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One of the barriers to performing geospatial surveillance of mosquito occupancy

or infestation anywhere in the world is the paucity of primary entomologic survey

data geolocated at a residential property level and matched to important risk

factor information (e.g., anthropogenic, environmental, and climate) that enables

the spatial risk prediction of mosquito occupancy or infestation. Such data are

invaluable pieces of information for academics, policy makers, and public health

program managers operating in low-resource settings in Africa, Latin America,

and Southeast Asia, where mosquitoes are typically endemic. The reality is that

such data remain elusive in these low-resource settings and, where available,

high-quality data that include both individual and spatial characteristics to inform

the geospatial description and risk patterning of infestation remain rare. There

are many online sources of open-source spatial data that are reliable and can be

used to address such data paucity in this context. Therefore, the aims of this

article are threefold: (1) to highlight where these reliable open-source data can

be acquired and how they can be used as risk factors for making spatial

predictions for mosquito occupancy in general; (2) to use Brazil as a case

study to demonstrate how these datasets can be combined to predict the

presence of arboviruses through the use of ecological niche modeling using

the maximum entropy algorithm; and (3) to discuss the benefits of using bespoke

applications beyond these open-source online data sources, demonstrating for
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how they can be the new “gold-standard” approach for gathering primary

entomologic survey data. The scope of this article was mainly limited to a

Brazilian context because it builds on an existing partnership with academics

and stakeholders from environmental surveillance agencies in the states of

Pernambuco and Paraiba. The analysis presented in this article was also limited

to a specific mosquito species, i.e., Aedes aegypti, due to its endemic status

in Brazil.
KEYWORDS

maximum entropy (MAXENT), GIS, mosquito occupancy, environmental suitability,
Aedes aegypti, Brazil
1 Introduction

In an age when global viruses such as COVID-19 are an urgent

public health priority for research, overshadowing vector-borne

diseases, the World Health Organization (WHO) has emphasized

the critical need for continued efforts to prevent the transmission of

vector-borne diseases, such as malaria, dengue or Zika, which are

spread by mosquitoes. While focusing on digital solutions for

pandemics, the WHO has implored the global community to not

relent nor allow the current pandemic to eclipse the global agenda

of reducing the burden of vector-borne diseases (1).

In the context of vector-borne disease surveillance and research,

residential entomologic survey data are essential for understanding

the geographical and temporal variability in mosquito occupancy in

residential locations. Information gathered from entomologic

surveys can be used to formulate control strategies for combating

mosquito populations effectively. The spatially precise and fine-

scale data collected under these surveys are one of the most sought-

after pieces of information by health researchers and key policy

makers in the field of overlooked tropical disease epidemiology.

Such data can be utilized for supporting the decision-making

process when determining which high-priority areas are in need

of an intervention (i.e., mosquito/larvicidal campaigns or bed nets)

(2). From a Global South perspective, although many surveys have

been conducted (which have been diligently documented in notable

open source websites, e.g., the Malaria Atlas Project (3) and the

Global Aedes Aegypti & Albopictus Compendium (4)), such

residential property-level survey data with information on

physical and environmental characteristics are hard to come by.

Such data in most cases remain inaccessible to health researchers,

policy makers, and public health program managers. This problem

of data paucity is due to the lack of a systematic approach for

standardizing the collation of information into a digital format that

was initially recorded on paper. The timely entry of data into an

electronic registry is a challenge, and this issue is especially true for

many low-resource settings in countries in sub-Saharan Africa (5–

7) and Latin America (8) which is a hinderance in developing a

more satisfactory dashboard for infectious disease surveillance.
02
Mosquitoes are sensitive to changes in environment and climate

that impact their movement potential and survivability. In addition,

the abundance of surface water in the form of a stagnated reservoir

can have a positive or adverse effect on breeding habits and

populations. These serve as risk factors that can have either a

positive or negative influence on mosquito abundance in an

environment. For example, many cities in the northeastern region

of Brazil were hit hard by the Zika virus outbreak in 2015 (9–11). Zika

virus, an arboviral infection, is transmitted by the Aedes mosquito

genus (i.e., via two common species known as the Aedes aegypti and

Aedes albopictus), which are endemic to that region. Their increased

abundance in the northeast of Brazil is typically associated with

standing water, which serves as a reservoir hotspot for breeding.

Apart from the presence of standing water in human dwellings, a

restricted set of climatic conditions such as land-surface temperature,

humidity, precipitation, and seasonality, in addition to area-level

socioeconomic deprivation risk factors, interact with each other to

create an environment that is tenable for the mosquito’s survival (12).

To predict the spatial and spatiotemporal distribution of illnesses

such as dengue, Zika, and chikungunya, in two northeasten Brazilian

cities, Recife and Campina Grande, local environmental health

authorities routinely carry out surveys on a bimestrial basis. The

community health workers (CHWs) from these cities are deployed

to high-risk neighborhoods to visit residential properties to inspect

seven different types of breeding sources to detect the presence of the

Aedes mosquito and its larvae (13–17). The CHWs collect other

important information that describes the property’s physical

characteristics (e.g., type of building structure and presence of a

garden) and waste management practices (e.g., mode of waste

disposal, presence of landfill, etc.) that contribute to the

proliferation of mosquitoes (18, 19). A key challenge faced by

these CHWs is the use of paper-based tools to document

“thousands upon thousands” of pages of entomological

information collected directly from the field. The data recorded on

the paper forms must then be manually input into an electronic

database by the CHWs; and ultimately increases the risk of passing

incomplete data to policy makers and public health managers. This

problem occurs in Recife and Campina Grande and was addressed
frontiersin.org
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by Aldosery et al. (18), who have developed a system for handling

primary data with state-of-the-art bespoke smartphone applications

(18). Considering these aforementioned issues (i.e., paucity of survey

data due to how they are collected at the residential premises level),

the CHWs are faced with challenges of linking primary information

with other broader secondary sources of data that may contain wider

indicators for water sanitation and hygiene (WASH) and weather

parameters which may contribute to mosquito occupancy in

residential premises (4, 20, 21).

A significant number of highly reliable open-source datasets are

available. These open-source data can be linked to spatially

referenced survey records to augment the mosquito surveillance

effort. The authors argue that these sources remain elusive to many

researchers in this line of research. Therefore, the primary objectives

of this research article are threefold: (1) to point out to readers where

these reliable open-source data can be acquired and explain how

they can be used as risk factors for making spatial predictions for

mosquito occupancy in general; (2) to use Brazil as a case study to

demonstrate how these datasets can be brought together to predict

the presence of arboviruses through ecological niche modeling using

the maximum entropy algorithm; and (3) to discuss the benefits of

using bespoke technologies (smartphone applications, the Internet

of Things, etc.), and to explain how these can be the new “gold-

standard” approach for gathering primary entomologic survey data.

The scope of this paper was limited to a Brazilian context because

the research builds on an existing partnership with academics and

stakeholders from environmental surveillance agencies in Recife

(State of Pernambuco) and Campina Grande (State of Paraiba). We

also chose the Aedes genus as the mosquito of focus due to its

endemic status in Brazil and restricted the analysis specifically to the

Aedes aegypti mosquito, since it is more commonly found than

Aedes albopictus. Nevertheless, this article was written to build

capacity for and awareness of data sources and methods, and thus
Frontiers in Tropical Diseases 03
it is applicable to different mosquito species and other areas in the

Global South with similar circumstances.
2 Description of data sources

In this section, we highlight the various sources of data that can

be obtained online. We have provided a detailed description of how

to use the data for causal inference and predictive analytics for

mosquito occupancy. This included shapefiles for countries as well

as point and raster grids for weather and environmental data,

respectively. For raster data, we particularly highlighted the most

reliable and updated sources available at a high spatial resolution.
2.1 Obtaining spatial boundaries for study
areas from GADM

Shapefiles can be obtained from the Global Administrative

Areas Database (GADM) (https://gadm.org/index.html). The

GADM is a high-resolution database that contains information

on administrative areas for all countries, at all sub-divisional levels

(e.g., national, state, municipal, district, and sub-district levels), and

is freely accessible for research (22). For example, the shapefiles for

Brazil (see https://gadm.org/download_country.html) are available

at four levels (see Figure 1):
• Level 0: the country’s border (“gadm36_BRA_0.shp”)

• Level 1: boundaries for the 27 states (“gadm36_BRA_1.shp”)

• Level 2: boundaries for the 5,504 municipalities

(“gadm36_BRA_2.shp”)

• Level 3: boundaries for the 10,195 districts (“gadm36_

BRA_3.shp”).
FIGURE 1

Shapefile (available from https://gadm.org/index.html) plotting the spatial configuration of Brazil. The administrative levels of Brazil are divided into
four (0, 1, 2, and 3); however, for certain countries (especially those classified as low- or middle-income countries) the breakdown of administrative
levels may differ.
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2.2 Obtaining various environmental data

2.2.1 Vegetation cover from the USGS
Earth Explorer

Vegetation cover is one of the prominent risk factors for

mosquito-borne transmission. For some species, it provides a

suitable condition for its movement potential and survivability.

One important metric that is often used in the prediction of

vector-borne diseases is the Normalized Difference Vegetation

Index (NDVI), which is easy to derive on a raster grid (23). This

metric describes whether a gridded value in a geographic space

contains high or low levels of vegetation. An excellent source is the

USGS Earth Explorer (https://earthexplorer.usgs.gov/), which

provides users with access to several selectable aerial satellite

images (e.g., via Landsat, Sentinel-2, MODIS, and radar

instruments) that can be downloaded and cropped according to the

spatial extent and temporal resolution of the study area of interest.

The images are downloaded as bands ranging from 1 to 12. To derive

the NDVI as a gridded layer, one can use the satellite data that

correspond to band 4 (i.e., red) and band 5 [i.e., near infrared (NIR)].

The NDVI indices are generated as a raster image by taking the image

of bands 4 (red) and 5 (NIR) using the formula (NIR - RED)/(NIR +

RED). The length of the pixel (i.e., grid cell) is derived at 90.0 m,

whereby each pixel contains an estimate that refers to the intensity of

vegetation at a given location. A higher value shows that the presence

of vegetation at a location is greater and vice versa. Readers should

note that the USGS Earth Explorer has already packaged the NDVI

data into several products [i.e., MOD13A1 (500 m), MOD13Q1

(250 m), MYD13A1 (500 m), and MYD13Q1 (250 m)], which are

hosted on the Google Earth Engine (https://earthengine.google.com).

With bespoke Python code, the NDVI data can be extracted through

Google Earth Engine’s code editor (see section on data availability).

2.2.2 Obtaining land-surface elevation data from
the STRM Digital Elevation Database

Elevation is often used as an important predictor for

determining environmental suitability for mosquito abundance.

High-altitude areas (i.e., those averaging above 1,200 m) adversely

affect survival rates for most mosquitoes (24–26). The land-surface

elevation layer can be obtained from the STRM 90.0 m DEMDigital

Elevation Database (https://srtm.csi.cgiar.org): it is possible to select

and download the tiled raster that contains land-surface elevation

estimates for the study area. The user can crop (or “cookie cut”) the

tile to the spatial extents of the study area of interest. The resolution

for the layer is 90.0 m, where a grid cell value contains a positive (or

negative) continuous measurement in meters to reflect the height of

the land’s surface above (or below) sea level.

2.2.3 Obtaining aridity data from the
GAI-PECD database

The Global Aridity Index & Potential Evapotranspiration

Climate Database (GAI-PECD) (version 2) (see https://

cgiarcsi.community/2019/01/24/global-aridity-index-and-

potential-evapotranspiration-climate-database-v2/) provides high-

resolution (approximately 1 km) global raster climate information
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for levels of environmental dryness, measured as the Aridity Index

(AI) (27). Aridity is a significant environmental risk factor for

determining environmental suitability for mosquito survivability

(28, 29). Mosquitoes are unable to survive in harsh areas that are

hyper-arid or arid and thus are completely absent in such

environments; however, they can thrive in semi-arid and dry

subhumid environments. The raster contains numerically derived

estimates for AI (ranging from 0.0 to 0.65) describing the degree of

dryness of the climate at a given location. The raster values for AI

can be reclassified accordingly to four dryland subtypes: < 0.05

(hyper-arid), 0.06 to 0.20 (arid), 0.21 to 0.50 (semi-arid), and 0.51 to

0.65 (dry subhumid). Since mosquitoes cannot survive in hyper-

arid and arid areas (i.e., AI 0.20), it is possible to limit the area of

analysis to semi-arid and dry subhumid areas (i.e., AI > 0.20) and

create a binary raster constraining the analysis to areas where they

will survive (i.e., AI > 0.20).
2.3 Obtaining various anthropogenic data
from WorldPop.org

An ensemble of several anthropogenic-related risk factors

stored as gridded data at a high-resolution of 100 m can be

accessed from Worldpop.org (https://www.worldpop.org/).

WorldPop.org is an open-source spatial demographic database.

2.3.1 Built settlements
Several studies have demonstrated that the degree of

urbanization in a study area is correlated with a significantly

increased risk of mosquito occupancy, as urbanization

inadvertently yields breeding sites within human dwellings (30,

31). The built settlements raster layer can therefore be used to

model the risk of infestation. This raster layer contains binary

information that defines an area as either an urban (1) or non-urban

(0) location. These data can be implemented in the spatial analysis

for mosquito surveillance in two ways. First, for point analysis, the

data can be used to classify point features (e.g., communities,

villages, and points of individual houses or residential premises)

as “urban” or “non-urban” through simple overlays and pixel

extraction to spatial points. Second, for area-level spatial analysis,

one can calculate the fraction of surface defined to be urban or non-

urban. For each country, WorldPop.org has mapped the trajectory

of how built settlements have expanded over the years (32), and

these raster data are available from 2010 to 2020.

2.3.2 Population density
Human population characteristics are an important feature to

account for in the modeling of mosquito-borne transmission (33).

The population density raster can be used to estimate counts of

inhabitants at point locations. For areal analysis, these grids can be

aggregated within a boundary to derive an estimate for the total

number of inhabitants in an area, which is useful, as a denominator

is necessary to obtain measures of disease (or infestation) frequency

(e.g., prevalence or incidence rates). WorldPop.org provides a large

number of raster layers that all contain discrete values that
frontiersin.org
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represent the estimated number of inhabitants within a given pixel

and are available for many countries in the Global South from 2010

to 2020. The resource also provides raster data that are gender- and

age-group-specific, which is very useful for deriving age- and sex-

adjusted estimates. The details of how these layers were created are

explained by Lloyd et al. (34).

2.3.3 Night-time lighting of areas
Worldpop.org (https://www.worldpop.org/) provides

resampled gridded data to show the intensity and detection of

non-natural lighting on the Earth’s surface to signify the presence of

anthropogenic activity, or land occupied by human settlements.

Artificial lighting is an important risk factor to account for in the

prediction of mosquito occupancy for two reasons: (1) as shown in a

recent review, there is a growing body of literature indicating that it

significantly impacts mosquito feeding behavior (i.e., mosquitoes

have a preference for feeding during the night, when non-natural

lighting is pronounced) (35); and (2) in the Global South, especially

in sub-Saharan Africa, extensive lighting is a strong indicator of a

city’s economic and structural development. Therefore, these data

can be modeled as a direct risk factor; alternatively, they can be used

to generate a composite for socioeconomic deprivation (36). The

spatial resolution for this dataset is 100 m by 100 m.
2.4 Weather variables

Land surface temperature, humidity, and rainfall are typical

weather-related risk factors that must be taken into consideration

for the spatial prediction of breeding hotspots for mosquitoes,

irrespective of species. The joint contribution of climatic variables

plays an immense role in creating an environment that is suitable

for the mosquitoes’ survivability and for its breeding and feeding

habits. A group of such climatic risk factors stored as high-

resolution gridded data can be accessed from several sources.

Here, we describe two prominent sources: WorldClim and

OpenWeatherMap API.

2.4.1 Obtaining weather-related information
from WorldClim

WorldClim (https://www.worldclim.org) is a comprehensive

spatial database containing high-resolution weather and climate

data on a global scale (37, 38). It provides two datasets. First, it

provides historical monthly weather data from 1960 to 2018,

specifically for the following climate variables: minimum

temperature (°C), maximum temperature (°C) (which can be

recalculated to obtain either a median or mean temperature), and

total precipitation (mm). It should be noted that the highest spatial

resolution for these data is 2.5′ (approximately 4.5 km).

Downloading the parameters will produce a highly compressed

zip file containing several GeoTiff (.tif) files (i.e., the raster) for

each month of the year (where January is 1 and December is 12) for

a 10-year period. Second, WorldClim provides projected monthly

estimates for climate data for the time periods 2021–2040, 2040–

2060, 2061–2080, and 2081–2100 at four different spatial
Frontiers in Tropical Diseases 05
resolutions [30″ (approximately 900 m), 2.5′ (approximately

4.5 km), 5′ (approximately 9 km), and 10′ (approximately

18 km)]. The projected version provides monthly values of

minimum temperature (°C), maximum temperature (°C),

precipitation (mm), and 19 other bioclimatic variables, which

were all derived from 23 climate models.

2.4.2 Obtaining weather-related data from the
OpenWeatherMap API

Data can be downloaded from an online meteorological service

called the OpenWeatherMap application program interface (API)

(https://openweathermap.org/api). It provides an API with JSON

endpoints to make free and unlimited calls for extracting weather

values (i.e., for temperature, relative humidity (%), pressure, cloud

cover, and weather description) that are current estimates; users can

also extract projected estimates or “short-term” 3-hourly forecasts

stretching up to 5 days in the future, which is a useful feature if the

user wants to incorporate data for predicting mosquito occupancies

over a short period. It should be noted that extracting data from this

source is challenging. One must first register to gain access to an API

key, then set up a “scheduled” extraction script to extract the current

analysis and 3-hourly forecasts (for up to the next 5 days) at the

selected location (i.e., using the GPS centroids of cities) via

OpenWeatherMap (the information is compiled in a JSON file).

This can be done via a local server (i.e., personal computer) using a

crontab (https://crontab.guru/every-5-minutes) or preferably on a

cloud-based online server such as the MongoDB (https://

www.mongodb.com). The data extraction is performed through

the following API address, with the given API key provided by the

OpenWeatherMap service (the selected city’s ID number is

inserted in the “ID” part of the API address): http://

api.openweathermap.org/data/2.5/forecast?id=ID&APPID=KEY. It

should be noted that this resource provides weather measurements

only at a city level. For example, suppose we wanted to extract the

weather data for Recife and Campina Grande (in Brazil) (39): we

can perform this action by using the API key provided by the

OpenWeatherMap API services, and then setting the API to the

selected cities’ IDs by inserting the values of 3390760 (i.e., Recife,

longitude –34.8811 and latitude –8.0539) and 3403642 (i.e.,

Campina Grande, longitude –35.8811 and latitude –7.2306) into

the above link through a timed recursive loop to continuously

compile the records into a local server or into a cloud-based

online platform. Details of this resource were explained

extensively by Musah et al. (39).
3 Materials and methods

In this section, we describe the implementation of a population-

based ecological study design using spatially referenced point survey

records on presence-only mosquito data, using Brazil as a case study

for this demonstration. We will discuss the implementation of the

maximum entropy model (MAXENT) for predicting the probability

of mosquito occurrence across the whole of Brazil while accounting

for other environmental attributes that impact mosquito habitats.
frontiersin.org

https://www.worldpop.org/
https://www.worldclim.org
https://openweathermap.org/api
https://crontab.guru/every-5-minutes
https://www.mongodb.com
https://www.mongodb.com
http://api.openweathermap.org/data/2.5/forecast?id=ID&amp;APPID=KEY
http://api.openweathermap.org/data/2.5/forecast?id=ID&amp;APPID=KEY
https://doi.org/10.3389/fitd.2023.1039735
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org


Musah et al. 10.3389/fitd.2023.1039735
3.1 Data extraction from the global
compendium of Aedes aegypti and
Albopictus occurrence

The global compendium of the Aedes species is an open source

database that is accessible via the Global Biodiversity Information

Facility (GBIF) (https://www.gbif.org) (4). For this demonstration,

we have restricted the analysis to the Aedes aegypti species points in

Brazil. This file contains a grand total of 19,929 spatially referenced

occurrence points across the world. Brazil has 5,057 survey points

spanning from 1979 to 2013 that contribute to this database. The

majority of the survey points for Brazil were documented in 2013

(4,410; 87%), while the remaining survey points (i.e., 594; 12%) were

unevenly spread across 1979 to 2011, with 53 survey points having

missing information for the year. Therefore, to determine the

possible distribution of the Aedes aegypti species in Brazil, a total

of 4,410 occurrence locations for the Aedes aegypti species were

extracted from this database for the year 2013 only.
3.2 Study design

A country-scale ecological study design within a cross-sectional

framework was used on 2013 data to retrospectively determine the

following outcomes: (1) the probability of the Aedes aegypti species

being present at a location in Brazil; (2) the likely areas that are

environmentally suitable for Aedes aegypti; and (3) the set of

restricted variables (i.e., temperature, precipitation, natural

lighting, urbanization, NDVI, population density, and land

surface elevation) that yields the highest contribution to mosquito

occurrence prediction in a Brazilian context.

3.2.1 Gridded environmental variables
As described in section 3.2, seven predictor variables, of which

two are climate related (annual temperature and precipitation in

2013), three describe the physical environment (averaged NDVI

and natural lighting in 2013, and land surface elevation), and the

remaining two describe the anthropogenic conditions (i.e., overall

population density and urbanization, both measured for 2013),

constituted the gridded data used as risk factors for mosquito

occupancy. These raster grids were combined accordingly into a

single multiband raster object with dimensions of 4.5 km by 4.5 km

resolution to enable the following actions needed for the analysis:

(1) the extraction of all environmental raster values from all seven

variables onto the occurrence and absence points (see section 3.2.2);

and (2) the feeding of the entire multiband raster object into the

MAXENT model after it is trained for the country-scale estimation

and spatial prediction for Aedes aegypti occupancy in Brazil.

3.2.2 Statistical analysis using the maximum
entropy algorithm (MAXENT)

The maximum entropy algorithm is a classification algorithm

that falls under the umbrella of ecological niche models, which are
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used to estimate the relationship between species records at sites

and the environmental and spatial characteristics of those sites (40).

In other words, these are distributional models that use occurrence

point data in conjunction with environmental data to make a

correlative model of the environmental conditions that meet an

outcome’s environmental (or ecological) requirements, which, in

turn, can infer zones for the relative suitability (or predictability) of

an outcome. They have many applications in ecology,

epidemiology, and disaster risk reduction and have been widely

used for country-scale mapping for determining habitat suitability

for the Aedes species in South America (41–43).

As described in section 3.1, 4,410 location data points for Aedes

aegypti in 2013 in Brazil were compiled and used as presence points.

Background data for twice the number of the presence points (i.e.,

8,820) were generated within the extent of the study area to serve as

proxy locations for pseudo-absences of Aedes aegypti. The presence

and pseudo-absence points were rendered into a binary indicator

that takes a Bernoulli function to model probabilities in geographic

space. It should be noted that all 4,410 occurrence points were

coded as 1 to signify the presence of Aedes aegypti, while the

assumed background points (i.e., pseudo-absences) were coded as

0 to signify the absence of Aedes aegypti (40) (Figure 2). These

points were used to extract all environmental raster values as

described in section 3.2.1.

Before constructing the predictive model, we performed a

fourfold cross-validation analysis by randomly withholding 25%

of the presence and pseudo-absence locations as test data, and

retaining the remaining 75% as training data for mapping the

predictions. This meant that the model was fitted four times

while withholding a separate quarter of the data – each cross-

validation would churn a key indicator that was averaged to allow

for overall model validation, i.e., the area under the curve (AUC)

and maximum true-positive rate and true-negative rate (max

TPR + TNR). AUC is an indicator of model performance where

higher values indicate greater accuracy in our predictions; an AUC

value of 0.5 is a common cut-off point used for assessing model

performance. Hence, an AUC value of 0.5 or lower is an indication

of our predictions being unreliable, while values above 0.5 and

toward 1.0 indicate that our predictions are more reliable and

accurate. Max TPR + TNR denotes the probability threshold at

which our model maximizes the TPR and the TNR for correctly

classifying a grid cell as a presence feature. It is generally accepted

that this is the optimum value at which to set the threshold for the

binary classification of a grid cell and the predicted probability is a

reflection of the level of certainty of the classification that was

mapped. We used the max TPR + TNR threshold to reclassify the

region’s predicted probabilities accordingly as “suitable” and “not

suitable”, whereby any value above max TPR + TNR was deemed as

environmentally suitable for the Aedes species and vice versa.

All statistical analysis, including GIS mapping and MAXENT

modeling, was performed in RStudio (version 2022.07.1 Build 554).

All datasets along with scripts were provided for reproducible

research (see section on data availability).
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4 Results

4.1 Mapping the predicted probabilities and
suitability regions for Brazil

After performing the fourfold cross-validation analysis, we

found that the overall AUC estimate was 0.8376 (83.76%), which

was obtained after averaging AUC-specific estimates for each cross-

validation, i.e., 0.8435 (84.35%), 0.8403 (84.03%), 0.8333 (83.33%),

and 0.8331 (83.31%). This value is greater than 0.5, thus indicating

the model’s predictive reliability (Figure 3).

The optimal threshold (i.e., max TPR + TNR) at which the

MAXENT model was able to correctly classify a grid cell as a
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presence feature for mosquito occupancy was 0.4953. Hence, we will

use a predicted probability threshold of 0.4953 to reclassify areas as

suitable for mosquito occupancy (Figure 4). The expected outputs

are shown in Figure 4: the left panel (A) shows the predicted

probability distribution of mosquito occupancy for the Aedes

aegypti species throughout Brazil, retrospectively, in 2013, while

the right panel (B) shows the delineated areas where they are more

likely to thrive.

The predictions were adjusted with seven different environmental

covariates (Figure 3); here, we report the overall variable contributions.

The population density, an anthropogenic indicator, has the highest

contribution to the prediction, estimated at 75.75%, followed by natural

lighting (10.29%), precipitation (6.79%), NDVI (4.18%), temperature
FIGURE 3

AUC curves from fourfold cross-validation analysis; the four estimates were averaged to 0.8376 (> 0.5) with a max TPR + TNR of 0.4953.
FIGURE 2

The right panel shows point locations with a known presence (red dots) of Aedes aegypti in 2013 in Brazil, whereas the blue crosses correspond to
pseudo-absence points. The left panel shows the following Brazilian covariate data measured for 2013: (A) annual temperature; (B) annual
precipitation; (C) population density; (D) NDVI; (E) land surface elevation; (F) natural lighting; and (G) urban/rural classification.
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(2.55%), land surface elevation (0.421%), and urbanization

(negligible; < 0.0001%).
5 Discussion

In this article, we described a broad range of open data sources

that can be harnessed for the spatial prediction of mosquito

populations. We used the whole of Brazil as a motivational case

study to demonstrate how these datasets can be brought together for

predicting the intensity of mosquito occupancy for Aedes aegypti in

a data-sparse context using the MAXENT algorithm, which showed

that population density, natural lighting, and precipitation made the

biggest contributions to mosquito occupancy. While this approach

was rigorous and should be used when data remains elusive, the

author(s) concede that there are flaws in this approach. First, the

research design of this case study was retrospective, using open

entomologic data that were mostly available for 2013. The

predictions shown in Figure 3 are not at all representative of the

current climate situation when this research article was written (i.e.,

2023). However, it would be possible to use the projected climate

and population-based data for 2023 (which could have been done

here, but this article is simply a demonstration), which could be fed

into our trained MAXENT model and would have produced the

predicted probability values for a future scenario. Second, the study

design itself relies upon an ecological study design within a

retrospective cross-sectional framework. In this study, the data

used were a combination of both point and gridded information

that is at a high geographic resolution but not at an individual level,

e.g., at the level of household or property. This meant that the

interpretation of the predictions needed to be done with the

ecological fallacy in mind. These biases limit the research’s ability

to achieve both internal and external validity. To combat these

biases, we argue the case for using bespoke applications for

acquiring accurate entomologic data.

Our case study demonstrated the combining of open-source

data to crudely map areas of mosquito habitat suitability,

analytically and in an unsupervised scenario (and where data

paucity is an issue). However, the authors stand by the opinion
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that point-level mosquito surveillance data that recorded

observations at either a residential premise or property level

would be the “gold standard” approach for collecting primary

data at a granular resolution. This provides ample opportunity to

collect more detailed information describing property

characteristics that promote infestation, which was absent from

our case study. In addition, it provides point-level data used in

point-process models for making spatial predictions regarding

infestation burden, which in turn can be integrated into an early

warning system for outbreaks (44–46). We propose that the use of

smartphone applications that are developed for the main purpose of

collecting surveillance data to show the infestation risk and at the

same time the geographic burden of such infestations is the best way

to support vector control campaigns. There is now a shift toward

using such applications for this purpose, especially in Central and

South America, with three examples given here. First, VectorPoint

is an excellent mobile surveillance application for reporting

Chagas disease and infestations in Arequipa, Peru (47). The

application provides a risk map based on data collected during

fieldwork. Second, Chaak is a smartphone-based application system

interlinked with a dashboard (for managers) dedicated to mosquito-

borne disease surveillance that captures data related to the

immature stages of dengue virus mosquito vectors in Mérida,

Mexico (48). Third, VazaDengue is akin to VectorPoint and

Chaak; however, it is only a smartphone-based system that

integrates social media with citizen science to guide surveillance

agents in controlling mosquitoes (49).

The authors have developed a robust surveillance system, which

is cloud based, that improves the surveillance of mosquitoes by

providing timely and geolocated reports regarding the presence and

absence of mosquitoes in properties along with other entomological

characteristics (i.e., eggs or larvae) in north-east Brazilian cities,

limited specifically to Recife and Campina Grande. This was done

by taking everything the CHWs use in their mosquito control

campaign [i.e., surveillance reporting cards (data collection

sheets) and the spatial configuration of block areas as scanned

maps] and digitizing them into a format supported by the MEWAR

application (a full description of its development is provided by

Aldosery et al. (18) (see Figure 5). The application seeks to collect
A B

FIGURE 4

MAXENT modeling results showing (A) the predicted probability map of mosquito (Aedes aegypti) occupancy and (B) the suitability map based on
the max TPR + TNR to illustrate where Aedes aegypti will thrive in Brazil.
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general parameters linked to infestation, ranging from spatial

information to property-level characteristics such as land use,

waste disposal practices, and key entomologic infestation and

treatment indicators (see Table 1).
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The list of data sources that are raster based is malleable for

area-level analysis—most mosquito surveillance data tend to be

released at an area level; hence, these pixels can be aggregated

within areal boundaries and matched to observed units to be used
A

B

C

FIGURE 5

The conversion of surveillance data and maps (using a paper-based system for data collection) to a format that supports data collection with mobile
phones. (A) Original surveillance card on which all property, spatial and entomologic data are recorded (this card is used by the control agency in
Campina Grande). (B) On the left is a scanned map used by CHWs to gauge which block areas to attend and visit resident properties in, and on the
right is a digitized version of the scanned map for extracting block data to be incorporated into the app. (C) Prototype version of mobile application
(source image from Aldosery et al. (18).
TABLE 1 General summary of the type of information collected through the MEWAR smartphone application mapped from Environmental Health
Agents (EHA) from Recife and Campina Grande (see details in Aldosery et al. (18)).

Variable name Indicator
type

Description

Full address Character • Full address details of the building, which includes the following: door number, street name, neighborhood,
district, and state

GPS (in decimal degrees) Spatial • Longitude
• Latitude

Land use type Property • Residential
• Commercial
• Other building type (abandoned properties)

Waste disposal practice Sanitation • Proper disposal (i.e., collected directly by waste management)
• Improper disposal [i.e., collected indirectly, burnt, buried, thrown on landfill, thrown on ground, thrown in a
body of water (e.g., river, stream, or lake)]

Sources for mosquito breeding (six-
tier classification)

Entomological • A1 (water tanks)
• A2 (large indoor domestic containers, e.g., barrels, bathtubs, and cisterns)
• B (indoor small domestic containers, e.g., vases, dishes, and flowerpots)
• C (fixed outdoor objects, e.g., gutters, slabs, swimming pools, and ornamental fountains)
• D1 (discarded objects found outside property, e.g., tires)
• D2 (discarded garbage, e.g., plastic food containers, bottles, and cans)

Infestation status Outcome • Infested
• Not infested

Treatment status Performance • Inspected
• Treated (i.e., with larvicidal application, mechanically, chemically, etc.)
• Not treated
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as risk factors. Appropriate rasters that are good candidates for

aggregation include population density, climate data from

WorldClim, and aridity—these can produce proxy measures for

area units such as totals and other useful summary statistics

(medians, averages, etc.) that can be implemented in a variety

of spatial risk models at an area level [notable examples of spatial

models for risk prediction include Bayesian hierarchical modeling

(46, 50, 51) and machine learning (e.g., boosted regressions (52)].

Users rendering their data to this level and implementing this

kind of approach should keep in mind the various biases that can

occur when reporting results, and hence a pronounced bias, such

as the ecological fallacy, should therefore be considered carefully.

However, the use of individual-level data (i.e., residential

premises) collected through primary surveys can be augmented

with the open-source environmental spatial data highlighted in

this article by linking their GPS coordinates by using a spatial join,

overlapping the raster pixels with the surveillance points and

assigning the raster values to the survey points to facilitate a much

more precise and granular modeling approach. This would be

invaluable, as the point-process approach for mapping is the gold

standard for making spatial risk predictions for households, and

the results can be further interpolated over a grid for risk

coverage. There are many models that enable this kind

of analysis—notable examples include Bayesian modeling

frameworks such as stochastic partial differential equations

using integrated nested Laplace approximations (SPDE-INLA)

(53–55). These are valuable options for risk prediction and

creating an early warning system for mosquito outbreaks;

whereby such information can be fed into a dashboard to

provide digital solutions for surveillance manager and policy

makers (56, 57).
6 Conclusion

To conclude, we have identified a broad range of open-source

data sources that can be harnessed as risk factors for the spatial

prediction of mosquito occupancy or infestation, and we have

demonstrated in a reproducible way how they can be brought

together and implemented using the MAXENT algorithm within

a Brazilian context. We explicitly note that this approach should be

utilized within a data-sparse context. However, we also discussed

the use of novel bespoke technologies, such as smartphone

applications, that should be considered the better method for

collecting primary entomologic data, to address the problems of

data paucity and avoid potential biases that are typically found in

studies using open source datasets—doing so will improve a study’s

internal and external validity. This article was written to build

capacity for and awareness of various data sources, demonstrating

their use with reproducible methods, and thus it is applicable to

different mosquito species and other areas in the Global South with

similar environmental and socioeconomic conditions.
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