable between participants with and without CKD. One participant with 

dementia presented very small volumetric measurements. Exclusion of the 

participant did not change statistical outcomes in a sensitivity analysis and was 

therefore kept in the sample. Correlation analysis of eGFR and these markers of 

neurodegeneration did not reveal any significant correlations (eTable 2 in the 

Supplement).  

 

CSF-based measurements of neurodegeneration 

The CSF concentrations of several different markers of neurodegeneration were 

analysed in the 313 participants who accepted CSF-sampling. Of these, 26 (8.3%) 

had CKD. Both groups presented levels of CSF Aβ42/40 (Figure 2E, p=0.2715), t-tau 

(Figure 2F, p=0.7404), p-tau (Figure 2G, p=0.9412) and NfL (Figure 2H, p=0.2854) in 

the same magnitude, comparing participants with or without CKD. 

 

Associations between P-NfL and kidney function 

P-NfL increased with lower kidney function measured as eGFR (Figure 3A). Stratified 

linear regressions revealed a steeper slope in participants with CKD (beta=-0.496, 

p<0.001) compared with participants without CKD (beta=-0.091, p<0.137, Figure 3A). 

To disentangle the potential confounding effects of CKD and dementia on the 

association between eGFR and P-NfL levels, these variables were compared in three 

distinct subgroups: participants with CDR=0 and no CKD (n=540), participants with 

CDR=0 and CKD (n=62), as well as participants with dementia, but no CKD (n=9). 

Participants with CDR=0 and participants with dementia, both without CKD, 

presented similar eGFR levels (p>0.999) (Figure 3B) while P-NfL levels were 
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significantly higher in those with dementia (p=0.0016). As expected, in participants 

with CKD and CDR=0, eGFR was significantly lower than in those without CKD 

(Figure 3B) (p<0.001). P-NfL levels were also significantly higher in participants with 

normal cognitive function and CKD compared to those without CKD (p<0.001, both 

groups CDR=0) (Figure 3C). In a sensitivity analysis, the results from these analyses 

were replicated in all 1151 participants with data on eGFR and P-NfL in the full H70 

Birth Cohort Study (eFigure 1 in the Supplement).  

 

Logistic and linear regression analyses between CKD, eGFR and P-NfL 

A logistic regression analysis of the relation between P-NfL and CKD, adjusted for 

age, sex and education was performed (Model I) demonstrating a statistically 

significant association between P-NfL and CKD (Table 2). Additional adjustments for 

other risk factors of CKD and neurodegeneration, including hypertension and 

diabetes (Model II), as well as smoking, BMI, fasting plasma glucose, LDL-

cholesterol, CRP and homocysteine (Model III) did not alter the statistical significance 

(Table 2). Excluding participants with dementia (n=9), did not alter the statistical 

significance of any model, although the OR was slightly higher (eTable 3 in the 

Supplement). One individual without CKD presented with extreme levels of P-NfL 

and the analyses were therefore repeated without this individual, showing slightly 

higher OR and similar p-values (eTable 4). There was also a statistically significant 

association between P-NfL and eGFR, assessed using a linear regression models 

adjusted for the same confounders as the logistic regression (Table 2).  
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Cox proportional hazards regression model predicting incident CKD by P-NfL 

levels 

Participants were re-examined for eGFR, 5.5 (5.3; 6.1) years (median; IQR) after the 

first visit. 558 individuals without CKD at baseline had re-examination data for eGFR 

(75% response rate, age 76 (76; 77), 48% males, 76 new cases of CKD). 

Participants were stratified into quartiles by P-NfL levels from low to high, and the 

predictive value of P-NfL levels on incident CKD was estimated through a Cox 

proportional hazards model. P-NfL levels in the highest quartile were found to be a 

significant predictor of incident CKD after adjustment for age, sex, education, 

hypertension, diabetes (Model II), as well as additional adjustments for smoking, 

BMI, fasting plasma glucose, LDL-cholesterol, CRP and homocysteine (Model III) 

(Table 3). However, additional adjustment for baseline eGFR, completely removed 

the longitudinal association.  

 

Stratification by Aβ pathology 

Participants with available CSF data were stratified based on Aβ status, and 

correlation analyses between fluid biomarkers of neurodegeneration and eGFR were 

performed (Table 4). In total, 142 (46.9%) of the 313 participants were classified as 

positive for Aβ-pathology. In Aβ-positive participants, eGFR correlated positively with 

Aβ42 (R=0.25, p=0.003), Aβ42/40 (R=0.23, p=0.004), and Aβ42/p-tau (R=0.23, 

p=0.005) and inversely with t-tau (R=-0.16, p=0.048). There was no significant 

correlation with p-tau, although the R-coefficient and p-values were similar to the 

eGFR/t-tau association (R=-0.15 and p=0.071). In Aβ-negative participants, no 

correlations were seen for eGFR with any CSF-biomarker. In contrast, eGFR 
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correlated inversely with P-NfL in both Aβ-positive and negative participants with a 

similar R coefficient (R=-0.27 and R=-0.31, respectively) and p-values (p<0.001 for 

both correlations). The 5 participants with dementia and CSF data were excluded in a 

sensitivity analysis, without any significant influence on R-coefficients or p-values 

(eTable 5 in the Supplement). The correlation between t-tau and eGFR changed from 

p=0.048 to p=0.070 resulting in a shift over the p-value threshold of 0.05, while R-

coefficients were still similar (R=-0.16 to R=-0.15). 

 

Discussion 

In this study, we assessed several different markers of neurodegeneration in 744 

individuals from a population-based cohort of 70-year-olds, in relation to the 

presence or absence of CKD. We found that P-NfL was higher in cognitively healthy 

individuals with CKD, and presented similarly high levels as seen in participants with 

mild dementia. The association between CKD, eGFR and P-NfL was still significant 

after adjustment for several confounding variables in a logistic regression model. P-

NfL was an independent predictor of incident CKD in a Cox proportional hazards 

model. Furthermore, the linear regression coefficient for eGFR with P-NfL appeared 

steeper in participants with CKD compared with participants with normal kidney 

function. We found that CKD did not influence any MRI-measurement of 

neurodegeneration, and no MRI-variable correlated with eGFR. In a sub-study 

including a smaller sample of 313 participants with CSF data, Alzheimer’s related 

biomarkers only correlated with eGFR in Aβ42-positive participants after stratification 

for Aβ42 pathology.  
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CKD has previously been associated with markers in Alzheimer’s pathology 5-7, 9, 18, 

42, 43, but as several risk factors and comorbidities are shared between the two 

conditions, it is difficult to determine the specific underlying mechanism. Here, we did 

not observe any differences in structural MRI-measurements between participants 

with or without CKD. Furthermore, we did not observe any difference in the 

established CSF biomarkers, between the two groups in the smaller sample of 

participants contributing with CSF. The presence of CKD did therefore not appear to 

have any major confounding influence on CNS integrity in any aspect in this 

community-based sample. However, there was an association between P-NfL and 

both CKD and eGFR, indicating that kidney function is associated with some form of 

neurodegenerative pathology6, 7, 19.  

 

The association between P-NfL and eGFR has been reported in several independent 

studies previously, including cognitively healthy Mexican Americans, non-Hispanic 

Whites, and participants from the Mayo Clinic Study of Aging 8, 12, 18, 44, 45. Studies in 

patients with diabetes and in children with congenital CKD have discussed potential 

links to NfL released from the CNS 5, 12, while a study of patients with end-stage renal 

disease did not find any correlation between P-NfL and cognitive function measured 

through Mini-mental State Examination 46. Support for a causal influence of CKD on 

neurodegeneration in CNS is found in children with congenital CKD, where P-NfL is 

elevated, and cognitive impairment can be observed, possibly through shared 

genetic drivers 5. In contrast, a recent study including patients from French memory 

clinics did not find any influence of CKD status on the predictive value of circulating 

NfL on incident dementia 47. This could be explained by differences in study design 

and participant characteristics, as the study was conducted in a clinical sample of 
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patients with memory symptoms, and measured longitudinal outcomes on incident 

dementia. Furthermore, P-NfL is elevated in polyneuropathy, a condition often seen 

in patients with CKD 11, 48. Other community-based studies have previously reported 

observations on the influence of comorbidities on plasma-based biomarkers and 

reported an association between P-NfL and CKD 6, 7, 19. We extended these 

observations with measurements in a large Scandinavian community-based sample 

selected by birth date and find an association between CKD, eGFR and P-NfL, using 

logistic- and linear regression models adjusted for somatic comorbidities including 

diabetes and hypertension. We also find that P-NfL is a predictor of incident CKD. 

Furthermore, using stratified linear regression analysis, we observe that the 

association between P-NfL and eGFR is mainly manifest in participants with CKD. 

This indicates that the integrity of P-NfL as a marker to rule out underlying 

neurodegeneration in a general population should not be confounded to any larger 

degree in individuals with normal kidney function. While there was an association 

between P-NfL and eGFR, the levels of eGFR were similar between individuals with 

and without dementia in the range >60 mL/min/1.73m2, suggesting that eGFR per se 

may not be considered an indicator of underlying neurodegenerative disease.  

 

Memory impairment is sometimes caused by conditions which are not related to 

neurodegeneration e.g. depression. It is therefore a medical challenge in primary 

care, and in clinical interventions studies to segregate groups with these symptoms 

by underlying etiology. P-NfL has shown great promise in identifying individuals who 

present cognitive symptoms without any underlying neurodegenerative condition, 

providing support on which patients to refer to a memory clinic 21. It is also feasible 

for this purpose as it is a blood-based biomarker. Our observations of a similar 
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elevation of P-NfL in individuals with CKD as in dementia indicate that P-NfL may not 

be useful for this purpose in individuals with CKD. As our study is based on a 

community-based sample of elderly, our participants are often found in the primary 

care setting.  

 

We also measured CSF biomarkers in a smaller sample of individuals and did not 

find any influence of CKD status. While a previous study has shown that CSF NfL is 

associated with several other comorbidities, it does not appear to present any strong 

association with CKD 49. However, we observed a correlation between Aβ42, t-tau 

and eGFR specifically in participants with Aβ-pathology. CKD has previously been 

proposed to increase the risk of AD through several mechanisms, including 

increased levels of uremic toxins, calcium metabolism and an altered haemodynamic 

regulation 42. Noteworthy, studies consistently propose a causal direction where CKD 

increases the risk of AD 42. In fact, CKD is one of the strongest risk factors of 

dementia 50. Considering previous reports, our results indicate that even a moderate 

decline in kidney function is associated with elevated markers of AD pathology. In 

contrast, the correlation between P-NfL and eGFR was independent of Aβ-pathology 

status, indicating that the mechanisms previously discussed for P-NfL are not shared 

with the correlations to AD pathology.  

 

Limitations 

There are some limitations to consider in this study. Almost all participants included 

in the study were born in Europe, and studies in other parts of the world may find 

different results due to variations in environment, life style and genetics. This study 



 

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

does not provide any causal evidence regarding the association between NfL, CKD 

and eGFR. In the longitudinal analysis, high P-NfL was associated with an increased 

risk of CKD. However, it should be considered that the Cox-regression model was 

not significant after adjustment for baseline eGFR and it is possible that the 

association found is mainly caused by a collinearity between eGFR and P-NfL. It is 

possible that the elevated levels of P-NfL are a consequence of impaired renal 

clearance, as proposed by others 7. However, the similarity in size between NfL (68 

kDa16) and albumin (67 kDa) indicates that clearance should mainly be altered in 

patients with albuminuria and not all patients with CKD, as proteins of this size do not 

normally pass the glomeruli. Studies with arterio-venous samples close to the kidney 

could provide the answer to this question. Regarding other limitations, the number of 

participants with dementia is low in this population-based sample and the results are 

not directly transferrable to clinical settings of patients with dementia. Furthermore, 

we did not have information on participant status of peripheral neuropathy, which 

limits the possibility to determine the main contributor of NfL in plasma. However, as 

there was no correlation between CSF-NfL and eGFR, it is also possible the 

periphery significantly contributes to plasma concentrations of NfL. Our observations 

on the correlation between CSF markers specific for AD and eGFR in participants 

with Aβ pathology were made in a limited sample and should be replicated in larger 

studies. Nonetheless, previous studies have reported similar observations, indicating 

that this observation in a population-based sample is valid.  
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Future directions 

Future longitudinal primary care studies are warranted to evaluate the added value of 

measuring P-NfL in detecting individuals with a higher specificity and predictive 

performance which will be the basis for modification of existing clinical practices. The 

precision of P-NfL as a predictor of neurodegeneration in individuals with CKD should 

also be determined in larger community-based and clinical studies.  Although more 

studies are needed, it would be wise for clinicians to take CKD status into account 

when interpreting P-NfL measurements. The predictive role of P-NfL on incident CKD 

should also be validated in other settings, as it could indicate that some 

neurodegenerative conditions may lead to an impaired renal function over time.  

 

Conclusion 

In a community-based cohort of 70-year olds, P-NfL was associated with both 

prevalent and incident CKD, while CSF and/or imaging measures did not differ by 

CKD status. Participants with CKD and dementia presented similar levels of P-NfL 

which should be considered when using P-NfL as a neurodegeneration biomarker. 

Our observed correlations between Aβ42 and eGFR could indicate an association 

between kidney function and AD.  
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Table 1 Characteristics of the 744 with data on P-NfL and MRI. 

  

No CKD 

(n=668) 

CKD 

(n=76) p value 

Demographic variables       

Male 332 (50) 30 (39) 0.091 

Age, years 71 (70: 71) 71 (70: 71) 0.343 

Education, years 13 (10: 16) 12 (10: 15) 0.059 

Smoking 177 (27) 25 (33) 0.241 

Excercise > 1 day/week 268 (41) 15 (20) <0.001 

Alcohol intake, g/week 69 (20: 137) 46 (5: 151) 0.237 

Medical history       

CDR=0 540 (81) 62 (82) 0.896 

CDR=0.5 119 (18) 14 (18) 0.896 

Dementia 9 (1) 0 (0) 0.609 

APOE4 ε4 229 (34) 19 (25) 0.104 

Major or minor depression 52 (7,8) 8 (10,5) 0.406 

Hypertension 455 (68) 63 (83) 0.008 

Myocardial infarction 32 (4,8) 8 (10,5) 0.054 

Angina pectoris 36 (5,4) 7 (9,2) 0.176 

Heart failure 8 (1,2) 3 (3,9) 0.093 

Atrial fibrillation 45 (6,7) 8 (10,5) 0.224 

Stroke 30 (4) 4 (5) 0.770 

Claudicatio intermittens 19 (2,8) 3 (3,9) 0.484 

Diabetes 90 (13) 13 (17) 0.385 

In dialysis 0 (0) 1 (1,3) 0.103 

Elevated liver enzymes 18 (2,7) 2 (2,6) 1.000 

COPD 81 (12,2) 16 (21,1) 0.030 

Asthma 46 (6,9) 5 (6,6) 0.912 

Cancer 119 (18,1) 13 (17,1) 0.838 

Clinical variables       

Waist, cm
a
 95 (86: 103) 96 (90: 104) 0.111 

BMI
a
 25.2 (22.9: 27.9) 26.3 (24.1: 29.4) 0.011 

Systolic blood pressure, mmHg
a
 140 (125: 150) 140 (130: 160) 0.124 
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Diastolic blood pressure, mmHg
a
 80 (74: 85) 80 (70: 87) 0.909 

Heart rate, bpm
a
 68 (62: 76) 68 (62: 77) 0.951 

Creatinine, umol/L 74 (66: 85) 112 (89: 124) <0.001 

eGFR 80 (73: 89) 53 (46: 58) <0.001 

fP-Glucose, mmol/L
a
 5.7 (5.4: 6.2) 5.7 (5.3: 6.3) 0.687 

S-Cholesterol, mmol/L 5.4 (4.7: 6.3) 5.4 (4.4: 6.2) 0.315 

S-HDL-cholesterol, mmol/L 1.6 (1.4: 2.1) 1.6 (1.2: 1.8) 0.018 

S-LDL-cholesterol, mmol/L 3.5 (2.7: 4.2) 3.3 (2.6: 4.1) 0.335 

S-Triglycerides 1.1 (0.8: 1.4) 1.4 (1.0: 1.9) <0.001 

B-Hemoglobin, g/L
a
 144 (137: 152) 139 (130: 149) <0.001 

B-Platelets, x109/L
a
 226 (195: 267) 221 (198: 265) 0.660 

Homocysteine
a
 12 (10: 14) 16 (13: 20) <0.001 

CRP, mg/L
a
 1 (0.5: 3) 2 (0.8: 4) 0.004 

P-NfL, pg/mL 14.1 (10.9: 17.9) 18.8 (14.2: 27.4) <0.001 

Data presented as n (%) for categorical variables, and median (IQR) for continous variables.    

a
Missing values for: waist (n=4), BMI (n=9), Systolic blood pressure (n=1), Diastolic blood pressure  

(n=1), Heart rate (n=3), fP-glucose (n=27), Homocysteine (n=13), CRP (n=2), Hb (n=3), Platelets (n=6). 

Abbreviations: BMI = body mass index; CDR = clinical dementia rating; CKD = chronic kidney disease; COPD 

= chronic obstructive pulmonary disease; CRP = C-reactive protein; eGFR = estimated glomerular filtration rate; 

HDL = high-density lipoprotein, LDL = low-density lipoprotein; MRI = magnetic resonance imaging; P-NfL = 

plasma neurofilament light protein. 
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Table 2 Cross-sectional logistic regression model of CKD and linear regression  

model of eGFR, with ln P-NfL as the independent continuous variable, n=744.  

CKD OR (95% CI) p-value n 

Model I
a
 5.190 (2.945: 9.148) <0.001 744 

Model II
b
 5.125 (2.918: 9.001) <0.001 744 

Model III
c
 3.231 (1.743: 5.990) <0.001 699

d
 

eGFR B (95% CI)     

Model I
a
 -8.83 (-11.00; -6.66) <0.001 744 

Model II
b
 -8.81 (-10.98; -6.64) <0.001 744 

Model III
c
 -6.47 (-8.66; -4.28) <0.001 699

d
 

a 
adjusted for ln age, sex and ln education

.
 

b 
adjusted for 

a
, plus hypertension and diabetes

.
 

c 
adjusted for 

a
 and 

b
, plus smoking, ln BMI, ln fP-glucose, S-LDL cholesterol, ln P-CRP, ln P-Homocystein

.
 

d 
missing data on any variable in model III, n=45.  

Abbreviations: CI = confidence interval; CKD = chronic kidney disease; eGFR = estimated glomerular filtration 

rate; OR = odds ratio; P-NfL = plasma neurofilament light protein.  
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Table 3 Longitudinal association of quartiles (Q) of P-NfL at baseline with incident CKD, n=558a.  

  Q1 Q2 Q3 Q4 

Model I
b
 ref. 0.92 (0.40: 2.08) 1.28 (0.61: 2.73) 2.39 (1.21: 4.72) 

Model II
c
 ref. 1.03 (0.45: 2.36) 1.30 (0.61: 2.77) 2.58 (1.30: 5.12) 

Model III
d
 ref. 0.82 (0.35: 1.92) 0.96 (0.44: 2.11) 2.27 (1.09: 4.73) 

Model IV
e
 ref. 0.70 (0.30: 1.62) 0.70 (0.32: 1.54) 0.94 (0.44: 2.02) 

a
n=530 in model III & IV due to missing values on confounding variables. 

b
Hazard ratios from a Cox proportional hazards regression model with follow-up time (years) until  

re-examination 2019-2022 as the timescale (n=558). 

c
Model described in footnote b, with additional adjustments for ln age, sex and  

ln years of education. 

d
Model described in footnote c, with additional adjustments for smoking, hypertension,  

diabetes, ln BMI, fP-glucose, ln homocysteine, ln crp and LDL. 

e
Model described in footnote d, with additional adjustments for baseline eGFR.  

Abbreviations: CKD = chronic kidney disease; P-NfL = plasma neurofilament light protein; Q = quartile.
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Table 4 Correlations between eGFR and biofluid biomarkers of neurodegeneration in the 

participants volunteering for CSF sampling, separated by Aβ pathology status (n=313). 

  Amyloid-positive (n=147)   Amyloid-negative (n=166) 

CSF R p-value   R p-value 

β-Amyloid 42, pg/mL 0.25 0.003   -0.05 0.520 

t-Tau, pg/mL -0.16 0.048   0.01 0.890 

p-Tau, pg/mL -.015 0.071   0.04 0.632 

β-Amyloid 42/40 0.23 0.004   -0.07 0.359 

β-Amyloid 42/p-Tau 0.23 0.005   -0.11 0.165 

NfL, pg/mL 0.00 0.967   0.00 0.961 

Plasma           

NfL, pg/mL -.027 0.001   -0.31 <0.001 

Abbreviations: Aβ = β-amyloid; CSF = cerebrospinal fluid; eGFR = estimated glomerular filtration rate; NfL = 

neurofilament light protein; p = phosphorylated; P- = plasma; t = total. 
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Figure legends 

Figure 1 Flowchart of the inclusion process for the study.  

 

 

Figure 2 Structural MRI measurements and CSF biomarkers in participants 

without and with CKD.  

Structural MRI measurements of cerebral regions related to neurodegeneration 

presented for participants without and with CKD (A-D). Mean cortical thickness (A), 

mean lateral ventricular volume (B), mean hippocampal volume (C) and total white 

matter lesion volume (D) were measured. CSF biomarkers related to 

neurodegeneration were also analysed (E-H). Aβ42/40-ratio (E), t-tau (F), p-tau (G) 

and NfL (H) in CSF were measured in participants without and with CKD. n=744 in 

panel A-D (No CKD=668, CKD=76), and n=313 in panel E-H (No CKD=287, 

CKD=26). Mann-Whitney U-test was used for group wise comparisons. CSF = 

cerebrospinal fluid; NfL = neurofilament light protein; p-tau = phosphorylated tau; t-

tau = total tau. 
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Figure 3 Associations between P-NfL and kidney function, stratified by CKD 

and dementia.  

Scatterplot of P-NfL and eGFR in the study participants (n=743, one outlier was not 

included in the figure, but was included in the statistics, n=744), with linear regression 

curves stratified by CKD-status (no CKD, n=668 and CKD, n=76) (A). Kidney function 

measured as eGFR (B), and P-NfL levels (C), in participants without cognitive 

impairment (CDR=0), stratified by CKD status (no CKD, n=540 and CKD, n=62), as 

well as in participants with dementia and normal kidney function (n=9). Linear 

regression lines in figure A were performed on untransformed P-NfL values to allow 

for the presentation of clinically relevant data in the panel. Group-wise comparisons 

were performed with Kruskal-Wallis test. eGFR = estimated glomerular filtration rate; 

NfL = neurofilament light protein; P = plasma. 
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