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Abstract 

Chemical compounds play a major role in the recognition processes in social insects, and one class of 

compounds namely hydrocarbons cover the adult body, but also the surface of their eggs. The ability to 

discriminate between friends from foes minimizes the exploitation of resources. We investigated for the 

first time whether females of Mischocyttarus cerberus, which is often attacked by other wasp species, can 

discriminate their own eggs over the eggs of foes. By using a non-destructive technique, we experimentally 

collected eggs from post-worker emergent nests and we offered their eggs to other nests to test the policing 

behavior in M. cerberus. Overall, our results show that the females of M. cerberus can discriminate eggs 

according to their origin and most of the removed eggs were policed within the first hour of the experiment, 

revealing that females have accurate discrimination skills. The discrimination skill allows females to detect 

eggs. We discuss that chemical cues present over the surface of eggs may be important for them to be 

accepted or removed, and these cues may be important to avoid parasitism. In this case, eggs represent 

alternative tools of communication, once they carry chemical compounds linked to their nest.  Additionally, 

dominant females (= queens) are the most likely individuals to remove the eggs. Altogether, our results 

reinforce that the nestmate recognition ability is not restricted to recognizing adult relatives, but it is also 

extended to recognizing brood in Mischocyttarus societies. 
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Significance Statement:  

Nestmate recognition is responsible to maintain social integrity in social insect colonies, as individuals can 

recognize friends from foes. We investigated whether nestmate recognition works on brood recognition in 

the primitively eusocial wasp Mischocyttarus cerberus. The nest of this species is deprived of an envelope 

and often can be attacked by parasitoids or other wasp species. By transplanting eggs from one colony to 

another using paper cells, we studied whether females would destroy introduced eggs more often. As a 

result, we found that M. cerberus females are capable to recognize introduced and their own eggs, and 

remove introduced eggs more often. Hydrocarbons covering the egg surface are the likely chemical cues 

that allow such recognition to occur. These results suggest that nestmate recognition is not limited to 

perceiving adult nestmates, but also brood in this wasp species.  

Introduction 

Social insects have evolved to recognize and accept adult nestmates over non-nestmates (van Zweden and 

d’Ettorre 2010; d’Ettorre and Lenoir 2010; Mora-Kepfer 2014). Contrarily, whether adult females have the 

same ability to recognize and discriminate brood remain poorly investigated (Panek and Gamboa 2000; 

Gamboa 2004). This recognition potentially minimizes the exploitation of resources by unrelated 

conspecific usurpers or social parasites (Fletcher and Michener 1987; Lorenzi and Filippone 2000). In such 

a context, the thin layer of chemical compounds that cover the insect body has been proposed to be the 

main vehicle of information, allowing the communication process to occur (Howard and Blomquist 2005). 

Cuticular hydrocarbons (CHC) contribute to the recognition process among individuals, being mostly 

composed by linear alkanes, branched alkanes and unsaturated hydrocarbons (Howard & Blomquist 2005). 

A higher chemical similarity exists among individuals from the same colony compared with other colonies 

(Gamboa 2004; Turillazzi et al. 2008), as members of a given colony learn the chemical template early in 

their adult life (Gamboa et al. 1986a). Evidence of nestmate recognition based on CHCs has been shown in 

ants (Tannure-Nascimento et al. 2009; Bos et al. 2010; Bos and d’Ettorre 2012; Larsen et al. 2014), bees 

(Nunes et al. 2008; Nunes et al. 2011; Nascimento and Nascimento 2012; Jones et al. 2012), termites 

(Bagneres et al. 1991; Yusuf et al. 2010), and wasps (Gamboa et al. 1986b; Cini et al. 2009; Cappa et al. 

2020).  

Besides covering the insect body surface, hydrocarbons occur over the surface of brood, for example over 

eggs, larvae, and pupae (in ants: Endler et al. 2004; see Schultner and Pulliainen 2020; in bees: Starkey et 
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al. 2019; Orlova et al. 2020; in wasps: Cotoneschi et al. 2007; Cervo et al. 2008; Cotoneschi et al. 2009; Oi 

et al. 2020), suggesting a role in mediating communication between adult-immature individuals. Among 

social insect species, it is relatively well studied in ants (see review Schultner and Pulliainen 2020), in bees 

(Free et al. 1983; Starkey et al. 2019; Orlova et al. 2020) and in a few wasp species (Klahn and Gamboa 

1983; Panek and Gamboa 2000; Strassmann et al. 2000; Cotoneschi et al. 2009). For example, ants interact 

with brood, which allow to recognize and discriminate colony origin, maternity, developmental stage, sex, 

and caste (see Schultner and Pulliainen 2020). In colonies of the bumblebee Bombus impatiens, larvae play 

a role in regulating worker reproduction and behavior, as their presence reduce egg laying rates and worker 

aggression (Starkey et al. 2019; Orlova et al. 2020). In colonies of social wasps, such as Vespula vulgaris, 

the hydrocarbons covering the eggs’ surface mediate policing (= egg destruction behavior), as queen-laid 

and worker-laid eggs are chemically different (Bonckaert et al. 2012; Oi et al. 2015).  

Most of the available literature on policing behavior or brood detection in wasps correspond to social 

species from temperate areas, with exception of Parischnogaster mellyi (Turillazzi et al. 2008) and Polybia 

paulista (Kudô et al. 2016), which are both from tropical areas. Mischocyttarus is highly diverse in number 

of species in the Neotropical area and these wasps are interesting models to investigate policing behavior. 

Mischocyttarus wasps are primitively eusocial species, which means that females from different castes are 

not easily morphologically distinguished from each other, but instead they behave differently (O’Donnell 

2020, Giannotti 1999). The nests start by one or a few females (Miller et al. 2018), and following nest 

foundation there is the establishment of a linear hierarchy of dominance, which is usually kept along nest 

ontogeny – nest ontogeny comprises pre-worker emergence, post-worker emergence and decline (Noda et 

al. 2001). Mischocyttarus wasps build stelocyttarus gymnodomous nests, sustained by a single pedicel and 

lack a protective envelope, like Polistes paper wasps (Noll et al. 2020). The fact that the nests are deprived 

of a protective envelope, facilitates unrelated individuals to access their nest content. Nests of 

Mischocyttarus are attacked by parasitoid wasps (Somavilla et al. 2015; da Silva et al. 2019a), usurped by 

other wasps – Mischocyttarus and Polistes (Prezoto & Nascimento 1999; Pinto et al. 2004; de Souza et al. 

2012; Montagna et al. 2012), attacked by ants (Clouse 1995), and also receive drifting females from other 

conspecific nests (Giannotti 1999). Given that resident females of Mischocyttarus are exposed to such 

environmental pressures, females that have cognitive abilities to recognize nestmate may help them dealing 

with nest usurpation. The costs of raising unrelated individuals can be high, if a given resident female is 

not able to recognize and discriminate its own brood from non-kin brood.  
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In the present study, we investigate whether females of Mischocyttarus cerberus species were able to 

recognize their own eggs over introduced eggs coming from intraspecific and interspecific nests. We 

studied wasps that occur in an anthropic area, where in the past, we reported the occurrence of six different 

species belonging to the Mischocyttarus genus (da Silva et al. 2019b). Nests are often found close to each 

other, which may facilitate parasitism and usurpation to take place (da Silva et al. 2019b). Thus, we 

hypothesized M. cerberus females display egg recognition based on their origin. We predicted that when 

confronted with options, females would destroy introduced eggs belonging to different colonies or species. 

In addition, females would destroy more often interim eggs coming from interspecific nests compared with 

eggs coming from intraspecific introduced nests. We suggest that the recognition process is likely mediated 

by chemical cues (hydrocarbons) that cover the eggs’ surfaces. Thus, the higher accuracy in brood 

discrimination between species relies on the fact that a higher chemical variation is present between 

different species, but not within the same species. Lastly, we suggest that dominant females (=queens) may 

have a key role on such a recognition process. Overall, our results show that interspecific eggs and 

intraspecific eggs do not go unnoticed in nests of M. cerberus and the capacity to recognize and remove 

undesirable eggs previously reported for Polistes is now shown for Mischocyttarus wasps. 

Material and Methods 

Study area and collection 

We studied nests  in the post-worker emergence phase of Mischocyttarus cerberus and Mischocyttarus 

montei in the area of the campus of the University of São Paulo (USP) – Campus of Ribeirão Preto - 

(21°10′39”S; 47° 48′ 37”W, 531 m elevation) between February and May 2021 (da Silva et al. 2019b). The 

nests lack protective envelope, which facilitates observation and manipulation of the eggs. We used a non-

destructive technique to sample and manipulate eggs among different nests, which consisted of sampling 

eggs in artificial cells.  

Experimental setup 

In addition of the full description of methods presented below, we also prepared a diagram to summarize 

the experimental setup (Figure 1). 
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Figure 1: Diagram representing the main steps of experimental setup. 

(I) Egg recognition assays 

We used artificial paper cells made of waxed paper. We first washed the waxed paper with hexane and then 

let to dry. We inserted a piece of the waxed paper inside an empty cell from an abandoned nest to shape it, 

then we used drops of white glue to keep the artificial cell stable, and then they were left to dry. We inserted 

the paper cells in the natural nests to sample fresh laid eggs. We put artificial cells in either empty cells or 

in cells that had eggs (the eggs were removed with forceps before the insertion of the artificial cells). We 

monitored nests daily for the presence of newly laid eggs (eggs laid from 0 to 24 hours). We moved the 

artificial cells containing a M. cerberus egg to a different cell when the experiment was settled to avoid any 

bias concerning egg habituation (control group or host eggs – artificial cell containing an egg changed to a 

different cell). Using this control group (host eggs) was key to disregard the possibility of experimental 

eggs (introduced eggs) being removed because of the paper cells. We selected a random cell containing a 

M. cerberus egg and then the egg was replaced by the artificial cell containing an egg of M. montei (Figure 

S1) (Experiment I - interspecific recognition assay) or an egg of a different M. cerberus nest (Experiment 

II – intraspecific recognition assay). Eggs used in the experiments came from nests that were at least 100 

m apart from each other.  
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We performed the procedure of settling host eggs against introduced eggs at the same time, and we repeated 

several times in different nests of M. cerberus (Experiment I (interspecific assay) n = 34 nests; Experiment 

II (intraspecific assay) n = 16 nests). Considering that we were interested to investigate egg policing 

occurring after eggs being placed, after preparing each experiment with both a host and an introduced egg, 

we waited an hour to evaluate whether egg removal had occurred or not. For eggs that were not removed 

in the first hour of experiment, we additionally followed them for a week to track eggs’ survivorship.  

In nests of Mischocyttarus wasps, a high rate of females has activated ovaries (not only the dominant  

responsible for the reproduction) (Murakami et al. 2009; da Silva et al. 2020). At least in M. cerberus, when 

other females lay eggs, the dominant female rapidly remove it (as soon she detects it) (personal 

observation). In this way, although we are not sure about egg maternity, it is likely that the eggs used in our 

assays were likely laid by the dominant female.  

(II) Egg marking hydrocarbons  

After performing the egg discrimination assays, we installed new artificial cells in the nests to collect fresh 

eggs from M. cerberus (either host and invader nests) and Mischocyttarus montei (invader nests) for 

chemical identification. Eggs’ chemical profiles were determined via GC/MS analysis. We prepared the 

samples and analysed data using similar published methods as Oi et al. (2020). We individualized each egg 

in glass vials to extract their surface hydrocarbons. We washed the eggs with hexane (95% purity, Makron 

Fine Chemicals) using 100 µl for 1 minute. We dried the glass vial containing the compounds under a fume 

hood and we prepared the vials for chemical analyses. The glass vials containing the chemical compounds 

were resuspended in in 50 µl of hexane (Macron Fine Chemicals 95% purity). We analysed all samples in 

a system of gas chromatography coupled with a mass spectrometer (GC-MS; Shimadzu, model QP2010 

Plus) equipped with a Rxi-1ms column (thickness 0.25 µm; length 30 m; diameter 0.25 mm) and helium as 

carrier gas (pressure 57.6 kPa; total flow 50.0 ml/min; column flow 1.11 ml/min; linear velocity 38 cm/sec; 

purge flow 5.0 ml/min; split ratio -1.0). In the gas chromatograph, we injected 1 μl of sample using splitless 

injection. The injector temperature was set to 250 ºC and all samples were run in the spitless mode. The 

oven temperature was initially set to 40 ºC and held for 2 minutes. Then the temperature increased by 20 

ºC/min until 120 ºC. In the following step, the temperature was increased by 10 ºC/min until 200 ºC, and 

subsequently by 7 ºC/min until 250 ºC. Lastly, the temperature increased 5 ºC/min until 320 ºC and it was 

kept for 4 minutes. A solution of linear alkane leaders (Supelco) from n-C7 to n-C40 was used as references 
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to calculate cubic spline interpolated retention indexes. Chromatogram peaks were identified based on their 

mass spectrometric fragmentation patterns and also in previously published references (da Silva et al. 

2020b; Ferreira et al. 2022). Total ion chromatogram peaks were integrated using R version 4.0.2.  

(III) Analyzing checking cells frequency 

We analysed data from 14 post-worker emergent nests of M. cerberus. We observed each nest for four 

hours. Prior videotaping, we marked each female with an ink dot to allow identification during video 

analysis. We performed video analyses blindly. We divided females into three different groups (I) alpha 

females (= queens / dominant females), who performs the majority of aggressive acts towards other females, 

(II) beta females, who received the majority of the aggressive acts coming from the alpha female and (III) 

other subordinate females (= including all the other females that were not from the first and second groups). 

In this case, beta individuals represent the females occupying the second position in the dominance 

hierarchy (first position = alpha or dominant females, second position = beta females, third and so on 

positions are subordinate females). We assigned females to different groups by studying their dominance 

hierarchy interactions, and this methodology and results were reported previously by da Silva et al. (2020). 

After classifying the females, we watched the videos again and the total number of times each female 

inserted their heads inside a cell was recorded. We calculated the proportion of checking cell behavior and 

later we used this data in the statistical analysis. We used the checking cell behavior as a proxy to understand 

which female category would be more likely to be involved in egg detection. 

Data analysis 

To access whether the likelihood of eggs being in the nests after an hour of experiment was correlated to 

their origin, we fitted a generalized linear mixed model with binomial errors and with logit link function 

using glmer. For the chemical analyses, peak areas of each chemical compound were transformed in relative 

amounts, then we ran a permutation analysis (PERMANOVA) to verify whether eggs from different groups 

were chemically distinct based on their hydrocarbons. We used the adonis function from the vegan package 

and adopted 999 permutations. We performed a principal component analysis (PCA) with the prcomp 

function of the stats package (Team RC 2013). We run a multivariate similarity analysis (SIMPER) using 

the Bray-Curtis distance and we adopted  999 permutations to check how much each of the components 

(CHCs) most contributed to the observed variation between eggs from different groups. To uncover whether 
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the frequency of checking cells varied among females from different groups, we analysed data by using a 

generalized linear mixed model, fitted by the glmer function from the afex package (Singmann et al. 2016). 

All analysis was performed using R (version 4.0.2).  

Results 

(I) Egg recognition assays 

In the first experiment (interspecific recognition), eggs of M. cerberus were significantly more tolerated 

after one hour in the nests than the interspecific introduced ones of M. montei (Fig. 2) (ANOVA: LR Chisq 

= 31.355, p < 0.001) (Figure 2). The likelihood of eggs to survive for a week differed significantly according 

to their origin (Chisq= 36.9; Df = 1; p < 0.001) (Figure 2). In the second experiment (intraspecific 

recognition), host eggs of M. cerberus were more tolerated after one hour than the introduced ones from 

other M. cerberus nests (ANOVA: LR Chisq = 13.809; p < 0.001) (Figure 3).  The likelihood of eggs to 

survive for a week differed significantly according to their origin in the second experiment as well (Chisq= 

14.0; Df = 1; p < 0.001) (Figure 3). In both experiments, host eggs survived longer than the introduced ones 

(see Table S1). Overall, M. montei eggs were less likely to survive after one hour of experiment than M. 

cerberus eggs brought from other nests. 
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Figure 2: A greater proportion of Mischocyttarus cerberus host eggs were present in the nests after an hour. 

Survivorship plot of eggs from Experiment 1 (interspecific recognition). The blue line represents the 

survivorship rate of host eggs, whereas the yellow line represents the survivorship rate of introduced eggs.  
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Figure 3: A greater proportion of Mischocyttarus cerberus host eggs were present in the nests after an hour. 

Survivorship plot of eggs from Experiment 2. The blue line represents the survivorship rate of host eggs, 

whereas the yellow line represents the survivorship rate of introduced eggs.  

(II) Egg marking hydrocarbons in Mischocyttarus cerberus and Mischocyttarus montei 

Eggs belonging to different groups (host and introduced nests) differed based on their hydrocarbons 

(PERMANOVA, R2 = 0.455; F = 15.889; p < 0.001) (Table 1A). A representative chromatogram of each 

species is depicted below for reference (Figure 4). We also provide below a list of the compounds identified 

in the chromatograms (Table 2). The post hoc permutations analysis demonstrated that not all pairs of 

groups are indeed significantly different (Table 1B). The only pairwise permutations that differed 

statistically were the ones composed of a combination including introduced eggs from Experiment 1 (M. 

montei) and any other group of eggs (Table 1B). Principal component analysis (PCA) revealed that the 

introduced eggs from Experiment 1 (M. montei) were the most different according to their chemical 

composition (Figure 5; Table S2). The most important compounds that contributed to group differentiation 

included linear, methyl, and dimethyl-alkanes (Fig. 5; Table 3).  
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Figure 4:  Representative chromatogram obtained from an egg sample a) of Mischocyttarus cerberus. b)  

Mischocyttarus montei. In evidence are depicted the major peaks found overall in the samples of both 

species. 
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Figure 5: Principal component analysis (PCA) showing the ordination of the four studied groups of eggs 

based on their hydrocarbons. Chemical compounds in evidence represent the most important to promote 

group separation according to SIMPER analysis. Mc = Mischocyttarus cerberus and Mm = Mischocyttarus 

montei. Experiment 1 = interspecific recognition and Experiment 2 = intraspecific recognition. 
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Table 1: (A) Global permutations (PERMANOVA) using all the groups of eggs collected in Experiment I and Experiment II (host and introduced eggs from both phases). (B) 1 

PERMANOVA pairwise contrasts between the groups of eggs collected in Experiment I and Experiment II. Experiment I = eggs collected from nests used in the interspecific 2 

recognition assays and Experiment II = eggs collected from nests used in the intraspecific recognition assays. Mc: Mischocyttarus cerberus; Mmon: Mischocyttarus montei. 3 

(A)                                                                                                                Global PERMANOVA      

 R2 F value p value Significance level 

eggs data$group 0.455 15.889 < 0.001 ***  

Residual 0.544     

Total 1     

(B)                                                                                                               Pairwise PERMANOVA           

pairs R2 F value p value 

Significance 

level  

Mc host exp. I x Mc introduced exp. II 0.106 3.941 0.186 n.s.  

Mc host exp. I x Mc host exp. II 0.043 1.268 1 n.s.  

Mc host exp. I x Mmon introduced I 0.541 40.171 < 0.01 **  

Mc introduced exp. II x Mc host exp. II 0.119 3.12 0.252 n.s.  

Mc introduced exp. II x Mmon introduced I 0.403 19.64 < 0.01 **  

Mc host exp. II x Mmon introduced I 0.482 22.37 < 0.01 **  
 4 

Table 2: List of hydrocarbons identified in the chromatograms of eggs from the four groups of samples, from Experiment 1 and 2. RT = retention time (min). RI = retention 5 

index. sd = standard deviation. Mc: Mischocyttarus cerberus; Mmon: Mischocyttarus montei. 6 

Compounds RT RI  Ions Experiment 1 Experiment 2 

    Mc host Mmon introduced Mc host Mc introduced 

    mean sd mean sd mean sd mean sd 

n-C16 12.12 1600 226 0.358 0.191 0.380 0.209 0.358 0.255 0.456 0.243 

n-C17 13.18 1700 240 0.769 0.438 0.815 0.442 0.704 0.470 0.909 0.427 

n-C18 14.23 1800 254 0.875 0.433 0.896 0.451 0.835 0.460 1.054 0.470 
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n-C19 15.29 1900 268 0.695 0.356 0.730 0.381 0.671 0.398 0.859 0.397 

n-C20 16.37 2000 282 0.698 0.437 0.760 0.508 0.617 0.331 0.819 0.409 

n-C21 17.46 2100 296 0.481 0.233 0.457 0.259 0.502 0.282 0.599 0.269 

n-C22 18.55 2200 310 1.051 0.731 1.010 0.582 0.957 0.557 1.169 0.572 

n-C23 19.64 2300 324 0.488 0.183 0.376 0.193 0.496 0.325 0.555 0.200 

C25:1 21.57 2475 350 0.369 0.291 0.397 0.247 0.301 0.180 0.416 0.201 

n-C25 21.80 2500 352 1.056 0.546 1.241 0.701 0.988 0.471 1.162 0.688 

n-C26 22.88 2600 366 0.364 0.189 0.455 0.234 0.339 0.195 0.420 0.235 

C27:1 23.71 2669 378 0.422 0.270 0.487 0.245 0.401 0.253 0.497 0.274 

n-C27 24.00 2700 380 0.873 0.299 5.707 2.223 0.715 0.273 0.883 0.289 

13-;11-;9-;7-MeC27 24.39 2730 169/253/197/225/141/281/113/309 0.519 0.298 0.754 0.227 0.472 0.274 0.563 0.283 

5-MeC27 24.55 2744 85/337 0.419 0.254 0.531 0.270 0.375 0.212 0.508 0.282 

3-MeC27 24.85 2770 57/365 0.710 0.438 6.362 1.147 0.599 0.345 0.936 0.426 

n-C28 25.13 2800 394 1.060 0.372 1.636 0.597 0.911 0.260 1.029 0.343 

14-;13-;12-;11-MeC28 25.51 2828 211 / 225 / 197 / 239 / 183 / 253 / 169 / 267 /393  0.919 0.476 1.093 0.442 0.808 0.486 1.012 0.502 

4-MeC28 25.81 2855 71 / 365 / 393 0.386 0.179 0.517 0.144 0.399 0.178 0.450 0.199 

3-MeC28 25.98 2869 57/379/393 0.843 0.403 1.155 0.365 0.782 0.353 0.991 0.450 

n-C29 26.28 2900 408 7.076 1.944 9.266 2.838 5.446 1.328 7.678 1.503 

15-;13-;11-;9-;7-MeC29 26.66 2928 225/197/253/169/281/141/309/113/337/407 2.172 0.635 5.357 1.970 2.595 0.907 2.700 0.698 

5-MeC29 26.87 2947 85/365/407 0.324 0.103 0.424 0.113 0.347 0.211 0.409 0.133 

11,15-; 9,15-diMeC29 27.02 2960 169 / 239 / 225 / 295 / 141 / 323 / 421 0.726 0.114 1.743 0.895 0.762 0.233 0.841 0.192 

3-MeC29 27.15 2971 57/393/407 13.252 2.535 7.072 1.066 12.981 2.748 13.560 2.530 

x,y-diMeC29 27.43 2996 - 1.992 0.345 0.913 0.160 1.772 0.357 1.641 0.296 

n-C30 27.51 3000 422 0.939 0.248 0.994 0.242 0.916 0.309 0.980 0.291 

14-;12-MeC30 27.79 3027 211/253/183/281/421 1.353 0.197 1.743 0.351 1.586 0.297 1.611 0.226 

4-MeC30 28.11 3056 71/393/421 3.345 0.601 0.898 0.195 3.575 1.376 2.092 1.203 

3-MeC30 28.27 3070 57/407/421 1.150 0.365 0.840 0.315 1.137 0.449 1.465 0.463 

4,16-diMeC30 28.45 3085 71/225/253/407/421 0.346 0.120 0.280 0.114 0.349 0.134 0.367 0.132 

n-C31 28.57 3100 436 3.922 0.690 2.213 0.686 3.072 0.510 4.472 0.924 

15-;13-;11-MeC31 28.94 3128 225/197/281/169/309/435 10.452 3.175 15.333 4.899 13.305 4.106 13.319 3.808 

11,15-; 11,17-diMeC31 29.26 3157 169/267/225/323/239/253/435 12.772 3.425 4.493 2.212 13.360 4.802 8.671 4.833 

3-MeC31 29.42 3171 57/421/435 5.054 0.738 1.679 0.265 4.604 0.918 4.194 1.029 

16-;14-MeC32 30.05 3227 239/253/211/281/449 2.256 0.243 1.691 0.182 2.395 0.447 2.108 0.289 

4,14-diMeC32 30.35 3254 71/225/281/435/449 2.362 0.513 1.472 0.406 2.151 0.353 2.045 0.443 

n-C33 30.82 3300 464 1.025 0.279 0.781 0.285 0.837 0.323 1.055 0.351 

17-;15-MeC33 31.16 3328 253/225/281/463 5.828 1.295 6.554 2.072 5.993 1.477 4.835 1.266 
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15,19-; 13,17-; 13,19-diMeC33 31.44 3353 225/295/197/267/253/323/295/477 5.245 0.763 3.911 0.920 5.438 1.133 4.342 0.769 

17-;15-;13-;11-MeC35 33.32 3528 281/253/225/309/197/337/169/365/491 1.492 0.546 2.016 0.365 1.493 0.708 1.845 0.712 

17,21-diMeC35 33.58 3552 253/323/225/295/505 1.133 0.330 1.477 0.256 1.130 0.391 1.279 0.452 

x,y-diMeC37 35.70 3755 - 2.429 1.104 3.089 0.729 2.527 1.578 3.203 1.577 

 7 

Table 3: SIMPER analysis showing the five most important compounds that contributed for group separation (pairs of groups). Average group 1 = Mischocyttarus cerberus 8 

host from Experiment 1 (n = 20 eggs); Average group 2 = Mischocyttarus montei introduced from Experiment 1 (n = 16 eggs); Average group 3 = Mischocyttarus cerberus host 9 

from Experiment 2 (n = 10 eggs); Average group 4 = Mischocyttarus cerberus introduced from Experiment 2 (n = 15 eggs). Sig. level = significance level. SD = standard 10 

deviation. 11 

Groups  Compound Average SD Ratio Average group 1 Average group 2 p value Sig. level 

Mc host exp. 1 x Mmon introduced exp. 1 

11,15-; 11,17-diMeC31 0.042 0.019 2.246 12.772 4.493 0.001 *** 

15-; 13-; 11-MeC31 0.032 0.020 1.625 10.451 15.333 0.001 *** 

3-MeC29 0.031 0.013 2.368 13.253 7.072 0.001 *** 

3-MeC27 0.028 0.006 4.755 0.711 6.361 0.001 *** 

n-C27 0.024 0.011 2.223 0.873 5.707 0.001 *** 

Groups  Compound Average SD Ratio Average group 1 Average group 3 p value Sig. level 

Mc host exp. 1 x Mc host exp. 2 

11,15-; 11,17-diMeC31 0.023 0.017 1.325 12.772 13.361 1.000 n.s. 

15-; 13-; 11-MeC31 0.022 0.019 1.179 10.451 13.304 0.888 n.s. 

3-MeC29 0.014 0.011 1.339 13.252 12.979 0.999 n.s. 

n-C29 0.011 0.008 1.302 7.076 5.445 0.918 n.s. 

17-; 15-MeC33 0.008 0.006 1.380 5.829 5.994 0.960 n.s. 

Groups  Compound Average SD Ratio Average group 1 Average group 4 p value Sig. level 

Mc host exp. 1 x Mc introduced exp. 2 

11,15-; 11,17-diMeC31 0.030 0.019 1.616 12.772 8.671 0.480 n.s. 

15-; 13-; 11-MeC31 0.023 0.016 1.416 10.451 13.321 0.860 n.s. 

3-MeC29 0.014 0.010 1.351 13.253 13.560 1.000 n.s. 

n-C29 0.010 0.007 1.443 7.077 7.679 0.995 n.s. 
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17-; 15-MeC33 0.008 0.006 1.408 5.830 4.835 0.935 n.s. 

Groups  Compound Average SD Ratio Average group 2 Average group 3 p value Sig. level 

Mmon introduced1 x Mc host exp. 2 

11,15-; 11,17-diMeC31 0.046 0.022 2.066 13.361 4.493 0.001 *** 

3-MeC29 0.030 0.014 2.174 12.979 7.072 0.001 *** 

3-MeC27 0.029 0.006 4.958 0.600 6.361 0.001 *** 

15-; 13-; 11-MeC31 0.028 0.017 1.663 13.304 15.333 0.152 n.s. 

n-C27 0.025 0.011 2.296 0.715 5.707 0.001 *** 

Groups  Compound Average SD Ratio Average group 1 Average group 4 p value Sig. level 

Mmon introduced 1 x Mc invader exp. 2 

3-MeC29 0.033 0.013 2.553 13.560 7.072 0.001 *** 

3-MeC27 0.027 0.006 4.568 0.937 6.361 0.001 *** 

15-; 13-; 11-MeC31 0.026 0.018 1.481 13.321 15.333 0.262 n.s. 

11,15-; 11,17-diMeC31 0.025 0.022 1.142 8.671 4.493 0.997 n.s. 

n-C27 0.024 0.011 2.218 0.883 5.707 0.001 *** 

Groups  Compound Average SD Ratio Average group 3 Average group 4 p value Sig. level 

Mc host exp. 2 x Mc introduced exp. 2 

11,15-; 11,17-diMeC31 0.034 0.021 1.624 8.671 13.361 0.031 * 

15-; 13-; 11-MeC31 0.021 0.016 1.294 13.321 13.304 0.932 n.s. 

3-MeC29 0.014 0.011 1.328 13.560 12.979 0.998 n.s. 

n-C29 0.013 0.008 1.634 7.679 5.445 0.627 n.s. 

4-MeC30 0.010 0.006 1.490 2.093 3.573 0.009 ** 

12 
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(III) Frequency of checking cells 13 

The proportion of events in which females checked cells varied significantly among the groups (ꭓ² = 25.378, 14 

Df = 2, p < 0.001). The post hoc pairwise tests revealed that indeed groups were significantly different from 15 

each other (dominant x beta: t.ratio = 3.407, p < 0.01; dominant x subordinates: t.ratio = 4.760, p < 0.001), 16 

with exception for the comparison of beta x subordinates (t.ratio = 0.082, p > 0.05) (Figure 6). Dominant 17 

females checked cells more frequently than the other two groups of females. 18 

 19 

Figure 6: Proportion of cell verification events performed by females during four hours of observation. 20 

Alpha = 13 females, beta = 7 females, subordinates = 26 females. The proportion of cell verification varied 21 

significantly among groups of females (ꭓ² = 25.378, Df = 2, p < 0.001). The post hoc pairwise tests revealed 22 

that indeed groups were significantly different from each other (dominant x beta: t.ratio = 3.407, p < 0.01; 23 

dominant x subordinates: t.ratio = 4.760, p < 0.001), with exception for the pair beta x subordinates (t.ratio 24 

= 0.082, p > 0.05).  25 

Discussion 26 
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The ability to correctly recognize a nestmate over a non-nestmate is important to maintain the social 27 

integrity in social insects, once it prevents their nests to be usurped by other individuals (adults or brood). 28 

Here, by using a non-destructive technique to sample eggs, we empirically demonstrated that females of 29 

Mischocyttarus wasps have the capacity to recognize and destroy eggs at two different levels, intra and 30 

interspecifically. We confirmed our initial hypothesis that M. cerberus females would correctly recognize 31 

eggs based on their origin. We found that females destroy introduced eggs more frequently than their own. 32 

The recognition abilities worked similarly when they were confronted either with interspecific and 33 

intraspecific eggs (although M. montei eggs were less likely to survive after one hour of experiment than 34 

M. cerberus eggs coming from other nests). Furthermore, we detected quantitative variations on the 35 

hydrocarbons covering the eggs, suggesting that females likely rely on the chemical cues to make decisions. 36 

A more pronounced chemical variation was detected between eggs from different species (M. cerberus x 37 

M. montei), although a slight dissimilarity was also detected among eggs from different M. cerberus nests. 38 

Lastly, we demonstrated that dominant females (= queens or alpha females) are the ones that check cells 39 

more often within their nests, indicating that they are likely responsible for removing eggs. Taking into 40 

consideration that M. cerberus can have their nests usurped by other Mischocyttarus or Polistes species, 41 

egg recognition skills potentially help females to remove unrelated brood from their nests.  42 

The survivorship results of the eggs suggest that females perform eggs’ destruction shortly after being 43 

placed (= laid), and this is true for intra and interspecific eggs. However, some introduced eggs escaped 44 

policing and were reported to be in the nests after a week. We believe that there are two possible 45 

explanations, firstly, eggs may escape being removed because after a while in the nest, they indirectly 46 

acquire some chemical cues throughout the interaction that females maintain with them (grooming) or from 47 

the nest material; or alternatively, it is possible that not all the females have accurate discrimination skills, 48 

then these nests would be more susceptible to usurpers. Although these two explanations are speculative in 49 

our case, previously published studies demonstrated that these may be the case for other species of social 50 

insects. For example, as previously demonstrated for two termite species (Reticulitermes santonensis and 51 

R. lucifugus grassei) allogrooming behavior (grooming towards another individual) is a way in which 52 

cuticular compounds can be transferred passively among individuals (Vauchot et al. 1998). In ant species, 53 

allogrooming helps them to spread CHCs stored in their glands that they received from different individuals 54 

(Lenoir et al. 2001). Trophallaxis is also a route of disseminating hydrocarbons among nestmates (LeBoeuf 55 

et al. 2016). In Polistes metricus, females do not perform a high frequency of egg removal when confronted 56 
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with their own and alien eggs (Wright et al. 2019). In this case, there seems to be an effect of olfactory 57 

responsiveness of each female, the most responsive females are more likely to reject alien eggs, whereas 58 

the contrary is true for the less responsive ones (Wright et al. 2019). Future research should address 59 

questions related to chemical cues transference between adult-immature individuals, and also check 60 

whether females of M. cerberus (especially queens) have a similar olfactory responsiveness, which 61 

probably would help us understand whether all females have similar discriminatory skills.  62 

As demonstrated previously for other social insects, the hydrocarbons covering eggs’ surfaces are likely 63 

the proximal factors that allow M. cerberus females to recognize their eggs over alien ones. Here we could 64 

not explore how M. cerberus females would behave if confronted with eggs of Mischocyttarus consimilis 65 

or Mischocyttarus cassununga, however the two species that were already reported to interact with M. 66 

cerberus (usurpation interactions) (Pinto et al. 2004; Montagna et al. 2012; personal observation). The 67 

accurate ability to eliminate eggs from other M. cerberus and M. montei nests suggest that they may be able 68 

to associate specific chemical cues of their brood and react properly. Egg marking chemical cues are useful 69 

not only to prevent nests from being usurped in social wasps (Lorenzi and Filippone 2000), but they are 70 

also the main route to resolve internal queen-worker reproductive conflicts (see Wenseleers et al. 2020a; 71 

Wenseleers et al. 2020b; Oi et al. 2020). Although the queen is the main responsible for reproduction in the 72 

colony, workers in some cases are not fully sterile and try to invest in direct fitness by laying their own 73 

eggs (male-destined eggs), however, reproductive workers can represent a cost for the whole colony since 74 

they do not perform the same amount of work as the remaining sterile ones (Wenseleers et al. 2004). Under 75 

such circumstances even though workers can activate their ovaries and even lay some eggs, these eggs are 76 

effectively removed by their nestmates (Foster and Ratnieks 2001; Wenseleers et al. 2005; Liebig et al. 77 

2005). The cues that allow such recognition are the chemical compounds that cover them (Oi et al. 2015; 78 

Oi et al. 2020), as queen-laid and worker-laid eggs are chemically different. For example, in the social wasp 79 

V. vulgaris a methylated hydrocarbon (3-MeC29) is more abundant over queen-laid eggs, and experiments 80 

have shown that the topical application of these hydrocarbon over worker-laid eggs let them to be less 81 

removed (Oi et al. 2015). In Polistes dominula the chemical composition of subordinate eggs does not 82 

match the same that are laid by queens, then this variation may help queens to recognize and destroy 83 

undesirable eggs in order to increase their fitness (Dapporto et al. 2007). The fact that not only queens have 84 

activated ovaries and are inseminated in colonies of M. cerberus (da Silva et al. 2020b) raise the possibility 85 

that reproductive conflicts may exist among females. Beta females and the other subordinate females may 86 
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attempt to invest in their own reproduction. If M. cerberus females rely on such egg marking chemical cues, 87 

their recognition abilities can help reproductive conflicts to be solved. 88 

In Polistes biglumis, females have the same ability to recognize their own eggs when confronted with other 89 

from unrelated females. However, they behave differently depending on the eggs’ fate, reproductive-90 

destined eggs are removed whereas worker-destined eggs receive care (Lorenzi and Filippone 2000). In 91 

this case, the differential responses exhibited by P. biglumis females seem to be a result of the different 92 

fitness return that females may have from raising alien brood. Caring for worker-destined eggs means 93 

receiving help with nest maintenance when these adult females emerge, while caring for reproductive-94 

destined eggs does not mean receiving any help (Lorenzi and Filippone 2000). We cannot assure that eggs’ 95 

fate was a determinant factor that contributed for some introduced eggs to be tolerated for a longer time in 96 

our experiments. Future experiments should address if worker-destined eggs or male-destined eggs would 97 

be removed at different rates in M. cerberus colonies. 98 

Although we were not able to correctly assign which female is responsible for scanning the nest to remove 99 

introduced eggs, we believe that this task is probably performed more often by females responsible for 100 

reproduction, the dominant ones (= queens) in M. cerberus. Our data demonstrate the proportion of 101 

checking cell events from different groups in a limited time (four hours of observation), however, we were 102 

already able to see a trend for dominant females to check cells more often. Females of M. cerberus probably 103 

check cells for different reasons. Dominant females stay on the nest and dedicate their time to reproductive 104 

tasks, which includes laying eggs and checking them right after oviposition (personal observation / see 105 

Figure S2), additionally, they also display the brood attending behavior, and they frequently perform 106 

aggressive acts toward other females (da Silva et al. 2020b). The remaining females however, often put 107 

their heads inside a cell when they are feeding larvae, for example forager females perform this right after 108 

returning from the field (personal observation). In social wasps belonging to different social levels, from 109 

primitively to highly eusocial, it is well established that policing behavior is performed not only by the 110 

queen, but also by other workers (Saigo and Tsuchida 2004; Wenseleers et al. 2005). Thus, even though 111 

we believe that dominant females are the ones responsible to realize such a task, the likely involvement of 112 

other females in egg screening behavior is not dismissible. The successful use of artificial cells to collect 113 

eggs used here will allow more studies addressing questions related to policing behavior in Polistine wasps. 114 
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The hydrocarbons found covering the egg’s surface likely work as the proximal cues that allow 115 

discrimination of brood. The majority of the hydrocarbons covering the eggs originate from the Dufour’s 116 

gland (Ferreira et al. 2022), but secretions released by cephalic glands during the egg licking behavior may 117 

also exist. Thus, whether parasitism is costly and frequent in M. cerberus nests, it is possible that 118 

hydrocarbons of these glands may have been selected to carry information that match specifically species 119 

and nest origin. Our results demonstrate the ability to recognize brood in M. cerberus. Future experiments 120 

should also address whether the removal rates of eggs coming from M. cassununga and M. consimilis nests 121 

are consistent with the data that we present here for M. montei and also, whether the position of cell or eggs 122 

make a difference for removal rates. 123 

In conclusion, the results of our work reinforce that in primitively eusocial wasps, nestmate recognition 124 

skills are not limited to interaction established with adult individuals, but also brood (e.g. eggs). 125 

Additionally, we conclude that hydrocarbons are likely the proximate cues that allow egg recognition to 126 

occur in M. cerberus. Finally, we report that the process of egg recognition and hence removal may be 127 

performed by the dominant females, since they are the ones that seem to be more engaged in checking cell 128 

behavior.  129 
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